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Abstract

Precise, flow-sensitive analyses of pointer relationsbipsn use a storeless
heap abstraction. In this model, an object is represented ssme abstraction of
the expressions that refer to it (i.e. access paths). Maalys@s using such an
abstraction are difficult to scale due to the size of the abtn and due to flow
sensitivity. Typically, an object is represented by theadddcal variables pointing
to it, together with additional predicates representingfeos from other objects.
The focus of this paper is on the set of local variables, thre ob any such ab-
straction. Taking advantage of certain properties ofsHitigle assignment (SSA)
form, we propose an efficient data structure that allows nufiche representation
of an object at different points in the program to be shardtke ffansfer function
for each statement, instead of creating an updated set,snuathg local changes
to the existing data structure representing the set. Theekapling properties of
SSA form are that every point at which a variable is live is dwated by its defini-
tion, and that the definitions of any set of simultaneouslg liariables are totally
ordered according to the dominance relation. We reprekentdriables pointing
to an object using a list ordered consistently with the dem@e relation. Thus,
when a variable is newly defined to point to the object, it nedgt be added to the
head of the list. A back edge at which some variables ceaseltedrequires only
dropping variables from the head of the list. We prove thatahalysis using the
proposed data structure computes the same result as asset-dnzalysis. We em-
pirically show that the proposed data structure is moreiefftdn both time and
memory requirements than set implementations using hdséstand balanced
trees.

1 Introduction

Many static analyses have been proposed to infer propatii@st the pointers created
and manipulated in a program. Points-to analysis detesioehich objects a pointer
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may point, alias analysis determines whether two pointeirst o the same object, and
shape analysis determines the structure of the pointdimeships between a collection
of objects. The properties inferred by these analyses atilus applications such

as call graph construction, escape analysis, bug findirgypaoving domain-specific

correctness properties of the program.

All of these static analyses require some way of abstra¢tiagpossibly unbound-
edly many objects in the heap. One such abstraction is bas¢ldeostoreless heap
model [6,12]. This model represents an object byisess pathshe expressions that
can be used to find the object in memory. An access path begiimswocal variable
followed by a sequence of field dereferences. In generaltipleibccess paths may
reach the same object. Thus the abstraction represent®kpch by the set of access
paths that reach it.

The storeless heap abstraction has been used in many anaggecially shape
analyses. Sagiv et al. [20] define an abstraction in which eaacrete object is rep-
resented by the set of local variables that point to it. Tleash abstract object is a
set of variables. A key feature of this abstraction is thaheabstract object (except
the empty set of variables) corresponds to at most one cenare-time object; this
makes the abstraction precise and enables strong updaiésp Of this abstraction of
objects, the analysis maintains a set of edges betweeraabshjects representing the
pointer relationships among corresponding concrete thj&agiv et al. further refine
the object abstraction by allowing the analysis designeefmarate objects according
to domain-specific user-defined predicates [21]. HackettRungina [10] define a re-
lated abstraction for C programs. Each abstract objecaauma reference count from
each “region”, along with field access paths known to defipiteach (hit) or definitely
not reach (miss) the object. Typically, each local variabla region, so the reference
counts in the abstraction provide the same information g&/Sabstraction. Orlovich
and Rugina [17] apply the analysis to detect memory leakspno@rams. Cherem and
Rugina [3] adapt the abstraction to Java. From the Javaoreodithe abstraction, it is
possible to determine the set of local variables pointinthéoobject. Fink et al. [8] de-
fine an abstraction that keeps track of which local variatsiast and must not point to
the object, along with information about the allocatiom sif the object and incoming
pointers from other objects. In previous work [14, 15] weédnaged a similar abstrac-
tion for typestate verification of multiple objects. We diss some of these approaches
in more detail in the Related Work section.

A common characteristic of all of these abstractions isttieyg are based on the set
of local variables pointing to the object. This core abdtearis refined in a different
way in each of these abstractions. Our contribution is aniefft representation of the
set of local variables pointing to the object. This représgon could be used as the
core of an efficient implementation of each of these refinestrabtions.

In recent years Static Single Assignment (SSA) form [4] haised popularity as
an intermediate representation (IR) in optimizing comgileThe key feature of this
IR is that every variable in the program is a target of only assignment statement.
Therefore, by construction, any use of a variable alwaysomasreaching definition.
This simplifies program analysis. SSA form has been apphetany compiler op-
timizations including value numbering, constant propegeand partial-redundancy
elimination. In addition, SSA form has other less obviousparties that simplify pro-



gram analysis. Specifically, the entire live range of anyalde is dominated by the
(unique) definition of that variable, and the definitionsof aet of simultaneously live
variables are totally ordered according to the dominaniegioa. Thus, the definition
of one of the variables is dominated by all the others, andiatdefinition, the vari-
ables are all live and have the values that they will havd thrgiend of the live range.
These properties have been used to define an efficient negflisteation algorithm [9].
We exploit these same properties to efficiently represeng¢h of variables pointing to
an object.

Analyses using the set-of-variables abstraction are diffto make efficient for
two reasons. First, the size of the abstraction is potépngaiponential in the number
of local variables that are ever simultaneously live. Seg¢dhe analyses using the
abstraction are flow-sensitive, so many different variaglis must be maintained for
different program points. The firstissue, in the rare casaisthe number of sets grows
uncontrollably, can be effectively solved by one of sevevalenings suggested by
Sagiv et al. [20]. Itis the second issue that is addressedbyork. When the variable
sets are represented using linked lists ordered by doménave show that due to the
dominance properties of SSA form, updates needed to implethe analysis occur
only at the head of the lists. As a result, tails of the lists ba shared for different
program points.

This paper makes the following contributions:

e We formalize a set-of-variables object abstraction forgpams in SSA form.
The abstraction can be implemented using any set datasteyabcluding or-
dered lists. The abstraction can be used as is in a shapesanaly further
refined with information about incoming pointers from otbéjects.

e We prove that if the program being analyzed is in SSA form dutide lists are
ordered according to the dominance relation on the defmgites of variables,
then the analysis requires only local updates at the headabf kest. Thus, the
tails of the lists can be shared at different program points.

e \We implement an interprocedural context-sensitive aiiglysing the abstraction
as an instance of the IFDS algorithm [18], and evaluate tinefits of the list-
based data structure compared to sets implemented usengceal trees and hash
tables.

