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ABSTRACT 
Massively distributed applications require the integration of heterogeneous data from multiple sources. Peer-to-peer (P2P) is one possible 
network model for these distributed applications and among P2P architectures, distributed hash table (DHT) is well known for its routing 
performance guarantees. Under a general distributed relational data model, join query operator, an essential component to integrate data 
from multiple relational tables in centralized DBMS, can be realized over DHT to support data integration tasks in P2P networks.  

In this paper, we propose an efficient and adaptive index-based join query operator over DHTs. With attribute-value storage approach, we 
build decentralized join indices over DHT, facilitating join query processing with reduced bandwidth consumption. Join index information 
regarding each join query operator is maintained across multiple indexing peers via an adaptive scheme based on peer capacities, 
alleviating load-balancing problem. Moreover, we develop an algorithm to access distributed indices with proven performance guarantees. 
Based on the join indices, a semi-join-alike approach is exploited to handle join query processing at indexing peers concurrently, 
effectively realizing intra-operator parallelism and decreasing query processing latency. Through theoretic analysis and extensive 
simulation, we demonstrate the effectiveness and efficiency of our approach. 

1. INTRODUCTION 
In modern massively distributed networks, data normally originate from multiple sources and their integration for large-scale sharing is an 
important issue. For instance, emerging mashup Web services such as Chicago Crime Map1 and NaviTraveller2 join their Web service 
data with the geographic data obtained from GoogleMaps3 to support enhanced services. Such data integration tasks are also essential for 
peer-to-peer (P2P) networks, which is one possible model for modern distributed applications.  

P2P systems adopt a completely decentralized approach to data sharing and thus can scale to a very large number of data and users. Initial 
research on P2P systems has focused on improving the performance of query routing in unstructured systems, such as Gnutella4 and 
KaZaa5, which rely on flooding mechanism. In contrast, this work led to structured systems based on distributed hash tables (DHT), e.g. 
CAN [19] and Chord [21], which provide an efficient solution for data location and lookup in large-scale networks. While there are 
significant implementation differences between DHTs, they all map a given key onto a peer p using a hash function and can look up p 
efficiently, usually in O(log N) routing hops where N is the number of peers in the network. DHTs typically provide two basic operations 
[21]: put(key, data) stores a pair (key, data) in the DHT using certain hash function; get(key) retrieves the data associated with key in the 
DHT. These operations support exact-matching queries only. Recently, much work has been devoted to supporting more complex queries 
in DHTs such as range queries [11], top-k queries [2] and join queries [11]. However, much more effort is needed to develop efficient 
solutions for complex queries, in particular for join queries, which are crucial for data integration in large scale systems. 

The following example demonstrates the use of join queries in P2P data integration. Consider a P2P publication/subscription (pub/sub) 
system [1, 3] over distributed video data. Each peer may act as a publisher that shares home-made video or as a subscriber that intends to 
browse the video data of others. Suppose that subscribers declare their preferences via attribute “pref”, and publishers mark up their video 
data with semantic categorizations, denoted by attribute “cat”. Once the semantic categorization of certain data hosted on a publisher peer 
matches the preference of a subscriber peer, the latter will maintain the physical address of the former for subsequent data fetching 
purpose. P2P networks are usually dynamic and peers may join and leave the network arbitrarily: leaving publishers may become 
unavailable such that the data published at these peers are lost; conversely, peers joining the network may become publishers that share 
new data. In addition to network churn, publishers may change their semantic categorizations while subscribers may also update their 
preferences. All these behaviors may invalidate the current subscriptions. Thus peers should periodically update their subscriptions to 
improve user experiences and system performance. Conceptually, denote by S the logical relation that covers all the tuples on subscriber 
information while denote by P the logical relation that unions the tuples of publisher information. Then the subscription updating process 
                                                                 
1 http: //www.chicagocrime.org 
2 http://www.navitraveller.com 
3 http://maps.google.com 
4 http://www.gnutella.com 
5 http://www.kazaa.com 
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is equivalent to the running of the following join query, where ipAddr denotes the physical address of the publisher peers. Note that, in this 
example, the join query operation is enforced only over the metadata rather than actual video data.  

SELECT S.ipAddr, P.ipAddr, S.pref 

FROM   S, P 

 WHERE  S.pref = P.cat 

In the context of PIER system [11], hash-join-based approaches have been proposed in order to support join queries over DHT. However, a 
major problem of these approaches is that, to evaluate each query all tuples of any relevant relations need to be re-hashed and be stored 
again in the DHT, which incurs very high bandwidth cost.  

Realizing that data indexing has effectively facilitated query processing with reduced processing overhead in centralized data management 
systems, in this work we explore how to apply indexing techniques for join query processing in DHTs. There are several issues which we 
need to handle such as: (1) which information to employ as join query processing indices; (2) which peers maintain the join index, and 
how the other peers can access the index without using centralized catalogs; (3) how to adapt the part of the index maintained by a peer to 
its storage capacity, to avoid overloading of the peers; and (4) how to develop algorithms that efficiently evaluate join queries in DHTs by 
exploiting the available indices.  

In this work, we tackle these issues, and propose a novel index-based approach that efficiently deals with the evaluation of join queries in 
DHTs. Our main contributions are as follows.  

• We first propose a new mechanism for index construction in DHTs. The indices are distributed across multiple peers in the DHT. Our 
index construction mechanism takes into account the load balancing issues, and adjusts dynamically the number of indexing peers 
(i.e. those peers that maintain the index) based on their capacity. Moreover, the proposed mechanism guarantees efficient retrieval of 
the index information for query processing purpose.  

