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Summary. FLECS is a framework for facilitating rapid implementation of packet
forwarding protocols. Forwarding functionality of communication protocols can be
modeled by a combination of packet processing components called abstract switching
elements or Asks. Each ASE is constrained by the azioms of communication which
enables us to formally analyze forwarding mechanisms in communication networks.
AsEs can be connected in a directed graph to define complex forwarding function-
ality. In this paper we present FLECS, a framework that compiles meta language
protocol specification into its Click implementation. It allows rapid prototyping
through configuration, as well as specialized implementation of performance-critical
functionality through inheritance.

1.1 Introduction

Designing, implementing and deploying network software is an expensive and
time-consuming process. As a result, modular network architectures have
gained significant interest in the networking research community. Modular
architectures are ideal vehicles to design, develop, test and optimize individ-
ual components of communication protocols.

In this paper we describe FLECS, a framework that employs modulariza-
tion to quickly implement forwarding functionality of communication proto-
cols. Existing research in protocol prototyping is generally directed towards
optimization and performance enhancement techniques [9, 22]. Current sys-
tems lack a solid theoretical foundation, which makes it almost impossible to
formally analyze their behavior with respect to forwarding. Notable excep-
tions include [5, 10], which study the underlying principles of connectivity in
communication protocols. In contrast, our work builds on an axiomatic basis
for expressing communication primitives that provides a theoretically sound
framework for expressing fundamental inter-networking concepts such as de-
liverability of messages. In particular, we use the axiomatic basis to derive
and implement a universal forwarding engine, constrained by the axioms of
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our theoretical framework. We do so by using meta-compilation techniques to
rapidly generate protocol implementations for a variety of forwarding schemes.

A parallel stream of research has made an attempt to define communi-
cation invariants using axioms [17, 18]. This work was inspired by Hoare’s
axiomatic basis for programming [12] and is closely related to other work in
the area of naming and addressing indirection [1, 11, 28].

The axiomatic framework defines abstract components called abstract
switching elements or ASEs. This facilitates the overall protocol design by
dividing it into sub tasks and makes use of the divide-and-conquer strategy
to simplify complex forwarders. The axioms in the framework help constrain
the behavior of ASEs as communication protocol components in contrast to
prior work, where each module can perform arbitrary processing actions.

We describe the concepts behind the design of FLECS using Ethernet Bridg-
ing as an example. Figure 1.1 illustrates the configuration of a learning Eth-
ernet bridge. The model only requires a single ASE called EthBridge. The
corresponding FLECS implementation is shown in Figure 1.2.
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Fig. 1.1. Ethernet Bridge in FLECS.

In the given model, EthBridge is directly connected to all the network
interfaces (in this case four, i.e. eth0, ethl, eth2 and eth3). A packet arriving
at any interface is forwarded to the EthBridge ASE which looks at the Ethernet
destination (dest_mac) and source (srcmac) (Figure 1.2(b), lines 8-9). Figure
1.2(b) describes the ASE operations (patterns) on any given packet.

Packet arrival results in a sequential execution of setup and forward pat-
terns (Figure 1.2(a), line 4). The execution of setup results in a new table
entry that learns the reverse path towards src_mac. This learning action is
defined by the setup operation in Figure 1.2(b), line 15. The forward pattern
looks up the switching table for dest mac Figure 1.2(b), line 13. If the path
to dest_mac has been learnt during a previous event, then the packet is for-
warded to the respective interface. If there is no specific entry for dest_mac in
the switching table, the packet is broadcast, which is the default configuration
of the switching table (Figure 1.2, line 8). Figure 1.2(a), lines 14,15 describe
the connections of the EthBridge instance (bridge) to the network interfaces.
An equivalent implementation of the Ethernet bridge takes more than 3000
lines of code in FreeBSD.
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1 EthBridge bridge { 1 DEFINE ETHERNET_ADDR_LEN 6
2 2 DEFINE DEST_MAC_OFFSET 0
3 control { 3 DEFINE SRC_MAC_OFFSET 6
4 [*, *] -> 4
5 [setup/none] [forward/none]; 5  ASE EthBridge {
6 } 6 peek {
7 7 READ {
8 switching { 8 dest_mac DEST_MAC_OFFSET
9 [eth$i, *] -> [eth-$i, nulll; 9 ETHERNET_ADDR_LEN
10 } 10 src_mac SRC_MAC_OFFSET
11 } 11 ETHERNET_ADDR_LEN }
12 12 CONTROL { dest_mac }
13 config(ethO, ethl, eth2, eth3) 13 }
14 A 14
15 eth0 <-> bridge <->ethl; 15 forward { LOOKUP { dest_mac } }
16 eth2 <-> bridge <->eth3; 16
17 } 17 setup {
18 UPDATE { * src_mac prev null }
(a) 19 3}
20 3}

(b)

Fig. 1.2. (a) Ethernet Bridge configuration represented in FLECS (ethbridge.flecs)
(b) Definition of the EthBridge ASE in FLECS (ethbridge.ase)

This work also presents encouraging results from our experience with im-
plementing the universal forwarding engine. The project was undertaken with
the following goals.

e Implement fundamental packet processing operations that can be used to
compose complex packet forwarding schemes.

e Define a meta-language to specify packet forwarders and demonstrate its
feasibility by implementing non-trivial forwarding schemes.

e Implement tools to auto-generate runnable forwarder implementations
from the specifications written in our meta-language.

The contributions of this paper are threefold. First, it describes the design
of FLECS, including its programming model. Second, it discusses the FLECS
implementation using the Click modular router [20]. Third, it demonstrates
the feasibility of a universal forwarding engine by building working prototypes
that inter-operate with existing protocol suites.