The remainder of the paper is organized as follows: SectiforBalizes the set-
of-variables abstraction and defines transfer functioasdan be used in any standard
dataflow analysis algorithm to compute the abstraction. datiSn 3 we give a brief
introduction to SSA form and mention terms used in the redeinf the paper. Sec-
tion 4 presents a new data structure and correspondingéraisictions for repre-
senting abstract objects. The implementation of an integuiural context-sensitive
analysis, able to work on different object abstractionslisgsussed in Section 5. Em-
pirical results comparing the running times and memory gongion of the analysis
using different data structures for the abstraction arsgared in Section 6. We discuss
related work in Section 8 and give concluding remarks in iSed.



2 A Set-based Storeless Heap Abstraction

This section defines how objects are represented in theaghistr, and presents a trans-
fer function to determine the set of abstract objects at pactyram point.

The overall abstractiop? is a set of abstract objects. This abstract set is an over-
approximation of run-time behaviour. For every concretgatthat could exist at run
time at a given program point, the abstraction always costan abstract object that
abstracts that concrete object; however, the abstractagnaontain additional abstract
objects that do not correspond to any concrete object. Bastna&t object? is a set
of local variables of pointer type. The abstract object aog exactly those variables
that point to the corresponding concrete object at run tifie set of variables in the
abstract object is neither a may-point-to nor a must-ptarapproximation of the con-
crete object; it contains all pointers that point to the gete object and no others. If
the analysis is uncertain whether a given pointpoints to the concrete object, it must
represent the concrete object with two abstract objectscontainings and the other
not containinge.

For example, consider a concrete environment in which kegar andy point
to distinct objects and may be either null or point to the same objectizas The
abstraction of this environment would be the §gt}, {z, 2}, {y}}.

When the set of pointers in an abstract object is hon-empéyabstract object
represents at most one concrete object at any given ingdtamb &ime. For example,
consider the abstract obje¢t:}. At run time, the pointer: can only point to one
concrete object at a time; thus at that instant, the abstract objegtrepresents only
and no other concrete objects. This property enables veriga transfer functions for
individual abstract objects, with strong updates. Cortiguhe example, the program
statemeny : = x transforms the abstract objegt} to {x, y}, with no uncertainty.
We know that the unique concrete object representefljybefore the statement is
represented byz, y} after the statement. Of course, since the analysis is ceatses,
there may be other spurious abstract objects in the alisinadthe important point is
that any given abstract object is tracked precisely by tladyars.

This basic abstraction can be extended or refined as apatefor specific analy-
ses. For example, Sagiv et al. [20] define a shape analysiagha this same abstrac-
tion to represent objects, and adds edges between abdijactsoto represent pointer
relationships between concrete objects. Other analyfas the abstraction by adding
conditions to the abstract objects that further limit theaete objects that they rep-
resent. For example, an abstract object representing e@nabjects pointed to by a
given set of pointers can be refined to represent only thoserete objects that were
also allocated at a given allocation site.

The abstraction subsumes both may-alias and must-alatsorehips. If variables
x andy point to distinct objectsy® will not contain any set containing bothandy.

If variablesz andy point to the same object, every setghwill contain either both:
andy, or neither of them.

The analysis is performed on a simplified intermediate gg&ation containing
the following intraprocedural instructions:

su=uv vy |v—e|le—wv|v—nul v new



The constane represents any heap location, such as a field of an object arran
element and can be any variable from the set of local variables of theemtrmethod.
The instructions are self-explanatory: they copy objetgrences between variables
and the heap, assign thell reference to a variable, and create a new object. In addi-
tion, the IR contains method call and return instructions.

In Figure 1 we define a set of transfer functions that spehifyeffect of an instruc-
tion on a single abstract object at a times|is any statement in the IR except a heap
load, and ifo? is the set of variables pointing to a given concrete objethen it is
possible to compute the exact set of variables which wilhptu o after the execution
of s. This enables the analysis to flow-sensitively track indlinl objects along control
flow paths.

1 {{v}} ifs=v< new
[slgen = 0 otherwise

{o* U {v1}} if s =v1 < va Avy € OF
{0\ {v1}} if s =v1 < vo Avg & 0F
[s]t. (o) = {o*\ {v}} if s € {v« null,v — new}
o} if s=e«—w
{o*\ {v}, 0P U{v}} ifs=v—e
[sT; (0") £ [slgent | [s15:(0F)

oftept

Figure 1: Transfer functions on individual abstract okgecthe superscript on the
function identifies the version of the transfer function; widl present modified ver-
sions of the transfer functions later in the paper.

The abstract objects at each point in the program can be dechusing these
transfer functions in a standard worklist-based datafloalyais framework like the
one shown in Algorithm 1. The heap abstraction flow analysis forward dataflow
analysis where the elements of the lattice are the abstmaitbementsp?. The merge
operation is set union.



Algorithm 1: Dataflow Analysis

for each statement s, initialize out[s](io
add all statements to worklist
while worklist not emptydo
remove some from worklist
in=U,cpreqs) OUtlP]
out[s] =[s],:(in)
if out[s] has changetthen
foreach s’ € succs(spo
adds’ to worklist

end
end

3 Static Single Assignment (SSA) Form

The key feature of Static Single Assignment (SSA) form [4fhiat every variable in
the program is a target of only one assignment statementefidre, by construction,
any use of a variable always has one reaching definition.

