CS-2008-08

Reductions of Graph Isomorphism Problems

Margareta Ackerman

Technical Report 08

David R. Cheriton School of Computer Science, University of
Waterloo.



REDUCTIONS OF GRAPH ISOMORPHISM
PROBLEMS

MARGARETA ACKERMAN

David R. Cheriton School of Computer Science, University of Waterloo.
mackerma@uwaterloo.ca

ABSTRACT. We present a reduction between subgraph isomor-
phism and minimal partial subgraph isomorphism. We also provide
a new reduction between graph isomorphism and minimal partial
graph isomorphism. The new reduction is more efficient and sim-
pler than the previous reduction and can be generalized to sub-
graph isomorphism. In addition, we show that a reduction from
graph isomorphism that makes only one call to an oracle that finds
a minimal partial isomorphism exists only if graph isomorphism is
in P. We also provide a generalization of the result.

1. INTRODUCTION

An isomorphism ¢ between graphs G and H is a set of ordered
pairs (z,y) € V(G) x V(H) (isomorphism pairs) such that for all
x1, 9 € V(G), xy is adjacent to xo if and only if ¢(x1) is adjacent
to ¢(z3). Given graphs G and H, the function k-GI returns k ordered
pairs which are a subset of some isomorphism between G and H, if G
and H are isomorphic. If G and H are not isomorphic, it returns an ar-
bitrary subset of k elements in V(G) x V(H). Gél, Halevi, Lipton, and
Petrank proved that GI is polynomial-time reducible to (3 + ¢) log n-GI
for some constant € > 0 where n is the number of vertices in G [1].
Grofle, Rothe, and Wechsung tightened this result by showing that GI
is polynomial-time reducible to 1-GI [2]. We can say that 1-GI returns
the minimal (non-empty) partial graph isomorphism (if one exists).
Since the latter reduction attaches cliques to vertices, we call it the
clique-padding reduction.

We present a more efficient and simpler reduction from GI to 1-
GI. Our reduction uses colouring and thus is referred to as the colour
reduction. The colour reduction is O(n?), improving on the quadratic
running time of the clique-padding reduction®.

LAlthough in [2] it is written that the clique-padding reduction is cubic, the
reduction takes O(n*) due to the expense of writing down the cliques.
2



REDUCTIONS OF GRAPH ISOMORPHISM PROBLEMS 3

We present a reduction from subgraph isomorphism (SI) to 1-SI, the
problem of finding an isomorphism pair of a graph and any subgraph
of another graph. The reduction for SI is a modification of the colour
reduction for GI. The clique-padding reduction from GI to 1-GI does
not generalize to a reduction from SI to 1-SI, since a clique of size k is a
subgraph of any clique of size greater than k. Moreover, the reduction
from SI to 1-SI implies that 1-SI is NP-complete.

The clique-padding reduction and the colour-reduction make a lin-
ear number of calls to 1-GI. As pointed out in [2], a reduction that
makes only one call to 1-GI is desirable since it would be better suited
to fault-tolerance computing, therefore implicitly asking whether such
reduction exists. We found that if such a reduction exists, then GI €
P. We also prove a generalization of this result.

2. THE COLOUR REDUCTION

The clique-padding reduction stores the information that a vertex v
is adjacent to certain removed vertices by attaching large cliques to v.
The information that certain removed vertices were originally adjacent
to non-removed vertices can be stored by colouring vertices instead of
attaching cliques. The colour reduction is more efficient and simpler
than the previous reduction. We define a colour-preserving function
1-colour-GI which, as we prove, is polynomial-time reducible to 1-GI.
Then, we provide a simple polynomial-time reduction from GI to 1-
colour-GI. The composition of the reduction from GI to 1-colour-GI
with the reduction from 1-colour-GI to 1-GI yields a polynomial-time
reduction from GI to 1-GI. With a few minor modifications, we can
combine the reduction from GI to 1-colour-GI with the reduction from
1-colour-GI to 1-GI to efficiently reduce GI to 1-GI.

