
A Uniform Approach Towards Succinct

Representation of Trees

Arash Farzan and J. Ian Munro
{afarzan,imunro}@cs.uwaterloo.ca

School of Computer Science,
University of Waterloo,

Waterloo, Ontario, Canada.

Technical Report CS-2008-11

Abstract. We propose a uniform approach for succinct representation
of various families of trees. The method is based on two recursive de-
composition of trees into subtrees. Recursive decomposition of a struc-
ture into substructures is a common technique in succinct data structures
and has been shown fruitful in succinct representation of ordinal trees [7,
10] and dynamic binary trees [16, 21]. We take an approach that simpli-
fies the existing representation of ordinal trees while allowing the full set
of navigational operations. The approach applied to cardinal (i.e. k-ary)
trees yields a space-optimal succinct representation allowing cardinal-
type operations (e.g. determining child labeled i) as well as the full set
of ordinal-type operations (e.g. reporting the number of siblings to the
left of a node). Existing space-optimal succinct representations had not
been able to support both types of operations [2, 19].
We demonstrate how the approach can be applied to obtain a space-
optimal succinct representation for the family of free trees where the
order of children is insignificant. Furthermore, we show that our approach
can be used to obtain entropy-based succinct representations. We show
that our approach matches the degree-distribution entropy suggested by
Jansson et al. [13]. We discuss that our approach can be made adaptive
to various other entropy measures.

1 Introduction

With the ever increasing size of data sets, an important aspect in handling infor-
mation is their storage requirement. A succinct representation of a combinatorial
object is an encoding which supports a reasonable set of operations on the object
in constant time and has a storage requirement matching the information theo-
retic lower bound, to within lower order terms. Succinct data structures perform
under the uniform-time word RAM-model with Θ (lg n)1 word size.

Trees are fundamental data structures in computer science and as a result a
great deal of research has been done on their succinct representation. Succinct
representation of two major families of trees have been well studied: ordinal
and cardinal. In ordinal trees the order of children of nodes is significant and
preserved. However, in cardinal trees (also known as k-ary trees), each node has
k-slots for edges to children which can be independently occupied or not. Binary
trees are a subclass of cardinal trees for value k = 2. Here we also study the
succinct encoding of another family of trees: free trees, in which the order of
children of a node is not significant.

Certain subfamilies of these major families of trees have been studied in the
context of succinct representations. Binary trees (k = 2) or DNA trees (k = 4)
form two of the best known subfamilies of cardinal trees. Ordered trees with a
given degree distribution where a list of numbers ni (i ≥ 0) is given and the
tree is guaranteed to have exactly ni nodes with i children form a subfamily
of ordinal trees studied recently by Jansson et al. [13]. We also investigate free
binary trees which are free trees with maximum two children per node.

1 lg n denotes log
2
n.

Tree family
Space lower bound
(Highest order term)

Succinct representation

Ordinal trees 2n [14] [11, 5, 15, 2, 7, 10]

Ordinal trees with a given
degree distribution

∑

i
ni lg n

ni
[20] [13]

Cardinal trees (k lg k − (k − 1) lg(k − 1)) n [8] [2, 19]

Binary trees 2n [8] [11, 12, 4, 5, 15]

Free trees 1.56n [18] this paper

Free binary trees 1.31n [6, 22] this paper

Table 1. Space lower bounds in bits to represent families of trees with n nodes and
references to succinct representations.

Space lower bounds on the required number of bits to represent each class
of trees is obtained via information theory by counting the number of trees in
the class. Table 1 illustrates the space lower bounds for these classes along with
existing references to succinct representations which achieve the optimal space
within lower order terms and support a variety of operations.

1.1 Contribution

We propose a uniform approach for representing trees succinctly that encom-
passes the families of trees in table 1. The method is based on two-level de-
composition of a tree into subtrees. The recursive decomposition method is a
common technique in succinct representations of various data structures [5, 19,
1] and has been used to represent trees [16, 7, 10].

In the case of ordinal trees, our approach supports a wide range of operations
proposed by He et al. [10] and simplifies implementation of the supported opera-
tions. In the case of cardinal trees, there is no known succinct representation that
supports a wide range of navigational operations. Raman et al. [19] state that
their succinct representation for cardinal trees cannot support subtree size. Our
succinct representation of cardinal trees can support all ordinal-tree-type oper-
ations listed by He et al. [10] (such as subtree size) as well as cardinal-tree-type
operations suggested by Raman et al. [19] (such as following the edge labeled i
from a node where 1 ≤ i ≤ k).