Converting a program into SSA form requires a new kind ofrirctton to be added
to the intermediate representation. At each control flowgmegroint with different
reaching definitions of a variable on the incoming edgesetruction is introduced to
select the reaching definition corresponding to the cofived edge taken to reach the
merge. The selected value is assigned to a freshly-creat&ble, thereby preserving
the single assignment property. If multiple variables ez nodes at a given merge
point, thep nodes for all the variables are to be executed simultangolsemphasize
this point, we will group alky) nodes at a given merge point into one multi-variaple
node:

Y1 ri1 o Tin

Yn Tm1 e Tmn

Each rowj, on the right side representgeaching definitions of variable. When
control reaches the instruction through some predecesgdwith 1 < p < n) ofthe¢
instruction then the?” column of the right side defines the values to be assigneato th
y; variables on the left side in a simultaneous parallel assegrt. Given ap function
¢ and a predecessprwe writeo (¢, p) to denote this parallel assignment:

Y1 < Tip
o(¢,p) =
Ym < Tmp
We now present some standard definitions. An instructidominatesnstruction

b if every path from the entry point tbpasses through. We denote the set of instruc-
tions that dominate instructionby dom¢s). By definition every instruction dominates



itself. We write sdomy) to denote the set of instructions ttstictly dominates i.e.
don(s) \ {s}. Theimmediatedominator of an instructior, idom(s), is an instruc-
tion in sdomg¢) dominated by every instruction in sdogh(It is well known that every
instruction except the entry point has a unique immediateidator. We use the no-
tation defs§) to denote the set of variables defined (i.e written to) byitiséruction
s and varsg) to denote the set of variables defined by the instructiorsssets (i.e.

vargS) £ (J, ¢ defs)).

4 Efficient storeless Heap Abstraction

To extend the transfer function from Figure 1 to SSA form, weéiree it for ¢ instruc-
tions in Figure 2. There is one important difference in thg tet the transfer function
for a ¢ instruction is evaluated, compared to the transfer funetior all other kinds
of instructions. For instructions other thaninstructions, the analysis first computes
the join (i.e. set union) of the dataflow facts on all incomaatrol flow edges, then
applies the transfer function to the join. However, the@ftd a¢ instruction depends
on which incoming control flow edge is used to reach it.

a [ Uy iy — x € 0(d,p) N € 0}
Lot o) 2
910 (", ) { \ {yi : yi — zi € 0(d,p) Nwi & 0°} }

[¢: (", p) 2 | [600 (o, p)

oftept

Figure 2: Transfer function for the instruction

Therefore, the transfer function f@rinstructions shown in Figure 2 is dependent
on an additional parameter, the control flow predecessdihe transfer function first
determines the parallel assignmetp, p) that corresponds to the given incoming con-
trol flow edgep. The abstract object is then updated by adding all destinatriables
whose values are being assigned from variables alreadyiatibtract object, and re-
moving all variables whose values are being assigned fraiahlasnotin the abstract
object. Notice that the transfer function for the simpld@asient statement; «— v,
is a special case of the transfer function fowhen the parallel assignmemtcontains
only the single assignment < wvs. Rather than first computing the join over all
incoming control flow edges, thé transfer function is computed separately for each
incoming edge, and the join is computafier the ¢ instruction, on the results of the
transfer function. This is more precise and correspond&rolosely to the semantics
of the ¢ instruction. Since the effect of @instruction depends on which control flow
edge is used to reach the instruction, the abstract effecidibe computed separately
for each incoming edge, before the edge merges with thesotibe dataflow analysis
algorithm modified to processinstructions in this way is shown in Algorithm 2.



Algorithm 2 : Dataflow Analysis for SSA Form

for each statement s, initialize out[s](io
add all statements to worklist

while worklist not emptydo
remove some from worklist

if sisag instructionthen
foreachp € predgs) do
out[s] = out[s] U [¢] ,: (out(p], p)
else
i =, cpreqs) OUtlp]
out[s] =[s],: (in)
end
if out[s] has changetthen
foreach s’ € succs(spo
adds’ to worklist

end
end

For convenience, we transform the IR by inserting a trigiaistruction with zero vari-
ables at every merge point that does not already haw@atruction. In the resulting
control flow graph, all statements other thamstructions have only one predecessor.

In the remainder of this section we make use of SSA propedidsrive a new ab-
straction for objects in a program. In Section 4.1 we makeofitiee liveness property
of programs in SSA form to simplify the transfer functionegented so far. Section 4.2
presents a data structure which makes it possible to implethe simplified transfer
functions efficiently. Finally in Section 4.3 we discussthar techniques to make the
data structure efficient in both time and memaory.

4.1 Live variables

In the object abstraction presented so far, the represemtaitan object was the set of
all local variables pointing to it. However, applicatiorfstiee analysis only ever need
to know whichlive variables are pointing to the object. If a variable is nog Jithen
its current value will never be read, so its current valuerislévant. Thus, it is safe
to remove any non-live variables from the object abstractithis reduces the size of
each variable sef, and may even reduce the number of such set$,isince sets that
differ only in non-live variables can be merged. One way tioiege this improvement
is to perform a liveness analysis before the object analfreés intersect each abstract
object computed by the transfer function with the set of iggables, as shown in the
revised transfer function in Figure 3.

The irrelevance of non-live variables enables us to takeamtage of the following
property of SSA form:

Property 1. If variable v is live-out at instructiors, then the definition of dominates
S.

This property implies that the set of live variables is a stlf the variables



filter(¢, p) 2 {ofFNL:0of € pf}
[s]2:(0*) = filter(live-out(s), [s] s (o))
[6]2: (p*.p) = filter(live-out(e), [¢] s (p*,p))

Figure 3: Transfer function with liveness filtering

whose definitions dominate the current program point. Téatar every instruction
s, l'ive-out (s) C varddom(s)). Thus, it is safe to intersect the result of each trans-
fer function with varédom(s)), as shown in the modified transfer function in Figure 4.

[s]3:(p*) £ filter(vargdom(s)), [s]} ("))
[612: (o*,p) £ filter(vargdom(¢)), [¢]}: (0%, p))

Figure 4: Transfer function with dominance filtering

In order to simplify the transfer functions further, we wiked the following lemma,
which states that the abstract objects returned by thenadigiansfer function from
Figures 1 and 2 contain only variables defined in the statelm&ing abstracted and
variables contained in the incoming abstract objects.

Lemma 1. Define vargp?) = Uotept o*. Then:
o vary([s]), (p*)) C vars(p*) U defgs), and

o vars[4l%, (¢, p)) C vars(p?) U defgo).

