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Abstract

This paper presents an algorithm to heuristically partition the data dependence graph
representing a basic block or a hyper block of code in order to assign instructions to available
processing cores. The algorithm relies on the observation that the critical path in the data
dependence graph defines the lower bound on the schedule length of a block and hence the
instructions on the critical path should be assigned to the same core. The algorithm has
been implemented in the Trimaran compiler framework. The given heuristic algorithm is much
simpler and evaluation shows that it is as good as previous state-of-the-art heuristic algorithms.

1 Introduction

Instruction scheduling techniques have traditionally targeted straight-line code in the form of basic
blocks, super blocks and hyper blocks to generate schedules for exploiting instruction-level paral-
lelism. A basic block is a sequence of instructions with a single entry point called source and a
single exit point called sink. Successive basic blocks which result in a straight-line region of code
with a single entry point and multiple exits form a super block. A hyper block is a super block
where the control dependencies are converted into data dependencies using special control regis-
ters. Recent trends in microprocessor design, with multiple cores per chip, necessitates changes in
compiler design in order to make better use of available hardware parallelism.

Multi-processor machines have been around for over three decades. But, only in the last few
years has the technology migrated into the mainstream as the new generation of processors, namely
multicore [3, 15]. Today’s multicores are very much like the multi-processor systems of yesterday.
Multicores have merely clustered the processors (referred to as cores) as well as a subset of the
memory hierarchy onto a single chip, reducing the cost of communication between cores and making
way for cost-effective parallel execution of program threads.

Parallelization is the technique which converts sequential code into multi-threaded code in or-
der to gain performance from available hardware parallelism. As multicore architectures become
mainstream, parallelization of sequential code is regaining the attention of the compiler research
community. Software developers can no longer rely on increasing clockspeeds for performance im-
provements of single threaded applications. This is mainly because the recent trends in architecture
design resulting in increasing number of cores per chip coupled with little or no improvements in
clockspeeds per core. This poses a tremendous challenge for compiler designers and necessitates
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automated parallelization to evenly distribute the workload on the available processor cores. This
would be complementary to traditional parallelism extraction techniques such as vectorization which
look for coarser level parallelism. The increasing number of cores per chip also means that effec-
tive parallelization techniques can result in significant speedups for general purpose applications.
This is evident from performance gains achieved by other complementary, semi-automated and
user-assisted parallelization techniques incorporated in the RapidMind platform [14] and OpenMP
[5].

There is a small body of work in literature that also makes an attempt at heuristically parti-
tioning straight-line regions of code on multi-processor architectures [6, 9, 12, 13, 16]. This work
targets clustered architectures and predates the multicore.

The rest of the paper is organized as follows. An overview of the required background material
is given in the next section. Section 3 gives details of the heuristic algorithm. Section 4 describes
the experimental setup and results. Section 5 gives an overview of the related work. Section 6
gives a discussion and analyzes the approach given in this paper. Finally, the paper concludes with
Section 7.

2 Background

This section provides the necessary background required to understand the approach described in
the rest of the paper. It also gives an introduction to the problem that this paper attempts to solve
along with the assumptions and the architectural model.

2.1 Problem Statement

The problem of assigning and scheduling instructions for multicores can be defined in terms of
schedule length.

Definition 2.1 (Schedule Length). Given the dependence graph for a code block the schedule
length is the cycle in which the last instruction is issued.

Given the definition of the schedule length, which applies to basic blocks as well as hyper blocks,
the problem can be stated as follows.

Definition 2.2 (Assignment for Multicores). Given the dependence graph G = (V,E) for a code
block and the number of available cores k, the problem is to find an assignment A(i) ∈ {1, · · · , k}
to all the instructions i ∈ V that minimizes the schedule length of the block.

With the above definition the problem can be restated as a graph partitioning problem.

Definition 2.3 (Partitioning). Given the dependence graph for a code block and k cores parti-
tion the dependence graph into k or fewer subgraphs such that the difference between gain from
parallelization and cost of synchronization is maximized.

