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Abstract—Owing to the availability of low-cost and low-power
CMOS cameras, Wireless Video Sensor Networks (WVSN) has
recently become a reality. However video encoding is still a costly
process for energy and capacity constrained sensor nodes and this
urges the vitality of the control over the network lifetime. In this
paper we propose a distributed quality-lifetime control algorithm
where quality is simply measured by the visual signal quality.
In order to formulate the quality-lifetime problem, we consider
the Power-Rate-Distortion (P-R-D) model of the video encoder to-
gether with the rate control, medium access and routing functions
of the underlying communication protocol and formulate it as
a Generalized Network Utility Maximization (GNUM) problem.
Then we construct the distributed solution based on duality and
proximal point methods with necessary convergence analysis.
Simulation results support that optimal quality-lifetime control
is possible through the distributed algorithm, where the desired
point of operation is simply adjusted by the operator via a
configuration parameter.

I. INTRODUCTION

Wireless video sensor networks (WVSN) have drawn sig-
nificant amount of attention in the recent years due to both
numerous potential application areas and enhancements they
offer to existing WSN applications, such as video surveillance,
battlefield awareness, environmental monitoring and industrial
process control. [1]. Due to unattended and energy-capacity
constrained nature of wireless sensor networks, the design of
distributed, energy efficient, self-organizing and optimizing
algorithms and communication protocols have become the
typical challenges in the recent years. A common factor of
all these efforts is to maximize the network lifetime while
accomplishing the given task which is generally decided by
the measure of utility obtained from the network. In WVSNs
a typical utility measure would be the sum of sensor-to-sink
Signal-to-Noise-Ratio (SNR) which reflects the visual signal
quality and provides a good measure for quality. Hence the
quality increases with the amount of data communicated to
the sink. However, higher data rate entails higher energy
dissipation for capturing, processing and communication in
sensor nodes which results in a shorter network lifetime. Hence
the design of a quality-lifetime optimization framework for
WVSN, necessitate the proper modeling of both video encod-
ing process and the underlying communication mechanisms.
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There has been some WVSN prototypes introduced in the
recent years such as Cyclops, Panoptes, SensEye [1] however
they focus on practical and architectural aspects rather than
the distributed system optimization. In [4], authors propose a
distributed network lifetime maximization scheme considering
video encoder model together with several communication
layers. However they use distortion as a constraint not the
objective function which may lead to infeasible problems. In
[3] authors propose a Generalized Network Utility Maximiza-
tion (GNUM) based approach to solve the quality-lifetime
maximization problem. However their work is not for video
sensors and do not employ any Power-Rate-Distortion (P-R-
D) model. Furthermore the proposed route selection algorithm
continuously oscillates due to the discontinuous mapping from
dual variables to primal ones. In this work we consider the P-
R-D model of the video encoding process together with the
underlying communication protocol functions namely as rate
control, medium access and route selection, and formulate it
as a quality-lifetime maximization problem based on GNUM.
Then we devise a distributed algorithm based on duality and
proximal point methods to solve it and provide the thorough
convergence analysis which yields the bounds on the selection
of step sizes that guarantee the convergence.

In Sec. II we give the system architecture and the GNUM
based formulation. In Sec. III we introduce the distributed
quality-lifetime maximization algorithm together with the
neessary convergence analysis. In Sec. IV we present the
simulation results and then concluded in Sec. V.

II. SYSTEM ARCHITECTURE

Considering a wireless video sensor network consisting of
N nodes and a sink. Let N , S, L and R(s) respectively denote
the set of nodes, source, links and routes available to source s.
Each sensor s generates data at a rate of ys b/s transmitted over
a set of routes r ∈ R(s) at rates xr where ys=

∑
r∈R(s) xr.

Each link l ∈ L has a fixed capacity of cl b/s.

A. Power-Rate-Distortion Model

In a typical WSN node, power is consumed either at the
sensor stage for sensing and processing or at the radio stage
for communication. In this section we formulate the processing
power consumption at the sensor stage through a power-rate-
distortion (P-R-D) model [2] where the communication power
is later considered in Section II-C. An active video sensor



2

captures and compresses the signal by introducing coding
distortion Ds(αs,ys) given by (1) as a function of bit rate
ys (in bpp) and I (intra), P (inter) video coding mode rates
αs, 1 − αs. In the rest of the paper we ignore the additional
distortion due to channel losses by assuming the use of some
transmit power adaptation technique to minimize receiver bit
error rate (BER). In (1), δ(I)

s , δ(P )
s , γI , γP are given as variance

and model accuracy constants for I and P coding modes
respectively and k(αs,γI ,γP ) 4= αs

γI
+ 1−αs

γP
is defined.