• We propose an effective join query processing approach to process join queries over DHTs. Based on distributed semi-join 
mechanism, the approach can process join queries efficiently, especially favoring bandwidth consumption.  

• Through rigorous analysis and extensive simulations, we show that the proposed approach is both effective and efficient for 
distributed join query processing in DHTs.  The performance evaluation results, which we obtained by using TPC-H benchmark, 
show that our index-based approach outperforms the PIER’s approaches [11] by factors of 4 and 2.5 in terms of bandwidth cost and 
query processing latency respectively.  

The organization of the remainder of the paper is as follows. We review related work in Section 2. The problem is more formally 
addressed in Section 3. The construction of the distributed join index is detailed in Section 4. Section 5 discusses index-based join query 
processing. We introduce an adaptive dynamic partitioning scheme to maintain indexing peers and detail an algorithm for efficient index 
access in Section 6. Performance evaluation results are presented in Section 7 and the paper is concluded in Section 8. 

2. RELATED WORK 
Various distributed join query processing schemes have been developed in distributed DBMS [15]. For example, a semi-join approach has 
been proposed under client-server settings [7]. Its variant Bloom join has also been developed [5, 24]. These schemes depend on catalogs 
that can provide data placement information of all data sources, which is hard to obtain in purely decentralized P2P networks (especially 
under high network churn). Recently, mutant query processing approach has been proposed to handle join queries in P2P networks [16], 
which propagates specific query plans among peers and conducts partial query processing at each peer. The approach assumes that data 
placement information is explicitly specified through URL, but does not address how to obtain such information. Similarly, a join query 
processing scheme has been proposed in AmbientDB system [10], where each peer keeps the data placement information of all other peers, 
which is only suitable for small-scale networks such as home entertainment network system. Recently, self-join query operation has been 
studied in P2P networks [18]. However, we are interested in the more general equi-join query operations over multiple join attributes. 

The problem of decentralized data integration over P2P networks has been studied in literature [12, 25], focusing on homogeneous data 
under a common schema. In contrast, we consider distributed data with heterogeneous schema. There are also systems that deal with the 
integration of heterogeneous data in P2P networks [4], which solve the problem from schema-mapping perspective. In contrast, we address 
how peers conduct join query processing efficiently over distributed data under heterogeneous schema. 

In [13], complex query processing in DHTs has been studied, especially range and k-nearest-neighbor queries. The authors also discussed 
the possibility of processing multi-way join queries. In contrast, this work exclusively discusses join query processing and develops a 
novel index-based strategy to facilitate the query processing.  

Distributed hash join approach and its variants over P2P networks have been proposed in PIER system [11]. These approaches are built 
over a DHT routing infrastructure. Oblivious to data distribution information over join attributes, peers ship all tuples (or their reduced 
forms such as Bloom-filters) to remote peers, irrespective of whether they produce final query results, potentially incurring non-trivial 
communication cost. Our approach solves this problem by building distributed join indices to facilitate query processing with substantially 
reduced bandwidth consumption. 
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Partition-based join query processing techniques have been widely used in distributed DBMSs [15, 9]. In P2P literature, Triantafillou et al. 
[23] have employed ``range guards" to handle join queries in parallel over the data that satisfy the corresponding range constraints, which 
is similar to the main idea that we propose here. However, ``range guards" replicate complete tuples instead of building compact indices as 
in our approach.  

3. PROBLEM DEFINITION 
In this work, we assume relational data. Multiple relations are managed by peers in a decentralized fashion: each peer hosts a set of tuples 
that belong to one or more relation. The relation here can be either physical or logical, depending on the interpretation of different 
scenarios. For example, in P2P database management systems, a large relational table may be horizontally fragmented among multiple 
peers in a top-down fashion; thus a physical global relation exists. Instead, tuples may be generated by each peer independently (e.g., in a 
P2P pub/sub system) and a union of all the tuples in the network constitutes a logical relation from a global perspective. The approach 
proposed in this work does not distinguish physical relation from logical relation, which enhances its viability in various scenarios.  

We assume that certain knowledge of join attributes is known by peers, either through a-prior information over data schema (e.g., foreign 
key constraints) or being abstracted from upcoming query load. For instance, when a foreign key constraint is defined, it is probable that 
this key will potentially be used as a join attribute in join queries, so that we will build indices over it. Instead, when query load 
information is known in advance, join attributes can be directly extracted from the query statements. Join attribute information may be 
populated to each peer during the time it joins the overlay network. Alternatively, such information can be propagated to all peers through 
multicast, as employed in the PIER system [11].  

Equi-join queries with multiple attributes are considered in this work. Following common practice, our approach focuses on exact join 
query processing with respect to “static snapshot” [6], which ignores the manipulation of query results (e.g., data insertion or deletion) 
during query processing. 

Generally, denote by pi an arbitrary peer in the network. For simplicity, we assume that pi hosts a horizontal fragment Fi,j ∈ Rj, where Rj 
denotes the jth physical (or logical) relation. Then a join query can be represented as , which is equivalent to  

, where α
......

21 21 iRRR
iααα ><><><

)...(...)()( ,,2,1 21 jijj FFF
i
U><><U><U ααα

i denotes join attribute. Since the tuples belonging to each relation Ri may be distributed across 

multiple peers, queries and data need to be routed across different peers for data integration purposes.  

Since DHT has been widely used in existing systems and it provides proven routing performance guarantees on query and data shipping, 
we consider it as the underlying routing protocol in this work. In comparison to the approaches studied in the literature, the approach 
developed in this work is novel in using join index information to facilitate query processing (Section 4) and an adaptive and load-balanced 
approach to manage the and access indexing peers (Section 6).  

