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Abstract—The accuracy of detecting intrusions within an
Intrusion Detection Network (IDN) depends on the efficiency
of collaboration between the peer Intrusion Detection Systems
(IDSes) as well as the security itself of the IDN against insider
threats. In this paper, we study host-based IDNs and introduce
a Dirichlet-based model to measure the level of trustworthiness
among peer IDSes according to their mutual experience. The
model has strong scalability properties and is robust against com-
mon insider threats, such as a compromised or malfunctioning
peer. We evaluate our system based on a simulated collaborative
host-based IDS network. The experimental results demonstrate
the improved robustness, efficiency, and scalability of our system
in detecting intrusions in comparison with existing models.

I. INTRODUCTION

Intrusion Detection Systems (IDSes) identify intrusions by
comparing observable behavior against suspicious patterns.
They can be network-based (NIDS) or host-based (HIDS).
Traditional IDSes work in isolation and may be easily com-
promised by unknown or new threats. An Intrusion Detection
Network (IDN) is a collaborative IDS network intended to
overcome this weakness by having each peer IDS benefit from
the collective knowledge and experience shared by other peers.
This enhances the overall accuracy of intrusion assessment as
well as the ability of detecting new intrusion types.

The centralized collaboration of IDSes relies on a central
server to gather and analyze alerts. This technique suffers
from the classical performance bottleneck and a single point
of failure problems. The distributed collaboration of IDSes
can avoid these problems. However, in such collaborative
environments, a malicious (or malfunctioning) IDS can de-
grade the performance of others by sending out false intrusion
assessments. To protect an IDN from malicious attacks, it
is important to evaluate the trustworthiness of participating
IDSes, especially when they are host-based.

In this work, we develop a robust Bayesian trust manage-
ment model that is scalable and suitable for distributed HIDS
collaboration. More specifically, we adopt the Dirichlet family
of probability density functions in our trust management for
estimating the likely future behavior of a HIDS based on its
past history. This theoretical model allows us to track the
uncertainty in estimating the trustworthiness of the HIDS,
which improves the detection accuracy. Our model also offers
excellent scalability properties.

We evaluate our system based on a simulated collaborative
HIDS network. The HIDSes are distributed and may have

different expertise levels in detecting intrusions. A HIDS may
also turn malicious due to runtime bugs, having been compro-
mised, having been updated with a faulty new configuration,
or having been deliberately made malicious by its owner. We
also simulate several potential threats. Our experimental results
demonstrate that our system yields a significant improvement
in detecting intrusions and is robust against various attacks,
as compared to existing HIDS collaborative systems. The
provided experimental results also demonstrate the improved
scalability of our system.

The collaborative HIDS framework is presented in Sec-
tion II and the management model in Section III. The scal-
ability of our system is discussed in Section IV and its
robustness against common threats in Section V. Section VI
provides experimental evidence of the efficiency, robustness
and scalability of our model. Section VII surveys related work
and Section VIII summarizes our contributions and future
work.

II. HIDS COLLABORATION FRAMEWORK

The purpose of this framework is to connect individual
HIDSes so that they can securely communicate and cooperate
with each other to achieve better detection accuracy. Collabo-
ration is ensured by trust-based cooperation and peer-to-peer
communication. The trust management model allows a HIDS
to evaluate the trustworthiness of its neighbors based on its
own experience with them. The peer-to-peer component pro-
vides network organization, management and communication
between HIDSes. The collaboration consists of the following
two processes.

A. Network Join Process

Before joining the network, a HIDS needs to register to a
trusted digital certificate authority and get a public and private
key pair which uniquely identifies it. Note that we identify
the (machine, user) tuple. This is because a different machine
means a different HIDS instance. In addition, a different user
of the same machine may have a different configuration of
its HIDS. After a peer joins the IDN, it is provided with a
preliminary acquaintance list. This list is customizable and
contains identities (or public keys) of other peers within the
network along with their trust values. It serves as the contact
list for collaboration.