Ds(αs,ys)=k(αs,γI ,γP)[(δ(I)
s γI)

αs
γI (δ(P )

s γP)
1−αs

γP 2−2ys]
1

k(αs,γI ,γP)

(1)
However, in (1) power information is implicit and available

through I and P mode encoding power parameters p(I)
s and

p(P )
s . Then normalizing by p(P )

s , we get average normalized
encoder power as ps=αsp

(I)
s /p(P )

s +(1 − αs). After defin-
ing ωs=p(P )

s /(p(P )
s −p(I)

s ) and solving for αs, coding mode
rates are found as αs = ωs(1 − ps) once ps is known.
The last step for obtaining the P-R-D model is to sim-
plify (1) by setting γI=γP =1 which implies k(αs,γI ,γP ) 4=
1. Hence the simplified distortion model is obtained as
Ds(αs,ys)=δ(P )

s

(
δ(I)
s /δ(P )

s

)αs2−2ys where we can immediately
obtain the P-R-D model in (2) by replacing αs = ωs(1−ps) for
constants κs and ηs (3) given for each source and d1=2 log 2.

Ds(ps, ys) = ηs exp(−κsps) exp(−d1ys) (2)

κs = ωs log
(

δ(I)
s

δ(P )
s

)
, ηs = δ(P )

s

(
δ(I)
s

δ(P )
s

)ωs

(3)

B. Joint Medium Access and Congestion Control

In our system model, we don’t specify any MAC layer al-
gorithm. Instead we abstract the MAC layer operation through
some parameters al, εm and the concept of maximal cliques
from graph theory. In that way we integrate the effect of
medium access to the proposed distributed network quality-
lifetime maximization framework.

We first define an abstract MAC layer parameter al ∈ [0, 1]
which describes the percent of the physical link capacity cl

used by the MAC layer on any link l for the transmission of
the upper layer data In other words, the link can not be used
for the transmission of upper layer data during 1− al percent
of the time due to either the capture of medium by another
link or the MAC layer overhead such as collisions, control
messages, header overhead. Hence the effective MAC layer
capacity is alcl and we can now write the rate constraint for
any link l in the network as

∑
r∈R hl,rxr ≤ alcl for entries

hl,r of the routing matrix where hl,r = 1 denotes that the link
l is part of the route r and 0 otherwise. The constraint can
alternatively be written as

∑
r∈R hl,rxr/cl ≤ al for cl ≥ 0.

For the medium access part, let M denotes the total number
of maximal cliques. Each link is a member of one or more
maximal cliques and links in the same clique can not be active
at the same time. Hence, using this local conflict information
of maximal cliques we construct the global conflict matrix
F of dimension M × L where entries fm,l are equal to 1
if link l is a member of clique m, and 0 otherwise. Finally
we define a parameter εm ∈ [0, 1] specific to the utilized
MAC layer algorithm. It describes the usable percent of the

medium within maximal clique m during which links in that
clique can use the medium to transmit their (upper layer) data.
In other words 1 − εm percent of the time the medium of
max clique m is spent to the overhead of the MAC layer
algorithm. Hence, in each maximal clique m, the sum of
medium access probabilities al for conflicting links should
satisfy the inequality

∑
l∈L fm,lal ≤ εm. Then by replacing al

with rate constraint, we obtain; joint rate and medium access
constraint as

∑
l∈L

∑
r∈R fm,l

(
hl,rxr/cl

)
≤ εm.

C. Power-Lifetime Control

In this section, we introduce communication power model
and then combine it with the processing power ps (normalized)
in Section II-A to form the power-lifetime control mechanism.
For the communication power, we define ξn,l as the energy
consumed per bit on link l of node n where Ptx,l and Prx,l

are given to be the transmitter and receiver power respectively.

ξn,l =


Ptx,l/cl , if l is an outgoing link of node n

Prx,l/cl , if l is an incoming link of node n

0 , otherwise.
(4)

Later for the processing power part, we define the variable
qn,s where qn,s = p

(P )
s indicates sensor node n is a source

sensor s and qn,s = 0 otherwise. Note that we allow single
video source per node. Then, combining the communication
and sensor power, the average power dissipation at node n is
p̄n =

∑
r

∑
l ξn,l hl,r xr+

∑
s∈S qn,sps. Let each node n have

an initial energy jn and the lifetime is given by Tn = jn

p̄n
. We

assume any node n runs out of battery results in the failure
of the whole network. Hence, we define the network lifetime
as the network’s operation time until any of the node’s energy
is depleted and given by Tmin = min{Tn|n = 1, · · ·N}. Let
v = 1/Tmin be the inverse network lifetime, then lifetime of
each node n satisfies Tn ≥ 1/v. We define en,r =

∑
l ξn,lhl,r

in order to simplify the notation where en,r is the node n’s
total energy consumption per bit for flow xr. Then we have
the power constraint as

∑
r∈R en,rxr +

∑
s∈S qn,sps ≤ jnv.