The rest of the paper is organized as follows. Section 1.2 gives an overview
of related work followed by a brief restatement of the axiomatic formulation
from [18], in Section 1.3. Section 1.4 examines the FLECS framework and
its core components. Section 1.5 describes the implementation of FLECS in
Click. This section also gives details of our meta-language constructs with
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some simple examples. Section 1.6 illustrates the practical capabilities of our
framework by compactly describing some non-trivial forwarding schemes such
as IP, NAT and i3. Section 1.7 evaluates the effectiveness of our approach and
we end with conclusions and future work in Section 1.8.

1.2 Related Work

Our work is related to a handful of attempts to build engines for rapid protocol
prototyping. It also relates to work in understanding the architecture of the
Internet. The axiomatic framework described in [17, 18] succinctly formalizes
the design principles behind communication protocols and provides a basis
for formal reasoning about their properties. We briefly describe the axioms
in the next section. FLECS attempts to implement the constraints defined by
the axioms, using Click [20, 26], whereas other approaches like [19, 23] fail to
build upon a sound theoretical framework.

Click defines a flexible, modular architecture for building configurable
routers. Click routers can be configured by connecting Click components,
called elements, in a directed graph. Each element defines a simple packet
processing operation, such as queuing, scheduling, switching, and interfacing
with network devices.We differ from this approach in that we specify protocols
at a higher level of abstraction rather than in a general-purpose programming
language. In addition, our design constrains the programmer according to the
axiomatic formulation of packet forwarding [18]. We find Click to be comple-
mentary to our work and indeed we use it to build the first prototype of our
system.

Estelle (Extended State Transition Language) [4] is a format description
technique to describe communication protocols and services developed within
the International Standard Organization (ISO). This technique is based on
an extended finite state transition model. The Estelle framework consists of
objects called modules. An Estelle specification is a set of cooperating mod-
ules, interacting with each other by exchanging messages through links called
channels.Our approach has several similarities with Estelle. However FLECS
is unlike Estelle in that it strives to present a higher level of abstraction to
the programmer and constrains the design in accordance with the axiomatic
principles.

Approaches like SDL [30], LOTOS [2] and Esterel [9], also describe tech-
niques to express communication protocols using formal descriptions, like Es-
telle. Instead of expressing protocols in completely abstract terms, they use
an approach that requires protocols to be specified in an implementation ori-
ented formal description. The code generated is generally in the form of a
skeleton that must be completed by the programmer. Although this eases the
task of manual programming, the implementation is similar to one written in
a general-purpose language.Although forwarders implemented in this way are
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generally efficient, the programming task varies in difficulty.Others have aug-
mented these techniques to design protocol prototyping systems with message
sequence charts [14] and automated verification tools [15].

FLECS represents a middle ground approach compared to previous ap-
proaches to protocol design. It allows the user to define forwarding protocols
in a domain specific language constrained by the axioms of communication;
yet it retains the clarity and simplicity in design that enables us to prove some
essential properties of protocols.

1.3 Axioms of Communication

In this section we briefly restate the axiomatic framework [18] that forms
the basis of this work. It formulates fundamental forwarding mechanisms in
communication networks.

1.3.1 The Axioms

The axiomatic formulation describes the properties of the “leads to” relation
denoted as —. In these axioms the ASEs are denoted by letters A, B and
C having input and output ports for inter-ASE communication. At ASE B,
the input port from predecessor A is denoted as 4B and the output port to a
successor C'is B€. A variable port is denoted as 2. The unit of communication
between ASEs is a message m. A message m that exists at a port x is denoted
as m@Qz. An ASE maintains a private set of mappings, called the switching
table. The switching table at ASE B is denoted as Sp and contains mappings
(A, p) — {{(C,p")} from an ASE-string pair (4, p) to a set of ASE-string pairs
{(C,p")}. The switching table can be queried through a lookup operation
Sp[A, p]. The “leads to” relation is defined by the following four axioms:

LT1. (Direct Communication)
VA,B,m :3AB A B «— mQA® — m@4B.
LT2. (Local Switching)
VYA, B,C,m,p,p’ : 3B, B A(C,p') € Sp[A,p] = pmQ@AB — p'mQBC.
LT3. (Transitivity)
Va,y,z,m,m';m"” : (mQx — m/Qy) A (m'Qy — m"Qz) = mQzr —
m"Qz.
LT4. (Reflexivity) Vm,z : mQz — mQx

These axioms constrain ASE packet processing. LT1 denotes direct com-
munication between ASEs A and B. This is possible if and only if A and B
are connected to each other by a link. Axiom LT2 expresses the lookup and
switching capability of an ASE. Note that in the theoretical model a packet
pm is logically split into a header prefix p and the opaque message m during
each local switching step. LT2 also covers any form of multi-destination for-
warding, such as multicast, since the set Sp[A, b] may have multiple elements.
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LT3 describes transitivity over direct communication and local switching to
splice the individual forwarding steps together. These three axioms naturally
express the simplex forwarding process in a communication network, where,
potentially, at each forwarding step, a forwarding label is swapped. Axiom
LT4 specifies reflexivity for simplification of certain formal proofs.

1.3.2 Constraints imposed by the Axiomatic Basis

The axiomatic basis imposes stringent constraints on the behavior of an ASE.
These constraints apply to two main aspects of ASE design.

Inter-AsE Communication: These constraints arise directly from the
axioms themselves. LT1 restricts each ASE by only allowing direct commu-
nication between neighbors. Two Ases are neighbors if and only if they are
directly connected to each other.

The second constraint arises from LT3. This bounds the overall connec-
tivity of an ASE by the transitive closure of direct communication and local
switching.

Processing within an ASE:

The first constraint is that the ASE is not allowed to overwrite or redefine
the main loop which forms the core of ASE processing. This prohibits the user
from defining completely new ASEs in the framework.

The second constraint is imposed by the processing patterns. The ASE is
restricted to a small well-defined set of patterns. Any ASE specific processing
must be defined by specialization and configuration of the patterns.