A coloured graph is one in which each vertex is assigned a colour. A
colour-preserving isomorphism ¢ of graphs GG and H is an isomorphism
of G and H such that if ¢(a) = b, then a and b have the same colour.
1-colour-GlI is a 1-GI function that preserves colours.

Definition 1. 1-colour-GI is a function that takes two coloured graphs
G and H and returns a pair from a colour-preserving isomorphism of G

and H; if no colour-preserving isomorphism exists, 1-colour-GI returns
an arbitrary pair in V(G) x V(H).

Lemma 1. I-colour-GI is polynomial-time reducible to 1-GI using one
call to 1-G1.

Proof. Let G and H be the graphs on which 1-colour-GlI is called, where
V(G| = |[V(H)| = n (if the number of vertices in G and H is different,



4 MARGARETA ACKERMAN

FIGURE 1. An illustration of the conversion from G to
G’ in the reduction from 1-colour-GI to 1-GI.

then 1-colour-GI returns an arbitrary pair). A graph on n vertices uses
at most n colours. Number the used colours from 3 to k& + 2, where the
total number of colours used is k (note that k < n). Create graphs G’
from G and H' from H as follows.

e For each vertex v in G U H of colour 7, extend the vertex to
an i-cycle. Designate a unique vertex on the cycle and make
all edges that were incident on v incident on this vertex. For
every vertex constructed, record in a table the old vertex it was
created from.

e Let j = k+ 3. If j is odd, increase j by 1. For each edge (z,y)
in G and H, convert the edge to a path with j vertices. For
every new vertex on the path, record in the table the endpoint,
x or y, that the new vertex is closer to (this vertex exists since
Jj is even).

Note that cycles of length at most k + 2 in G’ and H’ are in 1-
1 correspondence with the vertices of G and H, respectively, as no
vertices created from edges of G and H (except the endpoints) can be
part of cycles on less than k£ + 3 vertices. Note that the construction
is done in polynomial-time.

Run 1-GI on G' and H’. 1-G1 returns a pair {2/,y'}. Look up the
old vertices, x and y, that 2’ and ¢y’ are associated with, respectively.
Then (x,y) is an isomorphism pair of G and H. O

We now present a simple polynomial-time reduction from GI to 1-
colour-GI. Since 1-colour-GI is polynomial-time reducible to 1-GI, this
yields a polynomial-time reduction to 1-GI.

Lemma 2. GI is polynomial-time reducible to 1-colour-GI.

Proof. At any point in the algorithm, if the algorithm recognizes that
a pair of vertices returned by 1-colour-GI is not a colour isomorphism
pair, then G and H are not isomorphic. Let N(x) denote the set of
vertices adjacent to a vertex x.



REDUCTIONS OF GRAPH ISOMORPHISM PROBLEMS 5

Iteration 1: isomorphism
& pair {52} i

Iteration 2: isomorphism Iteration 3: isomorphism
pair {1,5} pair {2,1}
G W

¢’ 0s b o

Iteration 4: isomerphism
G pair {34}

@

FIGURE 2. An example illustrating the reduction from
GI to 1-colour-GI. At each step the isomorphism pair
returned by 1-colour-GI is displayed.

e Let G’ := G. Let H' := H. Colour in white all the vertices of
G’ and H'.
e Let ¢ = () be a partial isomorphism from G to H.
e Repeat the following sequence of operations n times.
— Call 1-colour-GI(G’, H') getting (x,y).
— Let ¢ := o U (x,y).
— Let r = deg(x) = deg(y) (else G’ and H’ are not isomor-
phic).
— If G and H are isomorphic then x and y should have the
same number of neighbours coloured ¢ for each colour 7. Let
S be the set of colours appearing as colours of neighbours
of z and y in G’ and H'. Note that |S| < r. Select a set,
T, of |S| new colours that have not yet been used by the
algorithm and define a bijection, p: S — T.
— For each vertex u € N(z) U N(y) with colour ¢, colour u
with p(c).
— Remove z from G’ and y from H' and the edges adjacent
to them.
e Check whether ¢ is an isomorphism from G to H. If so, return
¢. Otherwise, return that G and H are not isomorphic.