B. Test Messages
Each peer sends out either requests for alert ranking, or test

messages. A test message is a consultation request sent with
the intention to evaluate the trustworthiness of another peer
in the acquaintance list. It is sent out in a way that makes it
difficult to distinguish from a real alert ranking request. The
testing peer knows beforehand the severity of the alert and
uses the received feedback to derive a trust value for the tested
peer. This technique helps discover inexperienced or malicious
peers within the collaborative network.

III. TRUST MANAGEMENT MODEL

Trust modeling is an important element in an IDN. In
this section, we propose a robust and scalable trust model
which uses a Bayesian approach to evaluate the trustworthiness
between each pair of HIDSes . Specifically, we use a Dirichlet
family of probability density functions to estimate the future
behavior of a HIDS based on its past history.

A. Satisfaction Mapping
In our model, a HIDS peer sends requests to peer HIDSes

and evaluates the satisfaction level of received feedback. Note
that the request can be a test message or a real request. The true
answer of a test message is known beforehand while that of a
real request is estimated after sometime through the observed
impact of the corresponding alert.

HIDSes may have different metrics to rank alerts. Snort
for example uses three levels (low, medium, high), while Bro
allows up to 100 different levels. We assume the existence of
a function H , which maps a HIDS alert ranking onto the [0,1]
interval where 0 denotes benign traffic and 1 highly dangerous
intrusions. H preserves the “more severe than” partial order
relationship. That is, if alert aj is more severe than alert ai

then H preserves that relationship by having H(aj) > H(ai).
The satisfaction level of feedback is determined by three

factors: the expected answer (r ∈ [0, 1]), the received answer
(a ∈ [0, 1]) and the difficulty level of the test message
(d ∈ [0, 1]). The larger d is the more difficult it is to correctly
answer the request. We use a function Sat(r, a, d) (∈ [0, 1])
to represent the satisfaction of the received answer based on
its distance to the expected answer and the difficulty level of
the test message, as follows:

Sat(r, a, d) =





1−
(

a−r
max(c1r,1−r)

)d/c2

a > r

1−
(

c1(r−a)
max(c1r,1−r)

)d/c2

a ≤ r

(1)

where c1 controls the extent of penalty for wrong estimates.
It is set > 1 to reflect that estimates lower than the exact
answer get stronger penalty than those that are higher. Pa-
rameter c2 ∈ R+ controls satisfaction sensitivity, with larger
values reflecting more sensitivity to the distance between the
correct and received answers. The equation also ensures that
low difficulty level tests are more severe in their penalty to
incorrect answers.

B. Dirichlet-based Model

In our previous work [4], we used a linear model with a
forgetting factor to calculate the average satisfaction levels
of past interactions. However, this approach does not capture
trust modeling uncertainties or provide statistical confidence
information on intrusion decisions.

Bayesian statistics provides a theoretical foundation for
measuring the uncertainty in a decision that is based on a
collection of observations. We are interested in knowing the
distribution of satisfaction levels of the answers from each
peer HIDS and, particularly, using this information to estimate
the satisfaction level of future consultations. For the case
of a binary satisfaction level {satisfied,¬satisfied}, a Beta
distribution can be used as appeared in [12]. For multi-valued
satisfaction levels, Dirichlet distributions are more appropriate.

A Dirichlet distribution [9] is based on initial beliefs about
an unknown event represented by a prior distribution. The
initial beliefs combined with collected sample data can be
represented by a posterior distribution. The posterior distri-
bution well suits our trust management model since the trust
is updated based on the history of interactions.

Let X be the discrete random variable denoting the satisfac-
tion level of the feedback from a peer HIDS. X takes values
in the set X = {x1, x2, ..., xk} (xi ∈ [0, 1], xi+1 > xi) of
the supported levels of satisfaction. Let ~p = {p1, p2, ..., pk}
(
∑k

i=1 pi = 1) be the probability distribution vector of X ,
i.e P{X = xi} = pi. Also, let ~γ = {γ1, γ2, ..., γk} denote
the vector of cumulative observations and initial beliefs of X .
Then we can model ~p using a posterior Dirichlet distribution
as follows:

f(~p|ξ) = Dir(~p|~γ) =
Γ(

∑k
i=1 γi)∏k

i=1 Γ(γi)

k∏

i=1

pi
γi−1 (2)

where ξ denotes the background knowledge, which in here is
summarized by ~γ.

