
An Efficient Storeless Heap Abstraction Using
SSA Form∗

Nomair A. Naeem Ondřej Lhoták
D. R. Cheriton School of Computer Science

University of Waterloo, Canada
{nanaeem,olhotak}@uwaterloo.ca

Abstract

Precise, flow-sensitive analyses of pointer relationshipsoften use a storeless
heap abstraction. In this model, an object is represented using some abstraction of
the expressions that refer to it (i.e. access paths). Many analyses using such an
abstraction are difficult to scale due to the size of the abstraction and due to flow
sensitivity. Typically, an object is represented by the setof local variables pointing
to it, together with additional predicates representing pointers from other objects.
The focus of this paper is on the set of local variables, the core of any such ab-
straction. Taking advantage of certain properties of static single assignment (SSA)
form, we propose an efficient data structure that allows muchof the representation
of an object at different points in the program to be shared. The transfer function
for each statement, instead of creating an updated set, makes only local changes
to the existing data structure representing the set. The keyenabling properties of
SSA form are that every point at which a variable is live is dominated by its defini-
tion, and that the definitions of any set of simultaneously live variables are totally
ordered according to the dominance relation. We represent the variables pointing
to an object using a list ordered consistently with the dominance relation. Thus,
when a variable is newly defined to point to the object, it needonly be added to the
head of the list. A back edge at which some variables cease to be live requires only
dropping variables from the head of the list. We prove that the analysis using the
proposed data structure computes the same result as a set-based analysis. We em-
pirically show that the proposed data structure is more efficient in both time and
memory requirements than set implementations using hash tables and balanced
trees.

1 Introduction

Many static analyses have been proposed to infer propertiesabout the pointers created
and manipulated in a program. Points-to analysis determines to which objects a pointer

∗Technical Report CS-2008-22. This research was supported by the Natural Sciences and Engineering
Research Council of Canada.

1

may point, alias analysis determines whether two pointers point to the same object, and
shape analysis determines the structure of the pointer relationships between a collection
of objects. The properties inferred by these analyses are useful in applications such
as call graph construction, escape analysis, bug finding, and proving domain-specific
correctness properties of the program.

All of these static analyses require some way of abstractingthe possibly unbound-
edly many objects in the heap. One such abstraction is based on the storeless heap
model [6,12]. This model represents an object by itsaccess paths, the expressions that
can be used to find the object in memory. An access path begins with a local variable
followed by a sequence of field dereferences. In general, multiple access paths may
reach the same object. Thus the abstraction represents eachobject by the set of access
paths that reach it.

The storeless heap abstraction has been used in many analyses, especially shape
analyses. Sagiv et al. [20] define an abstraction in which each concrete object is rep-
resented by the set of local variables that point to it. Thus,each abstract object is a
set of variables. A key feature of this abstraction is that each abstract object (except
the empty set of variables) corresponds to at most one concrete run-time object; this
makes the abstraction precise and enables strong updates. On top of this abstraction of
objects, the analysis maintains a set of edges between abstract objects representing the
pointer relationships among corresponding concrete objects. Sagiv et al. further refine
the object abstraction by allowing the analysis designer toseparate objects according
to domain-specific user-defined predicates [21]. Hackett and Rugina [10] define a re-
lated abstraction for C programs. Each abstract object contains a reference count from
each “region”, along with field access paths known to definitely reach (hit) or definitely
not reach (miss) the object. Typically, each local variableis a region, so the reference
counts in the abstraction provide the same information as Sagiv’s abstraction. Orlovich
and Rugina [17] apply the analysis to detect memory leaks in Cprograms. Cherem and
Rugina [3] adapt the abstraction to Java. From the Java version of the abstraction, it is
possible to determine the set of local variables pointing tothe object. Fink et al. [8] de-
fine an abstraction that keeps track of which local variablesmust and must not point to
the object, along with information about the allocation site of the object and incoming
pointers from other objects. In previous work [14, 15] we have used a similar abstrac-
tion for typestate verification of multiple objects. We discuss some of these approaches
in more detail in the Related Work section.

A common characteristic of all of these abstractions is thatthey are based on the set
of local variables pointing to the object. This core abstraction is refined in a different
way in each of these abstractions. Our contribution is an efficient representation of the
set of local variables pointing to the object. This representation could be used as the
core of an efficient implementation of each of these refined abstractions.

In recent years Static Single Assignment (SSA) form [4] has gained popularity as
an intermediate representation (IR) in optimizing compilers. The key feature of this
IR is that every variable in the program is a target of only oneassignment statement.
Therefore, by construction, any use of a variable always hasone reaching definition.
This simplifies program analysis. SSA form has been applied in many compiler op-
timizations including value numbering, constant propagation and partial-redundancy
elimination. In addition, SSA form has other less obvious properties that simplify pro-

2

gram analysis. Specifically, the entire live range of any variable is dominated by the
(unique) definition of that variable, and the definitions of any set of simultaneously live
variables are totally ordered according to the dominance relation. Thus, the definition
of one of the variables is dominated by all the others, and at this definition, the vari-
ables are all live and have the values that they will have until the end of the live range.
These properties have been used to define an efficient register allocation algorithm [9].
We exploit these same properties to efficiently represent the set of variables pointing to
an object.

Analyses using the set-of-variables abstraction are difficult to make efficient for
two reasons. First, the size of the abstraction is potentially exponential in the number
of local variables that are ever simultaneously live. Second, the analyses using the
abstraction are flow-sensitive, so many different variablesets must be maintained for
different program points. The first issue, in the rare cases that the number of sets grows
uncontrollably, can be effectively solved by one of severalwidenings suggested by
Sagiv et al. [20]. It is the second issue that is addressed by our work. When the variable
sets are represented using linked lists ordered by dominance, we show that due to the
dominance properties of SSA form, updates needed to implement the analysis occur
only at the head of the lists. As a result, tails of the lists can be shared for different
program points.

This paper makes the following contributions:

• We formalize a set-of-variables object abstraction for programs in SSA form.
The abstraction can be implemented using any set data structure, including or-
dered lists. The abstraction can be used as is in a shape analysis, or further
refined with information about incoming pointers from otherobjects.

• We prove that if the program being analyzed is in SSA form and if the lists are
ordered according to the dominance relation on the definition sites of variables,
then the analysis requires only local updates at the head of each list. Thus, the
tails of the lists can be shared at different program points.

• We implement an interprocedural context-sensitive analysis using the abstraction
as an instance of the IFDS algorithm [18], and evaluate the benefits of the list-
based data structure compared to sets implemented using balanced trees and hash
tables.