Proof. By case analysis of the definition pf]* and[¢]*. O

Recall that the IR has been transformed so that every¢nmrstructions has a
unique predecesspr Sincep is the only predecessor 8f dom(p) = sdon(s). There-
fore, as long as the output dataflow setjds a subset of doip), the input dataflow
set fors is a subset of sdofw). By Lemma 1, the output dataflow set fois there-
fore a subset of vafsdon{s)) U defqs) = var§dom(s)). Thus, the filtering using
vargdom(s)) is redundant. That is, the transfer functions shown in Fduhave the
same least fixed point solution as the transfer functions frkaggure 4. This is formal-
ized in Theorem 1.

Theorem 1. Algorithm 2 produces the same result when applied to thestearfunc-
tions in Figure 5 as when applied to the transfer functionBigure 4.

Proof. It suffices to prove that when the algorithm is applied to tia@sfer function
in Figure 5, every set ow] is a subset of vars(dom(s)). This is proved by induction



[[Sﬂﬁn (Pu) [[3]],1,n (Pu)
[6]: (o*,p) £ filter(vargdom(e)), [¢]}: (0%, p))

Figure 5: Simplified transfer function with dominance fiiey

on k, the number of iterations of the algorithm. Initially, thetsets are all empty, so
the property holds in the base case- 0. Assume the property holds at the beginning
of an iteration. If the iteration processes a npmstruction, Lemma 1 ensures that
the property is preserved at the end of the iteration. If teeation processes &
instruction, the definition o[q&]}ﬁu ensures that the property is preserved at the end of
the iteration. O

Corollary 1. When Algorithm 2 runs on the transfer functions from Figurer 4ig-
ure 5, the transfer functiofis] . is evaluated only on abstract objects that are subsets
of vargsdonts)).

Due to Corollary 1, the set difference operationgsft, are now redundant. Thus,
the simplified transfer functiofis]?, shown in Figure 6 computes the same result as

[[Sﬂﬁu-

The transfer function fop instructions can be simplified in a similar way. If we
intersect[¢]., (o*, p) with vargdom(¢)), the definition from Figure 2 can be rewritten
as:

of \ {yi:yi — i € o(d,p) Ny & o'}

U {yi:yi — xi € 0(¢,p) A m; € o'} N vargdom(¢))
of \ defdp) U {yi:yi — x; € 0(¢,p) Aw; € o'} N (defd¢) U vargsdon()))
of N vargsdom(¢)) U {y; : yi «— x5 € o(¢,p) Az; € 0°}

We summarize the results of this section as follows:

Theorem 2. Algorithm 2 produces the same result when applied to thestearfunc-
tions in Figure 6 as when applied to the transfer functionBigure 4.

Proof. By Theorem 1 and the reasoning in the two preceding paragraph O

Corollary 1 also applies to the transfer functions in Figiire

4.2 Variable Ordering

In the preceding section, we simplified the transfer funtsio that it performs only two
operations on sets of abstract objects. The first operatiadding a variable defined in
the current instruction to an abstract object. The secordadion is intersecting each

10



5 & {{v}} if s=v < new
[sTgen { 0 otherwise
{o*U{v}} ifs=v1 « vg Avy € 0F
[s]2: (") 2 {of, 0 U{v}} ifs=ve—e
{0%} otherwise
[[S]]iﬁ (pﬁ) 2 [[Sﬂgenu U [[S]Bﬁ (Oﬁ)

=
<
=
Qt‘U\
—~
Q
=
s
=
(>

{(o* Nvargsdom(¢))) U {y; : yi < x; € o(¢,p) Ax; € o} }
U [[¢H2ﬁ (Oﬁap)

oftept

=
-
I—=]
bncn
—
i)
=S
s
=
(>

Figure 6: Transfer functions without set difference operat

abstract object with vatsdon(¢)), whereg is the current instruction. In this section,
we present a data structure that makes it possible to impleeaeh of these opera-
tions efficiently. The data structure is an ordered linkstlWwith a carefully selected
ordering. We take advantage of the following property ofdoeninance tree.

Property 2. Number the instructions in a procedure in a preorder traaémsf the
dominance tree. Then whenever instructigrdominates instruction,, the preorder
number ofs; is smaller than the preorder number of.

If the program is in SSA form, we can extend the numbering ¢ovéiriables in the
program by numbering each variable when its unique defmitwisited in traversing
the dominance tree. A singieinstruction may define multiple variables; in this case,
we number the variables in an arbitrary but consistent oRBmameters of the program,
which are all defined in the start node, are numbered in thee seay. The resulting
numbering has the property that if the definitiowgefdominates the definition afs,
thenpr enum(vy) < pr enum(vs).

To represent each abstract object, we use a linked list @fhlas sorted in decreas-
ing prenumber order. We will show that the two operationgleeego implement the
transfer function manipulate only the head of the list.

Recall from Corollary 1 that the transfer function for ngrstatements is only
applied to abstract objects that are a subset of(sd(s)), wheres is the state-
ment for which the transfer function is being computed. Tacpss ay statement, the
transfer function shown in Figure 6 first intersects eacloiniog abstract object with
vargsdom¢)), then adds variables defineddrto it. In both cases, variables defined
in the current statementare being added to a set that is a subset of(sdw(s)).
Thus, the definition of each variable being added is domihlagethe definition of ev-
ery variable in the existing set. Therefore, adding the nariables to the head of the
list representing the set preserves the decreasing preamordtering of the list.

Now consider the intersectiari N vargsdon{¢)) that occurs in the transfer func-
tion for a¢ instruction. The incoming abstract objeétis in the out set of one of the

11



predecessorg of ¢. Therefore, due to Theorem @ C vargddom(p)). We use the
following property of dominance to relate védem(p)) to vargsdon{¢)).

Property 3. Suppose instructions andb both dominate instruction. Then eithewr
dominated or b dominates:.

Since any path tp can be extended to be a path¢tpevery strict dominator od
dominate®. Thus, sdorfy) C dom(p). Leta be any instruction in doip) \ sdon{¢).
The instructiona cannot dominate any instructidne sdom(¢), since by transitiv-
ity of dominance, it would then dominatg. By Property 3, every instruction in
sdon(¢) dominatesz. Thereforea has a higher preorder number than any instruc-
tion in sdon{¢), soa appears earlier in the list representistghan any instruction in
vargsdon(¢)). Therefore, to compute’ N vargsdon{¢)), we need only drop ele-
ments from the head of the list until the head of the list isangsdon(¢)). This is
done using the prune function in Figure 7. The rest of Figuggvés an implemen-
tation of the transfer functions from Figure 6 using orddrsid to represent abstract
objects. Adding a variable to a set has been replaced by enmdsintersection with
vargsdom(¢)) has been replaced by a call to prune.

