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Abstract. Contact maps are two dimensional abstract representations
of protein structures. One of the uses of contact maps is for the identifica-
tion of patterns which correspond to some known configuration of protein
secondary structures. In the past, searching for these patterns has gener-
ally used a naive sliding window approach which is time consuming. We
study several approaches that have been used for two dimensional string
matching to accelerate the time requirements of these searching opera-
tions, and demonstrate experimentally the efficacy of these algorithms in
our domain. Finally, we present an adaptive analysis of the problem, by
restricting the search to only those regions of secondary structure that
we are interested in. The same searches as performed previously are ex-
ecuted again using the adaptive approach, and the improvements make
the search tractable.

1 Introduction

The motivation for this problem is protein structure prediction. Our long term
research goals are to add to the set of tools available for protein structure pre-
diction. The contact map is an abstract binary representation of the structure
of a protein; creating a contact map from a protein with known structure is
a lossy procedure. Our desire is to reverse this step and reconstruct the three
dimensional structure of the protein from this abstract representation. People
have attempted to recover the three dimensional structure of a protein from the
contact map in the past [VK97], but the success has been limited. We wish to
identify local substructures that can be identified and associated with represen-
tative patterns in contact maps. To accomplish this, we wish to search the known
body of protein structures to identify such patterns, but the cost of doing so is
prohibitive. The Protein Data Bank (PDB) contains over 30000 known protein
structures at present, so an exhaustive search becomes very time consuming.
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Thus, the nature of the problem is simple: we have a small rectangular binary
pattern which we wish to search for in a database of many large binary patterns.
This problem is well studied, and there are approaches which are optimal with
regard to worst case and expected case time performance [Ta96]. The faster
algorithms do provide some acceleration in our domain, although the gains are
not substantial. A significant improvement is acquired by exploiting additional
information available in our application and restricting the search to where the
pattern is likely to be found.

2 Protein Structure

In this section, we review some basic structural properties of proteins. The build-
ing blocks of proteins are amino acids, which bond together in a chain to form
the structure of the protein. The sequence of these structures is often referred to
as the primary structure, and it is easy to obtain for unknown proteins. These
amino acids also interact with other amino acids besides their immediate neigh-
bours. These interactions result in secondary structures, such as the alpha helices
that we are interested in. The prediction of secondary structure is well studied
(see Rost [Ro01] for a review). Finally, these secondary structures interact to
form the three-dimensional tertiary structure of the protein. This is the focus of
our study: the interaction between pairs of alpha helices. The prediction of the
tertiary structure of a protein from the amino acid sequence is one of the largest
open problems in computational biology.

3 Contact Maps

A contact map can be viewed as an abstract translational and rotational invari-
ant representation of a protein’s topology, which captures much of its relevant
structural information. A contact map is an N x N matrix, where NN is the num-
ber of amino acids in the given protein, and entry Cj; in the matrix is a boolean,
indicating whether amino acid 7 is in contact with amino acid j. A threshold dis-
tance between atoms is the conventional definition of a contact; values ranging
from 7 to 10A between C, atoms are commonly used [Fr06], p.26. It has been
shown that regions of contact maps can be used to identify physical properties
of pairs of alpha helices [FGO7]. In this case, we often need to search for a small
contact pattern (the target) within a large number of source contact maps, such
as the entirety of the Protein Data Bank (PDB). An example of a contact map
and a refined region corresponding to a pair of alpha helices is shown in Figure 1.
Notice that the source contact maps are always square, while the target map is
rarely square. This is because the source maps compares the position of every
amino acid to every other one, while the target map compares the positions of
amino acids in one alpha helix to those in another, and the two alpha helices
will rarely be the same length.

Currently, the prediction of contact maps from amino acid sequences is in its
early stages [PB02,PR05], but results are encouraging. For the purpose of our
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Fig. 1. (a) This is the contact map for protein 1a0a from the Protein Data Bank (PDB).
The red rectangle indicates the area occupied by two helices, shown in (b). The contact
map represents all of the amino acids for one alpha helix along the vertical axis and the
other along the horizontal. This has been further refined to the interface area, shown in
(c). The contact map interface is found by isolating the smallest rectangle containing
all of the contact points from the contact map for the helix pair.

research, it is assumed that the results of contact map prediction will be accurate
at some later stage. Our interest at present is to use an empirically determined
contact map to recover the original three-dimensional configuration of a pair of
alpha helices. This forms a phase in a hierarchical approach where these pairs
could assembled to derive the overall structure of the protein [GKDO6].