Balanced graph partitioning is an NP-hard problem [2]. The partitioning problem defined above
is harder than simple balanced partitioning as the feasible partitions may be fewer than k. This
paper presents a heuristic technique to solve the partitioning problem. Figure 1 shows a data
dependence graph of a basic block and how it can be partitioned for k = 2.
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Figure 1: Partitions of an example basic block.

2.2 Theoretical Limits

It is important to understand that any parallelization technique will be bounded by theoretical
limits. Gene Amdahl predicted that the maximum achievable speedup from parallelization is limited
by the percentage of non-parallelizable portion of a program [1]. This is known as Amdahl’s law.
The law states that if the sequential (non-parallelizable) portion of the program is α the maximum
speedup achievable on a system with k processors can be given by

S(k) =
k

1 + α ∗ (k − 1)

Theoretically, as k tends to infinity, the maximum speedup tends to 1/α. Assuming fixed sized
programs, the law implies that influence of the sequential portion of the program increases with the
number of processors.

2.3 Architectures and Our Model

Modern multicores differ a lot in their designs. Some multicore chips have multiple complete
processors (with their own separate caches) placed on the same die (e.g. dual-core AMD Opteron)
whereas others share the cache at some level on the chip (e.g. Intel Xeon Woodcrest). The functional
units and the architectural state is completely independent but the cores share a common interface
to system memory and input/output devices.

The cores access a shared memory space and coherence is maintained between the private caches
(e.g. the L1) using a coherence protocol. The caches are all physically addressed. Thus the threads
can fully share the cache contents. Multiple threads communicate with each other through the
memory hierarchy. The producer thread writes the data to an address and the consumer thread
reads from the same memory address. Since the cores are on the same die the communication
latency is much smaller than the traditional multi-processor systems. For example in the Intel Core
Duo processor, which has a shared on-chip L2 cache, the communication latency between cores can
be as small as 14 cycles.

For the purpose of this project a simple multicore architectural model is assumed. Multicore
processors can have a number of identical processing cores integrated onto a single chip. In general,
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the following holds for our architecture model.

• Cores are homogeneous. This means that all cores have the same number of identical func-
tional units.

• A perfect memory model, meaning that memory load/store latencies are ignored in this model.

• Let l(i, j) be the latency between the cycle the instruction i is issued on a core and when the
result is available to be used by instruction j.

• Each core is single issue. This implies that only one instruction can be issued at any given
cycle on any particular core.

• Let some non-zero s be the cost of synchronization between two cores. After the result of an
instruction is available, it would take s cycles to transfer the resultant value on a different
core where it is needed.

3 Critical Path Heuristic

3.1 Critical Path

The critical path in a dependence graph is the set of edges that have the greatest sum of latencies
from a source node to a sink node. For example Figure 2 shows the critical path of the basic block
dependence graph shown in Figure 1.

Figure 2: Critical path in the example basic block.

Since the instructions on the critical path have to be execute and no instruction can be executed
before its successor in the dependence graph, the lower bound for the schedule length of a basic block
would at least be the length of the critical path regardless of how many processors are available.

Schedule Length ≥
∑

(i,j)∈cp(G)

l(i, j) (1)

4



The heuristic algorithm is based on the idea that all instructions on the critical path be assigned
to the same processor core. Applying Amdahl’s law to the problem, the heuristic assumes that the
critical path in a code block is the non-parallelizable portion of that block and the maximum
speedup is limited by the length of this critical path compared to the total number of nodes in the
block.

3.2 Weight Assignment

3.2.1 Node and Edge Weights

Since the architecture of each core assumed in this paper to be single issue, each node has a weight
of one. The level of each node in the graph is also computed to be used in merge decisions. Each
edge in the dependence graph is weighted according to the cost of cutting it. In its simplest form
we assign weights to each edge as being the length of the longest path from a source to the sink
node of which it is a part.

3.2.2 Partition Weights

The weight of a partition p is given by the number of nodes in it and the length of the critical path
within this partition. Each partition also has a flexibility attribute. The flexibility of a partition is
the number of instructions it can subsume without potentially increasing its sub-schedule length.

flexp =
∑

(i,j)∈cpp

l(i, j)− |Vp|+ 1 (2)

The flexibilities of partitions are used heavily in the algorithm to decide whether candidate
partitions should be merged or not.