6 MARGARETA ACKERMAN

There are n iterations. At each iteration the colours of neighbours of
some vertices x € V(G) and y € V(H) are updated. Since the degree
of each vertex is bounded by n, each iteration has O(n) operations.
Therefore, the runtime of the reduction is O(n?). O

We now present a reduction from GI to 1-GI, based on the compo-
sition of the reduction from GI to 1-colour-GI and the reduction from
1-colour-GI to 1-GI, with a few modifications that make the reduction
run in cubic time.

Theorem 1. GI is reducible to 1-GI in time O(n?).

Proof. To reduce GI to 1-GI, perform the reduction from GI to 1-colour-
GI with the following modifications:

e Let G* and H* be graphs obtained from G and H, respectively,
using the conversion described in the reduction from 1-colour-
GI to 1-GI, except that edges are converted to paths of length
n+3 (or n+4if nis even). As described in the reduction
from 1-colour-GI to 1-GI, create a lookup table from vertices in
G* U H* to vertices in GU H.

e Instead of calling 1-colour-GI on G’ and H' (as in Lemma 2),
update G* and H* so that G* and H* are the graphs we would
get using the conversion from 1-colour-GI on G' and H’ to 1-
GI, except that edges are converted to paths of length n +
3 (or n+ 4 if n is even). To do so, remove all cycles in G*
and H* corresponding to vertices of G and H and place new
ones in the way described in Lemma 1. Then call 1-GI on G*
and H* getting a pair of vertices (z/,y’). Look up in the table
the vertices x and y associated with 2’ and v’ respectively and
continue the algorithm as if the colour-isomorphism pair (z,y)
was returned by 1-colour-GI.

In the construction of G* and H*, each vertex in G and H is extended
to a cycle on at most n + 2 vertices and each edge is subdivided to a
path of length at most n + 4. Therefore constructing G* and H* takes
time O(n?).

Consider the runtime of the modifications of G* and H*. The only
operation outside 1-GI that is done with paths on G* and H* created
from edges of G and H is their removal. Therefore their total contribu-
tion to the running time over all iterations is O(n?®). At every iteration,
old cycles corresponding to vertices in G and H are replaced by new
ones. Since the maximum size of such a cycle is n + 2 and there are at
most 2n cycles, the cycle replacement takes O(n?) steps per iteration.
When a vertex corresponding to a cycle is removed from G and H,



REDUCTIONS OF GRAPH ISOMORPHISM PROBLEMS 7

the cycle is removed. This adds O(n) work to each iteration. There-
fore, aside from removal of vertices corresponding to edges of G and H,
each iteration takes time O(n?). Thus, the runtime of the algorithm is
O(n® +n?+n(n?) = O(n?). O

The constant in the running time of the algorithm can be improved
by finding an isomorphism between the complement of G and the com-
plement of H whenever the number of edges in G and H reaches a
certain threshold.

3. SUBGRAPH ISOMORPHISM

The colour reduction for GI can be modified and applied to the
subgraph isomorphism problem. The subgraph isomorphism search
problem is the following: given graphs G and H, find a subgraph of H
that is isomorphic to G or determine that no such subgraph exists.

Definition 2. A subgraph-isomorphism pair is a pair of vertices (x,y) €
V(G) x V(H) such that y is a vertex of some subgraph H* of H that
is isomorphic to G and (x,y) is an isomorphism pair of some isomor-
phism from G to H*.

The function 1-SI returns the minimal (non-empty) partial subgraph-
isomorphism (if one exists). That is, 1-ST is a function that takes graphs
G and H, where if GG is isomorphic to a subgraph of H, 1-SI returns
a subgraph-isomorphism pair (z,y) € V(G) x V(H); otherwise, 1-SI
returns an arbitrary pair of vertices in V(G) x V(H).