The remainder of the paper is organized as follows: Section 2formalizes the set-
of-variables abstraction and defines transfer functions that can be used in any standard
dataflow analysis algorithm to compute the abstraction. In Section 3 we give a brief
introduction to SSA form and mention terms used in the remainder of the paper. Sec-
tion 4 presents a new data structure and corresponding transfer functions for repre-
senting abstract objects. The implementation of an interprocedural context-sensitive
analysis, able to work on different object abstractions, isdiscussed in Section 5. Em-
pirical results comparing the running times and memory consumption of the analysis
using different data structures for the abstraction are presented in Section 6. We discuss
related work in Section 8 and give concluding remarks in Section 9.

3

2 A Set-based Storeless Heap Abstraction

This section defines how objects are represented in the abstraction, and presents a trans-
fer function to determine the set of abstract objects at eachprogram point.

The overall abstractionρ♯ is a set of abstract objects. This abstract set is an over-
approximation of run-time behaviour. For every concrete object that could exist at run
time at a given program point, the abstraction always contains an abstract object that
abstracts that concrete object; however, the abstraction may contain additional abstract
objects that do not correspond to any concrete object. Each abstract objecto♯ is a set
of local variables of pointer type. The abstract object contains exactly those variables
that point to the corresponding concrete object at run time.The set of variables in the
abstract object is neither a may-point-to nor a must-point-to approximation of the con-
crete object; it contains all pointers that point to the concrete object and no others. If
the analysis is uncertain whether a given pointerx points to the concrete object, it must
represent the concrete object with two abstract objects, one containingx and the other
not containingx.

For example, consider a concrete environment in which variablesx andy point
to distinct objects andz may be either null or point to the same object asx. The
abstraction of this environment would be the set{{x}, {x, z}, {y}}.

When the set of pointers in an abstract object is non-empty, the abstract object
represents at most one concrete object at any given instant at run time. For example,
consider the abstract object{x}. At run time, the pointerx can only point to one
concrete objecto at a time; thus at that instant, the abstract object{x} represents onlyo
and no other concrete objects. This property enables very precise transfer functions for
individual abstract objects, with strong updates. Continuing the example, the program
statementy := x transforms the abstract object{x} to {x, y}, with no uncertainty.
We know that the unique concrete object represented by{x} before the statement is
represented by{x, y} after the statement. Of course, since the analysis is conservative,
there may be other spurious abstract objects in the abstraction. The important point is
that any given abstract object is tracked precisely by the analysis.

This basic abstraction can be extended or refined as appropriate for specific analy-
ses. For example, Sagiv et al. [20] define a shape analysis that uses this same abstrac-
tion to represent objects, and adds edges between abstract objects to represent pointer
relationships between concrete objects. Other analyses refine the abstraction by adding
conditions to the abstract objects that further limit the concrete objects that they rep-
resent. For example, an abstract object representing concrete objects pointed to by a
given set of pointers can be refined to represent only those concrete objects that were
also allocated at a given allocation site.

The abstraction subsumes both may-alias and must-alias relationships. If variables
x andy point to distinct objects,ρ♯ will not contain any set containing bothx andy.
If variablesx andy point to the same object, every set inρ♯ will contain either bothx
andy, or neither of them.

The analysis is performed on a simplified intermediate representation containing
the following intraprocedural instructions:

s ::= v1 ← v2 | v ← e | e← v | v ← null | v ← new

4

The constante represents any heap location, such as a field of an object or anarray
element andv can be any variable from the set of local variables of the current method.
The instructions are self-explanatory: they copy object references between variables
and the heap, assign thenull reference to a variable, and create a new object. In addi-
tion, the IR contains method call and return instructions.

In Figure 1 we define a set of transfer functions that specify the effect of an instruc-
tion on a single abstract object at a time. Ifs is any statement in the IR except a heap
load, and ifo♯ is the set of variables pointing to a given concrete objecto, then it is
possible to compute the exact set of variables which will point to o after the execution
of s. This enables the analysis to flow-sensitively track individual objects along control
flow paths.

JsK1gen ,

{

{{v}} if s = v ← new
∅ otherwise

JsK1o♯(o
♯) ,























{o♯ ∪ {v1}} if s = v1 ← v2 ∧ v2 ∈ o♯

{o♯ \ {v1}} if s = v1 ← v2 ∧ v2 6∈ o♯

{o♯ \ {v}} if s ∈ {v ← null , v ← new}
{o♯} if s = e← v

{

o♯ \ {v}, o♯ ∪ {v}
}

if s = v ← e

JsK1ρ♯(ρ
♯) , JsK1gen∪

⋃

o♯∈ρ♯

JsK1o♯(o
♯)

Figure 1: Transfer functions on individual abstract objects. The superscript1 on the
function identifies the version of the transfer function; wewill present modified ver-
sions of the transfer functions later in the paper.

The abstract objects at each point in the program can be computed using these
transfer functions in a standard worklist-based dataflow analysis framework like the
one shown in Algorithm 1. The heap abstraction flow analysis is a forward dataflow
analysis where the elements of the lattice are the abstract environments,ρ♯. The merge
operation is set union.

5

Algorithm 1 : Dataflow Analysis

for each statement s, initialize out[s] to∅
add all statements to worklist
while worklist not emptydo

remove somes from worklist
in =

⋃

p∈pred(s) out[p]
out[s] = JsKρ♯ (in)
if out[s] has changedthen

foreachs′ ∈ succs(s)do
adds′ to worklist

end
end

3 Static Single Assignment (SSA) Form

The key feature of Static Single Assignment (SSA) form [4] isthat every variable in
the program is a target of only one assignment statement. Therefore, by construction,
any use of a variable always has one reaching definition.

Converting a program into SSA form requires a new kind of instruction to be added
to the intermediate representation. At each control flow merge point with different
reaching definitions of a variable on the incoming edges, aφ instruction is introduced to
select the reaching definition corresponding to the controlflow edge taken to reach the
merge. The selected value is assigned to a freshly-created variable, thereby preserving
the single assignment property. If multiple variables require φ nodes at a given merge
point, theφ nodes for all the variables are to be executed simultaneously. To emphasize
this point, we will group allφ nodes at a given merge point into one multi-variableφ

node:






y1

...
yn






= φ







x11 · · · x1n

...
...

xm1 · · · xmn







Each row,i, on the right side representsn reaching definitions of variablexi. When
control reaches theφ instruction through some predecessorp (with 1 ≤ p ≤ n) of theφ

instruction then thepth column of the right side defines the values to be assigned to the
yi variables on the left side in a simultaneous parallel assignment. Given aφ function
φ and a predecessorp, we writeσ(φ, p) to denote this parallel assignment:

σ(φ, p) =







y1 ← x1p

...
ym ← xmp







We now present some standard definitions. An instructiona dominatesinstruction
b if every path from the entry point tob passes througha. We denote the set of instruc-
tions that dominate instructions by dom(s). By definition every instruction dominates

6

itself. We write sdom(s) to denote the set of instructions thatstrictly dominates i.e.
dom(s) \ {s}. The immediatedominator of an instructions, idom(s), is an instruc-
tion in sdom(s) dominated by every instruction in sdom(s). It is well known that every
instruction except the entry point has a unique immediate dominator. We use the no-
tation defs(s) to denote the set of variables defined (i.e written to) by theinstruction
s and vars(S) to denote the set of variables defined by the instructions ina setS (i.e.
vars(S) ,

⋃

s∈S defs(s)).