[s].,, 2 {congv, empty)} if s =v < new
“loen = empty otherwise

{conquvy, 0f)} if s = < vy Ay € OF
[s]6: (") 2 {o*,conqu,0f)} ifs=v—e
{o*} otherwise
[s15: () 2 [sDgen | [s]% (o)
otept
empty if of = empty
prundo, ¢) = of if car(of) € vargsdon{¢))
prundcdr(o®), ¢) otherwise

[#15: (oF,p) = { foldl (consprun€o®, ), {y; : yi « z; € o A; € o'}) }

015 () 2 [¢]5:(o%,p)

ofept

Figure 7: Transfer functions on sorted lists

4.3 Data Structure Implementation

To further reduce the memory requirements of the analysisuge hash consing to
maximize sharing of cons cells between lists. Hash consisgres that two lists with
the same tail share that tail. In our implementation, we @edimHCLi st , which can
either be the empty list or @nsCel | , which contains a variable and a tail of type
HCLi st . We maintain a mapar x HCLi st — ConsCel | . Whenever the analysis

12



performs a cons operation, the map is first checked for animgisell with the same
variable and tail. If such a cell exists, it is reused instebd new one being created.
As an example consider the sequence of code shown on thelketifd-igure 8. If each
abstract object was represented separately as an unsigiretiConsCel | s then
the four abstract objects at the end of the sequence wouldiodia,b,d, {a,b,d,8,
{a,b,c,d and{a,b,c,d,&, using a total of 1&onsCel | s. However, with hash consing
the same four abstract objects use only a total GdAsCel | s.

a=new °

heap=a @
b=a *

_ K@@
@4_@

Figure 8: Sharing between different abstract objectseéitlircles represent the head
of individualHCLI st s.

5 Interprocedural Analysis

The analysis defined in the preceding sections is intrapiwed The analysis do-
main isP(P(Var)), whereVar is the set of variables, and the merge operator is set
union. The transfer functions are distributive. Thus, teeas the analysis to a context-
sensitive interprocedural analysis, a natural choiceasrtterprocedural finite distribu-
tive subset (IFDS) algorithm of Reps et al. [18] with some kmadifications which
we explain in this section.

IFDS is a dynamic programming algorithm that uggg2|O*)|?) time in the worst
case, wher®? is the set of all possible abstract objects. The algorithaiuates the
transfer functions on each individual abstract object ain trather than on the set
of all abstract objects at a program point. Thus, the algoritises the transfer func-
tions for a single abstract object rather than the overafidfer function (i.e.[s]
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rather thar{s] ,:). The algorithm successively composes transfer funcfariadivid-
ual statements into transfer functions summarizing thectsfof longer paths within
a procedure. Once the composed transfer function sumrsaikzpaths from the be-
ginning to the end of a procedure, it can be substituted fgrcaiis of the procedure.
Specifically, the algorithm uses a worklist to complete talolés of transfer functions:
the PathEdge table gives the transfer function from thé state of each procedure to
every other node in the same procedure, and the Summary&lgeives the transfer
function that summarizes the effect of each call site in ttogam.

Extending the IFDS algorithm to work on SSA form required straightforward
modification. The PathEdge table in the original algoritmacks the input flow set
for each statement (i.e. the join of the output sets of itsipcessors). However, our
more precise treatment gfnodes requires processing the incoming flow set from each
predecessor separately and joining the results only dféetransfer function has been
applied. Thus, we modified the PathEdge table so thatj fostructions only, it keeps
track of a separate input set for each predecessor, insteasimle, joined input set.

The transfer function$s]®, and[¢]%, from Figure 7 can be used directly in the
IFDS algorithm. In addition, we must also specify how to mbpteact objects at a call
site from the caller to the callee and back. The mapping imoctllee is simple: for
each abstract object, determine which of the actual argtsiecontains, and create
a new abstract object containing the corresponding forragdipeters. We take care
to keep the formal parameters in each of these newly credistiaat object in the
prenumber order defined for the callee.

In order to map objects from the callee back to the caller, allsmodification to
the IFDS algorithm is necessary. In the original algorittine, return flow function is
defined only in terms of the flow facts computed for the end rafdbe callee. In the
callee, each abstract object is a set of variables of theesadind it is not known which
caller variables point to the object. However, the only platere the algorithm uses
the return flow function is when computing a SummaryEdge flomcfion for a given
call site by composingeturno [p] o call, wherecall is the call flow function/p] is
the summarized flow function of the callee, amtlurnis the return flow function. The
original formulation of the algorithm assumes a fixed retiloa functionreturn for
each call site. It is straightforward to modify the algomittio instead use a function
that, given a call site and the computed flow functjpfi o call, directly constructs
the SummaryEdge flow function. A similar modification is alssed in the typestate
analysis of Fink et al. [8]. Indeed, the general modificai®iikely to be useful in
other instantiations of the IFDS algorithm.

In the modified algorithm, the return flow function takes twgumentso? and
of.. The argument’ is the caller-side abstraction of an object, the argumgig one
possible callee-side abstraction of the same object atthersite, and the return flow
function ought to yield the set of possible caller-side edxtions of the object after
the call. Intuitively, after the call, the object is still ipted by the variables inf, and
may additionally be pointed to by the variable at the cadl it which the result of the
call is assigned, provided the callee-side variable be@tgrned is in the callee-side
abstraction of the object. We writg to denote the callee-side variable being returned
and v, to denote the caller-side variable to which the result of¢hk is assigned.
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Formally, the return function is defined as follows.

g if 4
EUENN oy, U {Ut} ITvg € 0.
ret(of, or) = { o otherwise

Like the intraprocedural transfer functions, the retumcdfion only adds the variable
defined at the call site to an abstract object. Thus, likerttreprocedural transfer func-
tions, the addition can be implemented using a simple coasatipn on the ordered
list. In the case of an object newly created within the catllest did not exist before
the call, the empty set is substituted fdi; since no variables of the caller pointed to
the object before the call.