Let

γ0 =
k∑

i=1

γi (3)

The expected value of the probability of X to be xi given
the history of observations ~γ is given by:

E(pi|~γ) =
γi

γ0
(4)

In order to give more weight to recent observations over
old ones, we embed a forgetting factor λ in the Dirichlet
background knowledge vector ~γ as follows:

~γ(n) =
n∑

i=1

λti × ~Si + c0λ
t0 ~S0 (5)

where n is the number of observations; ~S0 is the initial
beliefs vector. If no additional information is available, all
outcomes have an equal probability making S0

j = 1/k for
all j ∈ {1, .., k}. Parameter c0 > 0 is a priori constant,
which puts a weight on the initial beliefs. Vector ~Si denotes



the satisfaction level of the ith evidence, which is a tuple
containing k − 1 elements set to zero and only one element
set to 1, corresponding to the selected satisfaction level for
that evidence. Parameter λ ∈ [0, 1] is the forgetting factor. A
small λ makes old observations quickly forgettable. Parameter
ti denotes the time elapsed (age) since the ith evidence ~Si was
observed.

Let ∆ti = ti− ti+1. For the purpose of scalability, the ~γ(n)

in Equation 5 can be rewritten in terms of ~γ(n−1), ~Sn and
∆tn as follows:

~γ(n) =

{
c0

~S0 n = 0
λ∆tn × ~γ(n−1) + ~Sn n > 0

(6)

C. Evaluating the Trustworthiness of a Peer

After a peer receives the feedback for an alert evaluation,
it assigns a satisfaction value to the feedback according to
Equation 1. This satisfaction value is assigned with one of the
satisfaction levels in the set X = {x1, x2, ..., xk} that has the
closest value. Each satisfaction level xi also has a weight wi.

Let puv
i denote the probability that peer v provides answers

to the requests sent by peer u with satisfaction level xi. Let
~puv = (puv

i )i=1...k |∑k
i=1 puv

i = 1. We model ~puv using
Equation 2. Let Y uv be the random variable denoting the
weighted average of the probability of each satisfaction level
in ~puv .

Y uv =
k∑

i=1

puv
i wi (7)

In this paper, we adopt a linear pondering factor for the
weights wi = xi. The trustworthiness of peer v as noticed by
peer u is then calculated as:

Tuv = E[Y uv] =
k∑

i=1

wiE[puv
i ] =

1
γuv
0

k∑

i=1

wiγ
uv
i (8)

where γuv
i is the cumulated evidence that v has replied to u

with satisfaction level xi. The variance of Y uv is equal to
(superscript uv is omitted for clarity):

σ2[Y ] =
k∑

i=1

k∑

j=1

wiwjcov[pi, pj ] (9)

Knowing that the covariance of pi and pj is given by:

cov(pi, pj) =
−γiγj

γ2
0(γ0 + 1)

(10)

We get:

σ2[Y ] =
k∑

i=1

w2
i σ2[pi] + 2

k∑

i=1

k∑

j=i+1

wiwjcov[pi, pj ]

=
k∑

i=1

w2
i

γi(γ0 − γi)
γ2
0(γ0 + 1)

+ 2
k∑

i=1

k∑

j=i+1

wiwj
−γiγj

γ2
0(γ0 + 1)

=
1

γ3
0 + γ2

0

k∑

i=1

wiγi


wi(γ0 − γi)− 2

k∑

j=i+1

wjγj


 (11)

Let Cuv ∈ (0, 1) be the confidence level for the value of
Tuv , we describe it as:

Cuv = 1− 4 σ[Y uv] (12)

where 4 σ[Y uv] is roughly the 95% confidence interval.