4 Searching Contact Maps

Consider the pattern shown in Figure 1(b), which corresponds to a pair of al-
pha helices. To locate pairs of alpha helices with similar properties, the naive
approach is to take this pattern and compare it with each possible position for
a match in the source contact map. This would usually be done with a sliding
window approach. Given a source contact map of size N x IV, and a target map
of size I x J, the running time of this approach is (N2 - I - J). There is a worst
case lower bound of #(N?) for this problem, since we desire an exact solution,
so the only savings possible are through the removal of the I and J factors.
These savings, while seemingly small next to the N2 term, become significant
when searching large numbers of source maps. This is the case in our application,
where we search the entirety of the PDB, consisting of over 30 000 files.

There are several well known efficient string matching algorithms for text,
but in our case we require two dimensional string matching. Bird [Bi77] and
Baker [Ba78] (BB) independently initiated this field of research 30 years ago,
and their ideas still form the foundation of recent approaches. We will look at
their approach first.



4.1 The Linear Time Algorithm

For our study, we examined the technique as outlined by Bird [Bi77]. The first
step involves searching for the rows of the target in the source pattern. He uses
an earlier technique created by Aho and Corasick [ACT5] for searching text
for a several different words simultaneously, which is in turn an extension of
the famous KMP string matching algorithm. We begin with the creation of a
finite state machine that models the transitions representing each row of our
target map. We will illustrate this with a series of examples. Consider the target
map shown in Figure 2(a). Now we create a trie that contains all of the rows
of the target map. We create the trie (referred to as the goto function in this
application [AC75]) by moving row by row down the target map, and the states
are labelled incrementally in the order that we encounter them. This trie is
shown in Figure 2(b). This is the conventional technique [BYR93]. The use of a
trie rather than a full finite state machine requires the definition of a separate
failure function. This failure function, along with the accepting states, are shown

in Table 1.
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Fig. 2. The trie generated from our contact map in Table 1. State O is the starting
state, and states 4, 6, 9, and 10 are accepting states.

Table 1. The failure and accepting functions for our contact map.

Node (4)[0]1[2[3[4[5[6]7[8[0[10
7@ |ojo[1[2[2[7[t[ofo[o
Ace(i) ]0]0]0]0{1]0]|1]|0]|0|1|1

Now that we have these functions, we can search the source file for this
pattern. However, the problem is only half solved, since we have found only a



row in this instance, but we still need to search for the other rows above and
below the one that we have identified to determine if we have a match. In order
to do this, Bird’s [Bi77] approach was another string matching problem, but now
we will be matching the columns of the target to the source. This involves an
approach again based on KMP string matching, except now we treat each row of
our target as a single symbol so that we can maintain linearity. Our contact map
would be represented as 12341, since rows 1 and 5 are the same. By maintaining
an array of size N, with each entry corresponding to a column in the source
contact map, we can track the value of the last row found in each position. If
we reach a position where in some column we find a match for row 5 in our
second string matching machine, then we know that we have found a match for
our target map.

This algorithm runs in O(N? + I - J) [Bi77], given a source contact map of
size N x N, and a target map of size I x J. The construction of the machinery
takes O(I - J) time, and then the actual search takes O(N?) time. Since there
are O(N?) elements to search in our source contact map, and N is greater than
I and J, this is a linear time algorithm in the size of the input. This improved
time does come at a slight extra space requirement for the extra array and the
machinery needed, O(N) and O(I - J) respectively, but again this is less than
the O(N?) space needed for the source data itself. This solution is worst case
optimal, but Baeza-Yates and Régnier [BYR93], among others, have provided
an algorithm that is sub-linear in the expected case.