D. Quality-Lifetime Maximization Problem

In this section we introduce the quality-lifetime maximiza-
tion problem for WVSNs. The objective of the problem
has two parts. The first part maximizes the lifetime of the
network where the second part provides the best total sensor-
to-sink signal SNR (quality) as a measure of quality for the
sensed events. In the first part, network lifetime is maximized
by minimizing the inverse lifetime v given in Section II-C
through a convex utility function g(v) = v2/2θ with some
constant θ. For the second part, higher quality is achieved
by simply increasing peak signal-to-noise-ratio (PSNR) of
the received signal at the sink, which is given by PSNR =
d2(log(2552) − log(Ds(ps, ys))) where d2 = 10/ log(10).
Then the overall quality is given by the sum of individual sen-
sor reliabilities −

∑
s d2 log(Ds(ps, ys)), where maximizing it

is equivalent to minimizing f(p,x) =
∑

s d2 log(Ds(ps, ys))
for ys =

∑
r∈R(s) xr. After replacing Ds(ps, ys) with (2) and

defining K = d2

∑
s log(ηs), we write the objective function
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for quality as f(p,x) = K − f1(p) − f2(x) using functions
f1(p) and f2(x) in (5).

f1(p) = d2

∑
s

κsps ; f2(x) = d1d2

∑
s

∑
r∈R(s)

xr (5)

After taking into account the power constraint in Sec. II-C
and the joint rate and medium access control constraint in
Sec. II-B, the quality-lifetime maximization problem can be
expressed as below. While writing the quality-lifetime max-
imization problem we drop the constant K in the objective
function by knowing that the optimal point of the original
problem is P∗ = P̂∗ + K.

P̂∗=min
p,x,v

g(v) − f1(p) − f2(x) (6)

s.t.
∑
r∈R

en,rxr +
∑
s∈S

qn,sps ≤ jnv , ∀n ∈ N (7)∑
l∈L

∑
r∈R

fm,l

(
hlr/cl

)
xr ≤ εm , ∀m ∈ M (8)

pmin≤ps≤pmax ; 0≤xr≤xmax ; vmax≤v≤vmin (9)

However dual based methods are not directly applicable,
since optimum values for primal variables p and x are not
immediately available. Hence in the following sections we
develop a method to calculate the optimal values of these
primal variables which are to be used together with the
standard dual based algorithm in order to solve the quality-
lifetime maximization problem in a distributive way.

III. DUAL-BASED DISTRIBUTED QUALITY-LIFETIME
MAXIMIZATION ALGORITHM

In this section we develop a dual-based distributed algorithm
based on the proximal point method in order to solve the
quality-lifetime maximization problem given in (6)-(9). For
that purpose we use the matrix based notation where H,
E, Q and F are the matrices with entries hl,r, en,r, qn,s

and fm,l respectively, C=diag(c1, . . . , cL) is the capacity
matrix and x = [x1 . . . xR]T , p=[p1 . . . pS ]T , ε=[ε1 . . . εM ]T ,
j=[j1 . . . jN ]T, κ=[κ1 . . . κS ]T, η=[η1 . . . ηS ]T are the vectors.

Let, the optimal values of the original problem in (6)-(9)
are given by p∗ = [p∗1 . . . p∗S ]T and x∗ = [x∗

1 . . . x∗
R]T , then in

order to develop the proximal point algorithm, we first define
new variables p̂ = [p̂1 . . . p̂S ]T , x̂ = [x̂1 . . . x̂R]T , then by
using them and constants Vps, Vxr we obtain the quadratic
terms 1

2

∑
s Vps(ps − p̂s)2 and 1

2

∑
r Vxr(xr − x̂r)2 in order

to add to the objective function in (6). These quadratic terms
do not effect the optimal point of the original problem since
the optimal values for new variables are achieved at p̂∗=p∗

and x̂∗=x∗. Then we represent these quadratic terms in matrix
notation by defining diagonal matrices Vp=diag(Vp1 . . . VpS),
Vx=diag(Vx1 . . . VxR) and using following norm definitions.

||p − p̂||Vp
= (p − p̂)T Vp(p − p̂) (10)

||x − x̂||Vx
= (x − x̂)T Vx(x − x̂) (11)

Finally we rewrite quality-lifetime maximization problem
as follows which is later shown to be distributively solved by

using proximal point algorithm and dual-based methods.

min
p,x,v,
p̂,x̂

g(v)−f1(p)−f2(x)+
1
2
||p−p̂||Vp

+
1
2
||x−x̂||Vx

(12)

s.t. Ex + Qp ≤ jv (13)

FC−1Hx ≤ ε (14)
pmin≤p≤pmax ; 0≤x≤xmax ; vmax≤v≤vmin (15)

We write the Lagrangian as below, after relaxing constraints
(13), (14) using µ=[µ1 . . . µN ]T∈RN

+ and ψ=[ψ1 . . . ψM ]T∈
RM

+ which respectively correspond to power price at nodes
and joint congestion-medium access price at max. clique m.

L̂(p,x, v, µ, ψ; p̂, x̂)

=g(v) − f1(p) − f2(x)+
1
2
||p−p̂||Vp

+
1
2
||x−x̂||Vx

(16)

+ µT Ex + µT Qp − µT jv + ψT FC−1Hx − ψT ε

=
∑

s

L̂p(ps, µ; p̂s)+
∑

r

L̂x(xr, µ, ψ; x̂r)+L̂v(v, µ)−ψTε (17)

In (16), after replacing the functions f1(p), f2(x) with (5)
and g(v) = v2/2θ the Lagrangian becomes separable over p,
x where partial Lagrangians in (17) is given as:

L̂p(ps,µ; p̂s) =
∑

n

µnqnsps− d2κsps +
Vps

2
(ps − p̂s)2 (18)

L̂x(xr, µ, ψ; x̂r) =
∑

n

µnenrxr +
∑
m

∑
l

ψmfml
hlr

cl
xr

− d1d2xr +
Vxr

2
(xr − x̂r)2 (19)

L̂v(v, µ) = v2/2θ −
∑

n

µnjnv (20)

Following the definition of Lagrangians, dual-based solution
in convex optimization is obtained by first finding the dual
function D(µ, ψ) = minp,x,v,p̂,x̂ L̂(p,x, v, µ,ψ; p̂, x̂). Then
by maximizing it P̂∗ = maxµ,ψ D(µ, ψ) the same primal
solution of the problem in (6)-(9) can be obtained.