5.1 Number of Abstract Objects

As Sagiv et al. point out ( [20, Section 6.2]) the number ofgilde abstract objects is
bounded by2V?". They indicate that it is possible to usédeningto eliminate the pos-
sibility of an exponential blowup. We modify the IFDS algbrn to widen whenever
the number of abstract objects increases beyond a set tide¥tthen this happens, we
widen by coalescing different abstract objects by discaydiome, already computed,
precise information. Specifically, we coalesce abstragaib by choosing some vari-
ablewv, and forgetting whether or not any abstract object containds an example
consider two abstract objecfa} and{a,b}. The second abstract object indicates that
both variables: andb point to the concrete object. We widen these abstract abject
by discarding the precise knowledge abbaind considering that any abstract object
may or may not includé. This transforms the abstract objects f@!,b? and{al,b?
where al means that the abstract object definitely includesd b? means that the
abstract object may or may not contain b. Since the two atistigects have become
identical, they are merged into one, thereby reducing tleallvnumber of abstract
objects.

An important question is how to choose the variable for widgn We experi-
mented with two possible heuristics:

1. Choose the variable with the lowest preorder numberestris the least recently
defined and may no longer be live.

2. Choose the most recently added variable, since it is/lilcchave caused a large
blowup.

Although a more thorough experimental evaluation is negidexlir preliminary exper-
iments, the second heuristic tended to a lower overall nuwfgidenings. Therefore,
we have used this heuristic for all of the experiments regubirt the following section.

6 Empirical Evaluations

For empirical evaluation of the analysis we used a subsdieoDaCapo benchmark
suite, version 2006-10-MR2 [2] for our experiments (afloat, pmd, jython, hsqldb,
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luindex, xalan and chart). To deal with reflective class ilogdve instrumented the
benchmarks using ProBe [13] and *J [7] to record actual usesflection at run time
and provided the resulting reflection summary to the statidyesis. The jython bench-
mark generates code at run time which it then executes; fobt#mchmark, we made
the unsound assumption that the generated code does nbtcélinto the original
code and does not return any objects to it. We used the statidearry from JDK
1.3.112 for antlr, pmd and bloat, and JDK 1.412 for the rest of the benchmarks,
since they use features not present in 1.3. To give an indicaff the sizes of the
benchmarks, Figure 9 shows, for each benchmark, the nunfilmeethods reachable
in the static call graph and the total number of nodes in tirgrobflow graphs of the
reachable methods.

Benchmark| Methods| CFG Nodes| SSA CFG Nodes
antlr 4452 89437 96227
bloat 5955 95588 101177
pmd 9344 148103 155292
jython 14437 221217 234458
hsqgldb 11418 184196 198134

luindex 7358 113810 122450
xalan 14961 227504 242785
chart 14912 241216 256348

Figure 9: Benchmark sizes: Column 2 gives the number of eda@lehmethods for
each benchmarks. Columns 3 and 4 give the total number ofrindke control flow
graphs (CFGs) of the reachable methods for each benchmargnifSSA and SSA
form respectively.

We experimented with three different setups. Setup 1 usedi¢fiaultSet im-
plementation of thé&Scal a programming language. The sets are “immutable” in the
sense that an update returns a new set object rather tharfyimgdhe existing set
object. Usually, the implementations of the original andlaed set share some of
their data. The standard library provides customized implatations for sets of size
0 to 4 elements. For larger sets, a hash table implementiatiosed. According to
the Scal a API specification [16], the hash table-based implementasmptimized
for sequential accesses where the last updated table issectmost often. Accessing
previous version of the set is also made efficient by keepiolgaamge log that is reg-
ularly compacted. In setup 2, tiie eeSet data structure from th8cal a APl was
used. This implementation uses balanced trees to storethAis updated set reuses
subtrees from the representation of the original set. Bethpsl and 2 compute the
heap abstraction on a program in non-SSA form and use thsférafunctions from
Figure 1. We also tried to apply setups 1 and 2 to programs /& f868n, but found
them to run slower and use more memory than on the originakS®A IR. The third
setup used the sorted list data structure with hash consoppped in this paper. The
analysis is computed on a program in SSA form and uses thsféraiunctions from
Figure 7.

The following sections present the time and memory requergmof the three se-
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tups.

6.1 Running Time

Figure 10 compares the running times for the three setupswltite, grey and black
bars represent running times for the first, second and teitughsrespectively.

I'—IashSet ——
6000 - TreeSet o
HCList m———

5000

4000 +

3000 [

2000

“ | I [
|

antlr bloat pmd jython hsqldb luindex xalan chart

Running Time (seconds)

Benchmark

Figure 10: Running time for different data structures usedamputing the heap ab-
straction.

Inall cases buant | r, theSet -based representation runs faster thathee Set -
based representation. The maximum performance diffeiemtéhe case df ui ndex:
theSet -based representation is 48% faster. On averag&edhebased representation
is 22% faster than thér eeSet -based representation.

We compare thé&et -based representation to odd€Li st representation. In all
cases theHCLi st abstraction is faster. The average running time improverisen
63%, and the maximum is 74% on thal an benchmark.

Although the conversion to SSA form increased the size ofrobflow graphs by
6.5% on average (Figure 9), the analysis is faster even darper control flow graphs.

6.2 Memory Consumption

Figure 11 shows the memory consumed by the different setiils womputing the
object abstraction. The reported memory use includes thmanerequired by the
interprocedural object analysis, but excludes memory eeéal store the intermediate
representation and the control flow graph.

In all cases theéSet -based representation uses less memory thaf tlee Set -
based representation of abstract objects; the averageti@alis 12%. TheHCLi st
representation with hash consing uses even less memoryhitb&at -based represen-
tation. The average reduction is 43% and the maximum rengtueti68% in the case
of xal an.
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Even though the abstract objects in thelLi st -based representation may contain
more variables than in thget or Tr eeSet -based representation, thi€Li st -based
representation requires less memory thanks to sharingrofram tails of the linked
lists.
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Memory Consumed (Megabytes)

Benchmark

Figure 11: Memory consumed by different data structured iseomputing the heap
abstraction.