4.2 Expected Sublinear Pattern Matching

As we stated earlier, since we need to look at every element in the source, any
optimal algorithm will run in (N?) time in the worst case. There are several
algorithms the run in sublinear expected time, however. The first was introduced
by Baeza-Yates and Régnier [BYR93]. The key insight in their approach is that
since we have a pattern with I rows, we really only need to search every I*" row
of the source for matches. If no target rows are found in row k of the source,
nor in row k + I of the source, then we know that the pattern will not be found
in the intervening rows, and they can be skipped. This algorithm is superlinear
in the worst case, O(N? - I), but the average case performance is O(N?/I + I?)
for randomized data. There are other expected sublinear algorithms, such as
that presented by Tarhio [Ta96], which is based on the ideas of the Boyer-Moore
[BM77] string matching algorithm which searches from right to left. However, the
practical performance gains of Tarhio’s algorithm over the others is marginal on
the problem sizes we are faced with [Ta96], so we use Baeza-Yates and Régnier’s
(BYR) approach as the representative for expected sublinear approaches in our
study. Furthermore, as we shall see, the advantages presented by these sublinear
approaches are virtually eliminated in our adaptive analysis due to the nature
of our data.



5 Adaptive Analysis of Contact Map Search

Adaptive analysis is a study of a problem where some properties of the source
data can be exploited to achieve both practical and theoretical gains in the
complexity of a problem. Perhaps the best known application of adaptive analysis
is sorting. Given some sequence of numbers that are to be sorted, it is clear
that some sequences are easier to sort than others. This concept leads to the
idea of measures of presortedness, which are metrics for quantifying how far
from being sorted a sequence is. There are many such measures for sorting,
such as the number of inversions, or the maximum distance that an element is
from the position that it will occupy in the sorted array. Estivill-Castro and
Wood [ECW92] provide a review of these measures as applied to sorting.

We wish to apply this type of analysis to the searching of contact maps,
and more specifically to the searching of contact maps related to pairs of alpha
helices. The insight here is clear: there is no point in searching an area of a source
contact map if the contacts do not correspond to alpha helices. For an empirically
defined contact map, we can obtain the secondary structure information using
DSSP [KS83]. Studies using predicted contact maps would use the predicted
secondary structure information [Ro01]. Thus, our source data for a protein is
an array of length IV containing the secondary structure for each amino acid,
and the V x N contact map. Given our target pattern of size I x J, we can now
walk along the array and identify regions corresponding to pairs of alpha helices
of size greater than I x J in time §(N). Finally, we restrict our search to these
regions, and the contact map can be searched in sublinear time. This adaptive
algorithm is presented in Algorithm 1.

Algorithm 1 is generalized so that any search algorithm can be used as a
black box at the search step. For example, this could be the naive algorithm,
or one of the faster algorithms discussed earlier. We implemented each of the
algorithms discussed in this paper (naive, BB, and BYR) to determine which
was best in this adaptive approach. For our formal analysis, we will first consider
the naive approach. The first loop to identify all of the regions of the protein
that are in alpha helices takes linear time, as stated earlier. The second for loop
depends on the number of alpha helices that are found. We define two variables,
&1 and &7, which represent the fraction of amino acids that are in alpha helices
that will be searched in each direction. For example, suppose that our protein
had 100 amino acids, and there are four helices a, b, ¢, d of length 5, 10, 15, and
20. If our target map is 8 x 12, then we only need to search the regions b X c,
bxd, cxd,and d x c. So in this example, £y = (10 + 15 + 20)/100 = 0.45, and
&7 = (15 + 20)/100 = 0.35. We define £ = & - & to simplify notation (recall
that each value is from a different axis, so they are independent). Therefore, the
searchable region in the source map is O(N?-&-1-.J + N). If we were searching
a contact map that contained zero or one alpha helices, the cost of this search
would thus be 6(N). To be more precise, we would subtract the regions included
in theses ranges that we do not search, which is each alpha helix with itself (¢ x ¢
and d x d in our example). Also, we should subtract I and J from the cost for
each pair of helices. This cost appears much higher than it really is because the



Algorithm 1 The algorithm for Adaptive Contact Map Search. The function
takes three arguments: C is the N x N source contact map, SS is the array of
length N giving the secondary structure values for each element, and T is the
target contact map of size I x J. We build a set AH, which is a list of the alpha
helices in C.