In Table I distributed solution to the dual-based quality-
lifetime maximization problem is given. The algorithm is
synchronous and should run once at each time slot t. Steps
of the algorithm are designed to run on specific nodes such as
sink, source and intermediate sensor nodes. If a node is both
a source node and an intermediate sensor node (relay node),
then it runs both of the steps in the given order. Note that
in steps A.1 and A.3 of the algorithm the primal variables
p0(t), x0(t), v(t) are calculated at sensors and the sink by
minimizing partial Lagrangians in (18)-(20) for prices µ(t)
and ψ(t). Following this, in step A.2 the dual updates are
done throughout the network by using these optimal primal
variable as follows in (21)-(22) in order to maximize the
concave dual function. For the dual updates in matrix notation
we define dual step size matrices Aµ = diag(αµ1, . . . , αµN )
and Aψ = diag(αψ1, . . . , αψM ).

µ(t + 1) =
[
µ(t)+Aµ(Ex0(t) + Qp0(t) − jv(t))

]+
(21)

ψ(t + 1) =
[
ψ(t)+Aψ(FC−1Hx0(t) − ε)

]+ (22)

Finally in step A.4 of the algorithm, each source uses the
updated prices µ(t + 1) and ψ(t + 1) and recalculates its
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TABLE I
DUAL-BASED DISTRIBUTED QUALITY-LIFETIME MAXIMIZATION

Initialize: Set t = 0 and initialize v(t), µn(t), ψm(t), p̂s(t) and x̂r(t).
A.1. Sensor Algorithm (Source):
Sensors encode and transmit according to variables x0

r , αs=ωs(1−p0
s)

p0
s(t) = arg min

ps
L̂p(ps, µ(t); p̂s(t)) using (18)

x0
r(t) = arg min

xr
L̂x(xr, µ(t), ψ(t); x̂r(t)) using (19)

A.2. Sensor Algorithm (Intermediate):
Each intermediate sensor node n and maximal clique m that node n is
involved in, update prices as follows using (21) and (22) and feed back
this information to relevant sources and the sink

µn(t+1)=
h

µn(t)+αµn(
X

r

enrx0
r(t) +

X

s

qnsp0
s(t)−jnv(t))

i+

ψm(t+1)=
h

ψm(t)+αψm(
X

l

X

r

fml
hlr

cl
x0

r(t)−εm)
i+

A.3. Sink Algorithm:
Calculates v(t + 1) = arg minv L̂v(v, µ(t + 1)) using (20) and
broadcast it to sensors
A.4. Sensor Algorithm (Source):
Each source recalculates ps, xr for new values of µ(t + 1), ψ(t + 1)

p1
s(t) = arg min

ps
L̂p(ps, µ(t + 1); p̂s(t)) using (18)

x1
r(t) = arg min

xr
L̂x(xr, µ(t + 1), ψ(t + 1); x̂r(t)) using (19)

then maximizes the concave function of p̂, x̂ returned by above min. as:

p̂s(t + 1) =p̂s(t) + βp̂s(p
1
s(t) − p̂s(t)) using (23)

x̂r(t + 1) =x̂r(t) + βx̂r(x1
r(t) − x̂r(t)) using (24)

Set time t = t + 1 and continue with step A.1

optimal primal variable p1(t), x1(t) that minimize partial
Lagrangians (18)-(19). Using the updated primal variables,
the primal variables of the proximal point algorithm p̂ and
x̂ are updated as follows with primal step size matrices
Bp̂ = diag(βp̂1, . . . , βp̂S) and Bx̂ = diag(βx̂1, . . . , βx̂R).

p̂(t + 1) =p̂(t) + Bp̂(p1(t) − p̂(t)) (23)

x̂(t + 1) =x̂(t) + Bx̂(x1(t) − x̂(t)) (24)

However without the convergence analysis, it is not possible
to know for which values of the step sizes the algorithm in
Table I converges. Therefore in the rest of this section, we
conduct the convergence analysis to discover the bounds on
step sizes that lead to global optimum. Hence, first we provide
auxilary Lemmas 1-5 and finally give these bounds in Prop. 6.
Due to lack of space we only provide the proof of Prop. 6
and skip the proofs of others which are more straightforward.
For the rest of the paper we define following minimizers.
[p0(t),x0(t),v(t)]=argminp,x,vL̂(p,x,v,µ(t),ψ(t);p̂(t),x̂(t)),
[p1(t),x1(t),v(t+1)]=argminp,x,vL̂(p,x,v,µ(t+1), ψ(t+1);
p̂(t), x̂(t)).

