Creating Artistic Compositions Using
Coalition-Forming Intelligent Agents

Alex Pytell

David R. Cheriton School of Computer Science
University of Waterloo

Technical Report CS-2008-23

October 15, 2008

femail: apytel@cs.uwaterloo.ca

Abstract

Simulation of multi-agent systems (MAS) can be an effective technique for generat-
ing randomized compositions out of primitive picture elements. This report presents a
complete implementation of a MAS for creating rule-based hierarchical arrangements
of 3D objects in a plane and identifies some associated technical challenges, such as
attaining good performance and usability.

1 Introduction

When viewed as the problem of creating compositions of pre-defined elements, procedural
generation of virtual environments can be accomplished as a product of simulating a multi-
agent system (MAS). In this context, the agents are primitive constructs consisting of local
state and an objective function which determines their actions. The behaviour of the agents
is framed primarily in terms of their ability to join and leave agent groups, called coalitions.
This characterization of MAS is due to Mason et al. [2], who have shown that the placement
of graphical elements in a composition based on the behaviour of the agents of a MAS
can benefit from the emergent behaviour of the agents and make the produced composition
appear to be a gestalt — a whole that is greater than the sum of its parts.

This report presents a multi-agent system designed to create randomized compositions
of 3D primitives in a plane. These compositions can have a recursive organization and can
arrange their elements in 2.5D in order to better utilize the 3D space. The emergent hierarchy
of the agent coalitions forms the structure of the resulting scene as a hierarchical tree of
transformations applied to the primitives. The framework allows for easy experimentation
with agent behaviour by providing a common structure for adding new types of agents.

2 Related Work

Mason et al. [2] use the kind of MAS described above to generate 2D artistic compositions
whose elements are created and arranged as the agents form coalitions. The process relies
on the agents’ emergent behaviour as they follow a set of rules that cause them to explore
the agent space and interact with each other. The primary goal of the agents is coalition
formation, which brings them closer to becoming an element of the displayed picture. The

3 A. Pytel

structure that the agents create emerges in a bottom-up manner, since the agents only have
a subjective view of their environment. Demonstrations of the use of Surreal, which is an
implementation of such an agent system, suggest that it is flexible in producing virtually any
kind of composition. In particular, it was used to produce a Piet Mondriaan-like composition
and a seigaiha (blue ocean waves) pattern [2].

There are other applications that benefit greatly from this ability of the agents to generate
emergent structure based only on a subjective understanding of their environment. For
example, stroke-based rendering, an NPR technique that generates an image by combining
elements larger than a pixel (usually by following the pattern of a source image), has been
successfully accomplished using a MAS [3]. In particular, the emergent behaviour of the
agents can be used to effectively locate edges in an image, as well as place patterns of
stipples or hatches. In a similar way, a MAS-based approach can be used to effectively
determine a set of routes for navigating a given environment, as it has been shown by an
algorithm inspired by the behaviour of biological bees [1].

A key difference between the three MAS applications is the degree of abstraction of the
MAS environment from the environment of the underlying problem that the MAS simulation
is intended to solve. In the 2D composition example [2], the agent environment is abstract
(a hypertorus) and the coalition formation paradigm is used to relate it to the environment
of the problem. In the stroke-based rendering example [3], the agent environment is almost
the same as the concrete environment of the problem (which is the image to be rendered).
In particular, the agent space is the input image augmented with additional information,
such as object masks and temporary buffers for indirect inter-agent communication. Finally,
in the bee-based navigation example, both of the environments are the same model of a
physical world [1] requiring exploration.

3 Technical Details

3.1 Agent Interpretation

The MAS system presented in this report adopts the model of a separate completely abstract
agent environment, as the most general one. Additionally, it also relies on framing the
emergent agent-space structure in terms of the coalition formation paradigm used by Mason
et al. [2], since that framework is most immediately suitable for translation into scene-space
structure. These ideas establish the working principles of the MAS example, except for some
details of agent usage and behaviour discussed below.

Although the agents and their space are entities which are abstracted, or not directly
expressed in the scene-space environment, they are still given meaning through the agent
coalition paradigm, which relates structure in the agent space to structure in the scene space.
In particular, the objects expressed in the final scene are organized hierarchically, using a
tree of transformations. For example, a group of objects that are equally spaced around a

Creating Artistic Compositions Using Coalition-Forming Intelligent Agents 4

circle can contain both other such groups and primitives, which are the leaf nodes in the
hierarchy. For a given object hierarchy to emerge in the scene, it is necessary for the agent
coalitions to follow an identical pattern of containership in agent-space. This is illustrated
in Figure 1 for the case of a CIRCLE, which is a circular arrangement of primitives, and a
STACK, which is a vertically stacked arrangement of primitives; a primitive can be a cube,
a pyramid, or a sphere.