SearchMaps(C, SS,T)

AH = {}

fori=1,....N do

if SS(i) =alpha helix then

start=1

while SS(i) =alpha helix do
i=1+1

end while

end=1i—1

AH = AH | J{(start,end)}

end if
end for

fori=1,...,|AH| do
for j=1,...,|AH| do
if i #j &&
(AH(i).end — AH (i).start) >= I &&
(AH(j).end — AH(j).start) >= J then
run search algorithm on AH (i) x AH(j) region of C
end if
end for
end for

analysis presented the regions as being contiguous. We can thus redefine £; and
&' as follows:
|AH]|
& = Z AH (i).end — AH (i).start — I + 1,
i=1

where AH is as defined in Algorithm 1, and we set the term AH(i).end —
AH (i).start — I = 0 if it is a negative value for any given i. £’ is defined anal-
ogously. This represents the fact that searching a 3 x 3 map with a 2 x 2 map
requires 4 shifts of the sliding window, not 9. Our new values for our example
are now & = (04 3+ 8+13)/100 = 0.24, ¢, = (0+ 0+ 4+ 9)/100 = 0.13, and
£ = 0.0312, which represents significant savings. The £ argument does not ap-
ply to the other algorithms used however, since they shift through each column
of the source maps, so they use the original definition of &.

For the Bird [Bi77] algorithm, we carry over the savings of the linear time
algorithm. Their bound was O(N?+1-.J), and the same arguments above apply
to their approach since their algorithm will work just as well on these smaller
subregions of the map. Thus, their algorithm takes time O(N? - ¢ +1-J + N).
As indicated by this bound, we expect that the advantages of their approach
will be less pronounced in this adaptive scenario. The algorithm of Baeza-Yates



and Régnier [BYR93] will have similar worst case performance, and the expected
case performance is expressed as O(N? - &/I + I? + N).

6 Results

We first chose a pattern at random, which corresponds to the third and fourth
helices in the 1a0a protein, shown in Figure 1. We searched for this pattern using
each of the three algorithms discussed in this paper, and both using the original
method and the new adaptive approach. The results are shown below in Table 2.

Table 2. The time in minutes required by each algorithm to find the selected pattern,
both at the 7 and 10A resolution maps.

Original (min) Adaptive (min)
Naive BB BYR Naive BB BYR
7A 541.1 208.4 448.8 65.4 68.4 67.3
10A 517.1 205.6 295.8 65.2 65.6 64.3

We note some interesting observations in these results. First, the linear time
approach of Bird and Baker is faster than the naive approach and the expected
sublinear BYR algorithm; substantially so in the case of the 7A maps. Second, all
of the algorithms have fairly equal performance in the adaptive implementations.
Most significant for our research is that the adaptive approach is much faster
than the original implementations, regardless of which algorithm is used. The
reason that the BYR algorithm is not doing as well as expected in the original
implementation is because of the sparsity of our data. The patterns that we are
searching for contain multiple rows comprised entirely of zeros, and there are
many occurrences of sequences of zeros in the source data sets. Therefore, this
algorithm is running close to the worst case time complexity, O(N? - I).

The adaptive approach to the algorithm results in doing many more individ-
ual searches than previously, but the size of the source data set for each problem
is much smaller. In fact, the source matrices are now on the scale of the target
maps, rather than being an order of magnitude or two larger. As a result, the
algorithms have similar performance in the adaptive approaches; each is running
at close to linear time. The naive algorithm is running at close to linear because
the sliding window does not have to shift much. Assuming that we are using
square patterns for the moment for simplicity, where the source pattern is of
size N2 and the target is of size M?, we know that the worst case running time
of this algorithm is O(N? - M?). In reality, this is (N — M + 1)? + M?, so as
N approaches M, the running time of the algorithm approaches true linearity.
In addition, the naive implementation has the sliding window shift as soon as
there is a mismatch rather than continuing to check the whole target pattern at
a given position, so the expected running time improves as well. Between these



two factors and the observations in Table 2, the adaptive naive implementation
appears to be a reasonable option.

To test these results further, we searched for a few more maps using the
adaptive approaches only. The first is a smaller map, so that the naive approach
should not do as well, which we will run at both resolutions. The second is a
map with no zeros so that the BYR approach should do better. The results are
shown below in Table 3. All of the target contact maps used in this study are
shown graphically in Table 4. All of the maps but the last consist of the interface
region of the contact map for the pair plus up to three rows and columns of zeros
around the interface if they are present in the map for the pair (recall that the
map for the pair corresponds to Figure 1(b), and the interface is Figure 1(c)).
These three extra rows or columns ensure that there is a turn of the helix where
there are no further contacts, which ensures that there is a true match for the
patterns. Alternatively, the last search which uses just the interface would be
desirable if you were not concerned about the presence of contacts in the next
turn of one of the helices. We do not perform the latter search at 7A resolution
because we couldn’t find a large target with no zero rows (the diameter of an
alpha helix is 5.4A).