Lemma 1 For fixed p̂, x̂, following inequalities hold for
any minimizer [p1,x1, v1] and [p2,x2, v2] of L̂(.), re-
spectively for the prices µ1, ψ1 and µ2, ψ2 (i.e. given
that [p1,x1, v1] = arg minp,x,v L̂(p,x, v, µ1, ψ1; p̂, x̂) and
[p2,x2, v2] = arg minp,x,v L̂(p,x, v, µ2, ψ2; p̂, x̂) )
1) ||p2−p1||Vp

≤
∣∣∣∣QT (µ2 − µ1)

∣∣∣∣
V−1

p

2) ||x2−x1||Vx
≤

∣∣∣∣ET (µ2 − µ1) + FC−1H(ψ2 − ψ1)
∣∣∣∣

V−1
x

Proof: We give the proof of part 2 where (25) gives the
difference of gradients (i.e. ∇x = [∂/∂x1, . . . , ∂/∂xR]T ) of
L̂(.) evaluated at minimizers [p2,x2, v2] and [p1,x1, v1].

[∇xf2(x2) −∇xf2(x1)] − Vx(x2 − x1) =

ET (µ2 − µ1) + FC−1H(ψ2 − ψ1) (25)

We multiply (25) with V−1
x from left and multiply the result

with the transpose of (25) from left again. In the resulting
expression, we note that ||∇xf2(x2) −∇xf2(x1)||V−1

x
≥ 0

and −2[∇xf2(x2)−∇xf2(x1)]T (x2−x1) ≥ 0 due to property
of norm and concavity of f2(x) respectively. Hence part 2 of
Lemma 1 holds. Similarly part 1 is shown by using ∇p.

Lemma 2 The optimal point [p∗,x∗, v∗] of (6)-(9) for µ∗, ψ∗

and the minimizer [p1(t),x1(t), v(t + 1)], satisfy following :
1) [∇pf1(p1(t))−∇pf1(p∗)]−Vp(p1(t)−p̂(t))=QT(µ(t+1)−µ∗)

2) [∇xf2(x1(t)) −∇xf2(x∗)] − Vx(x1(t) − x̂(t))
= ET (µ(t+1)−µ∗)+FC−1H(ψ(t+1)−ψ∗)

3) [g′(v(t + 1)) − g′(v∗) = (µ(t + 1) − µ∗)T j

Proof: The optimal point [p∗,x∗, v∗] with optimal prices
µ∗, ψ∗ is also the optimizer of (12)-(15) where p̂∗ = p∗,
x̂∗ = x∗. By taking the gradient ∇p of L̂(.), evaluating it
at the minimizer [p(t),x(t), v(t)] and at the optimal point
[p∗,x∗, v∗], and then subtracting them we obtain part 1.
Similary part 2 is obtained by using ∇x.

Lemma 3 Assume µ(t), ψ(t) and µ(t + 1), ψ(t + 1) are
prices updated according to (21)-(22) and [p0(t),x0(t), v(t)]
is the minimizer, then the following relations hold:
1) (µ(t + 1) − µ∗)T

[
Ex0(t) + Qp0(t) − jv(t)

]
≤(µ(t+1)−µ∗)T

[
E(x0(t)−x̂∗)+Q(p0(t)−p̂∗)−j(v(t)−v∗)

]
2) (ψ(t + 1) − ψ∗)T

[
FC−1Hx0(t) − ε

]
≤ (ψ(t + 1) − ψ∗)T

[
FC−1H(x0(t) − x̂∗)

]
Proof: We keep terms on the right hand side of part 1

which are equivalent to the ones on the left, and investigate the
(µ∗−µ(t+1))T(Ex̂∗+Qp̂∗−jv∗). We can replace p̂∗ = p∗

and x̂∗ = x∗ since they are equal at optimality. The equality
µ∗T (Ex∗ + Qp∗ − jv∗) = 0 holds due to complementary
slackness. On the other hand, since the dual function is
concave and maximized over µ and ψ with maximum values
at µ∗ and ψ∗, then for any value of µ(t+1) 6= µ∗ the product
µ(t + 1)T (Ex∗ + Qp∗ − jv∗) ≤ 0 is true and it follows the
inequality in part 1. Similarly part 2 can be shown.

Lemma 4 Given that [p1(t),x1(t),v(t+1)] is the minimizer of
L̂(p,x,v,µ(t+1),ψ(t+1); p̂(t), x̂(t)) following relations hold
1) ||p̂(t + 1) − p̂∗||B−1

p Vp
− ||p̂(t) − p̂∗||B−1

p Vxu

≤
∣∣∣∣p1(t) − p̂∗

∣∣∣∣
Vp

− ||p̂(t) − p̂∗||Vp

2) ||x̂(t + 1) − x̂∗||B−1
x Vx

− ||x̂(t) − x̂∗||B−1
x Vx

≤
∣∣∣∣x1(t) − x̂∗

∣∣∣∣
Vx

− ||x̂(t) − x̂∗||Vx

Proof: We can rewrite the update of p̂ in step A.4 of
Table I as p̂s(t + 1) = (1 − βp̂s)p̂s(t) + βp̂sp

1
s(t). Then we

subtract p∗s from both sides and use triangle inequality. Since
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βp̂s and (1 − βp̂s) ∈ [0, 1] their squares are smaller than
themselves and the terms that are multiplied with them are
all positive, then the following inequality holds.