1.4 Framework

There are two main considerations which drive the design of the meta-language
in FLECS. First, our protocol specification language should comply with the
axiomatic fundamentals [18], which constrain packet processing in ASEs. Sec-
ond, FLECS should allow programmers to specify complete protocol function-
ality. The routine tasks of packet manipulation can be extracted as a super
component and can be reused for different implementations instead of being
re-written from scratch [8, 21]. This enables the programmer to automate the
task of protocol composition from a minimum set of specifications.
Restricting the programmer to a limited domain specific language con-
strains the design choices for the protocol. An obvious benefit of using Flecs
is that the programmer does not have to bother with the intrinsic details
of networking which is common in protocol implementations. A less obvious
benefit is that the programmer is restricted from making bad design choices.

1.4.1 Object-Oriented Design

FLECS models fundamental protocol abstractions as objects, represented by
Asgs. The framework predefines a Base ASE (BASE) and the programmer
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Fig. 1.3. The Design of the FLECS Framework.

can implement new ASEs by refining BASE to produce ASEs required to con-
struct a specific protocol. Figure 1.3 illustrates the general design of the FLECS
framework. It depicts the inheritance of ASEs from BASE to compose the final
forwarder. A protocol instance is made up of ASE instances, connected to-
gether to form a configuration graph. Representing protocol abstractions this
way not only achieves our goal of constraining ASEs using our axiomatic for-
mulation, but it also supports our secondary goal of dividing the functionality
into smaller components, hence making the specifications simpler and easier
to write.

Object-oriented programming is well-suited for representing the ASEs. One
characteristic of FLECS is that it partitions protocol state such that each ASE
operates on its own local state information. Object-oriented design fosters
this way of thinking by packaging related meta-data and procedures together
within an ASE. Another benefit is that object-orientation provides inheritance
as an in-built language discipline for supplying packet processing functionality
and data structures from the BASE. It should be noted here that there are
certain protocol specific functions, such as TTL decrement or checksum re-
computation in an IP Router, which are difficult to generalize. The framework
allows the programmer to include arbitrary functions in the ASEs to make the
implementations interoperable within the existing architecture.

It should be noted that FLECS is object-oriented only with respect to the
protocol abstractions built in the BASE. FLECS programmers cannot define
arbitrary, new and unconstrained ASEs. The language specifications only al-
low the programmer to create specializations of the BASE. This makes FLECS
specific for packet processing, and unlike a general purpose, object-oriented
language, it does not explicitly provide the programmer with language-level
constructs to optimize protocol software. This restriction allows us to ex-
ploit the knowledge of common patterns in protocol operations for internal
optimizations. This gives additional power to FLECS over hand-coded opti-
mizations by reducing per-layer overhead, even though the protocol graph is
not determined until run time.
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1.4.2 Packet Processing Primitives

FLECS represents fundamental tasks in protocols as packet processing primi-
tives. It predefines a collection of primitives, using which any arbitrary network
protocol can be easily composed. We hope that these primitives are expres-
sive enough to represent packet forwarding as well as basic control operations.
Communication protocols can be represented as a sequence of these primitive
operations. Since any communication protocol can be specified using a combi-
nation of these primitives, we claim that our list of primitives forms a complete
set of packet processing operations. This set is enumerated in Table 1.1. Our
primitives can be implemented in any protocol subsystem which has basic
packet processing capabilities.

For packet processing and forwarding, we need to extract strings from the
packet header (peek) and modify the header structure (push, pop and swap)
as well as maintain switching tables, such as those used in NAT, i3 [28], etc.
Finally, we need a few helper functions to copy a packet, create a new packet
and discard ones which are not needed. In addition, we also need to send and
receive packets to and from neighboring ASEs.

1.4.3 Processing Patterns

It turns out that the forwarding functionality of an ASE can be specified
through a small number of processing patterns, using the primitives described
above. We use patterns and primitives to abstractly describe the design of
Asges. We logically partition overall ASE processing into several processing
patterns, enumerated in Table 1.2. Each pattern defines either a forwarding
or control procedure. Forwarding includes manipulation of the packet header
as well as packet switching based on a switching table lookup. This forwarding
operation is along with the necessary modifications to the packet is defined by
the forward pattern. Control patterns are designed to update local or remote
AsE state. These include setup, resolve, respond and rupdate.

Patterns model complex operations of packet processing than the afore-
mentioned primitives. In fact, each pattern can be composed from a set of
primitives arranged in a block of code using regular programming constructs.
For different ASEs the same pattern can be configured differently, possibly
with different options, to yield different functionality.

Essentially, it is the processing patterns that implement the constraints
imposed by the axiomatic formulation. The patterns are enumerated in Table
1.2. These patterns are sufficient to implement arbitrary forwarding function-
ality.

1.4.4 ASEs Inside Out

ASEs are a particularly novel aspect of FLECS. Each ASE operates on a specific
prefix of the packet header. It extracts the relevant information from this
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Table 1.1. Packet Processing Primitives

l Primitive [ Description ‘

send(p, ase) Sends packet p to the ASE specified by the second argument.
{p, ase} = receive()|Receives a packet p from a neighboring ASE specified by ase.
This information (i.e. the previous ASE) is stored and can later
be used in making forwarding decisions.

{s} = peek(p) Returns a set of strings {s}, copied from the given packet. In
its implementation it would also take a set specifying the fields
to be copied by their offset and length.

p2 = push(p1, {s}) |Encapsulates the packet with the given set of strings. The re-
sultant packet length increases by the cumulative length of all
the strings in {s}.

p2 = pop(p1, 1) Removes a prefix of length [ from the packet header. The length
of the resultant packet decreases by [ and the data in that part
of the packet header is lost.

p2 = swap(p1, {s}) |Rewrites part of the packet header with the given set of strings.
The length of the packet remains unchanged.

p = create({s}) Creates a new packet p and populates it with the given strings
{s}. The length of the new packet is the cumulative length of
all the strings in {s}.

p2 = copy(p1) Creates a new packet p2 and copies the contents of p; into it.
drop(p) Discards packet p. After drop is called on a p, the data in p is
lost and cannot be accessed again.

v = lookup(t, k) Returns a value object, v, with key k in the given table t. The
objects represented by k and v can represent different types
depending on the table t.

update(t, k, v) Updates or inserts a table row with key k in table ¢ with the
given value object v.

header prefix and uses it for processing the packet and forwarding. An ASE can
be instantiated multiple times in the same configuration. An active instance
of an ASE in a particular forwarder configuration can emulate a protocol layer
such as IP.