4. DISTRIBUTED INDEX CONSTRUCTION OVER DHTs 
To facilitate join query processing, join index information is deployed on peers via DHT data placement protocol. Due to the scalability 
guarantees of DHT, the lookup of indexing peers can be conducted efficiently, usually logarithmic to the network size (e.g., via Chord 
routing protocol [21]).  

We employ attribute-value storage technique that has been developed in [2]. Attribute-value storage stores individually the attributes that 
may appear in the equality predicate of an equi-join query. Thus, like database secondary indices, attribute-value storage allows checking 
for the existence of tuples using attribute values. Our attribute-value storage method has two important properties: (1) after retrieving an 
attribute value from the DHT, peers can retrieve easily the corresponding tuple of the attribute value; and (2) attribute values that are 
relatively “close” are stored at the same peer. To satisfy the first property, the key used for storing the entire tuple, referred to as tuple 
storage key, is stored along with the attribute value. The second property is satisfied by using the concept of domain partitioning as 
follows. Consider an attribute α and let Dα be its domain of values. Assume there is a total order relation < on Dα, (e.g., Dα is numeric, 
string, date, etc.) Dα is partitioned into n nonempty sub-domains d1, d2, …, dn such that their union is equal to Dα, all sub-domains are 
disjoint so that the intersection of any two different sub-domains is empty, and for each v1 ∈ di and v2 ∈ dj, if i<j, we have v1<v2. 

Given a value v, the sub-domain to which v belongs is denoted by sd(a, v), and the lower bound value of the corresponding sub-domain is 
denoted by lb(sd(a,v)). Since the range definition of a domain is subject to change, our approach does not require the number of sub-
domains of an attribute to be consistently known by all peers in all the time.  In contrast, the lower-bound of the domain is normally stable. 
Thus we assume that all peers cache this lower bound and employ it to explore other index information via the index access algorithm 
detailed in Section 6 shortly.  

Specifically, given an attribute α of relation R and an attribute value v in a tuple t ∈ R, any peer can locally compute sd(α, v). The key used 
for storing an attribute value in the DHT is constructed as follows. Denote by h(lb(sd(α, v))) the key for storing v in the DHT. Thus, the 
attribute values that belong to the same sub-domain are stored with the same key at the same peer. The values of the attributes that are 
involved in attribute-value storage are stored twice in the DHT (i.e., once at the source peer and the other at the indexing peer). Although 
this introduces potential data consistency issue, the redundancy is constrained and it is beneficial to join query processing because join 
index information is fully captured by the indexing peers.  
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Each peer issues the attribute-value storage process independently. For clarity, such a process (regarding any peer p with a relation 
partition Rt) is sketched in Figure 1. Note that, before the attribute-value storage process, each peer checks the join attribute names and 
generate a combination join attribute name if the relevant partner tables use different attribute names. For example, the join query 
operation may be imposed over different attribute names such as S.α and R.β. However, it is direct to concatenate them to produce an 
identical but unique join attribute name, e.g., “α_β”, so that the index information over this join operator from different partner tables is 
guaranteed to be shipped to the same (indexing) peer. 

Algorithm attribute_value_store (Rt, α, sd) 
Begin 
  // allocate tuples into sub-domains 

  For each tuple t∈ Rt  Do Begin 
    Let v be the projected value of t over α; 
    //correspond (α,v) to sub-domains through a map SB 
    SB[lb(sd(v))].insert(v); 

END; 
// store attributes on indexing peers 
Generate a combination join attribute name “A”; 

For each sb∈ SB Do Begin 
  Compute the hash id hash(“A”+lb(sd(v))); // concatenation 
  Locate the peer p’ that is responsible for the hash id via DHT; 
  Send attribute value of sb and the tuple storage key of  
the corresponding tuple to p’ directly;   

  End; 
End; 

    Figure 1. Attribute-value Storage 

At the indexing peer, the join attribute value information of each partner table is maintained separately, so that they can be retrieved and 
updated independently. As illustrated in Figure 2, the original data distribution is shown in Figure 2(a), where each entry corresponds to 
one tuple. The layout of join index information over R.α and S.β is presented in Figure 2(b). Tuple storage keys are attached with each 
indexing entry, which are omitted from the figure for simplicity. Note that, the tuples on a specific peer may contain join attribute values 
that belong to multiple sub-domains. For example, peer p1 makes attribute-value storage at indexing peers p4 and p11. However, data 
locality is taken into consideration and all the attribute values that belong to the same sub-domain will correspond to the same indexing 
peer. This is significantly different from the hash-join-based approaches in that, in hash join approach each distinct value is potentially re-
hashed to a distinguished peer in DHT. 

 
(a) indices on indexing peers   (b) data distribution 

                 Figure 2. Attribute-value Storage 
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Without loss of generality, peers are shown to interconnect via a ring topology, although other topologies (e.g., torus, hyper-cube and 
others) can be directly employed in DHTs. Also for simplicity, the long-range links that are usually established in DHTs for faster routing 
are omitted from the figure.  

Since attribute values are replicated, consistency management needs to be enforced when original attribute values are updated at source 
peers. For simplicity, we do not allow indexing peers to change attribute values. Depending on applications, the consistency can be 
maintained in proactive or lazy fashion: in a proactive fashion, any data updates are immediately shipped and reflected at indexing peers, 
while in a lazy fashion, data updates can be buffered for each specific sub-domain such that the updates are materialized periodically at the 
indexing peers in a batch. Since each join attribute value is replicated at exactly one indexing peer, it takes O(logN) routing hops ( where N 
is network size) to ship the updated value to the responsible indexing peer for maintenance. Thus, the maintenance overhead is not 
significant for those applications that does not change attribute values frequently.  