To show the power of our method, we consider free trees which are trees with
no order imposed on children of nodes and show that we can have a succinct
representation taking the optimal (1.56 . . .)n bits supporting all navigational
operations. Similarly, free binary trees, which are free trees with maximum two
children per node, can be represented in the optimal (1.31 . . .)n number of bits.

Existing succinct encodings of trees assume a uniform distribution over the
family of trees and therefore give worst case space guarantees. In practice how-
ever, there might be many reasons to have trees with certain property that are
more likely than others, and therefore an entropy-based succinct representation
is necessary. Jansson et al. [13] considered this case when the distribution is

based on degrees of nodes and gave a representation that matches the degree-
distribution entropy. Our succinct tree representation not only can match the
degree-distribution entropy, but can be made adaptive to a variety of other en-
tropy measures: e.g. trees with a particular probability distribution of number
of children (a node has i children with probability pi).

2 Tree Decomposition

At the heart of our method is the tree decomposition technique. Vaguely speak-
ing, we aim to decompose the tree into subtrees of roughly the same size.
Geary et al. [7] and He et al. [10] use the same decomposition algorithm to
match the decomposition algorithm of Munro et al. [16] in the binary tree case.
Given the subtree size L, the algorithm decomposes a tree into subtrees with size
between L and 3L (with possible exception of the root subtree). Furthermore,
these subtrees are disjoint other than their roots.

The drawback with their algorithms is that the number of child subtrees of
a component can grow arbitrarily large (roughly as large as the size of com-
ponents). With our decomposition technique, the number of child subtrees of a
subtree does not exceed the original node degrees. We guarantee this by allowing
(a small number of) undersized subtrees.

Theorem 1. A tree with n nodes can be decomposed into Θ (n/L) subtrees of
size at most 2L. These are pairwise disjoint aside from the subtree roots. Fur-
thermore, aside from edges stemming from the component root nodes, there is
at most one edge per component leaving a node of a component to its child in
another component.

Figure 1 depicts the result of our decomposition algorithm. We start the proof
by considering the nodes that have many descendants:

Definition 1. For a fixed parameter L, a node is heavy if it has at least L
descendants (including itself). Ancestors of a heavy node are heavy by the defi-
nition. Therefore, heavy nodes form a subtree on the original tree. We call this
tree as the heavy-subtree. A branching node is a node which has at least
two heavy children. Branching edges are the edges between a branching node
and its heavy children.

For instance, in the tree of figure 1, heavy nodes are a, b, d, n, o, p. Branching
nodes are a, n and branching edges are ab, ad, no, np. A crucial observation is
that the number of branching edges is bounded (we omit the proof):

Lemma 1. The number of branching nodes and edges in a tree with n nodes
and parameter L is O (n/L). ut

As with previous decomposition methods [5, 16, 7], we use a recursive bottom-up
approach. To decompose a tree rooted at a node v, we first recursively decompose
the trees rooted at its children u1, . . . , uk. Each recursive call decomposes a tree
rooted at a node and returns the component subtrees. Component subtrees that

a

r s t u v w zy

x

po

l

h k

g nmji

fedcb

q

Fig. 1. A tree decomposed into component subtrees for value L = 5.

do not contain any of u1, . . . , uk are permanent and remain intact. The root
components that contain one of u1, . . . uk are exception: they can be declared
temporary. The temporary components and the parent v can possibly be merged
together. The merging of the temporary components depends on the number of
heavy children of v:

1. if v has no heavy children (e.g. node b in figure 1), entire children subtrees are
temporary components to be merged together. We create a new component
initially containing only v. We scan the list of children u1, . . . , uk from left
to right adding the entire tree rooted at the current child to the component.
If the component size exceeds L, we finalize that component and create a
new component containing v only and continue in this manner. Since none
of the children is heavy, the size of components does not exceed 2L. The last
such component can have size less than L. If we had created at least another
component aside from the last component, we finalize the last component
(charging its small size to its neighbor component which has the right size).
Otherwise if there is only one component, we have put all descendants of v
together in a component which we declare as temporary and send up to the
parent of v .

2. if v has only one heavy child ui (e.g. node d in figure 1 as n is heavy), we
put children of v into components analogously to the previous case. The only
difference occurs where the component containing ui has been declared per-
manent as opposed to temporary. In this case, we simply ignore ui, skipping
from ui−1 to ui+1 during the scan.