3.3 Partitioning

3.3.1 Parallel Schedule Length

The object of partitioning is to minimize the overall schedule length. This length depends on the
size of the largest partition as well as the levels at which the inter-partition edges occur. The levels
of the crossing edges and flexibilities of partitions are the used to estimate the changes in schedule
length if partitions are merged.

3.3.2 Algorithm

The pseudo code of the heuristic algorithm is given as Algorithm 1. The partitioning algorithm
consists of four phases. The first phase initializes the data structures and annotates the dependence
graph with the required weights. The second phase, which is similar to list scheduling maintains
a working set of nodes and merges connected partitions only if necessary. In the third phase the
algorithm reduces the number of partitions to be equal to the number of available processing cores.
This happens on;y in the case where the number of partitions created in the second phase is greater
than required. The fourth phase analyzes the benefits of parallelization and merges partitions if
partitioning is not feasible.

The four phases of the algorithm are enumerated and described below. The algorithm takes the
dependence graph of a code block and the number of processing cores available as parameters.
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Algorithm 1 Partition (DependenceGraph G, P rocessors k)
1: P ← ∅
2: assignWeights(G)
3: pcp ← createPartition(cpG)
4: P ← P ∪ {pcp}
5: A ← available(G)
6: while A 6= ∅ do
7: for all a ∈ A do
8: pa ← createPartition({a})
9: P ← P ∪ {pa}

10: end for
11: mergePartitions(P) // conservative merge of connected partitions only
12: A ← available(G)
13: end while
14: while |P| > k do
15: mergeTwoPartitions(P) // aggressive merge of strongly connected partitions
16: end while
17: repeat
18: mergeNonParallelizablePartitions(P) // relaxed merge only iff no gains from parallelism
19: until no change in P
20: return P

• Phase 1 (Lines 1-4) - This is the initialization phase. The set of partitions is initialized
to be empty. Weights are then assigned to the edges and nodes of the dependence graph.
The function assignweights(G) traverses the graph depth first and also sets the level of each
node. Once the weight assignment is done, the algorithm uses the edge weights to find the
critical path, creates a partition consisting of the nodes which are a part of the critical path
and adds this partition to the list of partitions.

• Phase 2 (Lines 5-13) - This phase maintains a list A of nodes in the graph which are not
yet assigned to a partition but all their ancestors are already part of some partition.

In the loop that encompasses lines 6-13, a separate partition is created for each node in A and
that partition is added to the partitions list P. Before the completion of the loop iteration
mergePartitions() is called on the partitions list P and the work list A is updated.

The merge in this phase (line 11), is extremely conservative and merges any two partitions
which are high connected. Two partitions are high connected if there is an edge from the sink
node of one partition to the source node of the other.

• Phase 3 (Lines 14-16) - This phase is only relevant in the case where the number of
partitions generated by the last phase is greater than k, the number of available processing
cores. If this is indeed the case then two partitions are chosen to be merged from the partition
list which yield the greatest benefit in terms of parallelization and reduced cross-partition
edges. This is likely to be the smallest partition with the largest number of outgoing edges to
be merged with a connected partition with the greatest flexibility. At the end of this phase
the total number of partitions is guaranteed to be less than or equal to k.
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Figure 3: An example run of the Critical Path Heuristic algorithm on a basic block, with k = 2.
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• Phase 4 (Lines 17-19) - In the last phase the algorithm attempts to merge non-parallelizable
partitions. These are partitions for which executing the instructions in them on separate pro-
cessing cores would have a longer schedule than if they were merged to form a single partition.

The efficacy of partitioning in this phase is decided based on the connectedness of two parti-
tions and their combined flexibility. This gives an estimate as to whether the merged partition
would take fewer cycles to execute than the two separately. This phase is guaranteed to ter-
minate as there has to be at least one partition in the list at the end.