D. Feedback Aggregation

Based on their estimated trustworthiness, each peer requests
alert consulting only from those peers in its acquaintance
list whose trust values are greater than a threshold. After
receiving feedback from its acquaintances, a peer u aggregates
the feedback using a weighted majority method as follows:

au
i =

∑

T uv≥thu,v∈Au

TuvDuvauv
i

∑

T uv≥thu,v∈Au

TuvDuv
, (13)

where au
i is the aggregated ranking of alert i from the

feedback provided by each peer belonging to the acquaintance
list Au of peer u; Duv ∈ [0, 1] is the proximity weight of
peer v with respect to u. thu is the trust threshold set by u;
auv

i ∈ [0, 1] is the feedback ranking of alert i from v to u.
We introduce proximity as a measure of the distance be-

tween two peers. In this paper, we consider it to be the
geographical distance. This is because HIDSes that are located
within the same or close by geographical region are more
likely to experience similar intrusions [1] and thus can help
each other by broadcasting warnings of active threats. Feed-
back from nearby acquaintances is therefore more relevant
than that from distant ones.

IV. SCALABILITY OF OUR SYSTEM

Each HIDS u in our system maintains an acquaintance list
with a maximum size Nu. This number can be fixed or slightly
updated with the changes in IDN size. However, it is always set
to a value small enough to account for scalability. Equation 6
ensures that the process of updating the trustworthiness of a
peer after the reception of a response is performed with only
three operations, making it linear with respect to the number
of answers.

There is a trade-off to be resolved in order to account
for scalability in the number of messages exchanged in the
IDN. On one hand, the forgetting factor in Equation 6 decays
the importance given to existing highly trusted peers. This
implies that their corresponding test messages rates need to
be above a certain minimal rate. On the other hand, sending
too many requests to other peers may compromise scalability.
To solve this issue, we adapt the rate of test messages to
a given peer according to its estimated trustworthiness. The
adaptation policy is provided in Table I, where acquaintances
are categorized into highly trustworthy, trustworthy, untrust-
worthy, and highly untrustworthy. There are three levels of
test message rates: Rl < Rm < Rh. For the purpose of
exploration, acquaintances that are highly untrustworthy are
periodically replaced by randomly chosen new peers. We can



TABLE I
ACQUAINTANCE CATEGORIZATION

Peer category Criterion Rate

Highly Trustworthy 0 <th≤ E[Y ]− 2σ[Y ] Rl

Trustworthy E[Y ]− 2σ[Y ] <th≤ E[Y ] Rh

Untrustworthy E[Y ] <th≤ E[Y ] + 2σ[Y ] Rm

Highly Untrustworthy E[Y ] + 2σ[Y ] <th≤ 1 Rl

observe that the test message rate to highly trustworthy or
highly untrustworthy peers is low. This is because we are
confident about our decision of including or not their feedback
into the aggregation. A higher test message rate is assigned to
trustworthy or untrustworthy peers because their trust values
are close to the threshold and hence need to be kept under
close surveillance.

Each peer in the system needs to actively respond to
others’ requests in order to keep up its trustworthiness and be
able to receive prompt help when needed. However, actively
responding to every other peer will cause bottleneck situations.
Therefore, as a consultant to others, a peer would like to limit
the rate of answers it provides. In this regard, each peer in our
system would respond to requests with a priority proportional
to the amount of trust it places on the source of the request. It
will give higher priority to highly trusted friends. This obeys
the social norm: “Be nice to others who are nice to you”, and
also provides incentives for encouraging peers to act honestly
in order to receive prompt help in times of need.

V. ROBUSTNESS AGAINST COMMON THREATS

Trust management can effectively improve network col-
laboration and detect malicious peers. However, the trust
management itself may become the target of attacks and be
compromised. In this section, we describe common attacks
and provide defense mechanisms against them.

1) Sybil attacks: occur when a malicious peer in the system
creates a large amount of pseudonyms (fake identities) [2].
This malicious peer uses fake identities to gain larger influence
over the false alert ranking on others in the network. Our
defense against sybil attacks relies on the design of the
authentication mechanism. Authentication makes registering
fake identities difficult. In our model, the certificate issuing
authority only allows one identity per (user, machine) tuple.
In addition, our trust management model requires HIDSes to
first build up their trust before they can affect the decision of
others, which is costly to do with many fake identities. Thus,
our security and trust mechanisms protect our collaborative
network from sybil attacks.