3. If v is a branching node–i.e. with two or more heavy children (e.g. nodes
a, n in figure 1)– then among children u1, . . . , uk, there are h ≥ 2 heavy

nodes ui1 , . . . , uih
. We first declare permanent the components containing

these heavy nodes. If the component containing uij
for some j is undersized,

we charge it to the branching edge vuij
.

If all left children are heavy, v by itself is a permanent single-node component
(we charge this undersized component to branching node v itself). Otherwise,
the remaining children of v are broken by the heavy nodes into intervals of
consecutive non-heavy nodes. We consider the intervals separately, treating
each as in the first case. The difference is we charge the possible undersized
component at the end of each such interval l to one of the interval’s end
edges vuil−1

or vuil
(note that vuil−1

, vuil
are branching edges) .

One can verify that the manner the components are constructed guarantees that
the number of nodes within a subtree does not exceed 2L and moreover, aside
from the components’ root nodes there is at most one edge stemming out of a
node of a component to a child in another component. Furthermore, to bound the
number of components, one only has to account for the undersized components.
One can charge undersized components to branching edges and nodes which
we know by lemma 1, there are Θ (n/L) of them. Therefore, the number of
undersized components is O (n/L) and thus the total number of components is
Θ (n/L).

3 Ordinal trees

In this section, we outline our succinct representation for ordinal trees. The rep-
resentation is analogous to Munro et al. [16] and the simple representation of
Geary et al. [7] in that it is a two-level recursive decomposition of a given tree. In
the first level of recursion, the tree with n nodes is first decomposed into subtrees
using value L =

⌈

lg2 n
⌉

, and subsequently these subtrees are, in turn, decom-
posed into yet smaller subtrees using value L = dlg n/4e to obtain the subtrees
on the second level of recursion. Using the terminology of Geary et al. [7], we
refer to as the subtrees on the first level by mini-trees and the second level by
micro-trees.

Micro-trees which have size less than dlg n/2e are small enough to be repre-
sented by a look-up table. The table requires o(n) bits and stores encodings of all
trees with sizes up to dlg n/2e along with answers to variety of types of queries for
each of those trees. The representation of a micro-tree with k nodes consists of
two fields: the first field simply is the size of the micro-tree (O (log k) = O (lg lg n)
bits) and the second field is an index to the look-up table (2k bits). These indices
sum up to 2n bits over all micro trees and are the dominant space term; other
auxiliary data amounts to o (n) bits.

Mini-trees consist of micro-trees and links between them. Links between dif-
ferent micro-trees can be either in form of a common root node or an edge from a
non-root node from a micro-tree to the root of another micro-tree. We represent
such an edge vr by introducing a dummy node on it. we introduce a dummy node
d on the edge between the micro-tree root r and node v and replace vr by vd
and dr. Edge vd is accounted for the micro-tree representation, and edge dr is

Operations Definition

child(v,i), child rank(v) ith child of node v, Number of left siblings of node v

degree(v), subtree size(v) number of children of v, Number of descendants of v

depth(v), height(v) the depth/height of node v

leftmost(rightmost) leaf(v), leaf size(v)
v’s leftmost/rightmost descendant leaf , number of
descendant leaves

leaf rank(v), leaf select(v) number of leaves before v in preorder, ith leaf of the
tree in preorder

node rankpre(i), node selectpre(v) position of v in preorder, ith node in pre order

node rankpost(i), node selectpost(v) position of v in post order, ith node in post order

level anc(v, i), LCA(x, y), distance(x, y)
ancestor of v at level i, lowest common ancestor and
distance of x, y

level left/rightmost(i),
level succ/pred(v)

left/right most node at level i, successor or predeces-
sor of v on its level

Table 2. Comprehensive list of operations on an ordinal tree suggested by [10]

explicitly stored as a O (log log n)-bit pointer. We refer to edges with a dummy
parent such as dr as dummy edges. It is easy to see that these pointers require
o (n) space overall mini-trees.