7 Future Work

In this section we discuss some future work for the stordieap abstraction presented
in this paper.

7.1 Implementation

This section looks at ways in which the performance of thegméed abstraction could
be further improved. We also discuss some additional exparis that we are inter-
ested in performing:

Profiling:

Due to time constraints we were unable to profile our impleiatn both for time
and memory usage. Since the goal of this work is computingffasiemt storeless
heap abstraction, it is essential we optimize the code sctiagy performance bottle-
necks. For run time performance, although we were carefiggigning the operations
performed during the application of the transfer functjgmsfiling information might
suggest additional avenues for speed improvements. Ittptighvever, turn out that
the cost of computing the abstraction is dominated by thebmurof abstract objects
that need to be processed. While we have tried to keep thibeuas small as possible,
by producing as few abstract objects as possible and mesgimitar abstract objects,
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there is not much that can be done to reduce the number fu@neroptimization, that
has been implemented, though not discussed in the papemiaintain a sek?, a sub-
set of the sep?. Abstract objects that have escaped to the heap, via stissrsnts,
are added to this subset. The transfer function for loads-(e¢), is then modified to
apply the focus operation only for abstract objects thatratiee escaped set of objects
(o* € h¥). Adding this extra condition restricts the number of fooperations to those
abstract objects which have escaped to the heap and henmesdatie overall number
of abstract objects created.

We also intend to profile the implementation for memory ugageee if there are
any places where memory consumption could be reduced. @heessibility are the
support data structures and specially the custom datasteuepresenting the abstract
objects. We discuss this next.

HashConsing

As mentioned in Section 4.3 we use Hash Consing to shareithefithe ordered lists
representing abstract objects. However, even without mgmmfiling information,
we noticed that we store a lot of redundant information irhggans Cel | . Currently,
eachConscCel | in the implementation contains references for the methodagoing
the variable, a reference to the variable itself, an integéue representing the pre-
order number assigned to the variable, a unique identifrehConsCel | , the size
of theHCLi st starting at thisfonsCel | and a pointer to the nex@nsCel | in the
list, if one exists. The method and variable are needed doetizh variable can be
uniquely identified in the program. However, for a given noetfthis results in a lot of
redundant references to the method. It should be possilsienay use the pre-order
number assigned to the variable to uniquely identify théalde. This will reduce the
memory consumed by ea@@onsCel | . Currently, we had decided to explicitly store
the size of arHCLi st in thesi ze field. This improves performance since the size
does not need to be computed over and over again. A tradeafthMe to remove this
field, hence reducing memory consumed, at the cost of neéalt@mpute the size ev-
ery time this value is required by the transfer functions.ikitend to experiment with
this tradeoff. Although, we have not yet performed any diEexperiments to mea-
sure the usefulness of hash consing we intend to do so by tiergimplified transfer
functions with and without hash consing.

Live Variables

In Figure 6 we present the simplified transfer functionsngghe liveness property
and dominance filtering. However, our initial experimerggg these transfer func-
tions showed that the transfer functions performed poooipngared to the transfer
functions which use live variable filtering. The reasoniagthis is that although dom-
inance filtering removes those variables from the abstigjettbwhose definition does
not dominate the current statement there are instancegwhariable is no longer live
but whose definition still dominates the statement i.e. téables are in live-out
but not in vars(dom). These variables, although irrelevant, are not removedbloyi-
nance filtering. Although, we had hoped that this would neetemajor effect on the
size of the abstract object it turns out that even if the s@eschot increase drastically
the number of abstract objects created does. This is so beedstract objects which
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only differ in the no longer live variables can not be mergededuce the number of
abstract objects. We intend to investigate whether it mighpossible to apply domi-
nance filtering and then live variable filtering for some bot all statements.

7.2 Client Analyses

Our evaluation computes the improvements in speed and nyecomsumption but
does not validate the abstraction computed. Although, wecanfident that the new
abstraction is as precise as the original abstraction veadhto verify this by using the
storeless heap abstraction in some client analyses. Oheagadysis is the tracematch
analysis from our previous work on verifying temporal sgfptoperties of multiple
interacting objects [15]. This analysis requires an olgdstraction in order to be able
to ascertain relationships between multiple objects. Bgging in the new abstraction
proposed in this work we can easily verify whether the alotiva is at least as precise
as the set-based abstraction that the analysis currermtdy us

It would also be interesting to investigate how easily thespnted abstraction can
be extended to the abstractions discussed in the relatekl seation of this paper.
As we mentioned earlier, the storeless heap abstractiorresept is the core set-of-
variables abstraction used by a number of static analyfarsiimg properties of pointers
in the program. Extending our abstraction to perform thésticsanalyses should lead
to performance improvements for these analyses.

8 Related Work

8.1 Heap Abstraction

Jonkers [12] presented a storeless semantic model for dgalyrallocated data. He
noticed that in the store-based heap model that maps pegriables to abstract loca-
tions, the abstract locations do not represent any mearlingbrmation. Instead he
defined an equivalence relation on the set of all heap patksitsbh [6] presented a
storeless semantics of an imperative fragment of StandardHd used a right-regular
equivalence relation on access paths to express aliasipgiies of data structures.
Our inspiration to use variables to represent abstracttbgomes from the work
of Sagiv et. al. [20]. This work presents a shape analysiscdrabe used to determine
properties of heap-allocated data structures. For exanfglee input to a program
is a list (respectively, tree), is the output still a listgpectively, tree)? The shape
analysis creates a shape graph in which each node is the gatialbles pointing to
an object. Pointer relationships between objects are septed by edges between the
nodes. The graph is annotated with additional informatapredicate is associated
with each node which indicates whether the particular natist(act object) might be
the target of multiple pointers emanating from differengtadct objects. This is crucial
for distinguishing between cyclic and acyclic data struesu Later work of Sagiv
et al. [21] generalizes this idea by allowing the analysisigleer to separate objects
according to domain-specific user-defined predicates. iBscaur analysis computes

20



the nodes of Sagiv’s shape graph, it is possible to extendrmalysis to Sagiv's analysis
by keeping track of edges between the nodes. The SSA prepéhntit we exploited
and the ordered data structure that we employ can also beilugleel shape analysis
algorithm.