4 Efficient storeless Heap Abstraction

To extend the transfer function from Figure 1 to SSA form, we define it forφ instruc-
tions in Figure 2. There is one important difference in the way that the transfer function
for a φ instruction is evaluated, compared to the transfer functions for all other kinds
of instructions. For instructions other thanφ instructions, the analysis first computes
the join (i.e. set union) of the dataflow facts on all incomingcontrol flow edges, then
applies the transfer function to the join. However, the effect of aφ instruction depends
on which incoming control flow edge is used to reach it.

JφK1o♯(o
♯, p) ,

{

o♯ ∪ {yi : yi ← xi ∈ σ(φ, p) ∧ xi ∈ o♯}
\ {yi : yi ← xi ∈ σ(φ, p) ∧ xi 6∈ o♯}

}

JφK1ρ♯ (ρ
♯, p) ,

⋃

o♯∈ρ♯

JφK1o♯(o
♯, p)

Figure 2: Transfer function for theφ instruction

Therefore, the transfer function forφ instructions shown in Figure 2 is dependent
on an additional parameter, the control flow predecessorp. The transfer function first
determines the parallel assignmentσ(φ, p) that corresponds to the given incoming con-
trol flow edgep. The abstract object is then updated by adding all destination variables
whose values are being assigned from variables already in the abstract object, and re-
moving all variables whose values are being assigned from variablesnot in the abstract
object. Notice that the transfer function for the simple assignment statementv1 ← v2

is a special case of the transfer function forφ when the parallel assignmentσ contains
only the single assignmentv1 ← v2. Rather than first computing the join over all
incoming control flow edges, theφ transfer function is computed separately for each
incoming edge, and the join is computedafter theφ instruction, on the results of the
transfer function. This is more precise and corresponds more closely to the semantics
of theφ instruction. Since the effect of aφ instruction depends on which control flow
edge is used to reach the instruction, the abstract effect should be computed separately
for each incoming edge, before the edge merges with the others. The dataflow analysis
algorithm modified to processφ instructions in this way is shown in Algorithm 2.

7

Algorithm 2 : Dataflow Analysis for SSA Form

for each statement s, initialize out[s] to∅
add all statements to worklist
while worklist not emptydo

remove somes from worklist
if s is aφ instructionthen

foreachp ∈ preds(s) do
out[s] = out[s] ∪ JφKρ♯ (out[p], p)

else
in =

⋃

p∈pred(s) out[p]
out[s] =JsKρ♯ (in)

end
if out[s] has changedthen

foreachs′ ∈ succs(s)do
adds′ to worklist

end
end

For convenience, we transform the IR by inserting a trivialφ instruction with zero vari-
ables at every merge point that does not already have aφ instruction. In the resulting
control flow graph, all statements other thanφ instructions have only one predecessor.

In the remainder of this section we make use of SSA propertiesto derive a new ab-
straction for objects in a program. In Section 4.1 we make useof the liveness property
of programs in SSA form to simplify the transfer functions presented so far. Section 4.2
presents a data structure which makes it possible to implement the simplified transfer
functions efficiently. Finally in Section 4.3 we discuss further techniques to make the
data structure efficient in both time and memory.

4.1 Live variables

In the object abstraction presented so far, the representation of an object was the set of
all local variables pointing to it. However, applications of the analysis only ever need
to know whichlive variables are pointing to the object. If a variable is not live, then
its current value will never be read, so its current value is irrelevant. Thus, it is safe
to remove any non-live variables from the object abstraction. This reduces the size of
each variable seto♯, and may even reduce the number of such sets inρ♯, since sets that
differ only in non-live variables can be merged. One way to achieve this improvement
is to perform a liveness analysis before the object analysis, then intersect each abstract
object computed by the transfer function with the set of livevariables, as shown in the
revised transfer function in Figure 3.

The irrelevance of non-live variables enables us to take advantage of the following
property of SSA form:

Property 1. If variablev is live-out at instructions, then the definition ofv dominates
s.

This property implies that the set of live variables is a subset of the variables

8

filter(ℓ, ρ♯) , {o♯ ∩ ℓ : o♯ ∈ ρ♯}

JsK2ρ♯(ρ
♯) , filter(live-out(s), JsK1ρ♯(ρ

♯))

JφK2ρ♯ (ρ
♯, p) , filter(live-out(φ), JφK1ρ♯ (ρ

♯, p))

Figure 3: Transfer function with liveness filtering

whose definitions dominate the current program point. That is, for every instruction
s, live-out(s) ⊆ vars(dom(s)). Thus, it is safe to intersect the result of each trans-
fer function with vars(dom(s)), as shown in the modified transfer function in Figure 4.

JsK3ρ♯ (ρ
♯) , filter(vars(dom(s)), JsK1ρ♯ (ρ

♯))

JφK3ρ♯ (ρ
♯, p) , filter(vars(dom(φ)), JφK1ρ♯ (ρ

♯, p))

Figure 4: Transfer function with dominance filtering

In order to simplify the transfer functions further, we willneed the following lemma,
which states that the abstract objects returned by the original transfer function from
Figures 1 and 2 contain only variables defined in the statement being abstracted and
variables contained in the incoming abstract objects.

Lemma 1. Define vars(ρ♯) =
⋃

o♯∈ρ♯ o♯. Then:

• vars(JsK1
ρ♯ (ρ

♯)) ⊆ vars(ρ♯) ∪ defs(s), and

• vars(JφK1
ρ♯ (ρ

♯, p)) ⊆ vars(ρ♯) ∪ defs(φ).

Proof. By case analysis of the definition ofJsK1 andJφK1.

Recall that the IR has been transformed so that every non-φ instructions has a
unique predecessorp. Sincep is the only predecessor ofs, dom(p) = sdom(s). There-
fore, as long as the output dataflow set forp is a subset of dom(p), the input dataflow
set fors is a subset of sdom(s). By Lemma 1, the output dataflow set fors is there-
fore a subset of vars(sdom(s)) ∪ defs(s) = vars(dom(s)). Thus, the filtering using
vars(dom(s)) is redundant. That is, the transfer functions shown in Figure 5 have the
same least fixed point solution as the transfer functions from Figure 4. This is formal-
ized in Theorem 1.

Theorem 1. Algorithm 2 produces the same result when applied to the transfer func-
tions in Figure 5 as when applied to the transfer functions inFigure 4.