2) Newcomer attacks: occur when a malicious peer can
easily register as a new user [8]. Such a malicious peer creates
a new ID for the purpose of erasing its bad history with other
peers in the network. Our model handles this type of attack by
assigning low trust values to all newcomers, so their feedback
on the alerts is simply not considered by other peers during
the aggregation process.

TABLE II
SIMULATIONS PARAMETERS

Parameter Value Description

Rl 2/day Low test message rate
Rm 10/day Medium test message rate
Rh 20/day High test message rate
λ 0.9 Forgetting factor
th 0.8 Trust threshold for aggregation
c0 10 Priori Constant
c1 1.5 Cost rate of low estimate to high estimate
c2 1 Satisfaction sensitivity factor
s 4 Size of grid region
k 10 Number of satisfaction levels

3) Betrayal attacks: occur when a trusted peer suddenly
turns into a malicious one and starts sending false alerts or
even malware. A trust management system can be degraded
dramatically because of this type of attacks. We employ a
mechanism which is inspired by the social norm: “It takes a
long-time interaction and consistent good behavior to build
up a high trust, while only a few bad actions to ruin it.”
When a trustworthy peer acts dishonestly, the forgetting factor
(Equation 6) causes its trust value to drop down quickly, hence
making it difficult for this peer to deceive others or gain back
its previous trust within a short time.

4) Collusion attacks: happen when a group of malicious
peers cooperate together by providing false alert rankings in
order to compromise the network. In our system, peers will not
be adversely affected by collusion attacks. In our trust model
each peer relies on its own knowledge to detect dishonest
peers. In addition, we use test messages to uncover malicious
peers. Since the test messages are sent in a random manner, it
will be difficult for malicious peers to distinguish them from
actual requests.

5) Inconsistency attacks: happen when a mailcious peer
repeatedly changes its behavior from honest to dishonest in
order to degrade the efficiency of the IDN. Inconsistency
attacks are harder to succeed in the Dirichlet-based model
because of the use of the forgetting factor and the dynamic
test message rate, which makes trust values easy to lose
and hard to gain. This ensures that the trust values of peers
with inconsistant behaviour remain low and hence have little
impact.

VI. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we present a set of experiments used to
evaluate the effeciency, scalability and robustness of our trust
management model in comparison with existing ones [4][3].
Each experimental result presented in this section is derived
from the average of a large number of replications with an
overal negligible confidence interval.

A. Simulation Setting

The simulation environment uses an IDN of n HIDS peers
randomly distributed over an s× s grid region. The proximity
distance is given by the minimum number of square steps
between each two peers. The expertise level of a peer can
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be low (5%), medium (50%) or high (95%). In the begin-
ning, each peer builds an initial acquaintance list based on
the communication cost (proximity). The initial trust value
of every peer in the acquaintance list is 50%. To test the
trustworthiness of acquaintances, each peer sends out test
messages following a Poisson process with rates according
to Table I. The parameters we used are shown in Table II.

B. Modeling the Expertise Level of a Peer

To reflect the expertise level of each peer, we use a Beta
distribution to simulate the decision model of answering
requests. A Beta density function is given by:

f(p|α, β) =
1

B(α, β)
pα−1(1− p)β−1

B(α, β) =
∫ 1

0

tα−1(1− t)β−1dt (14)

where f(p|α, β) is the probability that a peer with expertise
level l answers with a value of p ∈ [0, 1] to an alert of difficulty
level d ∈ [0, 1]. Higher values for d are associated to attacks
that are difficult to detect, i.e. many peers fail to identify them.
Higher values of l imply a higher probability of producing
correct alert rankings.