We explain how to reduce SI to 1-SI using a reduction analogous
to the colour reduction from GI to 1-GI. Instead of assigning unique
colours to vertices, each vertex is assigned a subset of colours from
{1,2,...,n}, where n = |V(G)|. A graph coloured using this scheme is
called a list-coloured graph. Let colours(v) denote the set of colours
assigned to a vertex v.

Definition 3. Given list-coloured graphs G and H, let a list-colour
subgraph-isomorphism pair be a pair (z,y) € V(G) x V(H) such that
colours(z) C colours(y) and (x,y) is an isomorphism pair of G and
some subgraph of H.

Definition 4. Given list-coloured graphs G and H, 1-colour-SI returns
a list-colour subgraph-isomorphism pair. If no such pair exists, it re-
turns an arbitrary pair in V(G) x V(H).

Lemma 3. 1-colour-SI is polynomial-time reducible to 1-SI.



8 MARGARETA ACKERMAN

FIGURE 3. An illustration of the conversion of G to G*
in the reduction from 1-colour-SI to 1-SI.

Proof. Let G* = G, H* = H. Build a table that represents a surjection
W V(GHUV(H*) — V(G)UV (H). Initially the table is empty. Recall
that the lists of colours are represented by subsets of {1,2,...,n}. For
each vertex v € G* U H* do the following: if colours(u) # 0, for each
colour k in colours(u) attach a cycle of length k + 3 to u, otherwise,
attach a cycle of size 3 to u. For each vertex v on a cycle attached to
u, set ¥(v) = u and store this in the table.

Let m be the maximal value of a colour that occurs in a list in G* or
H*. Let j =m+4 if m is even, and j = m + 5 if m is odd. Subdivide
each edge in G* and in H* into a path with j vertices. For each vertex v
on a path created through subdivision of an edge of G* or H*, associate
v with the closest endpoint of the path. More precisely, if the closest
endpoint to v is u, then ¥ (v) = u is stored in the table.

Call 1-SI(G*, H*) getting the pair (u,v). Look up the vertex as-
sociated with v and the vertex associated with v. Say ¥ (u) = x and
¥(v) =y. Then (z,y) is returned by 1-SI.

The pair (x,y) is a valid list-colour subgraph-isomorphism pair be-
cause cycles attached to the vertices in G* and H* preserve the lists of
colours. Edges are subdivided so that the cycles attached to vertices to
represent the colour lists are too small to occur in any other way than
through the cycle attachment procedure. Thus G* and H* preserve
both the structure of G and H and the lists of colours.



REDUCTIONS OF GRAPH ISOMORPHISM PROBLEMS 9

& -

Iteration 1: subgraph-isomorphism pair {1,3}

Hr

O CRC

Iteration 2: subgraph-isomorphism pair {4,2}

Iteration 3: subgraph-isomorphism pair {2,1}

HF
PR C Gy
Iteration 4: subgraph-isomorphism pair {3,4}

G’ H’
o

FIGURE 4. An example illustrating the reduction from
SI to 1-colour-SI. At each step the list-colour subgraph-
isomorphism pair returned by 1-colour-SI is displayed.

The lists of colours are of size at most n and contain colours from 1
to n. Therefore, each attached cycle is of size at most n + 3 and there
are at most n cycles that need to be attached to each vertex in G and
H. Each edge is subdivided into a path of size at most n+5. Therefore
the reduction is polynomial in the size of the input. O

Lemma 4. S is polynomial-time reducible to 1-colour-SI.

Proof. The following is an algorithm that reduces SI to 1-colour-SI.

e Given graphs G and H construct G’ by associating each vertex
in G with an empty list of colours. Similarly, construct H’ from
H by associating each vertex in H with an empty list of colours.

e Let colourNumber = 1.



10 MARGARETA ACKERMAN

o Let ¢ = ().
e Repeat the following iteration n times.
— Call 1-colour-SI(G’,H') getting a pair of vertices (z,y). Set
¢=0oU (l’ ) y)
— Add colourNumber to the list of colours of each vertex in
N(z) U N(y).
— Remove z and all edges adjacent to x from G’. Similarly,
remove y and all edges adjacent to y from H’.
— Let colourNumber = colourNumber+1.
e Check if ¢ is an isomorphism between G and a subgraph of H.
If it is, then return ¢. Otherwise, GG is not isomorphic to a
subgraph of H.