To represent the common roots among micro-trees, we use the fully indexable
dictionary (FID) of Raman et al. [19]. They showed that given a set S a subset of

a universe U , there is a FID on S that requires lg
(|U |
|S|

)

+O (|U | log log |U | / log |U |)

bits and supports rank/select on elements and non-elements of S in constant
time. Given a root node v with children u1, . . . , uk in p different micro-trees, if
i1, . . . , ip are the indices of children that belong to a different micro-tree than
their immediate left siblings, we form set I = {i1, i2, . . . , ip} over the universe
of [k]. We represent this set as a FID to navigate on children of v. The required
space for this FID is lg

(

k
p

)

+O (k log log k/ log k) bits. We omit the details of the

proof that the collective space of these structures contributes only to o (n).
The tree consists of mini-trees and links between them. The tree over mini-

trees is represented analogously to the manner a mini-tree is represented over
micro-trees: i.e. explicit pointers for edges coming out of mini-trees from non-
root nodes and a FID to represent edges out of a common mini-tree root. One
can assess the space analogously to o (n).

Operations. We demonstrate that various operations on ordinal trees can be
implemented trivially using our representation. Table 2 defines a comprehensive
list of operations suggested by He et al. [10] for ordinal trees. We show an imple-
mentation for the subtree size operation as an example of how straightforward
the support of operations becomes in our representation.

To compute the subtree size of node v, we explicitly store the subtree size
at mini-tree roots and we store the subtree size at micro-tree roots within mini-
trees, and the look-up table contains the subtree size within a micro-tree for
each node of the micro-tree.

If v is a mini-tree root then the value is explicitly stored. Otherwise, if v
is a micro-tree root, we have the subtree size within the mini-tree stored. If v

is not a micro-tree root then we determine the subtree size within the micro-
tree from the look-up table to get the first value. Thus far, we have counted the
descendants within the mini-tree; We determine if v is an ancestor of the dummy
node of the mini-tree (the ancestor query is easy to support) and if so we add
the subtree size value of the mini-tree stemming off the dummy node.

4 Cardinal trees

In this section, we show the uniform approach can be applied to represent cardi-
nal (k-ary) trees. This representation is the first succinct structure that supports,
in constant time, cardinal-type queries such as “find the child labeled j” as well
as all ordinal-type queries such as subtree size, degree, or the i-th child.

The number of k-ary trees is C(n, k) = 1
kn+1

(

kn+1
n

)

[8] which suggests that a
space-optimal representation requires lg C(n, k) = (k lg k − (k − 1) lg(k − 1)) n−
O(lg(kn)) bits. We assume a RAM model with word size w = max {lg n, lg k}.

The representation is a two-level recursive decomposition of the tree anal-
ogous to the representation for ordinal trees in section 3. We decompose the
tree with value L = lg2 w into mini-trees and then recursively decompose each

mini-tree into micro-trees with value L = max
{

lg w

4 lg k
, 1
}

. Without loss of gen-

erality, we assume n ≥ k and thus w = lg n. All the arguments go through
analogously where k > n which causes w = lg k and mini-trees with L = lg2 k
and micro-trees with L = 1. Hence, we can assume L = lg2 n for mini-trees and

L = max
{

lg n

4 lg k
, 1
}

for micro-trees.

The representation only differs from that of ordinal trees in how we form
the look-up table and represent the roots of mini/micro-trees. We single out
nodes that are roots of a micro or a mini tree and represent them separately.
The representation we use is the indexable dictionary (ID) of Raman et al. [19]
(as opposed to their fully indexable dictionary (FID)). They showed that given

a set S a subset of a universe U , there is an ID on S that requires lg
(|U |
|S|

)

+

o (|S|) + O (log log |U |) bits and supports rank/select on elements S (In contrast
to a FID, we cannot perform rank on non-elements). Here, the universe is k-
slots U = {1, 2, . . . , k} and our subset S is the set of present edges. In contrast
to ordinal trees, in a root of a micro-tree, we do not confine ourselves within
the framework of the containing mini-tree and use the ID on all edges of the
root. We note that all ordinal-tree structures are included in our representation
such as the FID on roots of micro-trees built over the universe of present edges
(confined to the containing mini-tree). The ID and FID will help us answer the
cardinal-type queries as well as ordinal-type queries on a root node.

The look-up table must contain all possible micro-trees. Since we keep root
nodes’ information separately, the trees in the look-up table are such that all
nodes are k-ary except for the roots whose children are only ordered. We refer
to such trees as root-relaxed cardinal trees. We enumerate all root-relaxed tree
of size less than lg n

4 lg k
and list them in the lookup table.

The rest of the representation is the same as the ordinal representation: for
instance, dummy nodes and edges are introduced and represented in the same
manner. Now we argue that the representation is space optimal within lower
order terms.