Let r be the expected ranking of an alert. We define α and
β as follows:

α = 1 +
l(1− d)
d(1− l)

√
r

1− r

√
2
l
− 1

β = 1 +
l(1− d)
d(1− l)

√
1− r

r

√
2
l
− 1 (15)

For a fixed difficulty level, the above model has the property
of assigning higher probabilities of producing correct rankings
to peers with higher levels of expertise. A peer with expertise
level l has a lower probability of producing correct rankings
for alerts of higher difficulty (d > l). l = 1 or d = 0 represent
the extreme cases where the peer can always accurately rank
the alert. This is reflected in the Beta distribution by α, β →
∞. Figure 1 shows the feedback probability distribution for
peers with different expertise levels, where we fix the expected
risk level to 0.7 and the difficulty level of test messages to 0.5.
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C. Deception Models

We model four deception models for a dishonest peer:
complementary, exaggerate positive, exaggerate negative, and
maximal harm. The first three deception models are described
in [11], where an adversary may choose to send feedback
about the risk level of an alert that is respectively opposite to,
higher, or lower than the true risk level. We propose a maximal
harm model where an adversary always chooses to report false
feedback with the intention to bring the most negative impact
to the request sender. Figure 2 shows the feedback curve
for the different deception strategies. For instance, when a
deceptive peer using the maximal harm strategy receives a
ranking request and detects that the risk level of the request is
“medium”, it sends feedback “no risk” because this feedback
can maximally deviate the aggregated result at the sender side.

D. Trust Values and Confidence Levels for Honest Peers

The first experiment studies the effectiveness of the collab-
oration and the importance of our trust management. In this
experiment, all peers are honest. We simulate the scenario
where each peer u has a fixed size Nu of its acquaintance
list. The peers are divided into three equally-sized groups of
low, medium and high expertise levels respectively. The first
phase of the simulation is a learning period (50 days), during
which peers learn about each other’s expertise level by sending
out test messages. Figure 3 shows the resulting average trust
values of the 30 acquaintances of peer u. The trust values
converge after 30 days of simulation and the actual expertise
levels of the peers are able to be effectively identified by our
trust model.

To study the impact of different test message rates on the
confidence level of trust estimation (Equation 12), we conduct
a second experiment to let u use a fixed test message rate
in every simulation round. The rate of sending test messages
starts with one message per day and increases by five for
every simulation round. We plot the confidence level of trust
evaluation for each test message rate in Figure 4. We can
observe that the confidence level increases with the increase
of the test message rate. This confirms our argument that
sending more test messages improves the confidence of trust
estimation. We also observe that the confidence levels increase
with the expertise levels. This is because peers with higher
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expertise levels tend to perform more consistently.

E. Trust Values for Dishonest Peers

The purpose of this experiment is to study the impact of
dishonest peers using the four different deception strategies
described in Section VI-C. To study the maximum impact
of these deception strategies, we only use peers with a high
expertise level as deceptive adversaries since they are more
likely to know the true answers and can perform the deception
strategies more accurately.

In this experiment, we let peer u have an acquaintance list of
40 dishonest peers divided into four groups. Each group uses
one of the four deception models: complimentary, exaggerate
positive, exaggerate negative, and maximal harm. We use a
dynamic test message rate and observe the convergence curve
of the average trust value for each group of deceptive peers.
Results are plotted in Figure 5.

We notice that the trust values of all adversary peers
converge to stable values after 30 days of the learning phase. It
is not surprising that adversary peers using the maximal harm
strategy have the lowest trust values, while adversary peers
using the complimentary strategy have the second lowest ones.
The converged trust values of adversary peers using exaggerate
positives are higher than those using exaggerate negatives. This
is because we use an asymmetric penalization mechanism for
inaccurate replies (c1 > 1 in Equation 1). We penalize more
heavily peers that untruthfully report lower risks than those
which untruthfully report higher risks.

F. Robustness of Our Trust Model

The goal of this experiment is to study the robustness of our
trust model against various insider attacks. For the newcomer
attack, malicious peers white-wash their bad history and re-
register as new users to the system. If the trust value of a
newcomer can increase quickly based on its short term good
behavior, the system is then vulnerable to newcomer attacks.
However, a newcomer attack is difficult to succeed in our
model. In our model, we use parameter c0 in Equation 6 to
control the trust value increasing rate. When c0 is larger, it
takes longer for a newcomer to gain a trust value above the
trust threshold.