Table 3. The time in minutes required by each adaptive algorithm to find the small
pattern, both at the 7 and 10A resolution maps, and a map with no zeros at 10A res-
olution.

Table 4. The graphical representations of each target map. All targets were obtained

Naive (min) |[BB (min) |BYR (min)
Small 7A 133.5 73.9 81.8
Small 10A 99.9 73.9 73.7
No Zeros 75 76.1 67.6

from the 1a0a source contact map.

Resolution

Run 1

Run 2

Zeros

TA

Not performed

10A

2 1

rl




For completeness, we describe our experimental setup. First, we used Matlab
because the Bioinformatics toolkit facilitates parsing PDB files. However, this
study could also be done using C++ or some other language since these algo-
rithms are just operating on the binary matrices and the Bioinformatics toolkit
is not used for the string matching operations. This would likely result in faster
search times for each approach, but we expect that the relative results should
be similar to those obtained here. Also, we were curious to know how much time
was being used performing file I/O, since this could be mitigated by using an-
other language or advanced caching techniques or something of the sort. To do
this, we performed a run where we just opened and read the contents of each
file without doing any analysis, and this took 57.3 minutes, or roughly three
quarters of the adaptive execution time. The contacts maps are stored as binary
.mat files, they take up about 800MB of disk space.

7 Conclusions and Future Work

We have presented several algorithms for searching for a small contact map pat-
tern in numerous large source contact maps for exact matches. Each of them
promises to provide better performance than the naive algorithm, which would
increase the tractability of these search problems, and this was observed through
their implementation and application in our domain. Contact maps are typically
sparse, as are the patterns that we are searching for. This results in poor perfor-
mance for the naive algorithm. In randomized data, the naive algorithm typically
does well [BYR93] since it is simple to stop checking the pattern once a mis-
match has occurred rather than checking all possible positions. However, because
our data is sparse, we often have entire rows of zeros that will match and will
cost this approach. This can be seen in Figure 1 (b), where the contact map is
composed of strictly zeroes in the top rows. This is precisely the situation where
the Bird approach will excel, since these points will not be searched again. The
speed-up given by the BYR algorithm will be virtually negated due to sparsity,
since we will be finding many matches in each row searched for the rows of zeroes
in our target. Based on these observations, the Bird approach is the best choice.

This observation gives us an insight that provides for improved searching
regardless of which algorithm is used. These algorithms will run close to their
worst case complexity because of all the zeroes present. This can be avoided by
searching for the interface region (Figure 1 (c¢)), followed by a check for all the
surrounding zeroes for positive matches, such our last run in Table 3.

This paper presents several new ideas. This is the first known adaptive anal-
ysis to be performed on the two dimensional string matching problem. Although
it is application specific, the general technique may be applied in other areas
given some extra domain-specific knowledge such as our secondary structure in-
formation. Also, we have shown experimentally that the BB algorithm for string
searching is best when searching for patterns with rows of zeros in sparse matri-
ces. In the adaptive application, the best algorithm was dependent on the number
of rows containing zeros in the target pattern. When performing searches where



one is adding rows and columns of zeros around the interface, then the BB ap-
proach is best, while the BYR algorithm is better for searches for the interface
region only.

There are several other refinements that may be carried out to further im-
prove the speed of searching. One is to perform the matching on compressed
data. Due to the sparsity of the data, contact maps are prime candidates for
run-length encoding schemes, and searches that use this technique should per-
form better than the on-line approaches discussed here. Further, it is possible
that the database could be indexed so the indexed searches may be performed.
Another question pertains to the threshold that is chosen for the contact map.
We have used 7 and 10Aas examples in our study, but it is unclear which is the
best choice for any given application, or how to determine which is best. Also,
since the selection of the threshold is arbitrary and there will be values close
to the threshold that could go one way or the other, it would be interesting to
test the effectiveness of approximate pattern matching techniques for our appli-
cation. Finally, it would be interesting to explore algorithms for 2-dimensional
pattern matching which are tailored to sparse data.
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