5. INDEX-BASED JOIN QUERY PROCESSING 

5.1 Join Query Processing 
Given a query q, it will be executed concurrently at all the indexing peers that store the join attribute values. Since only join-attribute 
values are maintained at these peers, our approach is similar to semi-join approach that has been developed in the literature [7]. However, a 
difference from the classic semi-join approach is that an attribute-value storage process is initially executed such that, for certain join 
query operators (i.e., the first join query operator), all the join attribute value information is already  stored at indexing peers; thus a phase 
to fetch join attribute values from one partner table for semi-join is unnecessary. We will first address how to handle two-way join queries 
that contain exactly one join attribute, and then extend the discussion to multi-way join queries that involve more than one join attributes.  

Given a join query q that includes exactly one join attribute α, q is first propagated to all the indexing peers that host the join index 
information over α. This is easily realized via DHT routing protocol. Then the indexing peers scan the local join indices concurrently and 
figure out those attribute values that are contained by both partner relational tables. Denote by JS the set of these attribute values. Since the 
tuples from the partner relational tables join with each other only when their projected values over the join attributes are identical, all those 
attribute values that do not belong to JS will be pruned from subsequent join query processing without affecting the completeness of the 
query results.  For each value belonging to JS, the corresponding tuple storage key is obtained form the local join index and the indexing 

peer fetches the original relational tuples from peers via DHT to produce the final results.  

Algorithm semi_join(α) 
BEGIN 

  Compute the intersection set JS from the join index over α; 

  FOR each v ∈ JS Do Begin 
Retrieve the tuple hash ids corresponding to v for both partner tables; 
Fetch the original tuples and execute join query operation over the  tuples; 

  END; 
END; 

Figure 3. Semi-join Query Processing over Attribute α 

Conceptually, without joining the original tuples together, the projected values of the tuples over join attributes are joined first to remove 
unnecessary tuples from subsequent processing; then the remaining tuples are fetched to produce the join query results. Since all indexing 
peers obtain the query statements, it is straightforward for them to fetch only the projection of the original tuples over the output attributes 
declared by the SELECT clause in the query statement, saving bandwidth cost. For clarity, the semi-join query processing over a specific 
join attribute α is illustrated in Figure 3.  

When the join query contains one join attribute, once an indexing peer completes producing the query results, it simply ships them to the 
query issuer. A union of all query results will produce the final complete query processing results, which will be proved shortly in Section 
5.2.  

Instead, consider multi-way join queries that involve more than one join attributes, denoted by A={α1, α2, …, αn}. After the completion of 
any join attribute αi (i∈[1, n)), an intermediate relation is produced at each indexing peer after the semi-join process (presented in Figure 
3). If non-empty, the intermediate relation is expected to contain the projected values (of the fetched tuples) over all the attributes that will 
be involved in the subsequent join query processing, including the remaining join attributes and the output attributes. Denote by Ii the set 
of indexing peers over αi. Each indexing peer belonging to Ii then ships (via DHT) the intermediate tuples to those indexing peers (denoted 
by set Ii+1) that are responsible for the sub-domains over the next join attribute αi+1 , where the indexing peers belonging to Ii+1 maintain 
temporary indices over αi+1. By treating the temporary relation as a partner table that is distributed across the indexing peers belonging to 
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Ii, the temporary index can be built to facilitate the semi-join operation for αi+1. Such semi-join-alike process iterates until all the join 
attributes are processed. When the processing of the final join attribute αn completes, the relevant indexing peers simply ship the results to 
the query issuer, which aggregates them as the final query results. The general process of join query processing over a set (A) of join 
attributes is sketched in Figure 4. 

It is obvious that the processing order of join query operators may decide the size of intermediate relations, thus significantly affecting the 
query processing performance (e.g., bandwidth cost). Recall that each indexing peer maintains the join attribute values of the 
corresponding sub-domain. It is straightforward that the cardinality of any partner relational table over each sub-domain can be computed 
locally. Then the overall cardinality of relation can be computed by aggregating the cardinalities over the sub-domains. The compact 
cardinality information is propagated among all indexing peers. For communication among indexing peers, they can invoke index access 
process (see Section 6 for the algorithm) that crosses the whole domain, so that all indexing peers will be notified of the cardinality 
information. The obtained physical addresses can then be cached for the subsequent communication in this query processing session.  

Once the overall cardinality of a relation regarding a join attribute is obtained, each indexing peer computes the order of the join attributes 
when available through standard join selectivity computation strategies that have been established in the literature [14]. Since all indexing 
peers obtain consistent cardinality information, they are able to conduct the sorting of the join query operators uniformly without requiring 
further communications among them. 

Algorithm join_query_processing(A) 
Begin  

FOR each attribute αi ∈A Do BEGIN 
  invoke semi_join(αi); 
  IF α is the last join query attribute to process THEN BEGIN 
    All indexing peers return the produced relations to the query issuer; 
  ELSE 
    All indexing peers ship the projected values over αi to the indexing peers (X ) responsible for αi+1 ;   
    Each indexing peer in X invokes semi_join(αi+1) recursively; 
  END; 

  END; 
END; 

Figure 4. Join Query Processing 

5.2 Correctness Guarantee 
The join query processing is initiated at the indexing peers, and for two-way join query, it is obvious that the results that aggregate those 
produced by the indexing peers are complete.  