Proof. It suffices to prove that when the algorithm is applied to the transfer function
in Figure 5, every set out[s] is a subset of vars(dom(s)). This is proved by induction

9

JsK4ρ♯ (ρ
♯) , JsK1ρ♯(ρ

♯)

JφK4ρ♯ (ρ
♯, p) , filter(vars(dom(φ)), JφK1ρ♯ (ρ

♯, p))

Figure 5: Simplified transfer function with dominance filtering

on k, the number of iterations of the algorithm. Initially, the out sets are all empty, so
the property holds in the base casek = 0. Assume the property holds at the beginning
of an iteration. If the iteration processes a non-φ instruction, Lemma 1 ensures that
the property is preserved at the end of the iteration. If the iteration processes aφ
instruction, the definition ofJφK4

ρ♯ ensures that the property is preserved at the end of
the iteration.

Corollary 1. When Algorithm 2 runs on the transfer functions from Figure 4or Fig-
ure 5, the transfer functionJsKρ♯ is evaluated only on abstract objects that are subsets
of vars(sdom(s)).

Due to Corollary 1, the set difference operations inJsK1
o♯ are now redundant. Thus,

the simplified transfer functionJsK5
o♯ shown in Figure 6 computes the same result as

JsK4
o♯ .
The transfer function forφ instructions can be simplified in a similar way. If we

intersectJφK1
o♯ (o

♯, p) with vars(dom(φ)), the definition from Figure 2 can be rewritten
as:

o♯ \ {yi : yi ← xi ∈ σ(φ, p) ∧ xi 6∈ o♯}

∪ {yi : yi ← xi ∈ σ(φ, p) ∧ xi ∈ o♯} ∩ vars(dom(φ))

= o♯ \ defs(φ) ∪ {yi : yi ← xi ∈ σ(φ, p) ∧ xi ∈ o♯} ∩ (defs(φ) ∪ vars(sdom(φ)))

= o♯ ∩ vars(sdom(φ)) ∪ {yi : yi ← xi ∈ σ(φ, p) ∧ xi ∈ o♯}

We summarize the results of this section as follows:

Theorem 2. Algorithm 2 produces the same result when applied to the transfer func-
tions in Figure 6 as when applied to the transfer functions inFigure 4.

Proof. By Theorem 1 and the reasoning in the two preceding paragraphs.

Corollary 1 also applies to the transfer functions in Figure6.

4.2 Variable Ordering

In the preceding section, we simplified the transfer function so that it performs only two
operations on sets of abstract objects. The first operation is adding a variable defined in
the current instruction to an abstract object. The second operation is intersecting each

10

JsK5gen ,

{

{{v}} if s = v ← new
∅ otherwise

JsK5o♯(o
♯) ,







{o♯ ∪ {v1}} if s = v1 ← v2 ∧ v2 ∈ o♯
{

o♯, o♯ ∪ {v}
}

if s = v ← e

{o♯} otherwise

JsK5ρ♯ (ρ
♯) , JsK5gen∪

⋃

o♯∈ρ♯

JsK5o♯(o
♯)

JφK5o♯ (o
♯, p) ,

{(

o♯ ∩ vars(sdom(φ))
)

∪ {yi : yi ← xi ∈ σ(φ, p) ∧ xi ∈ o♯}
}

JφK5ρ♯ (ρ
♯, p) ,

⋃

o♯∈ρ♯

JφK5o♯(o
♯, p)

Figure 6: Transfer functions without set difference operations

abstract object with vars(sdom(φ)), whereφ is the current instruction. In this section,
we present a data structure that makes it possible to implement each of these opera-
tions efficiently. The data structure is an ordered linked list with a carefully selected
ordering. We take advantage of the following property of thedominance tree.

Property 2. Number the instructions in a procedure in a preorder traversal of the
dominance tree. Then whenever instructions1 dominates instructions2, the preorder
number ofs1 is smaller than the preorder number ofs2.

If the program is in SSA form, we can extend the numbering to the variables in the
program by numbering each variable when its unique definition is visited in traversing
the dominance tree. A singleφ instruction may define multiple variables; in this case,
we number the variables in an arbitrary but consistent order. Parameters of the program,
which are all defined in the start node, are numbered in the same way. The resulting
numbering has the property that if the definition ofv1 dominates the definition ofv2,
thenprenum(v1) < prenum(v2).

To represent each abstract object, we use a linked list of variables sorted in decreas-
ing prenumber order. We will show that the two operations needed to implement the
transfer function manipulate only the head of the list.

Recall from Corollary 1 that the transfer function for non-φ statements is only
applied to abstract objects that are a subset of vars(sdom(s)), wheres is the state-
ment for which the transfer function is being computed. To process aφ statement, the
transfer function shown in Figure 6 first intersects each incoming abstract object with
vars(sdom(φ)), then adds variables defined inφ to it. In both cases, variables defined
in the current statements are being added to a set that is a subset of vars(sdom(s)).
Thus, the definition of each variable being added is dominated by the definition of ev-
ery variable in the existing set. Therefore, adding the new variables to the head of the
list representing the set preserves the decreasing prenumber ordering of the list.

Now consider the intersectiono♯ ∩ vars(sdom(φ)) that occurs in the transfer func-
tion for aφ instruction. The incoming abstract objecto♯ is in the out set of one of the

11

predecessorsp of φ. Therefore, due to Theorem 2,o♯ ⊆ vars(dom(p)). We use the
following property of dominance to relate vars(dom(p)) to vars(sdom(φ)).

Property 3. Suppose instructionsa andb both dominate instructionc. Then eithera
dominatesb or b dominatesa.

Since any path top can be extended to be a path toφ, every strict dominator ofφ
dominatesp. Thus, sdom(φ) ⊆ dom(p). Leta be any instruction in dom(p)\sdom(φ).
The instructiona cannot dominate any instructionb ∈ sdom(φ), since by transitiv-
ity of dominance, it would then dominateφ. By Property 3, every instruction in
sdom(φ) dominatesa. Therefore,a has a higher preorder number than any instruc-
tion in sdom(φ), soa appears earlier in the list representingo♯ than any instruction in
vars(sdom(φ)). Therefore, to computeo♯ ∩ vars(sdom(φ)), we need only drop ele-
ments from the head of the list until the head of the list is in vars(sdom(φ)). This is
done using the prune function in Figure 7. The rest of Figure 7gives an implemen-
tation of the transfer functions from Figure 6 using orderedlists to represent abstract
objects. Adding a variable to a set has been replaced by cons,and intersection with
vars(sdom(φ)) has been replaced by a call to prune.