Space optimality: All auxiliary data pertinent to the ordinal tree can be proved
to sum to o (n lg k) bits analogously to the proof in section 3. Thus, we only
have to account for the new structures we have introduced: IDs on the root
nodes and the sum of indices to the look-up table. An ID on a root node v with
dv children requires lg

(

k
dv

)

+ o (dv) + O (log log k) from which the first term is
dominant. Hence, the contribution of IDs to the space over the entire tree is
∑

v: root lg
(

k

dv

)

.
The space required to represent a micro-tree is the size of the index to the

look-up table. Consider a root-relaxed tree T with root r and root children
r1, . . . , rd. We define Ti as the subtree rooted at child ri and refer to its size as
ni = |Ti|. We use enumeration to encode root-relaxed trees and thus we obtain

the shortest code. Thus the encoding requires fewer than
∑d

i=1 (lg ni + lg C(ni, k))
bits which sum as follows:

d
∑

i=1

(lg ni + lg C(ni, k)) = lg

d
∏

i=1

niC(ni, k) = lg

d
∏

i=1

(

kni

ni − 1

)

≤ lg

(

k(|T | − 1)

|T | − 1 − dv

)

.

Over all micro-trees these terms together with space for IDs which is lg
(

k
dv

)

for
each root v sum to:

∑

Ti

(

lg

(

k(|Ti| − 1)

|Ti| − 1 − droot

)

+ lg

(

k

droot

))

= lg

(

∏

Ti

(

k(|Ti| − 1)

|Ti| − 1 − droot

)(

k

droot

)

)

,

which is less than lg
(

kn
n

)

. Thus, the space requirement of our representation
matches the lower bound, to within lower order terms: lg C(n, k) + o (n log k).

Operations in constant time: We can support all ordinal-type operations listed
in table 2 analogously to ordinal trees. To determine the child labeled i of a node
v, if v is not a micro-tree root, then the answer is looked-up from the table. If
v is a root node, then we use its ID to see if there is a child at that label. If
it exists, we perform rank(i) to know how many siblings to the left there are.
Then we can use select on the FID to actually find the mini-tree and then the
micro-tree and finally the child labeled i.

5 Free trees

A free tree as a tree with no particular order among children of nodes. We are
interested in succinct encodings of such trees allowing navigation in the tree in
constant time. A free binary tree is a free tree such that nodes have at most two
children, or alternatively a binary tree in which ignore the distinction between
left and right branches. To show the power of the uniform approach we explain
how these families of trees can be encoded succinctly.

Lower bounds. The lower bounds for binary and general free trees come directly
from counting by information theory. Define FB(n) and F (n) as the number of
free binary trees, and general free trees with n nodes, respectively.

There is no known explicit closed form formula for FB(n) or F (n). Nev-
ertheless, asymptotic behavior of either series is well-studied [9, 18, 6, 22]. The
sequence (FB(n)), n = 1, 2, . . . is known as Etherington-Wedderburn [6, 22] se-
quence and from its asymptotic behavior one can infer that asymptotically
lg FB(n) = (1.3122 . . .)n+o (n). Otter [18] described the asymptotic behavior for
F (n) from which one obtains that asymptotically lg F (n) = (1.5639 . . . n)+o (n).
This implies that free trees can potentially be represented more space-efficiently
than ordinal trees which require 2n + o (n) bits.

Theorem 2. The information-theoretic lower bound on the number of bits re-
quired to represent free binary trees and free general trees with n nodes is
(1.3122 . . .)n + o (n) and (1.5639 . . .)n + o (n) respectively. ut

Upper bounds. The representation differs from that of ordinal trees in section 3
in the look-up table. In the case of free binary trees, all free binary trees of size
up to 1

4 lg n are enumerated modulo isomorphisms and listed in the look-up table
in increasing order of their sizes. To represent a micro-tree we use a pair (k, i)
index to the table. k is the size of the micro-tree and i is the index to the look-up
table which is an offset from the start location of trees with size k. All auxiliary
data are carried forward from ordinal trees as they only take o (n) space. One
can easily argue that the total bits required by the first fields of pairs (k) is also
o (n). Therefore, the dominant field is the sum of the bits of the second fields
of pairs (i). Theorem 2 suggest that the size of this field for a tree of size t is
(1.31 . . .)t+o (t) bits. The second term o (t) term adds up to o (n) over the entire
tree. The first term is the dominant term which adds up to (1.31 . . .)n + o (n)
over the entire tree when n is the number of nodes. The (1.56 . . .)n + o (n) bit
representation for free general trees is analogous; the look-up table lists free
general trees as opposed to free binary trees:

Theorem 3. The succinct representation for free binary trees and free general
trees with n nodes requires (1.3122 . . .)n + o (n) and (1.5639 . . .)n + o (n) bits
respectively and supports all navigational operations listed in table 2 in constant
time. ut

6 Entropy-based succinct encodings

Thus far, we have assumed a uniform distribution among trees belonging to a
certain family of trees. However, there might be many applications so that some
trees are biased against other trees within the tree family, and therefore the dis-
tribution is non-uniform. Thus, entropy-based succinct encodings are necessary.
Jansson et al. [13] were the first to give entropy-based succinct encodings for
the degree-distribution entropy. In this section, we show how our method can
be used to match the degree-distribution entropy as well as a variety of other
entropy measures.

6.1 Succinct encoding based on degree-distribution entropy

The degree-distribution of an ordinal tree with n nodes is a series of numbers
(n0, n1, . . .) such that the tree has ni nodes with exactly i children (

∑

i ni = n
and

∑

i i ni = n − 1). Rote [20] showed that the number of trees with a given
degree-distribution is 1

n

(

n
n0,...,nn−1

)

, the logarithm of which is L(T) =
∑

i ni lg n
ni

to within lower order terms. L(T) is therefore a lower bound on the required
number of bits to represent the tree.

Jansson et al. [13] gave a representation that requires L(T)+O
(

n(log log n)2

log n

)

number of bits and supports a variety of operations in constant time. Using our
approach we obtain another space-optimal succinct representation with L(T) +
O (n log log log n/ log log n) number of bits supporting all operations in table 2
in constant time. They did not assume that the degree-distribution is explicitly
given. We observe that we can make explicit the assumption that the degree-
distribution is given as it takes negligible space to encode the sequence and have
it explicitly stored. Thus we can accompany it with the succinct representation.

Our succinct representation sensitive to degree-distribution entropy is the
same as that of the ordinal trees with the difference in the look-up table. The
look-up table contains all trees with less than 1

4 lg n as in ordinal trees; How-
ever, the trees are ordered based on their degree-distribution sequence in the
lexicographical order and listed in the table accordingly. In order to encode a
micro-tree T , we use an index to the table. The index to the table is a pair
(N , k) where N is the degree-distribution encoding of the tree and k is an offset
in the table from where the trees with degree-distribution N start to the actual
position of tree T we reference to.

One can easily verify that the total number of bits required by the first
fields of indices (i.e. N) is negligible. The second field k is the dominant term.
The size of this field for a micro-tree Tt, by a counting argument, is dL(Tt)e =
⌈

lg
(

1
|Tt|

(

|Tt|
nt,0...nt,|Tt|

)

)⌉

where nt,i is the number of nodes with i children in tree

Tt. A node with more than log n children in the original tree is a micro-tree root
and its children are split among different micro-trees. Since there are Θ (n log n)
of these roots and each micro-tree root contributes at most log log n bits to the
space, the sum of these terms is O (n log log n/ logn) and within our space bound.
The sum over all micro-trees T1, . . . , Tm modulo their roots can be assessed as
follows:

m
∑

t=1

lg

(

1

|Tt|

(

|Tt| − 1

nt,0, . . . , nt,|Tt|

))

= lg
∏

t

1

|Tt|

(

|Tt| − 1

nt,0 . . . nt,|Tt|

)

≤ lg

(

1

n

(

n

n0, . . . , nn−1

))

≈ L(T).

Hence, the representation has the optimal space within lower order terms
and clearly we can perform all operations listed in table 2 in constant time as in
an ordinal tree.

6.2 Other entropy measures

Similar to the manner in which we represented trees adaptive to their degree-
distribution entropy, we can use the approach to obtain succinct representations
adaptive to various other combinatorial properties and entropy measures. For
instance, consider the family of ordinal trees such that internal nodes have at
least two children. The number of such trees with n nodes is known as Rior-
dan number [3]. The logarithm based two of Riordan numbers is asymptotically
lg(3)n+o (n) ≈ 1.58n+o (n). One can use our approach to encode this family of
trees. Similarly, The family of ordinal trees with a fixed constant upper bound d
on the number children of a node can be represented in the same manner. More
generally, where there is a probability distribution for the number of children of
a node, our representation can match the entropy bound.