ASsEs make processing and switching decisions based on values retrieved
from the packet header. They can carry out complex operations such as swap-
ping header fields, encapsulating a message with a new header or removing
header prefixes as required by the specific protocol. The functionality of an
ASE is defined by the processing patterns it implements (e.g. forward pat-
tern in EthBridge, Figure 1.2(b)). At runtime, the behavior of an ASE is
determined by its local state. ASEs maintain their local state in control and
switching tables. These are initialized for each instance of an ASE in the con-
figuration.

The pseudo-code in Figure 1.4 shows the main processing routine for an
ASE. When a packet arrives at an ASE, it is handed to its process routine.
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Table 1.2. Processing Patterns

l Pattern [Description ‘

forward/subtype|Looks up the switching table to determine the next destination
ASE. It also executes push/pop/pop+push/swap if specified as
subtype and sends the packet to the next ASE. If push or swap
are specified as subtype then the forward pattern expects to get
the strings to be pushed or swapped from the switching table
lookup. The default subtype is none, meaning no modifying
operation is to be performed on the packet.

setup/subtype |Updates the switching table using information from the packet.
It also executes swap if specified as the subtype in the case of
virtual-circuit setup. By default the subtype would be none.
resolve In the case where a name needs to be remotely resolved, this
pattern creates a remote lookup request message and sends it
towards the relevant ASE. If a packet triggered this resolution
request then it is queued until a reply is received.

respond Handles resolve requests from other ASES. It creates a new
packet containing the reply for each request and sends it to
the querying ASE.

rupdate Upon receiving a reply for a resolve request this pattern updates
the local state of the ASE. It also invokes the processing of any
potential packets that are waiting for this update.

process(Packet *p, AseRef prevAse) {
s = peek(p)
patterns[] = lookup(control, {prev, s})

for (each pattern in patterns[]) {
if (p) execute(pattern, p)
}
}

Fig. 1.4. The Main Processing Routine of an ASE.

Process extracts the relevant fields from the packet header and looks up the
control table to determine which patterns are to be executed on the packet.
If there is no matching entry for a particular packet in the control table,
the packet is discarded. Otherwise, the patterns returned by the lookup are
sequentially executed on the packet.

The control table determines the patterns to be executed on different pack-
ets received by the ASE. Entries in the control table specify mappings as
[Ase,, p'] — {[pattern/subtype]}, where Ase, is the ASE from which the
packet was sent and p’ is a set of strings; the pair forms the key for that entry.
The key maps onto a set of patterns. As can be noted from the table struc-
ture, the loop enforces an order on pattern execution. This is an additional
constraint not captured by the axioms. Switching table entries are mappings
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of the form [Asey, p'] — {[Asey,, p”]}. In the forward pattern, a packets for-
warding path is determined by using previous ASE and a set of header fields
as the lookup value. The lookup returns a set of ASE and string pairs, and
copies of the packet are then forwarded to each of those ASEs along with the
string p”” which is used as a name for the destination ASE of this packet. Note
that this gives us the ability to handle broadcast, multicast as well as anycast
packets.

1.4.5 Base ASE

BASE models a generic ASE by implementing the forwarding primitives and
declaring the processing patterns as virtual functions.The programmer imple-
ments a specific type of ASE by refining BASE, thereby deriving ASEs that are
specific to the desired protocol. A subclass is derived from BASE by providing
implementations of peek and other patterns required for packet processing.
Additional procedures may be added to refine and add functionality not cur-
rently handled by the framework, by its post-processing features.

The framework allows the derived ASEs to override certain operations in
the BASE ASE. These are defined as virtual functions in the interface defining
BASE. Since the base class is predefined the instances of the other opera-
tions, including most of the forwarding primitives are fixed and cannot be
overridden, understanding and using the framework becomes easier. In the
implementation of FLECS the keywords and their semantics are easy to learn
as they are few and correspond to meaningful units of behavior.

1.4.6 Inheritance Model

We now consider how BASE allows protocol code to be inherited and inte-
grated within a FLECS protocol implementation. In the specification of an
ASE, the programmer configures the required patterns in a specified format.
This augments or overwrites the code in BASE for those patterns. If an ASE
does not need a given pattern, it simply does not define the corresponding con-
figuration. Since ASEs implemented in FLECS inherit code from a single base
ASE, BASE is never instantiated directly, and consequently the programmer
cannot define completely new ASEs.

FLECS has two features supported by the basic inheritance mechanism just
described. The first is the ability to override the BASE behavior. This permits
BASE to offer default behavior even though it might not always be desired.
The second feature is the ability to intermix BASE and subASE code at a finer
granularity. This results from the flexibility provided by the language model
to configure the patterns.
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1.5 Implementation

We have implemented FLECS using Click [20], a framework for building flex-
ible, configurable routers. We use a hybrid approach of class inheritance and
meta compilation to produce the desired Click implementation and config-
uration. The complete protocol development process in FLECS is shown in
Figure 1.5 where BASE is implemented as a Click element. ASE specifications
are compiled by the asec compiler to generate code for the corresponding
Click elements. ASEs are implemented as complex Click elements, extending
BASE to inherit the generic functionality. Given the ASE design, it can easily
be noticed that a traditional protocol layer can be modelled as an ASE. A
particular protocol configuration might require multiple instances of the same
ASE to simulate a single layer. A specific FLECS configuration can be trans-
lated into the corresponding Click configuration using the confic compiler.
The elements are compiled to form the Click executable which interprets the
configuration file to produce the desired forwarding functionality represented
by Forwarder in Figure 1.5.