JsK6gen ,

{

{cons(v, empty)} if s = v ← new
empty otherwise

JsK6o♯(o
♯) ,







{cons(v1, o
♯)} if s = v1 ← v2 ∧ v2 ∈ o♯

{

o♯, cons(v, o♯)
}

if s = v ← e

{o♯} otherwise

JsK6ρ♯(ρ
♯) , JsK6gen∪

⋃

o♯∈ρ♯

JsK6o♯(o
♯)

prune(o♯, φ) =







empty if o♯ = empty
o♯ if car(o♯) ∈ vars(sdom(φ))

prune(cdr(o♯), φ) otherwise

JφK6o♯(o
♯, p) ,

{

foldl
(

cons, prune(o♯, φ), {yi : yi ← xi ∈ σ ∧ xi ∈ o♯}
) }

JφK6ρ♯ (ρ
♯, p) ,

⋃

o♯∈ρ♯

JφK6o♯(o
♯, p)

Figure 7: Transfer functions on sorted lists

4.3 Data Structure Implementation

To further reduce the memory requirements of the analysis, we use hash consing to
maximize sharing of cons cells between lists. Hash consing ensures that two lists with
the same tail share that tail. In our implementation, we define anHCList, which can
either be the empty list or aConsCell, which contains a variable and a tail of type
HCList. We maintain a mapVar × HCList→ ConsCell. Whenever the analysis

12

performs a cons operation, the map is first checked for an existing cell with the same
variable and tail. If such a cell exists, it is reused insteadof a new one being created.
As an example consider the sequence of code shown on the left side of Figure 8. If each
abstract object was represented separately as an unshared list of ConsCells then
the four abstract objects at the end of the sequence would contain {a,b,d}, {a,b,d,e},
{a,b,c,d}and{a,b,c,d,e}, using a total of 16ConsCells. However, with hash consing
the same four abstract objects use only a total of 7ConsCells.

a b

c d e

d e

a b

c d

d

cba

ba

a

a = new
heap = a

b = a

c = heap

d = b

e = heap

Figure 8: Sharing between different abstract objects. Filled circles represent the head
of individualHCLists.

5 Interprocedural Analysis

The analysis defined in the preceding sections is intraprocedural. The analysis do-
main isP(P(Var)), whereVar is the set of variables, and the merge operator is set
union. The transfer functions are distributive. Thus, to extend the analysis to a context-
sensitive interprocedural analysis, a natural choice is the interprocedural finite distribu-
tive subset (IFDS) algorithm of Reps et al. [18] with some small modifications which
we explain in this section.

IFDS is a dynamic programming algorithm that usesO(E|O♯)|3) time in the worst
case, whereO♯ is the set of all possible abstract objects. The algorithm evaluates the
transfer functions on each individual abstract object at a time, rather than on the set
of all abstract objects at a program point. Thus, the algorithm uses the transfer func-
tions for a single abstract object rather than the overall transfer function (i.e.JsKo♯

13

rather thanJsKρ♯). The algorithm successively composes transfer functionsfor individ-
ual statements into transfer functions summarizing the effects of longer paths within
a procedure. Once the composed transfer function summarizes all paths from the be-
ginning to the end of a procedure, it can be substituted for any calls of the procedure.
Specifically, the algorithm uses a worklist to complete two tables of transfer functions:
the PathEdge table gives the transfer function from the start node of each procedure to
every other node in the same procedure, and the SummaryEdge table gives the transfer
function that summarizes the effect of each call site in the program.

Extending the IFDS algorithm to work on SSA form required onestraightforward
modification. The PathEdge table in the original algorithm tracks the input flow set
for each statement (i.e. the join of the output sets of its predecessors). However, our
more precise treatment ofφ nodes requires processing the incoming flow set from each
predecessor separately and joining the results only after the transfer function has been
applied. Thus, we modified the PathEdge table so that, forφ instructions only, it keeps
track of a separate input set for each predecessor, instead of a single, joined input set.

The transfer functionsJsK6
o♯ andJφK6

o♯ from Figure 7 can be used directly in the
IFDS algorithm. In addition, we must also specify how to map abstract objects at a call
site from the caller to the callee and back. The mapping into the callee is simple: for
each abstract object, determine which of the actual arguments it contains, and create
a new abstract object containing the corresponding formal parameters. We take care
to keep the formal parameters in each of these newly created abstract object in the
prenumber order defined for the callee.

In order to map objects from the callee back to the caller, a small modification to
the IFDS algorithm is necessary. In the original algorithm,the return flow function is
defined only in terms of the flow facts computed for the end nodeof the callee. In the
callee, each abstract object is a set of variables of the callee, and it is not known which
caller variables point to the object. However, the only place where the algorithm uses
the return flow function is when computing a SummaryEdge flow function for a given
call site by composingreturn ◦ JpK ◦ call, wherecall is the call flow function,JpK is
the summarized flow function of the callee, andreturn is the return flow function. The
original formulation of the algorithm assumes a fixed returnflow function return for
each call site. It is straightforward to modify the algorithm to instead use a function
that, given a call site and the computed flow functionJpK ◦ call, directly constructs
the SummaryEdge flow function. A similar modification is alsoused in the typestate
analysis of Fink et al. [8]. Indeed, the general modificationis likely to be useful in
other instantiations of the IFDS algorithm.

In the modified algorithm, the return flow function takes two argumentso♯
c and

o♯
r. The argumento♯

c is the caller-side abstraction of an object, the argumento♯
r is one

possible callee-side abstraction of the same object at the return site, and the return flow
function ought to yield the set of possible caller-side abstractions of the object after
the call. Intuitively, after the call, the object is still pointed by the variables ino♯

c, and
may additionally be pointed to by the variable at the call site to which the result of the
call is assigned, provided the callee-side variable being returned is in the callee-side
abstraction of the object. We writevs to denote the callee-side variable being returned
andvt to denote the caller-side variable to which the result of thecall is assigned.

14

Formally, the return function is defined as follows.

ret(o♯
c, o

♯
r) ,

{

o♯
c ∪ {vt} if vs ∈ o♯

r

o♯
c otherwise

Like the intraprocedural transfer functions, the return function only adds the variable
defined at the call site to an abstract object. Thus, like the intraprocedural transfer func-
tions, the addition can be implemented using a simple cons operation on the ordered
list. In the case of an object newly created within the calleethat did not exist before
the call, the empty set is substituted foro♯

c, since no variables of the caller pointed to
the object before the call.

5.1 Number of Abstract Objects

As Sagiv et al. point out ([20, Section 6.2]) the number of possible abstract objects is
bounded by2Var . They indicate that it is possible to usewideningto eliminate the pos-
sibility of an exponential blowup. We modify the IFDS algorithm to widen whenever
the number of abstract objects increases beyond a set threshold. When this happens, we
widen by coalescing different abstract objects by discarding some, already computed,
precise information. Specifically, we coalesce abstract objects by choosing some vari-
ablev, and forgetting whether or not any abstract object containsv. As an example
consider two abstract objects{a} and{a,b}. The second abstract object indicates that
both variablesa andb point to the concrete object. We widen these abstract objects
by discarding the precise knowledge aboutb and considering that any abstract object
may or may not includeb. This transforms the abstract objects to :{a!,b?} and{a!,b?}
where a! means that the abstract object definitely includes a, and b? means that the
abstract object may or may not contain b. Since the two abstract objects have become
identical, they are merged into one, thereby reducing the overall number of abstract
objects.