(p̂s(t+1)−p∗s)
2≤(1−βp̂s)(p̂s(t)−p∗s)

2+βp̂s(p1
s(t)−p∗s)

2

Multiplying both sides by Vps, the following inequality holds

Vps

βp̂s
(p̂s(t+1)−p∗s)

2 − Vps

βp̂s
(p̂s(t)−p∗s)

2

≤ Vps(p1
s(t)−p∗s)

2 − Vps(p̂s(t)−p∗s)
2 (26)

since Vps, βp̂s ≥ 0 which concludes part 1 of Lemma 4.

Lemma 5 Projection mappings for constrained variables
µ(t), ψ(t) given by (21)-(22) satisy the following relations:

1) (µ(t + 1) − µ∗)T A−1
µ (µ(t + 1) − µ(t))

≤ (µ(t + 1) − µ∗)T (Ex0(t) + Qp0(t) − jv(t))

2) (ψ(t + 1) − ψ∗)T A−1
ψ (ψ(t + 1) − ψ(t))

≤ (ψ(t + 1) − ψ∗)T (FC−1Hx0(t) − ε)

Proof: Given a convex set X , for any point y ∈ X
and x 6∈ X the orthogonal projection mapping [x]+ onto the
convex set X satisfies ([x]+−y)([x]+−x) ≤ 0. Then knowing
that µ∗ is in the convex set, following inequality holds for (21)

(µ(t + 1) − µ∗)T A−1
µ

.
[
µ(t+1)−

(
µ(t)+Aµ(Ex0(t)+Qp0(t)−jv(t))

)]
≤ 0 (27)

and follows part 1 of Lemma 5. Part 2 is proven similarly.
Note that

∑
m fml and

∑
r hlr respectively refer to the

number of max. cliques for link l and the number of routes
using link l. Then we define, LR=maxr

∑
l(hlr/cl)

∑
m fml,

LM=maxm

∑
l(fml/cl)

∑
r hlr, JT =

∑
njn, j′=maxnjn,

ER=maxr

∑
n enr, EN=maxn

∑
r enr, QS=maxs

∑
n qns

and QN= maxn

∑
s qns.

Proposition 6 The dual-based distributed quality-lifetime
maximization algorithm (i.e. Table I) converges to a stationary
point for the following conditions on step sizes αψm, αµn and
the proximal point algorithm parameters Vxr, Vps.

min
m

[
1

αψm

]
≥ 2LRLM max

r

[
1

Vxr

]
(28)

min
m

[
1

αµm

]
≥QSQNmax

s

[
1

Vps

]
+2ERENmax

r

[
1

Vxr

]
+θJTj

′ (29)

Proof: First in (30) we define a Lyapunov function U(t),
then to prove Prop. 6 we show that U(t+1)−U(t)≤0,∀t.

U(t) = ||µ(t) − µ∗||A−1
µ

+ ||ψ(t) − ψ∗||A−1
ψ

(30)

+ ||p̂(t) − p̂∗||B−1
p Vp

+ ||x̂(t) − x̂∗||B−1
x Vx

+
1
θ
(v(t) − v∗)2

We first write (31) from the generalization of law of cosines
to some normed vector space with norm ||.||

A−1
µ

, then by

applying part 1 of Lemma 5 and Lemma 3 we obtain (32):

||µ(t + 1) − µ∗||
A−1

µ
− ||µ(t) − µ∗||

A−1
µ

(31)

=−||µ(t+1)−µ(t)||
A−1

µ
+2(µ(t+1)−µ∗)TA−1

µ (µ(t+1)−µ(t))

≤−||µ(t+1)−µ(t)||
A−1

µ
+2

[
(µ(t+1)−µ∗)T E(x0(t)−x̂∗) (32)

+(µ(t+1)−µ∗)TQ(p0(t)−p̂∗)−(µ(t+1)−µ∗)Tj(v(t)−v∗)
]

Similarly we can write the relation for ψ after replacing part
2 of the Lemma 5 and Lemma 3.

||ψ(t+1)−ψ∗||
A

−1
ψ

− ||ψ(t)−ψ∗||
A

−1
ψ

=−||ψ(t+1)−ψ(t)||
A
−1
ψ

+2(ψ(t+1)−ψ∗)TA−1
ψ (ψ(t+1)−ψ(t))

≤−||ψ(t+1)−ψ(t)||
A−1

µ
+2(ψ(t+1)−ψ∗)T(FC−1H(x0

(t)−x̂∗)) (33)

We replace the terms (µ(t+1)−µ∗)TE and (µ(t+1)−µ∗)TQ
in (32) with Lemma 2 parts 2 and 1 respectively. Then for
g(v) = v2/2θ part 3 of Lemma 2 becomes (v(t) − v∗) =
(µ(t)−µ∗)T jθ and add the resulting espression to (33). After
canceling the similar terms, we obtain the following relation.
Note that for the following expressions we define Jθ