Succinctly stated, the FLECS framework is comprised of two meta-compilers
and the respective meta-language specifications. The ASE compiler, called
asec, compiles ASE specifications written in ASE Description Language
(ADL) to generate Click element code representing the ASE. The configu-
ration compiler, namely confic, compiles configurations specified in FLECS
Configuration Language (FCL) to produce a Click configuration. It should
be noted here that FLECS does not depend on any specific functionality of
Click, rather we can implement the FLECS compilers in any reasonable packet
processing engine.

ASE;.ase |44 ASE .ase
Fwd.flecs
asec asec
Base ASE | |
in Click L .2 v v
. Click cee Click
confic Element Element
I ]
l}
g++
'
Fwd.click » Click exe s Forwarder

Fig. 1.5. FLECS Implementation in Click.



1 FLECS 13
1.5.1 ASE Description Language (ADL)

AsEs are specified in ADL which is a formal description language subject to
constraints imposed by the underlying axiomatic framework. An ASE speci-
fication contains, first, the protocol constants, pattern definitions, and refer-
ences to relevant fields in the packet header (see Figure 1.2(b)). These ASE
specifications are compiled by the asec compiler to produce the equivalent
Click code.

Protocol Constants

Constant values to be used in the ASE description can be declared using
the keyword DEFINE at the beginning of the specification file. This improves
readability of the code. Usually these are protocol specific constants that
specify fields in the packet header by their offset and length. Constant string
values are also specified using this construct. These values are specified as
hexadecimal strings using double quotes. The following examples from the
EthBridge ASE define the length of the Ethernet address and the offset of the
destination MAC from the beginning of an Ethernet packet respectively.

DEFINE ETHERNET_ADDR_LEN 6
DEFINE DEST_MAC_OFFSET 0

Extracting Header Fields

AsEs define the peek method to extract relevant data from the packet arriving
at the ASE. The peek specification enumerates the set of packet fields to be
used in the processing patterns, using the READ block. Each triple in the READ
block of peek represents referencing a specific header field by a variable. The
first string in the triple specifies the name of the variable by which the header
field will be referenced, the second is its offset from the beginning of the packet
and the third is the field length. The variable name used in the triple can be
used later in the pattern definitions. An example READ block that reads the
destination and source MAC from an Ethernet packet ASE has the following
syntax:

READ {

dest_mac DEST_MAC_OFFSET ETHERNET_ADDR_LEN
src_mac SRC_MAC_OFFSET ETHERNET_ADDR_LEN

Specifying Control Values

Each ASE must specify the header fields to be used for control table lookup.
This is done in the control block of peek. The peek specification would thus
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contain a READ block and a CONTROL block. The CONTROL block specifies the
fields to be looked up in the control table to determine which patterns are
to be executed on the packet. The following example is from the EthBridge
ASE from the introduction. The control decision on any arriving packet will
be made based on the contents of its dest_mac field.

peek {
READ { --- }
CONTROL { dest.mac }
}
Forwarding

The forward pattern relays the packet to a neighboring ASE or drops it based
on the result of the switching table lookup. The lookup searches for a match
in the switching table using the ASE from which the packet arrived denoted
by prev, and the specified header fields as the key for the lookup. The lookup
returns a result {[next_Ase, {s}]}. The pattern sends a copy of the packet to
the respective destination determined by next_Ase, after making the necessary
modifications to the packet. The set of strings {s} is used for possible packet
maniputalion. Each string in {s} is given in a hexadecimal representation. This
pattern also has advanced subtypes, push, pop or swap. The push subtype
appends the set of strings {s} from the lookup result as a prefix to the given
packet and pop removes a prefix of specified length from the header. The swap
subtype replaces a given set of header fields with the given strings and is used
for modeling circuit switching.

forward {

LOOKUP { dest._mac }

}

The example shows a forward specification from the EthBridge AsE. It
translates into a pattern, when executed on a packet looks up the dest_mac
and forwards it to the next_Ase. If pop or swap were specified then these
operations would be performed before the packet is forwarded.

Encapsulation
relevant data from data in protocol defined
the previous ASE. header format.
[afe] m J2fifa]i[el] m

Fig. 1.6. An abstract representation of recasting data from a previous ASE into the
protocol defined header format.
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When packets arrive on an incoming path from the network interface,
for example from a lower layer, they are decapsulated before being passed
to the next higher layer. On the other hand, when the packets are passed
from a higher layer to a lower layer they need to be encapsulated with the
appropriate header. For example a packet arriving at an Ethernet ASE from
ARP would need to have the correct Ethernet header added to it before being
forwarded anywhere. This operation is performed by recast. Conceptually
recast restructures the packet header by using the information prepended
by the previous ASE and prefixing the packet with the correct header. This is
illustrated in Figure 1.6. We introduce the WRITE block which is defined as a
set of tripples. The first string in the write block is the variable containing the
value and the next two strings specify the offset and length of the field to be
written, respectively. For an example of recast see the IP forwarding example.

Path Setup

Control patterns are required to: 1) update local state, and 2) retrieve state
information from remote ASEs and serve remote update requests. The simplest
control pattern is setup. Upon execution, it updates the local switching table
using information from the packet header. The example below shows setup for
an EthernetBridge ASE which is invoked upon receiving any Ethernet packet.
It learns the forwarding path for a packet destined to src_mac.

setup {
UPDATE { * src_mac prev null }

}

In this simple example, EthernetBridge would update its switching table
with the entry [*,src.mac] — [prev, null]. Each pattern is aware of the in-
terface from which the packet arrived. The identifier of that interface can be
accessed from the variable prev. The setup pattern also handles virtual-circuit
setup and NAT translations using its VC option. With this option setup is
able to generate virtual circuit identifiers using local name (), update the
translation table and swap names in the packets before forwarding them. For
example, in the case of NAT local_name() is expected to return an IP address
and UDP/TCP port pair. This is then used to update the switching table
which corresponds to the NAT translation table. These values are also used
to overwrite specific values in the packet using swap. An example VC specifi-
cation is given below. In this example the ASE swaps a single value which is
written in the swap subtype.