An important question is how to choose the variable for widening. We experi-
mented with two possible heuristics:

1. Choose the variable with the lowest preorder number, since it is the least recently
defined and may no longer be live.

2. Choose the most recently added variable, since it is likely to have caused a large
blowup.

Although a more thorough experimental evaluation is needed, in our preliminary exper-
iments, the second heuristic tended to a lower overall number of widenings. Therefore,
we have used this heuristic for all of the experiments reported in the following section.

6 Empirical Evaluations

For empirical evaluation of the analysis we used a subset of the DaCapo benchmark
suite, version 2006-10-MR2 [2] for our experiments (antlr,bloat, pmd, jython, hsqldb,

15

luindex, xalan and chart). To deal with reflective class loading we instrumented the
benchmarks using ProBe [13] and *J [7] to record actual uses of reflection at run time
and provided the resulting reflection summary to the static analysis. The jython bench-
mark generates code at run time which it then executes; for this benchmark, we made
the unsound assumption that the generated code does not callback into the original
code and does not return any objects to it. We used the standard library from JDK
1.3.112 for antlr, pmd and bloat, and JDK 1.4.211 for the rest of the benchmarks,
since they use features not present in 1.3. To give an indication of the sizes of the
benchmarks, Figure 9 shows, for each benchmark, the number of methods reachable
in the static call graph and the total number of nodes in the control flow graphs of the
reachable methods.

Benchmark Methods CFG Nodes SSA CFG Nodes
antlr 4452 89437 96227
bloat 5955 95588 101177
pmd 9344 148103 155292

jython 14437 221217 234458
hsqldb 11418 184196 198134
luindex 7358 113810 122450
xalan 14961 227504 242785
chart 14912 241216 256348

Figure 9: Benchmark sizes: Column 2 gives the number of reachable methods for
each benchmarks. Columns 3 and 4 give the total number of nodes in the control flow
graphs (CFGs) of the reachable methods for each benchmark innon-SSA and SSA
form respectively.

We experimented with three different setups. Setup 1 used the defaultSet im-
plementation of theScala programming language. The sets are “immutable” in the
sense that an update returns a new set object rather than modifying the existing set
object. Usually, the implementations of the original and updated set share some of
their data. The standard library provides customized implementations for sets of size
0 to 4 elements. For larger sets, a hash table implementationis used. According to
theScala API specification [16], the hash table-based implementation is optimized
for sequential accesses where the last updated table is accessed most often. Accessing
previous version of the set is also made efficient by keeping achange log that is reg-
ularly compacted. In setup 2, theTreeSet data structure from theScala API was
used. This implementation uses balanced trees to store the set. An updated set reuses
subtrees from the representation of the original set. Both setup 1 and 2 compute the
heap abstraction on a program in non-SSA form and use the transfer functions from
Figure 1. We also tried to apply setups 1 and 2 to programs in SSA form, but found
them to run slower and use more memory than on the original, non-SSA IR. The third
setup used the sorted list data structure with hash consing proposed in this paper. The
analysis is computed on a program in SSA form and uses the transfer functions from
Figure 7.

The following sections present the time and memory requirements of the three se-

16

tups.

6.1 Running Time

Figure 10 compares the running times for the three setups; the white, grey and black
bars represent running times for the first, second and third setup, respectively.

 0

 1000

 2000

 3000

 4000

 5000

 6000

chartxalanluindexhsqldbjythonpmdbloatantlr

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Benchmark

HashSet
TreeSet
HCList

Figure 10: Running time for different data structures used in computing the heap ab-
straction.

In all cases butantlr, theSet-based representation runs faster than theTreeSet-
based representation. The maximum performance differenceis in the case ofluindex:
theSet-based representation is 48% faster. On average, theSet-based representation
is 22% faster than theTreeSet-based representation.

We compare theSet-based representation to ourHCList representation. In all
cases theHCList abstraction is faster. The average running time improvement is
63%, and the maximum is 74% on thexalan benchmark.

Although the conversion to SSA form increased the size of control flow graphs by
6.5% on average (Figure 9), the analysis is faster even on thelarger control flow graphs.

6.2 Memory Consumption

Figure 11 shows the memory consumed by the different setups while computing the
object abstraction. The reported memory use includes the memory required by the
interprocedural object analysis, but excludes memory needed to store the intermediate
representation and the control flow graph.

In all cases theSet-based representation uses less memory than theTreeSet-
based representation of abstract objects; the average reduction is 12%. TheHCList
representation with hash consing uses even less memory thantheSet-based represen-
tation. The average reduction is 43% and the maximum reduction is 68% in the case
of xalan.

17

Even though the abstract objects in theHCList-based representation may contain
more variables than in theSet orTreeSet-based representation, theHCList-based
representation requires less memory thanks to sharing of common tails of the linked
lists.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

chartxalanluindexhsqldbjythonpmdbloatantlr

M
em

or
y

C
on

su
m

ed
 (M

eg
ab

yt
es

)

Benchmark

HashSet
TreeSet
HCList

Figure 11: Memory consumed by different data structures used in computing the heap
abstraction.

7 Future Work

In this section we discuss some future work for the storelessheap abstraction presented
in this paper.

7.1 Implementation

This section looks at ways in which the performance of the presented abstraction could
be further improved. We also discuss some additional experiments that we are inter-
ested in performing:

Profiling:
Due to time constraints we were unable to profile our implementation both for time
and memory usage. Since the goal of this work is computing an efficient storeless
heap abstraction, it is essential we optimize the code by detecting performance bottle-
necks. For run time performance, although we were careful indesigning the operations
performed during the application of the transfer functions, profiling information might
suggest additional avenues for speed improvements. It might, however, turn out that
the cost of computing the abstraction is dominated by the number of abstract objects
that need to be processed. While we have tried to keep this number as small as possible,
by producing as few abstract objects as possible and mergingsimilar abstract objects,

18

there is not much that can be done to reduce the number further. One optimization, that
has been implemented, though not discussed in the paper, is to maintain a seth♯, a sub-
set of the setρ♯. Abstract objects that have escaped to the heap, via store statements,
are added to this subset. The transfer function for loads (v ← e), is then modified to
apply the focus operation only for abstract objects that arein the escaped set of objects
(o♯ ∈ h♯). Adding this extra condition restricts the number of focusoperations to those
abstract objects which have escaped to the heap and hence reduces the overall number
of abstract objects created.

We also intend to profile the implementation for memory usageto see if there are
any places where memory consumption could be reduced. One such possibility are the
support data structures and specially the custom data structure representing the abstract
objects. We discuss this next.