Hackett and Rugina [10] use a two layered heap abstractiparform shape anal-
ysis that is scalable to large C programs. The first abstractses a flow insensitive
context-sensitive analysis to break the heap into chunkbsgdint memory locations
called regions. Many regions are single variables; othgiores represent areas of
the heap. The second abstraction builds on top of the rdggsed memory partition,
breaking the heap into small independemrfigurations Each configuration represents
a single heap location and keeps track of reference cowntsdther regions that tar-
get this location. Also, each configuration (abstract apjeentains field access paths
known to definitely reach (hit) or definitely not reach (mids} object. Since in typi-
cal cases each region is a local variable the abstractionde®the same information
as Sagiv’'s abstraction. Orlovich and Rugina [17] apply thalysis to detect memory
leaks in C programs. Cherem and Rugina [3] adapt the ahistnetct Java to perform
compile-time deallocation of objects i.e. freeing the meymemnsumed by an object
as soon as all references to it are lost. Theyagsdigurationgo represent abstract ob-
jects and implement an efficient abstraction in the form @facked Object Structure
(TOS). A TOS maintains a compact representation of equitagpressions making
modifications to the heap abstraction efficient since eade o the data structure is
an equivalence class. The efficiency of the abstractiondcbelfurther improved by
maintaining the equivalence class representing the setaf Vvariables that point to a
particular concrete object as a sorted list using the tatd¢nimposed by a preorder
traversal of the dominance tree.

In their work on typestate verification, Fink et. al. [8] usstaged verifier to prove
safety properties of objects. The most precise of thesdiemsrkeeps track of which
local variables must and must not point to the object alorty wimilar information
regarding incoming pointers (access paths) from otherotbjhat must or must-not
point to the object. Information about the allocation sifeh® object is also main-
tained. This information is used to perform strong updatebé case when it can be
proved that the points-to set of a receiver contains a silggéract object and that this
single abstract object represents a single concrete object

Our previous work on verification of multi-object temporgpksifications [14, 15]
extends static typestate verification techniques for sifpjects to multiple interact-
ing objects. Whereas typestate verification typically agges a state to each abstract
object, this is not possible when dealing with a state aasediwith multiple objects.
We define two abstractions: a storeless heap abstractiad las sets-of-variables
and a second abstraction which associates a state to grbrglated abstract objects.
Although in [14, 15] we used &et -based representation for the storeless heap ab-
straction, we intend to take advantage of the data strupnesented in this paper.

A common technique used to precisely handle uncertaintyalbeap loads is that
of materializationor focus[3, 8, 10, 15, 20]. Focus is important to regain the precision
lost when an object is no longer referenced from any locaabées, in which case the
analysis lumps it together with all other such objects. Basplits the abstract object
representation into two, one representing the single ed@object that was loaded, and
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the other representing all other objects previously represl by the abstract object.
The transfer functions in Figure 1 use focus for a heap loag- (€) by splittingof into
two abstract objects’ \ {v} ando® U{v}. The focus operation in the transfer functions
of Figures 6 and 7 no longer requires removing the variafilem the resulting abstract
objects. As discussed in Section 4.1, the set differenceatipa is redundant in SSA
form, since the original abstract objegtis guaranteed to not contain

8.2 Static Single Assignment (SSA) Form

Static Single Assignment form [1, 22] has been used as anmetdiate representa-
tion since the late 1980s. Rosen et. al. [19] took advanta&Sa form to define a
global value numbering algorithm. Cytron et al. [5] deveddjgthe now-standard effi-
cient algorithm for converting programs to SSA form usingnittance and dominance
frontiers.

Hack et. al. [9] showed that the interference graph for tegillocation of a pro-
gram in SSA form is always chordal (i.e., its chromatic numdxpuals the size of the
largest clique). Such graphs can be optimally colored irdcptéc time. The chordality
of the interference graph is due to the SSA property tha&ifvidriables in some sét
are simultaneously live at some program pginthen they are all totally ordered by
dominance, they are all live at the definition of the variable S dominated by all
the others, and on every control flow path ending,dhe variable front' defined last
is v. Thus any relationship that holds between the variablesadteady holds at the
definition ofv. The abstraction presented in this paper is intuitivelyedasn the same
idea. Suppose the set of variables pointing to some conabgteto at program point
pis S. Then those variables are totally ordered by dominance tlaeyd all already
pointed too when the variable in € S dominated by the others was last defined. Thus
if S'is represented by a linked list ordered by dominance, thestea function for the
instruction defining) needs only to add to the head of the list. The only place where
variables need to be removed fra#s an edge leading to a node no longer dominated
by the definitions of those variables.

Hasti et. al in [11] propose an algorithm which can improvsuits of flow-
insensitive points-to analysis by iteratively convertthg program into SSA form and
applying a flow-insensitive points-to analysis to it. Aftach iteration the points-to
sets might shrink (become more precise) but are always gtesa to be safe (a su-
perset of the points-to sets given by a flow-sensitive aiglyShey conjecture that
reaching a fixed point of this iterative approach might leagoints-to results with
similar precision as that of a flow-sensitive points-to geisl

9 Conclusion

This paper focused on the core abstraction of a set of vasalsed by numerous static
analyses inferring properties about the pointers creatddveanipulated in a program.

We presented a data structure implementing the set-o&blas object abstraction for
programs in SSA form. The data structure consists of link&d brdered by the pre-

order numbering of the dominance tree of the procedure. \W&eth that with this or-
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dering, the transfer functions only apply local updatesitoitead of each list. Since the
lists are ordered, common tails of different lists repréisgrdifferent abstract objects
can be shared. We implemented an interprocedural congesitve analysis using this
representation of the abstraction. Our experimental teshlow that the ordered list
representation is faster and requires less memory thadasthset data structures. The
speedup was 63% on average, and as high as 74% on one of thertzeks. Mem-
ory requirements decreased by 43% on average, and as mu@¥@aeréone of the
benchmarks.
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