We compare our Dirichlet-based model with our previous
model [4] and the model of Duma et al. [3] in Figure 6.
We observe that in the Duma et al. model, the trust values
of new users increase very fast and reach the aggregation
trust threshold (80%) in the first day, which reveals a high
vulnerability to newcomer attacks. The reason for this is that
their model does not assign an initial trust to new peers and
therefore their trust values change very fast in the beginning.
In the model we developed in [4], the trust values increase
in a slower manner and reach the trust threshold after three
days. However, that model is not flexible in that it does not
offer control over the trust increase speed. In the Dirichlet-
based model, the trust increase speed is controlled by the
priori constant c0. For c0 = 10, it takes a newcomer four to
five days of consistent good behavior to reach the same trust
value. Larger values of c0 make it even slower to reach high
trust, hence offering robustness against newcomer attacks.

The second possible threat is the betrayal attack, where
a malicious peer first gain a high trust value and then sud-
denly starts to act dishonestly. This scenario can happen, for
example, when a peer is compromised. To demonstrate the
robustness of our model against this attack type, we set up
a scenario where u has seven peers in its acquaintance list,
of which six are honest with an expertise evenly divided
between low, medium, and high. The malicious one has high
expertise and behaves honestly in the first 50 days. After that,
it launches a betrayal attack by adopting a maximal harm
deceptive strategy. We observe the trust value of the betraying
peer and the satisfaction levels of aggregated feedback in each
day with respect to u.

Figure 7 shows the trust value of the betraying peer before
and after the launching of the betrayal attack when respectively
using Duma et al., our previous and our new trust models. For
the Duma et al. model, the trust value of the malicious peer
slowly drops after the betrayal attack. This is because their
model does not use a forgetting factor, hence providing the
previous honest behavior of a malicious peer with a heavy
impact on the trust calculation for a considerable amount of
time. The trust value of the betraying peer drops much faster
using our previous model, while the fastest rate is observed
when using our Dirichlet-based model. This is because both
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Fig. 8. Impact on Accuracy of Betrayal Attack

models use a forgetting factor to pay more attention to the
more recent behavior of peers.

We also notice that the Dirichlet-based model has a slight
improvement over our previous model. The Dirichlet-based
model adopts the dynamic test message rate and can react
more swiftly. The rate of sending messages to malicious
peers increases as soon as they start to behave dishonestly.
Higher rates of test messages help in the prompt detection
of dishonest behavior. However, in our previous model, the
test message rate remains the same. This phenomenon can be
further observed in Figure 9.

The results for the satisfaction levels of aggregated feedback
with respect to u before and after the betrayal attack are shown
in Figure 8. We notice that the satisfaction level of u for the
aggregated feedback drops down drastically in the first day
following the learning period and recovers after that in all
three models. The recovery period is however much shorter
for the Dirichlet-based and our previous models. This is again
attributed to the use of the forgetting factor. The Dirichlet-
based model has a slight improvement in the recovering speed
over our previous model. This is because in the Dirichlet-
based model, the trust values of betraying peers drop under
the aggregation threshold faster than our previous model.
Therefore, the impact of betraying peers is eliminated earlier
than in the previous model.

G. Scalability of Our Trust Model

The result of test message rates under betrayal attack is
shown in Figure 9. We notice that in our Dirichlet-based
model, the average test message rates for highly trusted as well
as highly non trusted peers are the lowest. The average test
message sending rate to peers with the medium expertise level
is higher but still below the medium rate (Rm). Compared to
our previous model, the average message sending rate is much
lower, which demonstrates the improved scalability of our
Dirichlet-based model. Note that the spike from the betraying
group on around day 50 is caused by the drastic increment of
the test message rate. The sudden change of a highly trusted
peer behavior will cause the trust confidence level to drop
down quickly. The rate of sending messages to this peer then
switches to Rh accordingly.