HashConsing
As mentioned in Section 4.3 we use Hash Consing to share the tails of the ordered lists
representing abstract objects. However, even without memory profiling information,
we noticed that we store a lot of redundant information in eachConsCell. Currently,
eachConsCell in the implementation contains references for the method containing
the variable, a reference to the variable itself, an integervalue representing the pre-
order number assigned to the variable, a unique identifier for theConsCell, the size
of theHCList starting at thisConsCell and a pointer to the nextConsCell in the
list, if one exists. The method and variable are needed so that each variable can be
uniquely identified in the program. However, for a given method, this results in a lot of
redundant references to the method. It should be possible tosimply use the pre-order
number assigned to the variable to uniquely identify the variable. This will reduce the
memory consumed by eachConsCell. Currently, we had decided to explicitly store
the size of anHCList in thesize field. This improves performance since the size
does not need to be computed over and over again. A tradeoff would be to remove this
field, hence reducing memory consumed, at the cost of needingto compute the size ev-
ery time this value is required by the transfer functions. Weintend to experiment with
this tradeoff. Although, we have not yet performed any specific experiments to mea-
sure the usefulness of hash consing we intend to do so by usingthe simplified transfer
functions with and without hash consing.

Live Variables
In Figure 6 we present the simplified transfer functions, using the liveness property
and dominance filtering. However, our initial experiments using these transfer func-
tions showed that the transfer functions performed poorly compared to the transfer
functions which use live variable filtering. The reasoning for this is that although dom-
inance filtering removes those variables from the abstract object whose definition does
not dominate the current statement there are instances where a variable is no longer live
but whose definition still dominates the statement i.e. the variables are in live-out(s)
but not in vars(dom(s). These variables, although irrelevant, are not removed bydomi-
nance filtering. Although, we had hoped that this would not have a major effect on the
size of the abstract object it turns out that even if the size does not increase drastically
the number of abstract objects created does. This is so because abstract objects which

19

only differ in the no longer live variables can not be merged to reduce the number of
abstract objects. We intend to investigate whether it mightbe possible to apply domi-
nance filtering and then live variable filtering for some but not all statements.

7.2 Client Analyses

Our evaluation computes the improvements in speed and memory consumption but
does not validate the abstraction computed. Although, we are confident that the new
abstraction is as precise as the original abstraction we intend to verify this by using the
storeless heap abstraction in some client analyses. One such analysis is the tracematch
analysis from our previous work on verifying temporal safety properties of multiple
interacting objects [15]. This analysis requires an objectabstraction in order to be able
to ascertain relationships between multiple objects. By plugging in the new abstraction
proposed in this work we can easily verify whether the abstraction is at least as precise
as the set-based abstraction that the analysis currently uses.

It would also be interesting to investigate how easily the presented abstraction can
be extended to the abstractions discussed in the related work section of this paper.
As we mentioned earlier, the storeless heap abstraction we present is the core set-of-
variables abstraction used by a number of static analyses inferring properties of pointers
in the program. Extending our abstraction to perform these static analyses should lead
to performance improvements for these analyses.

8 Related Work

8.1 Heap Abstraction

Jonkers [12] presented a storeless semantic model for dynamically allocated data. He
noticed that in the store-based heap model that maps pointervariables to abstract loca-
tions, the abstract locations do not represent any meaningful information. Instead he
defined an equivalence relation on the set of all heap paths. Deutsch [6] presented a
storeless semantics of an imperative fragment of Standard ML. He used a right-regular
equivalence relation on access paths to express aliasing properties of data structures.

Our inspiration to use variables to represent abstract objects comes from the work
of Sagiv et. al. [20]. This work presents a shape analysis that can be used to determine
properties of heap-allocated data structures. For example, if the input to a program
is a list (respectively, tree), is the output still a list (respectively, tree)? The shape
analysis creates a shape graph in which each node is the set ofvariables pointing to
an object. Pointer relationships between objects are represented by edges between the
nodes. The graph is annotated with additional information;a predicate is associated
with each node which indicates whether the particular node (abstract object) might be
the target of multiple pointers emanating from different abstract objects. This is crucial
for distinguishing between cyclic and acyclic data structures. Later work of Sagiv
et al. [21] generalizes this idea by allowing the analysis designer to separate objects
according to domain-specific user-defined predicates. Because our analysis computes

20

the nodes of Sagiv’s shape graph, it is possible to extend ouranalysis to Sagiv’s analysis
by keeping track of edges between the nodes. The SSA properties that we exploited
and the ordered data structure that we employ can also be usedin the shape analysis
algorithm.

Hackett and Rugina [10] use a two layered heap abstraction toperform shape anal-
ysis that is scalable to large C programs. The first abstraction uses a flow insensitive
context-sensitive analysis to break the heap into chunks ofdisjoint memory locations
called regions. Many regions are single variables; other regions represent areas of
the heap. The second abstraction builds on top of the region-based memory partition,
breaking the heap into small independentconfigurations. Each configuration represents
a single heap location and keeps track of reference counts from other regions that tar-
get this location. Also, each configuration (abstract object) contains field access paths
known to definitely reach (hit) or definitely not reach (miss)the object. Since in typi-
cal cases each region is a local variable the abstraction provides the same information
as Sagiv’s abstraction. Orlovich and Rugina [17] apply the analysis to detect memory
leaks in C programs. Cherem and Rugina [3] adapt the abstraction to Java to perform
compile-time deallocation of objects i.e. freeing the memory consumed by an object
as soon as all references to it are lost. They useconfigurationsto represent abstract ob-
jects and implement an efficient abstraction in the form of aTracked Object Structure
(TOS). A TOS maintains a compact representation of equivalent expressions making
modifications to the heap abstraction efficient since each node in the data structure is
an equivalence class. The efficiency of the abstraction could be further improved by
maintaining the equivalence class representing the set of local variables that point to a
particular concrete object as a sorted list using the total order imposed by a preorder
traversal of the dominance tree.

In their work on typestate verification, Fink et. al. [8] use astaged verifier to prove
safety properties of objects. The most precise of these verifiers keeps track of which
local variables must and must not point to the object along with similar information
regarding incoming pointers (access paths) from other objects that must or must-not
point to the object. Information about the allocation site of the object is also main-
tained. This information is used to perform strong updates in the case when it can be
proved that the points-to set of a receiver contains a singleabstract object and that this
single abstract object represents a single concrete object.

Our previous work on verification of multi-object temporal specifications [14, 15]
extends static typestate verification techniques for single objects to multiple interact-
ing objects. Whereas typestate verification typically associates a state to each abstract
object, this is not possible when dealing with a state associated with multiple objects.
We define two abstractions: a storeless heap abstraction based on sets-of-variables
and a second abstraction which associates a state to groups of related abstract objects.
Although in [14, 15] we used aSet-based representation for the storeless heap ab-
straction, we intend to take advantage of the data structurepresented in this paper.