Figure 3 illustrates the algorithm using an example basic block for k = 2. Partitions are shown
as crooked lines going around nodes of the graph. Figure 3(a) shows the basic block graph after
the first phase in which the critical path has been assigned to a partition. (b) and (c) illustrate the
second phase which results in four partitions. (d) and (e) illustrate the third phase. The fourth
phase does not result in any changes to the partitions as the two remaining partitions are disjoint
in this particular case.
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4 Experiments

The critical path heuristic algorithm was implemented using the Trimaran compiler framework [4].

4.1 Implementation and Experimental Setup

The Critical Path heuristic algorithm was implemented in the back-end of the Trimaran compiler
framework, called Elcor. Trimaran is a publicly available C compiler and simulation infrastructure
for supporting state of the art research in compilers. It is mainly used for instruction level parallelism
(ILP) research for modern architectures. The system is oriented towards EPIC (Explicitly Parallel
Instruction Computing) architectures modeled on VLIW, and supports compiler research in what
is typically considered to be back-end techniques such as instruction scheduling, register allocation,
and machine-dependent optimizations, as well as front end design using OpenIMPACT [17]. Figure
4 gives a high level picture of Trimaran and its components.

Figure 4: Implementation of Critical Path Heuristic partitioning in Trimaran.

Instruction assignment using the critical path heuristic has been implemented in the back end
optimizer called Elcor. The partitioning phase is placed before the scheduling phase, and once
partitioned the instructions are scheduled on the available cores using list scheduling.

For the purpose of the experiments two different machine configurations were used, one with
two homogenous processing cores and the other having four. Operation latencies are similar to the
Itanium and a perfect memory model is assumed. For each benchmark the number of compute
cycles was used as the evaluation metric.

4.2 Evaluation and Results

To evaluate the performance of the heuristic algorithm (CPH), it was run on several benchmarks
ranging from fibonacci computations to jpeg compression algorithms and public key encryption
and authentication. The resultant speedups were compared against precious state-of-the-art greedy
algorithm (BUG) and hierarchical partitioning algorithm (RHOP).
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Figure 5: Basic blocks parallelized for two cores.

Figure 6: Hyper blocks parallelized for two cores.
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Figure 7: Basic blocks parallelized for four cores.

Figure 8: Hyper blocks parallelized for four cores.
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Figure 5 shows the relative speedups for basic blocks on two cores. On average the speedups
are less than 8%. CPH performs within a range of 5% of BUG and within 3% of RHOP speedups.
Figure 6 shows the results of the same experiment conducted on hyper blocks. The average speedups
in the case of hyper blocks are 15%, with CPH performing within 2% of both BUG and RHOP.

The same experiments were repeated for a four core configuration. The relative speedups are
shown in Figures 7 and 8. In the case of basic blocks there is an average slowdown of 3%. For the
basic block case CPH performs within 4% of BUG and is in fact 2% better than RHOP. In the case
of hyper blocks the four core configuration results in speedups of around 20%. In this case CPH
performs better than both BUG and RHOP. It shows improvements of 14% on average over the
previous approaches on hyper blocks.

5 Related Work

Lee et al. [13] present a multi-heuristic framework for scheduling basic blocks, superb locks and
traces. The technique is called convergent scheduling. The scheduler maintains a three dimensional
weight matrix Wi,c,t, where the ith dimension represents the instructions, c spans over the num-
ber or processors and t spans over possible time slots. The scheduler iteratively executes multiple
scheduling phases, each one of which, heuristically modifies the matrix to schedule each instruction
on a processor for a specific time slot, according to a specific constraint. The main constraints are
pre-placement, communication minimization and load balancing. After several passes the weights
are expected to converge. The resultant matrix is used by a traditional scheduler to assign instruc-
tions to processors. The framework has been implemented on two different spatial architectures,
Raw and clustered VLIW. The effectiveness of the framework was evaluated on standard bench-
marks, mostly the ones with dense matrix code. An earlier attempt was made by the same group
for scheduling basic blocks in the Raw compiler [12]. This technique iteratively clustered together
instructions with little or no parallelism and then assigned these clusters to available processors.
A similar approach was used to schedule instructions on a decoupled access/execute architectures
[16]. These techniques seem to work well on selective benchmark suits with fine tuned system pa-
rameters which are configured using trial and error. It difficult to evaluate the actual effectiveness
of these technique mainly because it attempts to solve the scheduling and assignment problems
intermittently. In contrast our approach attempts to solve the assignment problem first.