The number of iterations is n. At each iteration, a colour is added to
at most 2(n — 1) lists of colours, x is removed from G and y is removed
from H. Therefore, the runtime of the reduction is O(n?). O

The composition of the reduction from SI to 1-colour-SI with the
reduction from SI to 1-SI yields a polynomial-time reduction from SI
to 1-SI. We show how to compose the reductions to yield a more efficient
reduction from SI to 1-SI.

Theorem 2. SI is reducible to 1-SI in time O(en + m + n3), where
e=[E(H)[, m=[V(H)|, and n = [V(G)].

Proof. To reduce SI to 1-SI, perform the reduction from SI to 1-colour-
SI with the following modifications;

e Let G* and H* be graphs obtained from G and H respectively
using the conversion described in the reduction from 1-colour-
SI to 1-SI, except that edges are converted to paths of length
n+4 (or n+ 5 if n is odd). As described in the reduction
from 1-colour-SI to 1-SI, create a lookup table from vertices in
G* U H* to vertices in G U H.

e Instead of calling 1-colour-SI on G’ and H' (as in Lemma 4),
update G* and H* so that G* and H* are the graphs that we
would get using the conversion from 1-colour-SI on G’ and H’
to 1-SI except that edges are converted to paths of length n+4
(or n+ 5 if n is odd). To do so, remove all cycles of length
< n+ 3 attached to vertices and replace them by new cycles as
in the reduction from 1-colour-SI to 1-SI. Since a single cycle
of length 3 indicates an empty colour list, do not remove a
cycle of length 3 when it is the only cycle attached to a vertex
unless the corresponding vertex in G’ or H' has been assigned a
colour in the given iteration. Run 1-SI getting a pair of vertices



REDUCTIONS OF GRAPH ISOMORPHISM PROBLEMS 11

(', y"). Look up the vertices = and y associated with ' and ¢/
respectively in the lookup table and continue the reduction as
in the reduction from SI to 1-colour-SI using the pair (z,y) as
if it were returned by 1-colour-SI.

Let e = |E(H)|, f = |E(G)|, m = |[V(H)| and n = |V(G)|. The
construction of G* and H* takes O(en+m), en to convert the edges to
paths and m to convert the vertices to 3-cycles (note that m > n and
e > f, unless G is not isomorphic to a subgraph of H). The removal of
paths corresponding to edges of G or H takes at most O(en) time in
total. Since up to n vertices in G and in H are attached up to n cycles of
length between 4 and n+3, and a cycle of length 3 is not removed when
it is the only cycle attached to a vertex unless its associated vertex in
G’ or H' has been assigned a colour in the given iteration, the addition
of cycles in G* and H* takes O(n®). The assignment of colours and
removal of x from G and y from H takes O(n) time per iteration.
The corresponding cycle removal in G* and H* is O(n?) per iteration.
Therefore the total running time of the reduction is O(en+m+n?). O

Since SI is NP-complete, Theorem 2 implies that 1-SI is also NP-
complete.

Corollary 1. 1-S1 is NP-complete.

Proof. Since SI is NP-complete and, by Theorem 2, SI is polynomial-
time reducible to 1-SI, 1-SI is NP-hard. By providing an isomorphism
from G to a subgraph of H, we can verify in polynomial-time that a
given pair of vertices is a valid subgraph-isomorphism pair. Il

4. COMPARISON OF THE REDUCTIONS

The main idea in the clique-padding reduction, the colour reduction,
and the list-colour reduction is that all necessary information about the
removed vertices is preserved. It is necessary that a (subgraph-) isomor-
phism pair found in step 7 is compatible with the partial (subgraph-)
isomorphism found up to step i. In order to do that, it is necessary
and sufficient to know which removed vertices were adjacent to which
remaining vertices. In the earlier clique-padding reduction, this infor-
mation is retained by attaching large cliques. A clique of a unique
size is associated with each isomorphism pair (z,y) and attached to all
vertices adjacent to x or y. Then a pair (u,v) of old vertices can be
an isomorphism pair only if v and v are adjacent to isomorphic cliques
of new vertices. The cliques of new vertices need to be sufficiently
large so that they are different from all cliques that could potentially
be subgraphs of G and H.