A common technique used to precisely handle uncertainty dueto heap loads is that
of materializationor focus[3, 8, 10, 15, 20]. Focus is important to regain the precision
lost when an object is no longer referenced from any local variables, in which case the
analysis lumps it together with all other such objects. Focus splits the abstract object
representation into two, one representing the single concrete object that was loaded, and

21

the other representing all other objects previously represented by the abstract object.
The transfer functions in Figure 1 use focus for a heap load (v ← e) by splittingo♯ into
two abstract objectso♯ \{v} ando♯∪{v}. The focus operation in the transfer functions
of Figures 6 and 7 no longer requires removing the variablev from the resulting abstract
objects. As discussed in Section 4.1, the set difference operation is redundant in SSA
form, since the original abstract objecto♯ is guaranteed to not containv.

8.2 Static Single Assignment (SSA) Form

Static Single Assignment form [1, 22] has been used as an intermediate representa-
tion since the late 1980s. Rosen et. al. [19] took advantage of SSA form to define a
global value numbering algorithm. Cytron et al. [5] developed the now-standard effi-
cient algorithm for converting programs to SSA form using dominance and dominance
frontiers.

Hack et. al. [9] showed that the interference graph for register allocation of a pro-
gram in SSA form is always chordal (i.e., its chromatic number equals the size of the
largest clique). Such graphs can be optimally colored in quadratic time. The chordality
of the interference graph is due to the SSA property that if the variables in some setS

are simultaneously live at some program pointp, then they are all totally ordered by
dominance, they are all live at the definition of the variablev ∈ S dominated by all
the others, and on every control flow path ending atp, the variable fromS defined last
is v. Thus any relationship that holds between the variables atp already holds at the
definition ofv. The abstraction presented in this paper is intuitively based on the same
idea. Suppose the set of variables pointing to some concreteobjecto at program point
p is S. Then those variables are totally ordered by dominance, andthey all already
pointed too when the variable inv ∈ S dominated by the others was last defined. Thus
if S is represented by a linked list ordered by dominance, the transfer function for the
instruction definingv needs only to addv to the head of the list. The only place where
variables need to be removed fromS is an edge leading to a node no longer dominated
by the definitions of those variables.

Hasti et. al in [11] propose an algorithm which can improve results of flow-
insensitive points-to analysis by iteratively convertingthe program into SSA form and
applying a flow-insensitive points-to analysis to it. Aftereach iteration the points-to
sets might shrink (become more precise) but are always guaranteed to be safe (a su-
perset of the points-to sets given by a flow-sensitive analysis). They conjecture that
reaching a fixed point of this iterative approach might lead to points-to results with
similar precision as that of a flow-sensitive points-to analysis.

9 Conclusion

This paper focused on the core abstraction of a set of variables used by numerous static
analyses inferring properties about the pointers created and manipulated in a program.
We presented a data structure implementing the set-of-variables object abstraction for
programs in SSA form. The data structure consists of linked lists ordered by the pre-
order numbering of the dominance tree of the procedure. We showed that with this or-

22

dering, the transfer functions only apply local updates to the head of each list. Since the
lists are ordered, common tails of different lists representing different abstract objects
can be shared. We implemented an interprocedural context-sensitive analysis using this
representation of the abstraction. Our experimental results show that the ordered list
representation is faster and requires less memory than standard set data structures. The
speedup was 63% on average, and as high as 74% on one of the benchmarks. Mem-
ory requirements decreased by 43% on average, and as much as 68% on one of the
benchmarks.

References

[1] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables
in programs. Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 1–11. ACM Press, 1988.

[2] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis.OOPSLA ’06: Proceedings of
Object-Oriented Programming, Systems, Languages and Applications, 2006.

[3] S. Cherem and R. Rugina. Compile-time deallocation of individual objects.
ISMM 06’ Proceedings of the 2006 International Symposium onMemory Man-
agement, pages 138–149, 2006.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.Zadeck. An
efficient method of computing static single assignment form. POPL ’89: Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 1989.

[5] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.Zadeck. Efficiently
computing static single assignment form and the control dependence graph.ACM
Trans. Program. Lang. Syst., 13(4):451–490, 1991.

[6] A. Deutsch. A storeless model of aliasing and its abstractions using finite repre-
sentations of right-regular equivalence relations.4th International Conference on
Computer Languages, pages 2–13. IEEE Computer Society Press, 1992.

[7] B. Dufour. Objective quantification of program behaviour using dynamic metrics.
Master’s thesis, McGill University, June 2004.

[8] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate
verification in the presence of aliasing.ISSTA ’06: Proceedings of International
Symposium on Software Testing and Analysis, pages 133–144, 2006.

[9] S. Hack and G. Goos. Optimal register allocation for SSA-form programs in
polynomial time.Inf. Process. Lett., 98(4):150–155, 2006.

23

[10] B. Hackett and R. Rugina. Region-based shape analysis with tracked locations.
POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 310–323, 2005.

[11] R. Hasti and S. Horwitz. Using static single assignmentform to improve flow-
insensitive pointer analysis.PLDI ’98: Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation, pages 97–
105, New York, NY, USA.

[12] H. B. M. Jonkers. Abstract storage structures. de Bakker and van Vliet, editors,
Algorithmic Languages, pages 321–343. IFIP, North Holland, 1981.

[13] O. Lhoták. Comparing call graphs.PASTE ’07: Proceedings of 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for SoftwareTools and En-
gineering, pages 37–42, 2007.

[14] N. A. Naeem and O. Lhoták. Extending typestate analysis to multiple interacting
objects.OOPSLA ’08: Proceedings of Object-Oriented Programming, Systems,
Languages and Applications.

[15] N. A. Naeem and O. Lhoták. Extending typestate analysis to multiple interact-
ing objects. Technical Report CS-2008-04, D. R. Cheriton School of Computer
Science, University of Waterloo, 2008.http://www.cs.uwaterloo.ca/
research/tr/2008/CS-2008-04.pdf.

[16] M. Odersky, L. Spoon, and B. Venners.Programming in Scala: A comprehensive
step-by-step guide. Preprint edition, 2008.

[17] M. Orlovich and R. Rugina. Memory leak analysis by contradiction. K. Yi, editor,
Static Analysis, 13th International Symposium, SAS 2006, Seoul, Korea, August
29-31, 2006, Proceedings, volume 4134 ofLecture Notes in Computer Science,
pages 405–424. Springer, 2006.

[18] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability.POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 49–61, 1995.

[19] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redun-
dant computations.POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 1988.

[20] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating.ACM Transactions on Programming Languages and
Systems, 20(1):1–50, Jan. 1998.

[21] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems, 24(3):217–
298, May 2002.

[22] M. N. Wegman and F. K. Zadeck. Constant propagation withconditional
branches.ACM Trans. Program. Lang. Syst., 13(2):181–210, 1991.

24