4= jθjT

||µ(t+1)−µ∗||
A
−1
µ
−||µ(t)−µ∗||

A−1
µ
+||ψ(t+1)−ψ∗||

A
−1
ψ
−||ψ(t)−ψ∗||

A
−1
ψ

≤ −||µ(t+1)−µ(t)||
A−1

µ
−||ψ(t+1)−ψ(t)||

A
−1
ψ

+2

(
[∇pf1(p1

(t))−∇pf1(p∗)]T(p0
(t)−p̂∗)−(p1

(t)−p̂(t))TVp(p0
(t)−p̂∗)

+[∇xf2(x1
(t))−∇xf2(x∗)]T(x0

(t)−x̂∗)−(x1
(t)−x̂(t))TVx(x0

(t)−x̂∗)

−(µ(t+1)−µ∗)T Jθ(µ(t)−µ∗)
)

(34)

Then we can rewrite the terms related to v in U(t+1)−U(t)
by using (v(t) − v∗) = (µ(t) − µ∗)T jθ as given above.

1
θ

[
(v(t+1)−v∗)2−(v(t)−v∗)2

]
= ||µ(t+1)−µ∗||

Jθ
−||µ(t)−µ∗||

Jθ
(35)

Finally the terms related to p̂ and x̂ in U(t + 1) − U(t)
are directly given in Lemma 4. Before continuing with the
final step, the following equation holds for any set of vectors
x, y, w, z from a normed vector space V with norm ||.||

A
.

||x−w||
A
− ||y−w||

A
= ||x−z||

A
− ||y−z||

A
−2(x−y)TA(w−z).

Using this property and constructing U(t+1)−U(t) by using
(34), (35) and Lemma 5, we obtain the following.

U(t+1)−U(t) ≤ −||µ(t+1)−µ(t)||
A−1

µ
−||ψ(t+1)−ψ(t)||

A
−1
ψ

+
∣∣∣∣p1

(t)−p0
(t)

∣∣∣∣
Vp
−
∣∣∣∣p̂(t)−p0

(t)
∣∣∣∣

Vp
+
∣∣∣∣x1

(t)−x0
(t)

∣∣∣∣
Vx
−
∣∣∣∣x̂(t)−x0

(t)
∣∣∣∣

Vx

+||µ(t+1)−µ(t)||
Jθ
−2||µ(t)−µ∗||

Jθ
+2[∇pf1(p1

(t))−∇pf1(p∗)]T(p0
(t)−p̂∗)

+2[∇xf2(x1
(t))−∇xf2(x∗)]T(x0

(t)−x̂∗) (36)

In order to prove the convergence in Prop. 6 we need
to show U(t+1)−U(t) in (36) is negative. The terms
−
∣∣∣∣p̂(t)−p0

(t)
∣∣∣∣

Vp
, −

∣∣∣∣x̂(t)−x0
(t)

∣∣∣∣
Vx

and −2||µ(t)−µ∗||
Jθ

are all
negative and conform to the convergence condition. Next,
we replace the terms

∣∣∣∣p1
(t)−p0

(t)
∣∣∣∣

Vp
and

∣∣∣∣x1
(t)−x0

(t)
∣∣∣∣

Vx

with values in Lemma 1. Finally, due to the special form
of functions f1(p) and f2(x), the gradient terms in (36) are
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[∇pf1(p1
(t))−∇pf1(p∗)] = 0 and [∇xf2(x1

(t))−∇xf2(x∗)] = 0.
Then we relax the condition on term at the last line of (36):

2[∇xf2(x1
(t))−∇xf2(x∗)]T(x0

(t)−x̂∗)

≤
∣∣∣∣ET (µ(t+1)−µ(t))−FC−1H(ψ(t+1)−ψ(t))

∣∣∣∣
V−1

x
(37)

By using these properties, we obtain the convergence condition
U(t + 1) − U(t) ≤ 0 for (36) as follows:

(µ(t+1)−µ(t))T
[
2EV−1

x ET+QV−1
p QT+Jθ−A−1

µ

]
(µ(t+1)−µ(t))

+(ψ(t+1)−ψ(t))T
[
2FC−1HV−1

x (FC−1H)T−A−1
ψ

]
(ψ(t+1)−ψ(t))

≤ 0 (38)

In order to satisfy the convergence condition in (38) we
investigate the bounds on step sizes V−1

p , V−1
x and A−1

µ , A−1
ψ

which guarantees the terms in square brackets to be negative
semi-definite. For convenience, we define G 4= FC−1H then
for any vector z = [z1 . . . zM ]T we need to show the second
term in (38) to be 2zT GV−1

x GT z ≤ zT A−1
ψ z. We first write

the right hand side as zT A−1
ψ z =

∑
m(1/αψm)z2

m. For the
left hand side after defining LR = maxr[

∑
m Gmr] and

LM = maxm[
∑

r Gmr] where Gmr =
∑

l fmlhlr/cl.