H. Efficiency of Our Trust Model

To demonstrate the efficiency of our Dirichlet-based trust
model, we conduct another experiment to evaluate the intru-
sion detection accuracy. In this experiment, we let peer u have
15 acquaintances, which are evenly divided into low, medium,
and high expertise groups. Among the expert peers, some are
malicious and launch inconsistency attacks synchronously to
degrade the efficiency of the IDN. More specifically, in each
round of behavior changing, these malicious peers adopt the
maximal harm deception strategy for two days followed by
six days of honest behavior.

In Figure 10, we vary the percentages of malicious peers
from 0% to 80%. We inject daily intrusions to peer u with
medium difficulty (0.5) and random risk levels. We then plot
the average satisfaction level for the aggregated feedback.
We observe that our Dirichlet-based model outperforms the
others. This is because the dynamic test message rate in
Dirichlet-based model causes the trust of malicious peers to
drop faster and increase slower, hence minimizing the impact
of dishonest behavior. Among the three models, Duma et al.
has the least satisfaction level because of its slow response
to sudden changes in peer behavior and its aggregation of all
feedback from even untrustworthy peers.

Figure 11 shows the success rate of peer u in detecting
intrusions. We notice that both our previous model and the
Duma et al. model cannot effectively detect intrusions when
the majority of peers are malicious. Our Dirichlet-based model
shows excellent efficiency in intrusion detection even in the
situation of a dishonest majority.

VII. RELATED WORK

Most of the existing work on distributed collaborative intru-
sion detection relies on the assumption that all peer HIDSes
are trusted and faithfully report intrusion events [5][7]. These
systems can be easily compromised if some of the peers
are (or become) dishonest. Duma et al. propose in [3] a
trust management model to identify dishonest insiders and a
trust-aware collaboration mechanism for correlating intrusion
alerts. Their trust management scheme uses the past experience
of each peer to predict the trustworthiness of other peers.
However, their trust model does not address security issues
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within the collaborative network. For instance, in their system,
the past experience of a peer has the same impact on its final
trust value regardless of the age of its experience, therefore
making it vulnerable to newcomer and betrayal attacks. In our
model, we use a forgetting factor when computing the trust to
put more emphasis on the recent experience of the peer. The
Duma et al. model integrates feedback from all the peers in the
IDN, which does not scale. Our model avoids this deficiency
by only integrating feedback from trusted peers.

Different models have been proposed for trust management
in distributed networks. Jiang and Baras [6] use a global repu-
tation management to evaluate distributed trust by aggregating
votes from all peers in the network. Sun et al. [10] propose
an entropy-based model and a probability-based model, which
are used to calculate the indirect trust, propagation trust and
multi-path trust. These models have a lot of overhead and are
not suitable for our system because the peers can be easily
compromised. They also suffer from collusion attacks since
their trust values are based on the votes from others.

Our model is also distinguished from the trust models
developed for the application of e-marketplaces [12]. We
introduce the concepts of expertise level and proximity to
improve the accuracy of intrusion detection. We also allow
the peer HIDSes to send test messages to establish better trust
relationships with others. The alert risk ranking is categorized
into multiple levels as well.

Our previous work [4] propose a robust trust management
model that uses test messages to gain personal experience
and a forgetting factor to emphasize most recent experiences.
However, this model needs to repeatedly aggregate all past
experience with a peer when updating its trust, which makes
it not scalable over time. It also lacks a sound theoretical basis.
Our new model uses Dirichlet distributions to model peer trust.
It limits the size of the acquaintance list and uses dynamic
test message rates in order to account for better scalability.
Also, the dynamic adaptation in test message rates provides
improved robustness over our previous model.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present an efficient trust-based HIDS
IDN management solution, which is robust against common

insider threats and offers strong scalability properties. The
experimental results demonstrate the improved performance
of our model in detecting intrusions, as well as its robustness
and scalability.

Our work contributes to the area of trust-based collaborative
intrusion detection and achieves the important properties of
efficiency, robustness and scalability in IDN management.

As future work, we plan to develop and deploy a real
IDN using existing intrusion detection systems. We will also
investigate more sophisticated types of insider threats, such
as collusion attacks. Furthermore, we will design effective
incentive approaches so as to avoid free-rider problems and
offer better rewards to honest participants.
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