Lookup of the switching table is specified to check whether the entry al-
ready exists. If not, then VC option is called and a local name is created. The
VC block also specifies the updates to be made to the switching table. There
can be multiple updates for optimization, as in the case of NAT. The SWAP
block handles the switching of names in the packet.

setup {
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LOOKUP { lookup.val }
ve {
LOC_NAME { local name() }
UPDATE { * LOC_NAME prev_ase lookup.val }

SWAP { WRITE { LOOKUP_NAME OFFSET_O LENGTH.O } }

Remote Resolution

There are other more complex patterns that are needed for retrieving state
information from remote ASEs (resolve), serving resolve requests (respond)
and handling resolution replies (rupdate). These patterns can be defined as
a combination of packet creation along with the push option to create the
appropriate request or response.

The resolve and response patterns are comprised of CREATE and PUSH
and is configured using the following template. Usually resolve is triggered
by the arrival of a packet for which a remote name resolution is required
in order to forward it correctly. In this case an appropriate request message
is created and sent. The arriving message is added to the wait queue until
the response is received. The PUSH in the case of resolve and respond is
specified separately from CREATE as it adds the data required for the next
ASE to properly format the packet.

resolve {
CREATE { CREATE_LENGTH
WRITE { data 0 OFFSET_O LENGTH.O
data_1 OFFSET-1 LENGTH.1 }
}

PUSH { PUSH_LENGTH
WRITE { data-2 OFFSET_2 LENGTH 2
data_3 OFFSET_3 LENGTH-3 }
}

}

The syntax for rupdate is similar to a simple setup and can be specified
as follows. It handles the updates to the switching table and its implemen-
tation discards the packet which is actually a response to the request sent
to be resolved. It also handles the packets which are waiting for the remote
resolution response by looking up the wait queue against the changes made
to the switching table. The following is an example of rupdate specified in an
address resolution protocol.

rupdate {

UPDATE { * src_proto#ip prev src_hwadd }

}

The respond pattern is triggered by the arrival of a resolution request
packet from a remote ASE. In response it creates an appropriate reply to the
request and sends it towards the concerning ASE.
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Pre-Forwarding Hooks

There are also certain operations which are specific to forwarders and have
not been modeled in our framework as they do not affect forwarding decisions.
These include specialized mathematical operations on certain fields of the
header or the entire packet, such as TTL decrements, checksum computations,
etc. Our framework allows the programmer to inline ASE methods directly into
the Click implementation of an ASE. This can be done using the character %
at the beginning of a line. For example the TTL decrement code in IP would
read the TTL value from the packet, decrement it and write it back.

void localTTLUpdate(Packet *p) {
yA unsigned char ttl =

% (unsigned char) p->data() [TTL_OFFSET];

% --ttl;

% write(p->uniqueify(), TTL_OFFSET, TTL_LENGTH,
% (unsigned char *)&ttl);

}

1.5.2 FLECS Configuration Language (FCL)

FLECS configuration consists of ASE initializations and forwarding graph lay-
out. These are specified using a formal definition language called FLECS Con-
figuration Language or FCL. The FLECS configuration can be compiled into
Click configuration using the confic compiler in the framework.

ASE Initialization

Initialization involves creating an instance of an ASE which includes naming
the instance and specifying initial entries for the local state (control and
switching tables). The following is the syntax for ASE initialization.

AseType AseName {
control { /* Control Table Entries */}
switching { /* Switching Table Entries */}

}

Multiple symmetric ASEs can be instantiated using the same declaration
by using $i at the end of its name. The $i permits the instances to range
from 1 to n, depending on the configuration of the graph. For example, in an
IP router configuration, an Arp ASE instance is required for each interface
and can be declared using one declaration named as Arp$i. $i can then be
used in the initial control and switching table entries.

Another use of $i is in switching Ases. If Ase$i is used in combination with
Ase—8$i, as in EthBridge (Figure 1.2(a)), it corresponds to multiple entries in
the table resulting in forwarding packets to all the ASEs whose names have a
prefix Ase except from the one it arrived from i.e. prev.
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Control Table

The theoretical model described in the axiomatic basis [18] assumes complete
tables. This means that all possible lookup values are handled by the control
table. In reality, this assumption is not very practical for an implementation.
Thus wildcard matching is introduced to handle arbitrary lookups and hence
reduce the size of the tables.

The control table specifies the patterns to be executed on different packets.
The control table row from the Broadcast example is

[*, *] -> [forward/none];

This entry matches all packets arriving from any ASE. It specifies that
the forward pattern (with no options) is to be executed for all packets. The
wildcard(*) is used to match all possible lookup values. In general, specific
string patterns are used in the control table keys and a sequence of processing
patterns executed on each packet. The patterns which can be used in this
table are listed in Table 1.2. In addition recast and drop can also be used
just like patterns in the control table.

Switching Table

Theoretically the switching table should also be complete. But in practice the
same argument that applies to the control table also applies to the switching
table, and we use wildcards and partial matching for feasibility of imple-
mentation. Each switching table entry maps an ASE-string pair to a set of
ASE-string pairs. As in the control table wildcard(*) can be used in the key
for arbitrary matching. An example from the EthSwitch ASE switching table
which maps the destination MAC address to the forwarding interface is shown
below. Multi-string entries are separated by #.