12 MARGARETA ACKERMAN

The advantage of the colour reduction for graph isomorphism over
the clique-padding reduction is that it stores less information with each
vertex. This reduces the complexity of the reduction. The colour-
reduction has runtime of O(n?) while the runtime of the clique-padding
reduction is O(n?).

Note that the clique-padding reduction from GI to 1-GI does not
generalize to a reduction from SI to 1-SI since a clique of size k is a
subgraph of any clique of size greater than k.

5. REDUCTIONS WITH A RESTRICTED NUMBER OF CALLS

The clique-padding reduction as well as the colour reduction call 1-
GI n times. The function 1-GI can be viewed as an oracle. A referee in
2] observed that in fault-tolerant computing where one tries to recover
a solution to a hard problem, parts of which have been lost through
transmission, a single call to an oracle is more realistic. This obser-
vation presents the question of whether such a reduction exists. The

following simple algorithm shows that such a reduction would imply
that GI is in P.

Theorem 3. If there exists a polynomial-time reduction from GI to
1-GI that makes only one call to 1-GI, then GI is in P.

Proof. Let A be such a reduction. Let the graphs on which 1-GI is
called be G' and H'. Consider the following algorithm;

Run A until the call to 1-GI on graphs G’ and H’
Fix a vertex u in G’
For all vertices v in H’

Assume that 1-GI returned {u,v}

Run the rest of A

Check if the result is an isomorphism

If it is an isomorphism, return it and terminate
If this point is reached, G and H are not isomorphic

Since G’ and H' are constructed in A, constructing them takes poly-
nomial time. Since P C PSPACE, the size of G' and H' is bounded
by some polynomial function f(n). Therefore the loop runs O(f(n))
times. Running the remainder of A is done in polynomial-time as is
checking if the result is an isomorphism. Therefore the above is a
polynomial-time algorithm for GI. U

By modifying the argument above, we can get the following.

Theorem 4. If GI is polynomial-time reducible to k-GI, for some con-
stant k, where the reduction makes a constant number of parallel calls

to k-GI, then GI is in P.



REDUCTIONS OF GRAPH ISOMORPHISM PROBLEMS 13

Proof. Assume such a reduction, A, exists. k-GI is called on
(G1, Hy), (G, Hy), ..., (Ge, H.) in parallel. Then the following algo-
rithm solves GI in polynomial time;

Run A until the ¢ parallel calls to k-GI
Fix any sequence of distinct vertices (uf,uj,...,u;) in G; for each j
For all sequences (v, v5,...,v;,) € V(H;) over all i
Assume k-GI gives:
(Gl b, (s 08y (0], [0S, 05), (15, 0), o (uf, 0]}
Run the rest of A
Check if the result is an isomorphism
If it is an isomorphism, return it and terminate
If this point is reached, G and H are not isomorphic

6. ACKNOWLEDGEMENTS

I would also like to thank Jonathan Buss, Eugene Eisenstein, and
Matei Zaharia for useful discussion. I would also like to thank an
anonymous referee for helpful suggestions.

REFERENCES

[1] A. G4l, S. Halevi, R. Lipton, and E. Petrank. “Computing from partial so-
lutions.” Proceedings of the 14th Annual IEEE Conference on Computational
Complezity, 34-45. IEEE Computer Society Press, 1999.

[2] A. GroBe, J. Rothe and, G. Wechsung. “Computing complete graph isomor-
phisms and hamiltonian cycles from partial ones.” Theory of Computing Sys-
tems, 35(1):81-93, 2002.