For multi-way join queries involving more than one join attributes, each indexing peer forwards the tuples belonging to intermediate 
relations independently to the indexing peers relevant to the subsequent join query attributes. It is needed to check whether such process 
fulfills the correctness guarantee, as required by the “exact join query processing semantics” introduced in Section 3.  

Since the join index over each distinct join attribute is built independently, the overall join attribute space can be treated as being divided 
among multiple indexing peers such that each indexing peer is affiliated with the sub-domain partitions over the corresponding join 
attributes. Conceptually, the whole join attribute space can be modeled as a multi-dimensional space, with each dimension corresponding 
to one join attribute. For example, as illustrated in Figure 5, a three-way join query involving two join attributes (e.g., α1 and α2) 
corresponds to a two-dimensional space with multiple partitions (over the domains Dα1 and Dα2) involving different indexing peers (i.e., 
p1, p2, p3, and p4).  Specifically, Figure 5 (a) shows the data distribution of the join attribute values at these indexing peers while Figure 5 
(b) shows the indexing peers that are potentially involved in the join query processing over each partition.  
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                     (a) data distribution                          (b) space partitions 

     Figure 5. Join Attribute Space 

Since each indexing peer hosts a sub-domain over a specific join attribute, a partition of the overall space will contain all the indexing 
peers that are involved in the contribution of the final query results over that partition. Now we prove that, a union of the results over all 
partitions constitutes complete final results for multi-way join queries. 

Theorem 1. The union of query results obtained over all partitions produces complete join query results. 

Proof. Without loss of generality, consider an l-way join query  with join attributes, denoted by α
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6. DYNAMIC AND ADAPTIVE INDEX CONSTRUCTION 
To construct the distributed index over the DHT, in the previous sections we assumed that the domain of each attribute is partitioned by 
system designers. We also assumed that all peers are aware of the details of this partitioning such that they can directly send join attribute 
values to the indexing peers responsible for the corresponding sub-domains. In this section, we relax these assumptions by proposing a 
distributed indexing mechanism that dynamically and gradually partitions the attribute domain. The partitioning adapts to the capacity of 
peers that maintain the distributed index, and the peers are not required to have accurate knowledge about the partitioning at the moment 
that they join the system. We will focus on storage capacity for index information, although the scheme can be extended over other 
capacities such as the network bandwidth, local processing power and so on. Our mechanism provides proven performance guarantees for 
accessing a given value in the distributed index. 

6.1 Indexing Mechanism 
Our dynamic indexing mechanism works as follows. To index the values of each attribute α, there is a set of peers that maintain the index 
on α. This set is denoted by IMα, referred to as the set of α's index maintainers. Each peer p∈ IMα has a sub-domain of α, and is 
responsible for indexing the values that belong to the sub-domain. Initially, there is only one peer involved in IMα. That peer is denoted by 
p0, and called the first index maintainer. Thus, initially we have IMα = {p0}. For determining p0 we use a hash function h, and apply it on 
the identification of attribute α. Formally, p0 is the peer that is responsible for the key k=h(α) in the DHT. Initially, the sub-domain of p0 is 
equal to the domain of α. However, by increasing the number of indexed data, the sub-domain of p0 and that of other index maintainers can 
be split as follows. Let p∈ IMα be an index maintainer peer, and cp be the maximum space capacity of p for maintaining the α’s index data. 
When the amount of the α's index data gets higher than cp, the peer p partitions the domain of α into t sub-domains, keeps one of them for 
it self and find a responsible for the other sub-domains as follows. Let [v0 .. ve] be the sub-domain for which p is responsible, then the t new 
sub-domains are denoted by [v0  .. v1 + λ1), [v1 + λ1 .. v2 + λ2), [v2 + λ2 .. v3 + λ3), …, [vt-1 + λt-1 .. ve). The values v1, v2, .., vt-1 depend on 
the partitioning strategy. For instance, if the sub-domain is partitioned into equi-sized sub-domains, then we have vi = v0 + i∗(( ve - v0) / t), 
where 1≤ i ≤ t-1. The numbers λ1, λ2, …, λt-1 are small randomly generated numbers that are used for locating appropriate peers that are 
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responsible for the sub-domains as follows. Let [vi + λi .. vi+1 + λi+1) be one of the t new sub-domains, then the responsible for this sub-
domain must the peer q that is responsible for the key k=h(vi + λi) in the DHT, i.e., we apply the hash function on the lower bound of the 
sub-domain. If the capacity of q is not adequate for maintaining the index data which belong to [vi + λi .. vi+1 + λi+1) then p generates 
another random value for λi. It continues until finding a λi such that the peer that is responsible for the key k=h(vi + λi) has adequate 
capacity to maintain the index data that belongs to the sub-domain [vi + λi .. vi+1 + λi+1). Then, p finds the peer that is responsible for k by 
performing a lookup in the DHT, and sends to it the sub-domain [vi + λi .. vi+1 + λi+1) and its corresponding index data.  

To partition a sub-domain, index maintainers use a strategy that uniformly partitions the sub-domain (i.e. the probability that a randomly 
chosen value falls in each of the t new sub-domains is the same for all of them). For this, index maintainers use histogram information that 
describes the distribution of attribute values. This information is provided by peers that own the attribute values, and is sent to an index 
maintainer before sending the attribute values to it. After each sub-domain partitioning, the index maintainer transfers the histogram 
information to the peers which are responsible for the new sub-domains. 

For clarity, Figure 6 shows the algorithm of indexing an attribute value in the DHT using our dynamic indexing mechanism. 