[ethl, 0005A23B45FF#0800] -> [IP, null];

Configuration Graph

ASE instances and network interfaces are connected together to form the con-
figuration graph.This is done in the config block as shown in Figure 1.2(a).
This can be accomplished using multiple statements. Each statement ends
with a semi-colon. Each network interfaces is identified by the device name
allocated to it by the system. In Linux this tends to have a prefix eth followed
by one or more numeric characters. These must be specified as arguments to
config. Once specified as arguments to config, these interfaces can be used
in the configuration like any other ASE with the limitation that they can have
only one input and one output. Both unidirectional and bidirectional links
between ASEs can be used to specify the graph. These are represented by
arrows: —=>, <- and <->.
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1.6 Examples

In this section, we discuss how the FLECS framework can be used to imple-
ment some well-known and non-trivial forwarding protocols. In the following
sections, we discuss a few protocol implementations with diverse composi-
tions. The framework can be used to implement forwarding in DNS [24, 25],
Mobile IP [27], Dynamic Source Routing [16] and other multicast and anycast
protocols with little effort. We discuss the implementation details of an IP
forwarder, NAT (as an example of virtual-circuit setup) and forwarding in an
i3 server (as an example of an overlay routing mechanism). These examples
also give some intuition behind code reuse and the amount of code that FLECS
programmer is spared from writing.

1.6.1 TP Forwarding

Fig. 1.7. IP Router in FLECS.

A simple IP forwarder can be modeled in FLECS as shown in Figure 1.7.
A specific configuration is shown in Figure 1.8. An IP packet arriving at
a network interface is forwarded to the corresponding ETH ASE. ETH ASE’s
switching lookup on the Ethernet destination and protocol determines whether
to forward the packet to the IP ASE, ARP ASE or drop it. If the intended
Ethernet destination of the packet differs from the Ethernet address assigned
to the respective ETH ASE, the packet is dropped, otherwise the Ethernet
header is popped off and the packet forwarded to IP ASE (Figure 1.8, lines
8-10).

The IP switching table lookup determines the interface to forward the
packet and passes it on to the corresponding ARP ASE, annotating the packet
with the next hop IP address given in the switching table entry of IP ASE.
Figure 1.9 shows the IP ASE specifications in ACL. Constatnt definitions
and pre-forwarding hooks are not shown due to space constraints. The IP
switching table is the routing table of the IP Router. This can be configured
manually during initialization or rupdate in the IP ASE can be defined for
handling routing table updates. ARP looks up its switching table to resolve
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Eth eth_$i {
control {
[eth$i, mac] -> [forward/popl;
[eth$i, FFFFFFFFFFFF]-> [forward/popl;
[arp_$i, *] -> [recast] [forward/none];
}
switching {
[eth$i, mac#0806] -> [arp_$i, nulll;
[eth$i, FFFFFFFFFFFF#0806]1-> [arp_$i, nulll;
[eth$i, mac#0800] -> [ipswitch, nulll;
[arp_$i, *] -> [eth$i, nulll;
¥
}
Arp arp_$i {
control {

[eth_$i, ip#0001]-> [rupdate] [respond];
[eth_$i, ip#0002]-> [rupdate];
[ipswitch, *] -> [resolve] [forward/pop+push];
}
¥

Ip ipswitch {
control {

[*, *] -> [forward/push];
}

switching {
[*, COA80303] -> [arp_0, COA80303];
[*, COA80707] -> [arp_1, COA80707];
¥
¥

config(ethO, ethl) {
ethO <-> eth_0(mac=00055DE6265D)
<-> arp_0(ip=C0A80305, mac=00055DE6265D) ;
ethl <-> eth_1(mac=00055DE6265E)
<-> arp_1(ip=C0A80705, mac=00055DE6265E) ;
eth_0 -> ipswitch <- eth_1;
arp_0 <- ipswitch -> arp_1;
}

Fig. 1.8. Sample IP Router Configuration in FCL.

the next hop IP address, pushes the resolved Ethernet address and forwards
the packet to the ETH ASE which recasts the packet in the correct Ethernet
header and relays it to the respective interface.

ETH and ARP ASEs are also configured to handle ARP requests and ARP
replies, hence the extra arrows between them. The ARP ASEs are configured
with the local ip and the corresponding Ethernet address.

1.6.2 Network Address Translation

Figure 1.10 shows the NAT model in FLECS for a NAT box having two internal
and two external interfaces. In addition to forwarding packets, the NAT ASE
also performs path setup for outgoing packets and the NAT forwarding entries
act as a filter for all incoming packets. The following snippet shows the pattern
specifications in the NAT ASE. The setup specification illustrates the virtual
circuit setup for packets coming from the internal subnet.
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DEFINE
ASE Ip {
peek {

READ { dest_anno DEST_ANNO_OFFSET IP_ADDRESS_LEN
proto_anno PROTO_ANNO_OFFSET IP_PROTO_LENGTH
dest_ip DEST_IP_OFFSET IP_ADDRESS_LEN
src_ip SRC_IP_OFFSET IP_ADDRESS_LEN
protocol IP_PROTO_OFFSET IP_PROTO_LENGTH

}

CONTROL { protocol }

}
recast {

CAST { IP_ANNOTATION_LEN IP_HEADER_LEN

WRITE{VER_IHL VER_IHL_OFFSET VER_IHL_LENGTH
TLEN TLEN_OFFSET TLEN_LENGTH
TTL TTL_OFFSET TTL_LENGTH

proto_anno IP_PROTO_OFFSET IP_PROTO_LENGTH
local.ip SRC_IP_OFFSET IP_ADDRESS_LEN
dest_anno DEST_IP_OFFSET IP_ADDRESS_LEN }
}
%localRecalculateChecksum(p) ;
}

forward {
LOOKUP { dest_ip }
POP { IP_HEADER_LEN }
%localTTLDecrement (p) ;

}

void local...(Packet*p) {
b

}
}

i

Fig. 1.9. IP ASE in FCL.

The setup pattern first looks up the switching table to see if the entry for
the source IP and port exists. If not, then it executes the virtual circuit (VC)
block. VC acquires a local name and creates the virtual circuit entries in the
switching table. It rewrites the source IP and port in the SWAP block before
calling localRecalculateChecksums on the packet.

The other Asis, which are common in both NAT and IP router configura-
tions perform forwarding operations as described for the IP router, with the
exception of a few minor changes to route the packets through NAT ASEs.