Child #1

Child #2

Child #3.
PEIMITIVE

Figure 1: The structure of agent coalitions on the left is in 1-1 correspondence with the
structure of the object hierarchy in the middle. The right panel shows the produced scene.

In addition to encoding structure, the agents can also represent certain specific types of
information related to the scene objects, or their groups. For instance, there are agents for
the type, size, and colour of the primitives. Additionally, there are intermediate coalitions
of agents which contain partial information about a potential scene-space structure. These
additional types of agents serve a technical role and are listed in Appendix A.

3.2 Agent Behaviour

To facilitate the agent to scene translation of structure, coalitions are themselves represented
by instances of appropriate agent types which have the ability to become coalition directors.
In this way, the behaviour of the entire simulation is essentially decided by the rules of joining
or leaving an agent sub-tree administered by a coalition director. Each agent, the directors
included, has a subjective understanding of its environment which consists of nearby agents
in the surrounding agent space and some agents of its agent tree.

At each simulation step each agent evaluates its objective function in its current state as
well as in the states corresponding to the agent’s leaving its current coalition (if any) for each
candidate coalition in its subjective environment; the result determines the actions taken by
the agent (Appendix B contains a detailed list of actions). There are some fundamental rules
that govern the process:

Rule I: Information Flow. The coalition director should have access to all the informa-
tion available to its members [2]. In particular, this means that a director agent can
search the neighbours of any node in its agent tree for another coalition to join. The

5 A. Pytel

other way around, when one agent attempts to join a second agent which belongs to a
coalition, the first agent can look for other potential join candidates in that coalition.

Rule II: Decisions. All decisions made by the agents to undertake a particular action
(joining or leaving a coalition) are based on the change to the objective function of the
relevant agents. For example, leaving agent A for B can only be done if it increases
B’s objective more than it decreases A’s.

Rule ITI: Altruism. Agents assume that whatever is good for the coalition they are joining
is also good for them. In other words, agents seek the coalitions whose objective
function they can increase the most by joining (the reciprocal objective increase is not

defined).

Furthermore, an agent’s objective function itself implicitly imposes some constraints spe-
cific to the type of the agent. Specifically, it is computed as a weighted sum of the results
of a series of goal tests, such as the ones shown below. More information is provided in
Appendix C.

Goal Tests
Name Returns Test
member_parts | number | Member number (more is better)
min_complete | boolean | Minimum number of members present
specific_parts | number | Number of members which are mandatory
scene_express | boolean | Ready for scene expression

4 Results

Figure 2 shows one example of the dynamics of coalition formation in agent-space. In frame 1
a PRIMITIVE agent (P) is collecting information necessary for expressing a single primitive
in the scene: COLOUR (c), one of possible type-communicating agents (t), and SCALE (s).
In frame 2, the coalition formed by the PRIMITIVE agent is considered ready for expression
in scene-space (to reflect this, it is marked with a double frame). The PRIMITIVE agent
acts as a director for its coalition and searches its agent-space locality for another coalition
it could join. Upon finding a STACK coalition (possibly by finding one of its children first
and then going to the parent), which represents a number of primitives stacked vertically on
top of each other, the PRIMITIVE coalition joins the STACK in frame 3. Additionally, the
STACK gains a POSITION (x) member, and the STACK’s original PRIMITIVE member
gains a COLOUR.

In frame 4, the STACK needs another expressible PRIMITIVE in its coalition in addition
to the members it has already (the two expressible PRIMITIVE agents and the POSITION
agent) in order to be expressible itself. Therefore, when a newcomer PRIMITIVE agent
considers whether to join the STACK coalition or a nearby incomplete ROW coalition (rep-
resenting elements arranged in a row), it decides in favour of the former, observing that

Creating Artistic Compositions Using Coalition-Forming Intelligent Agents 6

P
oS © OOO OO

| STACK |
° ‘-STACK | IE” °
RO

Figure 2: A possible way in which agent-space structures can evolve. Double-framed elements
are considered ready to be expressed in the scene. Gray lines show possible linkages being
evaluated.

joining the STACK will benefit the STACK more than joining the ROW will benefit the
ROW. On the other hand, joining a coalition like the ROW one will strictly increase the
STACK’s objective function, so it joins the ROW right away. Frame 5 illustrates the result;
eventually it could resemble Figure 4. Note that frames 4 and 5 omit the members of PRIM-
ITIVE coalitions for clarity. Also note that the agents are capable of other operations, such
as leaving coalitions (the full list of possible operations is presented in Appendix B) and that
the example omits some optional agent types (listed in Appendix A).

The MAS approach to creating compositions of elements in a 3D environment has worked
well for simple scenes. Figure 3 shows the simplest non-recursively organized example of an
agent coalition (called UNIT) being expressed in the scene. For a better example, Figure 4
shows a recursively organized structure of the kind discussed in Section 3.1 — this one
involving agent coalitions of types ROW, STACK, and some PRIMITIVE types.