6.2 Accessing Data in Distributed Index 
Given a value v and an attributeα, accessing v in the index of α means to find the address of the peer who is responsible for the sub-domain 
to which v belongs. Let us now describe our algorithm for accessing values in the indices. Let α be an indexed attribute. Each peer p has 
some local information about the sub-domains of α. However, this information may be out of date. Formally, at p there is a set Sp,α of 
couples (q, [vi .. vj]) such that each [vi .. vj] is considered by p as one of the  of α’s sub-domains, and q is the address of the peer that p 
knows as the responsible for [vi .. vj]. Initially, when p joins to the DHT, it has no information about the sub-domains of α, thus Sp,α = Φ. 
After each access to α's index, p obtains new information about the sub-domains of α and improves Sp,α. To access a value v in the α's 
index,  p performs as follows. If Sp,α≠ Φ, then p searches in Sp,α and chooses the smallest sub-domain to which v belongs, as well as the 

peer that is responsible for the sub-domain, say q0. Otherwise, if Sp,α= Φ, p generates a key k=h(α) and sets q0 to be the peer that is  

Algorithm Index_Value (v, p, q) 
// This algorithm Indices at peer p the value v which is owned by peer q; 
Begin  
   Let Dp be the set of index data stored at p; 
   Let cp be the space capacity of p; 
   Dp = Dp + {(v, q)}; 
   If sizeOf(Dp) ≤ cp then return; 
   Else Begin 

 Let sd be the sub-domain for which p is responsible; 
 Partition sd into t  sub-domains sd1, sd2, …, sdt, and find t-1 peers to  
     be responsible for sd2, …, sdt;  
 For i=2  to  t  Do Begin 
    Remove from Dp all couples (v’, q’) such that v’∈sdi

    Send the removed couples to the peer that is responsible for sdi; 
 End; 
 Return partitioning information to q;   

   End; 
End; 

Figure 6. Indexing an Attribute Value in the DHT 

responsible for k in the DHT (i.e., q0 is set to the first index maintainer). After determining q0, the peer p sends a message to it and asks it 
about the sub-domain to which v belongs, say sd(v). If q0 is still the responsible for sd(v), it returns the address of itself to p. Otherwise, i.e. 
if q0 has partitioned its sub-domain, it forwards p’s request to the peer, say q1, which q0  knows as the responsible for sd(v). Similarly, if q1 
has partitioned its sub-domain and the value v does not belong to the sub-domain maintained by q1, it forwards the request to the peer that 
it knows as the responsible for the requested sub-domain. This forwarding continues until the p's request reaches to the peer qu that is 
responsible for the sub-domain to which v belongs. The peers, which are over the path from q0 to qu, attach their information about sub-
domains (involving the sub-domains and the peers which are responsible for them) to the message that is forwarded to qu. The peer qu 
returns this information to p as well as the address itself. The sent information is exploited by p in order to improve Sp,α.  

Assuming equal capacity for peers, the following lemma shows an upper bound on the number of hops for accessing a value in the 
distributed index. 
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Lemma 1. Assume equal capacity for all peers and a uniform sub-domain partitioning, then the number of hops for accessing an attribute 
value in the distributed index is O(Log(n/c)) where c is the capacity of each peer and n is the total number of (distinct) attribute values. 

Proof. Let ⎪s⎪ be average space needed for indexing an attribute value, the total space needed for indexing all values is n∗⎪s⎪. The 
capacity of each peer is c, thus a peer p partitions its sub-domain only when the size of index data at p is higher than c. Since each sub-
domain is partitioned uniformly into t new sub-domains, the minimum amount of the index data which belongs to each created sub-domain 
is c/t. Therefore, the total number of created sub-domains for the attribute is less than or equal to m = (n∗⎪s⎪) / (c/t). For accessing a value 
in the distributed index, we need to find the sub-domain of the value (and the peer which is responsible for the sub-domain). In the worst 
case, we must search the requested sub-domain in a search space including m sub-domains (and m peers).  In the worst case, the search 
starts at the first indexer maintainer. The requester peer has no information about the partitions. Implied by uniform partitioning, at each 
hop the search space is divided by t. Thus, at most after (Logt (m)) hops, the size of search space becomes equal to 1. In other words, the 
algorithm of accessing a value in the distributed index is done in O(Logt ((n∗⎪s⎪∗ t) / (c))). Assuming ⎪s⎪ to be a constant, the algorithm is 
done in O(Logt (n/c) which is O(Log (n/c)). □ 

Without assuming equal capacity for peers, the following theorem shows that an upper bound on the on the number of hops to access a 
value in the distributed index. 

Theorem 2. Under uniform sub-domain partitioning scheme, the number of hops for accessing a value in the distributed index is 
O(Log(n/cmin)) where cmin is the minimum capacity of peers and n is the total number of attribute values. 

Proof. Let ⎪s⎪ be average space needed for indexing an attribute value, then it can be easily shown that the maximum number of created 
sub-domains for the attribute is (n∗⎪s⎪) / (cmin /t). Thus, In a similar way as in the proof of Lemma 1, we can show that the algorithm of 
accessing a value in the distributed index is done in O(Log(n/cmin)). 

7. PERFORMANCE EVALUATION 

7.1 Experimental Setting 
We employ the p2psim6 discrete event simulator to simulate P2P networks with up to 4000 peers. We generate a two-dimensional grid 
space of length 100 milliseconds (In this experiment, simulation time is used, without affecting the validity of the results) at each side, and 
distribute peers uniformly within the space. The data transferring latency between peers is estimated as the Euclidean-distance between the 
corresponding coordinates within the space. 