Another interesting family of trees is AVL trees which consists of binary
trees such that the height of left and right subtrees differ by at most one.
Odlyzko [17] showed that if an is the number of AVL trees with n nodes,
lg a(n) ≈ (0.9381 . . .)n, our representation matches this entropy bound and thus
can represent AVL trees in optimal number of bits to within lower order terms.

7 Conclusion

In this paper, we proposed a uniform approach towards succinct representation of
trees. We showed that all families of trees with an existing succinct representation
can be represented using our framework. Our representation improves on the
existing ones on cardinal trees as we are able to answer ordinal-type queries such
as subtree size as well as cardinal-type queries. We introduce a new family of
trees: free trees. We demonstrated how easily our approach can represent these
trees succinctly We argued that our approach can represent trees succinctly
adaptive to the degree-distribution entropy. We discussed that a variety of other
entropy measures can be dealt with similarly.

References

1. Barbay, J., He, M., Munro, J. I., and Rao, S. S. Succinct indexes for strings,
binary relations and multi-labeled trees. In Proceedings of the 18th ACM-SIAM
Symposium on Discrete Algorithms (SODA) (2007), ACM-SIAM, pp. 680–689.

2. Benoit, D., Demaine, E. D., Munro, J. I., Raman, R., Raman, V., and Rao,

S. S. Representing trees of higher degree. Algorithmica 43, 4 (2005), 275–292.

3. Bernhart, F. Catalan, motzkin, and riordan numbers. Discrete Mathematics 204
(1999), 72–112.

4. Clark, D. R. Compact pat trees. PhD thesis, Waterloo, Ontario., Canada., 1998.

5. Clark, D. R., and Munro, J. I. Efficient suffix trees on secondary storage
(extended abstract). In SODA (1996), pp. 383–391.

6. Etherington, I. M. H. Non-associate powers and a functional equation. The
Mathematical Gazette 21, 242 (1937), 36–39.

7. Geary, R. F., Raman, R., and Raman, V. Succinct ordinal trees with level-
ancestor queries. ACM Transactions on Algorithms 2, 4 (2006), 510–534.

8. Graham, R. L., Knuth, D. E., and Patashnik, O. Concrete Mathematics: A
Foundation for Computer Science. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1994.

9. Harary, F., and Palmer, E. M. Graphical Enuemration. Academic Press, New
York, 1973.

10. He, M., Munro, J. I., and Rao, S. S. Succinct ordinal trees based on tree cover-
ing. In ICALP (2007), vol. 4596 of Lecture Notes in Computer Science, Springer,
pp. 509–520.

11. Jacobson, G. Space-efficient static trees and graphs. Foundations of Computer
Science, 1989., 30th Annual Symposium on (30 Oct-1 Nov 1989), 549–554.

12. Jacobson, G. J. Succinct static data structures. PhD thesis, Pittsburgh, PA,
USA, 1988.

13. Jansson, J., Sadakane, K., and Sung, W.-K. Ultra-succinct representation of
ordered trees. In SODA (2007), N. Bansal, K. Pruhs, and C. Stein, Eds., SIAM,
pp. 575–584.

14. Knuth, D. E. The Art of Computer Programming, third ed., vol. 1. Addison-
Wesley, 1997.

15. Munro, J. I., and Raman, V. Succinct representation of balanced parentheses,
static trees and planar graphs. In IEEE Symposium on Foundations of Computer
Science (1997), pp. 118–126.

16. Munro, J. I., Raman, V., and Storm, A. J. Representing dynamic binary trees
succinctly. In SODA (2001), pp. 529–536.

17. Odlyzko, A. M. Some new methods and results in tree enumeration, May 04
1984.

18. Otter, R. The number of trees. The Annals of Mathematics, 2nd Ser. 49, 3
(1948), 583–599.

19. Raman, R., Raman, V., and Rao, S. S. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In SODA (2002), pp. 233–242.

20. Rote, G. Binary trees having a given number of nodes with 0,1, and 2 children.
Sminaire Lotharingien de Combinatoire 38 (1997).

21. Storm, A. J. Representing dynamic binary trees succinctly. Master’s thesis,
School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada,
2000.

22. Wedderburn, J. H. M. The functional equation g(x2) = 2ax + [g(x)]2. The
Annals of Mathematics, 2nd Ser. 24, 2 (1922), 121–140.