Due to the MAS framework the system scales extremely easily (Figure 5). However,
the nature of the simulation is such that a lot of operations need to be tried and failed by
each agent at each iteration. This is a fundamental source of inefficiency when there are a
lot of candidates for each operation. Therefore there can be an unacceptable degradation
of performance when increasing the density of agents in the agent space or running the
simulation for too many iterations, which results in unmanageably large coalition trees.

7 A. Pytel

[+ MAS GeomWorld Testbed

Figure 3: Expression of a UNIT — the simplest composition element.

It is also of concern that the extra computation time required in such pathological sit-
uations, benefits the resulting scene composition very little. One indication of the problem
is that there is typically a large number of agents that take a long time to collect enough
information to be expressed in the scene. These agents are a dead weight that is temporarily
useless for the production of the final composition, but contributes heavily to the size of
coalition trees. For example, the test run whose result is shown in Figure 5 has an average
tree size of 60 agents for CIRCLE agents (responsible for creating a circular arrangement
of primitives), but the largest number of primitives placed in a circle is only 4 in the pic-
ture. The discrepancy is attributable to there being only 293 expressible PRIMITIVE agents
(responsible for defining the properties of a primitive) out of a total of 452.

Therefore, it is unsurprising that experimentation with pruning candidate lists and lim-
iting descent (or ascent) in especially large agent subtrees has shown that the ability of the
MAS to create complex organization (in the agent tree or, equivalently, in its visualization)
benefits very little from the complexity of the rules and behaviours encoded into the agents.
To conclude, the system sometimes spends time on dealing with details that do not help in
making quick progress to the solution of the problem.

An additional concern related to the useability of the system is that the top-down hier-
archical nature of the transformations in a typical 3D scene goes counter to the bottom-up
organization of the agents. This has been a challenge when developing and working with the
system.

Creating Artistic Compositions Using Coalition-Forming Intelligent Agents 8

» MAS GeomWorld Testbed

Figure 4: A ROW with a STACK inside it.

» MAS GeomWorld Testbed =X

Figure 5: Testing the system with 2000 initial agents and 778 agents that were spawned
during the simulation.

9 A. Pytel

5 Conclusion

The selected approach to implementing a MAS framework for creating element compositions
has both strengths, particularly conceptual ones, and weaknesses. Specifically, the abstrac-
tion of agents and agent space from the problem environment and the associated coalition
paradigm have been helpful for reasoning about the design of the system. However, the
implementation has exhibited a number of inefficiences, indicating that not all of the design
decisions have perfectly fit the problem.

Still, experimentation with the system has shown that the basic framework has a lot of
merit as an approach for procedural generation of environments out of pre-defined elements.
First, it is suitable for creating complex rule-based organization of elements with an emergent
structure. Second, a major advantage of MAS over such approaches as a straightforward
recursive construction of the scene is that the rules guiding the simulation and the behaviour
of the agents can be used to produce many variations of the basic expression theme with
minimal changes.

Creating Artistic Compositions Using Coalition-Forming Intelligent Agents 10

APPENDIX

A Agent Types

The following are the agent types that have been used with the system to produce the results
described in the report:

Agent: SPHERE \ Contains: type information

Required to express a sphere primitive in the scene.

Agent: BLOCK \ Contains: type information

Required to express a block primitive in the scene.

Agent: PYRAMID \ Contains: type information

Required to express a pyramid primitive in the scene.

Agent: POSITION ‘ Contains: randomly generated position information

Determines a coalition director’s position, which serves as a reference point for trans-
formations acting on the primitives expressed by its agent tree.

Note: Represents absolute position, not offset; therefore only used by the topmost
director, or by an agent whose director is not expressible.

Agent: ROTATION \ Contains: randomly generated rotation information

Determines an agent’s rotation, which can act on the primitives expressed by the agents
in its (agent) subtree, if any.

Note: This is an optional local rotation around the Y-axis; it is always used when
available.

11

A. Pytel

Agent: SCALE

\ Contains: randomly generated z, y, and z size

Determines the scale of a primitive if an agent expresses one.

Note: Only applied at the leaves of the scene tree to scale the primitives.

Agent: COLOUR

‘ Contains: randomly generated colour

Determines the colour of a primitive if an agent expresses one.

Note: Colour information does not propagate through the scene tree.

Agent: PRIMITIVE

Contains:
e One of {SPHERE, BLOCK, PYRAMID}
e SCALE
e COLOUR
e ROTATION

Brings together the information needed to express a primitive in the scene.

Note: Acts as an intermediate construction which is not expressible by itself.

Agent: UNIT

Contains:
e PRIMITIVE
¢ POSITION

Expresses a solitary, optionally rotated, scaled, coloured primitive in the scene.