We use TPC-H benchmark7 to generate data load since it supplies multi-join queries. We run the benchmark data generator (i.e., dbgen) 
with scale factor set to 1, creating a database of eight relational tables. Given a join query, each peer randomly chooses a table from the 
database in the following way: (1) the schema of the chosen table includes the join attributes of the query; (2) each relational table T in the 
database is chosen randomly with a weighted probability proportional to the number (denoted by |T|) of tuples in T; (3) once a table (e.g., 
T) is chosen, the number of tuples to be obtained by each peer equals min{150, 0.1* |T|}; with respect to a network of 4000 peers, the 
overall number of tuples is 599,701 (With TPC-H, the total data volume in this simulation is over 76 MB, which is relatively small but 
does not affect the validity of the evaluation because each peer stores sufficient tuples and tuple size decides the overall data volume), 
which is sufficient to simulate the join query processing of various approaches; and (4) the obtained tuples by each peer follow the data 
distribution mechanisms to be described shortly. Although each peer hosts a horizontal fragment of a single table in this simulation, our 
approach can be easily extended to allow each peer managing data from multiple tables. 

To obtain tuples from a table, we consider both uniform random distribution and skewed distribution. Under the former distribution, each 
peer simply chooses tuples from the corresponding table by following uniform random distribution. However, in real applications such as 
location-aware distributed services, geographically proximate data are often clustered on peers; thus we also consider skewed data 
distribution: each peer chooses an initial tuple (uniform) randomly from its chosen table and obtains a specified number of nearest 
neighbors of the initial tuple (with respect to the join attributes) from the same table. 

We evaluate four join queries with up to four join attributes, as shown in Figure 7. The two-way and five-way join queries (i.e., Figure 
7(b)(d)) are transcribed from the queries supplied by the TPC-H benchmark, while the other three-way and four-way join queries (i.e., 
Figure 7(a)(c)) are manually created since they are not provided by the benchmark. We only consider low dimensionality in this work 
(e.g., d <= 4), which is sufficient for many practical applications. For example, location-aware services in mobile computing systems may 
require only a few join attributes (e.g., the longitude and latitude corresponding to locations). For higher dimensionality (e.g., tens or 
hundreds of features as in images and video), a feasible solution may be to use dimension-reduction techniques [17]. 

 

                                                                 
6 http://pdos.csail.mit.edu/p2psim/
7 http://www.tpc.org/tpch/ 
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         (a) q1         (b) q2 

 
       (c) q3        (d) q4                     

                   Figure 7. Join Queries 

For comparison purposes, as the baseline approaches we re-implemented the distributed hash join approach (proposed in the context of the 
PIER system [11]) and its variants including symmetric semi-join approach, and Bloom-filter-based semi-join approach. The design 
principles of these approaches are briefly described below. Briefly, regarding a specific join attribute, suppose that the number of distinct 
join attribute value equals to m. Since DHT employs perfect hashing functions such as SHA-18, each tuple is expected to correspond to a 
unique random id in the hash function space. Thus in the re-hashing process that is enforced by the hash join mechanism, each tuple with a 
distinct projected join attribute value is expected to consume a distinct DHT routing process that costs O(logN) messages, where N denotes 
network size. Thus on average, the number of messages of the re-hashing process is bounded by O(mlogN), linearly depending on data 
load size (m). Since in P2P networks, each peer is expected to share data (e.g., stimulated by protocols such as tit-for-tat strategies9) while 
P2P networks usually contain a large number of peers, the data volume tends to be huge, which may incur scalability problem regarding 
bandwidth cost (proportional to the number of messages) when hash-join approach is applied. More specifically, the hash-join approach 
and its variants are reviewed below. 

Hash-Join Approach. A join query Q is initially populated on all peers. Each peer p scans local tuples. If a local tuple t contains join 
attributes (e.g., α1, α2, ..., and αn), p will ship t via DHT to a (remote) peer p0 that is responsible for the hash id h(Concat(α1, v1, α2, v2, 
..., αn, vn)), where vi is the value of t over attribute αi (i ∈ [1, n]), “Concat” is a function that concatenates the components in sequence 
(i.e., α1, v1, α2, v2, ..., αn, vn), and h is the DHT hash function. The ordering of join attributes for concatenation is consistently 
predefined among all peers. Peer p0 then builds a hash table for each partner table over the join attributes. Thus hash join operation is 
conducted over all p0 peers independently and concurrently. 

Symmetric Semi-join Approach. This approach manages to reduce bandwidth consumption by applying semi-join approach. Each 
peer p initially conducts a projection operation of their tuples over join attributes. Then the projected values are re-hashed via the hash-
join approach described above. Then only those tuples that correspond to semi-join results are retrieved for producing final query 
results. This approach is close to the approach developed in this work. However, semi-join requires extra communication phases to 
complete the query processing, potentially incurring higher query processing latency. 
 
Bloom-Join Approach. This approach applies Bloom filter technique [8]. Each peer p initially sends a Bloom filter bf over all its 
tuples (involving join attribute values) and re-hashes bf to a (remote) peer, where all Bloom filters are aggregated for each involved 
relational table. The aggregated Bloom filter is multicast among the peers that host the tuples of the partner table, such that those tuples 
that never produce query results are pruned through Bloom filtering locally at each peer. Each peer then re-hashes the remaining tuples 
through the hash-join approach that is addressed above and the final results are returned to query issuer. The Bloom filtering may help 
eliminate unnecessary data shipping. However, the propagation of the Bloom filters itself may increase the bandwidth consumption. 
Thus the overall bandwidth cost may not necessarily be saved in practice, as demonstrated in the subsequent performance evaluation. 