1.6.3 i3 Forwarding

Using the FLECS framework, i3 [28] becomes a straightforward implementation
of forwarding using Chord [29] as the routing process. This can be modeled by
extending the IP router design by adding a I3Switch and I3TriggerHandler
AsEs as shown in Figure 1.11. In our model the i3 overlay sits on top of
UDP. When a UDP packet arrives at IP for the i3 server it is relayed to
I3Switch after the IP and UDP headers are removed in the respective ASEs.
I3Switch, which implements the Chord protocol, determines whether the top-
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Fig. 1.11. I3 Forwarding in FLECS.

most i3 id can be locally resolved or not through switching table lookup. If
so, then the message is forwarded to the I3TriggerHandler, otherwise it
is forwarded to the Chord neighbor as determined by the switching table.
I3TriggerHandler lookup on the topmost i3 id in the i3 id stack determines
the number of packet copies made and forwarded, each one with either a new
i3 id added on top of the id stack or a specific IP/UDP destination. The packet
or packets are then forwarded to the respective translators (I3IP-Trans or
I13SW-Trans) for proper recasting depending upon the switching table lookup
in I8TriggerHandler. If I3TriggerHandler does not have an entry for the
topmost i3 id and the i3 id stack in the packet is empty, the packet is dropped.

1.7 Evaluation

Figure 1.12 demonstrates the feasibility of using the FLECS framework to
prototype forwarding functionality of communication protocols. It shows the
difference between the lines of code written by the programmer in FLECS
compared to the number of lines of code generated by the asec compiler for
different protocol implementations. For example an Ethernet bridge configura-
tion can be specified in FLECS along with its configuration for a two network
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Fig. 1.12. Comparison of the number of lines of code in the .ase file with the number
of lines generated by the asec compiler. Click implementation of Etheret bridge is
in 236 lines of code.

interfaces in less than thirty lines (1.2). The same implementation in Click
results in more than two hundred lines of code. FLECS produces the Click
implementation from the specification in less than a hundred lines of code.
This does not include the generic code inherited from BASE. A comparable
Ethernet bridge written for FreeBSD is more than 3K lines of code. This
difference between implementations in different environments results partly
because of our generalized nature of the framework, reusable code base and
inheritance model and partly because other implementations have a big chunk
of error handling and optimization code. This includes optimizations such as
the spanning tree protocol implementation and network interfacing with the
LAN driver in FreeBSD. We specify the IP forwarder in 187 lines of ACL.
The ASE compiler produces 657 lines of Click code for IP. A comparable Click
implementation for IP forwarding (not using the Base class functionality pro-
vided by FLECS) takes more than 2K lines of code. A similar implementation
in Linux would probably consist of several thousand lines of code. FLECS gen-
eralizations not only reduces the amount of work the programmer has to put
in to prototype a specific forwarder, but also makes it easier to locate bugs
which might be difficult to find due to the complexity of a code base.

We also evaluate the cost of adhering to the axiomatic constraints and the
generalizations implemented in FLECS. Figure 1.13 characterizes the perfor-
mance of an IP forwarder in FLECS by measuring the rate at which it can
forward 64 byte packets, when compared to a Click implementation of a com-
parable IP forwarding configuration. This analysis presents the router behav-
ior under different workloads. The experiments were conducted by running
the implementations in user-level Click, on the same machine. The FLECS-
generated implementation peaks at 7,000 packets where as the Click imple-
mentation peaks at 10,000. The resulting ASEs from FLECS were modified
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Fig. 1.13. Forwarding Rates of an IP Router in FLECS.

to use an optimized data structure to hold extracted values from the packets
and table lookups.

We expected to see some performance degradation due to the nature of
generalization enforced on the ASE processing. The results show a perfor-
mance hit of 30%. This is an encouraging result considering that we have
not yet incorporated any optimization techniques into our compilers and we
are performing at 70% of a protocol specific implementation. We observe that
each IP packet passes through five complex elements, each performing at least
two lookup operations, compared to thirteen simple elements in the Click im-
plementation with a single lookup amongst them. Optimized data-structures
for holding the control and switching tables would probably result in regaining
s significant portion of the performance loss. Furthermore the asec compiler
can utilize domain knowledge to produce optimized forwarding code.

1.8 Conclusions

This paper describes FLECS, a framework for rapid protocol prototyping.
FLECS applies a divide-and-conquer strategy to decompose complex proto-
cols into a combination of ASEs. ASEs can support a wide variety of complex
packet forwarding tasks through composition.

There are a three main advantages of using FLECS for implementing packet
forwarders. The first is that by using the FLECS framework the time to design
and implement communication protocols can be drastically reduced.

The second advantage is that by adhering to the axiomatic basis, the gener-
alized proofs of correctness of patterns can eventually be used in augmentation
with automated theorem provers to prove correctness of protocol implemen-
tations.

The third advantage emerges from our use of the object-oriented inher-
itance model to extract the generic functionality and the main processing
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loop in the BASE. This not only constrains design choices but also reduce the
protocol specifications to mere data-oriented specializations of the BASE.

It should be noted that FLECS has been developed as a proof of concept
for the axiomatic basis for communication [18] and is limited by the same
set of limitations as the model, such as obliviousness to time, error and loss.
These limitations, restrict us from implementing protocol mechanisms such as
handling congestion and retransmissions. we intend to extend our framework
to address these limitations in future work.

Our conformance to the axiomatic basis not only allows us to discover
different patterns in packet forwarders but also makes the design of our
framework independent of any specific software or hardware architecture. It
would be reasonable to state that FLECS can be implemented on other packet
processing engines and network processors [7, 6]. Future implementations of
FLECS may perhaps be able to generate validated protocol implementations
for programmable hardware devices such as FPGA [3, 13]. This would demon-
strate the potential of automatically building validated protocol implementa-
tions.

Given the current status of our work, we can implement optimization tech-
niques available to a domain specific framework to generate very efficient im-
plementations.
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