Note: The most basic composition element; not hierarchical (can not be incorporated
into a more complex recursive pattern).

Creating Artistic Compositions Using Coalition-Forming Intelligent Agents 12

Agent: STACK Contains:
e list of PRIMITIVEs
e POSITION

Expresses a stack of primitives in the scene.

Note: This is a single-level construction: it can be incorporated into other patterns, but
can not contain anything other than primitives itself.

Agent: ROW Contains:

e list of members: {PRIMITIVE, ROW, CIRCLE, STACK}
e POSITION

e ROTATION

Expresses a row of objects in the scene, where each object can be a primitive or another
composition element (such as a CIRCLE, or a STACK).

Note: This is a multi-level construction. POSITION determines the absolute position of
the first object in the row; ROTATION determines the rotation of the row “line” about
that point.

Agent: CIRCLE Contains:
e see ROW

Expresses a composition of objects that are evenly spaced around a circle.

Note: This is a multi-level construction similar to a ROW.

13 A. Pytel

B Agent Actions

The following are the fundamental actions that the agents can perform during the simulation:

Operation: registration \ Requirements: none

Registers an agent with a cell in the agent space to facilitate neighbourhood queries.

Note: All agents must do this.

Operation: random walk | Requirements:
e the agent has no director

e there is nothing else to do

The agent random walks the agent space, looking to encounter other agents.

Note: Directors also update the position of other agents in their tree.

Operation: exploration Requirements: depend on the operation that prompted the
exploration.

The agent obtains a list of candidates to perform some other operation on them.

Note: Implements Rule 1.

Operation: join attempt | Requirements:
e the agent has no director

e the agent is not a zombie

The agent finds the best candidate coalition to join.

Note: Implements Rules I — III.

Creating Artistic Compositions Using Coalition-Forming Intelligent Agents 14

Operation: sanctioned | Requirements: the agent is sanctioned by its (topmost) di-
join attempt (leave and | rector to attempt to leave for a better group if one is avail-
join) able.

During this operation the agent only uses the information that it would have if it were
on its own (Rule I). It also must consider the possibility that it leaves its parent childless
upon departure, in which case the parent must be exorcised from the tree and become
a zombie as an agent population ratio control mechanism.

Note: Implements Rules I — III.

Operation: spawn at- | Requirements:
tempt .
e the agent has no director

e the agent is not a zombie

e a previously performed join attempt has failed

The agent performs an exploration and selects another director-less non-zombie agent.
Then the types of the two agents determine the type of the new agent that is spawned
(and whether it is created at all), and the two old agents join its tree immediately.

Note: This is a special operation introduced to simplify population ratio control (more
complex agent types are spawned if they are needed, if there are too many spawned,
they die off).

Operation: move \ Requirements: the agent has no director.

The agent gives its children a chance to break free for another coalition and exorcises
any resulting dead (including itself). If it is still alive following this operation, it carries
out a join attempt. If that fails, it tries a spawn attempt. If that fails, too, the agent
random walks.

Note: ties all the other operations together.

15

A. Pytel

C Agent Goals

The following lists the goal tests making up the objective function of each agent type:

Goal Tests

Name

Returns

Test

member_parts
min_complete

number
boolean

Member number (more is better)
Minimum number of members present

specific_parts | number | Number of members which are mandatory
scene_express | boolean | Ready for scene expression
Agents Goals Notes
SPHERE, BLOCK, None Agents representing basic properties

PYRAMID, POSITION,
ROTATION, SCALE,
COLOUR

are meant to communicate informa-
tion.

PRIMITIVE

e specific_parts

® Scene_express

All members are equally valuable;
presence of 4 members is required
(but not sufficient) for expression.

UNIT

e specific_parts

® Sscene_express

STACK, ROW, CIRCLE

e member_parts

e min_complete For the topmost director or an agent

e specific_parts ing many members, but no position

® Scene_express

For a more complicated construction,
it is important to have a minimum
number of members.

whose director is not expressible hav-

element is not very valuable. There-
fore, more weight is given to po-
sition being present using test spe-
cific_parts.

Creating Artistic Compositions Using Coalition-Forming Intelligent Agents 16

References

[1] N. Lemmens, S. de Jong, K. Tuyls, and A. Nowe. A Bee Algorithm for Multi-Agent
Systems: Recruitment and Navigation Combined. In Proceedings of ALAG, an AAMAS
workshop, 2007.

[2] K. Mason, J. Denzinger, and S. Carpendale. Negotiating Gestalt: Artistic Expression
by Coalition Formation between Agents. In 5th International Symposium on Smart
Graphics, Frauenwoerth Cloister, Germany, August 2005.

[3] S. Schlechtweg, T. Germer, and T. Strothotte. RenderBots — Multi Agent Systems for
Direct Image Generation. Computer Graphics Forum, 24:283-290, 2005.