The most well known solutions to the assignment problem are greedy and hierarchical parti-
tioning algorithms which assign the instructions before the scheduling phase in the compiler. The
bottom-up greedy, or BUG algorithm [9] proceeds by recursing depth first along the data depen-
dence graph, assigning the critical paths first. It assigns each instruction to a processor based
on estimates of when the instruction and its predecessors can complete execution at the earliest.
These values are computed using the resource requirement information for each instruction. The
algorithm queries this information before and after the assignment to effectively assign instructions
to the available processors. This technique works well for simple graphs, but as the graphs become
more complex the local nature of the greedy algorithm directs it to make decisions that negatively
affect future decisions.

Chu et al. [6] describe a region-based hierarchical operation partitioning algorithm (RHOP),
which is also a pre-scheduling method to partition operations on multiple processors. In order
to produce a partition that can result in an efficient schedule, RHOP uses schedule estimates
and a multilevel graph partitioner to generate cluster assignments. This approach partitions a
data dependence graph based on weighted nodes and edges. The algorithm uses a heuristic to
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assigns weights to the nodes to reflect their resource usage and to the edges to reflect the cost of
inter-processor communication in case the two nodes connected by an edge are assigned to different
processors. In the partitioning phase, nodes are grouped together by two processes called coarsening
and refinement [10, 11]. Coarsening uses edge weights to group together operations by iteratively
pairing them into larger groups while targeting the high weighted edges first. The coarsening phase
ends when the number of groups is equal to the number of desired processors for the machine.
The refinement phase improves the partition produced by the coarsening phase by moving nodes
from one partition to another. The goal of this phase is to improve the balance between partitions
while minimizing the overall communication cost. The moves are considered feasible if there is
an improvement in the gain from added parallelism minus the cost of additional inter-processor
communications. The algorithm has been implemented in the Trimaran framework. Subsequent
work from the same group has attempted to partition data over multicore architectures with a more
complex memory hierarchy [7, 8].

6 Discussion and Analysis

The evaluation of the given approach approach as well as previous approaches show that, in gen-
eral there is a relative slowdown due to partitioning. The reason is that cross-block edges are
not accounted for when local partitioning decisions are made on basic blocks and hyper blocks.
Cross-block edges are ones that represent data dependencies crossing block boundaries. These are
essentially ignored when partitioning decisions are made. Considering these edges during the par-
titioning phase amounts to a global partitioning technique which is significantly harder than the
problem considered in this paper. On the other hand it would yield better results, even if the
cross-block edges are considered within the heuristic to guide the partitioning algorithm.

The above observation also entails that a localized approach would also affect the optimal par-
titioning of basic blocks and hyper blocks. This means that even if we find the optimal assignments
for the code blocks, the resultant speedups may be less than the heuristic ones.

On another note, further tuning of the critical path heuristic may improve its performance.
There are several parameters which can be modified within the merge operations to increase the
effectiveness of the algorithm.

7 Conclusions and Future Work

This paper describes a heuristic instruction assignment technique based on the assumption of non-
parallelizability of the critical path. The algorithm partitions the directed acyclic data dependence
graph representing a basic block or a hyper block of code. The algorithm is much simpler than
its previous counterparts and much easier to implement. It uses schedule length estimates and
flexibility within partitions in order to make merge decisions. The decisions are not localized but
rather considers the region as a whole and converges to a solution by iteratively merging the most
non-parallelizable partitions first.

The given approach has been evaluated and compared against two popular algorithms, the first
being a greedy approach named BUG and the second being the hierarchical partitioning approach
namely RHOP. Performance comparison reveals that on average the heuristic performs similar to
previous algorithms for both two and four core machines. The key observation is that, in most
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cases, speedups do not scale with increasing number of cores but the techniques work better with
larger blocks compared to smaller ones.

As future work, the heuristic can be tuned further for better partitioning. In an orthogonal
effort, optimal partitioning can be explored which is not restricted by the critical path.
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