∑
r

2
Vxr

[ ∑
m

Gmrzm

]2

≤
∑

r

2
Vxr

( ∑
m

Gmr

) ∑
m

Gmrz
2
m

≤ 2LRmax
r

[
1

Vxr

]∑
m

(∑
r

Gmr

)
z2
m ≤ 2LRLMmax

r

[
1

Vxr

]∑
m

z2
m

Then we obtain minm

[
1

αψm

]
≥ 2LRLM maxr

[
1

Vxr

]
in Prop. 6

to make the second term in (38) negative semi-definite.
Similarly for any vector ẑ = [ẑ1 . . . ẑN ]T we need to show

the first term in (38) to be ẑT
[
2EV−1

x ET+QV−1
p QT+Jθ

]
ẑ ≤

ẑT A−1
µ ẑ Note that maximum one video source per node

is allowed. Then after defining ER = maxr

[∑
n enr

]
,

EN = maxn

[∑
r enr

]
, QS = maxs

[∑
n qns

]
, QN =

maxn

[ ∑
s qns

]
, JT =

∑
n jn and j′ = maxn jn, the

following bound on step sizes is obtained.

min
m

[
1

αµm

]
≥QSQNmax

s

[
1

Vps

]
+2ERENmax

r

[
1

Vxr

]
+θJT j′

IV. SIMULATION RESULTS

In order to illustrate the results of the proposed
quality-lifetime maximization algorithm we use the
simple topology given in Fig 1(a). Nevertheless it can
easily scale up to larger networks since the algorithm is
distributed. In the given network, we have N=6 nodes,
L=7 links, S=4 sources S={C,D,E, F} and R=6
routes R={C,D1, D2, , E, F1, F2}. We assume a simple
MAC scheme which only prevents simultaneous use
of transmitter and/or receiver of a node on different
links. Hence there are M=4 maximal cliques with
M={{L1, L2}, {L1, L3, L4}, {L2, L5, L6}, {L4, L5, L7}}.
We set the distances between adjacent nodes to 50
m. Receiver power of all links L1, . . . , L7 are fixed
to 1.2 mW. where the transmitter powers are set as
Ptx = [3.0 3.0 4.5 2.5 2.5 4.5 3.0]T mW. according to some
transmit power adaptation policy. We assume a constant noise
level of 8 dB on all links. Hence considering the interference,
noise, transmit power and distance we calculate link capacities
approximately as c=[1.87 1.87 1.20 1.73 1.73 1.20 0.04]T

Mbps. Finally we assign initial energy of j = [2 2 2 2 2 2]T

joules for each node where video encoder power is set as
p
(I)
s =4 mW. and p

(I)
s =20 mW. We assume all video encoders

are encoding at QCIF resolution at 5 frames/s which are
necessary to convert the data rate to bpp (bits per pixel) from
bps. Finally βψ=βµ=1, Vp=4, Vx=64 and unless otherwise
stated θ=2×10−6. Given the above values, we may decide the
entities ER=0.0137, EN=0.019, LR=3.4419, LM=6.6124,
QN=QS=0.02, JT =12 and j′=2 which are used to find the
bounds αψ ≤ 1.406 and αµ ≤ 6.4 × 103 from Prop. 6.

In all experiments we use S={C,D,E, F} and allow these
nodes to capture, compress and transmit video data. In our
first experiment, we observe from Fig. 1(b) that in the optimal
solution most of the video data is requested from source D
through routes D1 and D2 with 740 kbps on each. Then a
small portion is requested from sensors C and E with 34 kbps
on each. This result is expected since D1 and D2 are the
least costly routes which is observed by comparing individual
link costs found by dividing transmit power Ptx to the link
capacities c, On the other hand we can observe the power
control at the video encoder from Fig. 2 by only following
the curves for jD = 2 joules. As expected, at optimality
source D requires a lower energy level for encoder (i.e. higher
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rate of I-coded blocks) than the sources C, D, since it spends
comparably much higher energy for the communication. I-
coding rate for the video encoder of source D is directly
calculated by αs = ωs(1 − ps) and it shows I-coding rate
increases with the decrease in the budget for ps.

In the second experiment we run the quality-
lifetime maximization algorithm for various values of
θ=[0.5 1.0 1.5 2.0 2.5 4.0 16.0]×10−6 which is simply used
to find different trade-off policies between network lifetime
and quality as illustrated in Fig. 1(c). As the operator asks
for a longer lifetime, by setting a lower θ, the network could
optimally sacrifice from the quality to meet the longer lifetime
requirement (or vice versa). Finally in the last simulation, we
repeat the first experiment for the same parameters except the
initial energy jD = 1.5 j. of source D. In this case in Fig. 2
the encoder power of D is dramatically reduced, as compared
to the small decrease in the encoder power of others sources
that compensates the additional traffic assigned to sensors C,
E.

V. CONCLUSION

In this work we propose a distributed optimal quality-
lifetime control algorithm for wireless video sensor networks.
The problem is modeled as a GNUM problem by taking
into consideration the video encoder parameters, source rates
and routes, and the channel contention. Results show that
distributed optimal quality-lifetime control could be achieved
for different policies described by the θ.
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