We choose Chord protocol [21] as the underlying DHT-based routing mechanism, which is supplied by p2psim. Due to lack of data 
distribution information, the order of join attributes is randomly chosen and all join query operators are conducted in a non-blocking 
fashion. 

7.2 Query Processing Performance 
We evaluate bandwidth consumption and query execution latency (including both routing and local processing latency) under the uniform 
random and skewed data distribution schemes. Without loss of generality, we set the partition number over each join attribute dimension to 
be 3. This leads to 3 partitions for q1 and 81 partitions for q4, which is sufficient to test the behavior of our approach under a number of 
                                                                 
8 http://www.itl.nist.gov/fipspubs/fip180-1.htm 
9 http://www.bittorrent.org/bittorrentecon.pdf 
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data space partitions. The sensitivity of the query processing performance over other numbers of partitions will be addressed shortly. For 
presentation, in the following figures, we name our approach as ``index-based", the Bloom-filter-based semi-join approach as ``BF-semi", 
the semi-join approach as ``semi-join", and the distributed hash join approach as ``plain". 

The bandwidth consumption of join query processing is shown in Figure 8(a), which illustrates that our approach is more efficient than the 
baseline approaches. Figure 8(b) demonstrates the latency of the query processing including local processing cost. The results show that 
our approach take less time to complete due to the exploitation of parallelism and in-advance pruning of irrelevant peers from query 
processing. Without loss of generality, the latency of processing each tuple is assumed to be 1 millisecond and each peer processes all 
tuples sequentially. Experiments with other processing latency (e.g., 10 milliseconds per tuple) show similar results and we omit the details 
here for brevity.  
 
Similar experimental results are obtained under the skewed data distribution, as shown in Figure 8(c)(d). In comparison to the uniform 
random data distribution setting, both bandwidth and query processing latency of our approach are much lower because the data that are 
proximate over join attributes are clustered on a subset of peers in the network such that both the number of groups and the group 
cardinalities may be much smaller, potentially lowering query processing cost. 

7.3 Sensitivity Test 
When a different number of sub-domains are employed, the peer responsible for the corresponding sub-domain may execute different 
workloads. The query processing cost (i.e., bandwidth and latency) with 5000 peers with different sub-domain numbers under different 
data distributions is demonstrated in Figure 9.  

Specifically, the bandwidth costs are shown in Figure 9 (a)(c), which do not increase significantly with the growth of sub-domain number 
because the volume of data involved in the query processing does not change. The slight increase of the bandwidth is due to the routing 
overhead: when there are more sub-domains, peers are expected to contact with more indexing peers for attribute-value storage, potentially 
increasing bandwidth cost.  

Without loss of generality, we assume that the local processing cost is linearly proportional to the number of tuples that are involved in the 
local join query processing. The processing latency when the processing of each tuple takes 1 millisecond is shown in Figure 9(b)(d) under 
different data distributions. As shown in Figure 9(c)(e), similar results are obtained for the setting when the processing of each tuple takes 
10 milliseconds. Each peer processes all tuples sequentially so that the local processing latency is proportional to the number of tuples 
being processed.  

It is obvious that, under the uniform data distribution, the query processing latency tends to decrease with a larger number of sub-domains. 
The tradeoff is that, when the number of sub-domains increases, the maintenance overhead may increase correspondingly. However, under 
skewed data distribution, query processing latency increases when the sub-domain number grows. This is because, the latency consumed 
by the attribute-value storage process may increase when there are more sub-domains (each peer needs to ship tuples sequentially to more 
indexing peers), and the reduction of the query processing latency itself under skewed  data distribution does not cross off the increase of 
the latency incurred by the attribute-value storage. 
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            Figure 8. Performance Comparison 
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             Figure 9. Sensitivity Test 

7.4 Scalability Test 
We evaluate the bandwidth and processing latency per query with respect to increasing network size. Each peer in the network hosts data 
based on uniform data distribution and skewed data distribution respectively.  

The results (in Figure 10) show that, both the bandwidth and query processing latency do not increase dramatically when network size 
increases, which demonstrate the scalability of the proposed approach. It is noted that, under the skewed data distribution, the query 
processing latency of some queries (e.g., q2) may decrease when network increases. Since query processing latency may consist of both 
DHT routing latency and local computation latency, when peers that host indices are different, the DHT routing latency varies.  
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                Figure 10. Scalability Test 

8. CONCLUSION 
In massively distributed P2P networks, the integration of multiple data sources supports various applications. In this paper, we addressed 
the problem of join query processing in DHTs, and developed an effective approach to employ join index information to resolve join query 
processing in a purely decentralized fashion.  
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Through attribute-value storage approach, we deploy join index information over DHT, facilitating join query processing with reduced 
bandwidth consumption. Join index information is maintained across multiple peers via a dynamic partitioning scheme, which is 
guaranteed to be scalable. Moreover, the approach adjusts the number of indexing peers based on peer capacity, alleviating load-balancing 
and enhancing the adaptivity of the approach. The correctness of our approach regarding the join query results is proved and extensive 
simulation demonstrates the effectiveness and efficiency of our approach. Simulations regarding TPC-H benchmark join queries show that, 
our index-based approach outperforms the existing hash-join-based approaches [11] by factors of 4 and 2.5 in terms of bandwidth cost and 
query processing latency respectively.  

As mentioned, join index may also capture other information such as the correlation among join attribute values or functional dependency. 
Query optimization strategies that exploit such information may improve the join query processing performance even further, which will 
be explored in the future. Moreover, we intend to develop efficient index-based solutions for join query processing in unstructured P2P 
systems.  
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