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Abstract
Real-world databases experience various data quality problems of different

causes including heterogeneity of consolidated data sources, imprecision of read-
ing devices, and data entry errors. Existence of duplicate records is a prominent
data quality problem. The process of duplicate elimination often involves uncer-
tainty in deciding on the true duplicates. Current tools resolve such uncertainty
either through expert intervention, which is not always possible, or by taking de-
structive decisions that may lead to unrecoverable errors.

In this paper, we approach duplicate elimination from a new perspective treat-
ing deduplication procedures as data processing tasks with uncertain outcomes.
We propose a complete uncertainty model that compactly encodes the space of
clean instances of the input data, and introduce efficient model implementations.
We extend our model to capture the behavior of the deduplication process, and
allow revising and updating the modeled uncertainty. We apply our model and
techniques to state-of-the-art deduplication algorithms to demonstrate the added
value of our methods. Our experimental study evaluates the complexity and scala-
bility of our techniques in different configurations.

1 Introduction
Data quality is a key ingredient in successful data analysis and processing. Several
sources of noise can negatively affect data quality. Examples include the heterogene-
ity of integrated data sources, imprecision of reading devices, and data entry errors.
Data quality problems include missing values [13], and violation of integrity con-
straints [19]. Databases that experience such problems are often referred to as unclean
databases. Data cleaning is the process of fixing errors and anomalies in an unclean
database. Data cleaning is usually an expensive and labor intensive process, which
tends to be done once before analyzing or storing the data [18, 21, 24].

One of the major data quality problems is the presence of duplicate records that
refer to the same real-world entity. The problem of duplicate elimination is referred to
as deduplication, entity resolution [7], or record linkage [15].

In this paper, we approach duplicate elimination from a new perspective treating
cleaning procedures as data processing tasks with uncertain outcomes. We present
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Figure 1: Deterministic Vs. Probabilistic Cleaning
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Figure 2: Duplicate Detection Approaches

novel techniques to model the uncertainty involved in deduplication procedures. Our
proposed solution extends the implementation of current deduplication techniques by
capturing their intermediate cleaning decisions, and the space of possible outcomes.

1.1 Motivation and Challenges
The one-shot deduplication approach, currently adopted by many data cleaning tools,
has the following limitations:

• Dealing with Uncertain Cleaning Decisions: The current cleaning approaches
are unable to properly handle uncertain cleaning decisions, i.e., deciding whether
two records are duplicates. Uncertainty is usually handled through two alterna-
tives. The first alternative is to take arbitrary decisions, which may result in
unrecoverable errors, e.g., deciding that two records are duplicates even with
weak evidence. The second alternative is to resort to expert intervention, which
is not always available and does not scale with large volume of uncertainty in the
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unclean data.

• Updatability: The cleansed data produced by current cleaning tools is tightly-
coupled with the cleaning specifications used by the cleaning procedures.
Changing the cleaning specifications invalidates the cleansed data and requires
keeping the original raw data and re-applying the cleaning procedures.

Allowing flexibility in cleaning specifications is imperative to reduce the time and
effort spent in re-constructing and maintaining clean data. For example, applications
that compute high-level aggregated information might tolerate certain degrees of clean-
ing errors for the sake of performance. On the other hand, decision making processes
usually require highly accurate information, and thus may not tolerate any cleaning
errors. Between the two extremes, various degrees of uncertainty may be accepted by
different applications.

We address the above challenges by compactly encoding the uncertainty involved
in the cleaning procedures, and extending current cleaning systems to support new
query types that take both cleaning requirements and uncertainty into consideration.
We illustrate our “probabilistic cleaning” approach using Figure 1(b). Our approach
uses relaxed cleaning specifications that allow uncertain cleaning decisions, e.g., two
records may be duplicates, and extends the implementation of cleaning procedures to
generate all possible outcomes based on these specifications. The space of cleaning
outcomes is maintained using an uncertainty and cleaning-aware RDBMS.

The “probabilistic cleaning” approach builds on and extends the current practices
in data cleaning in several ways:

• Capturing all possible cleaning outcomes allows preserving the potentially use-
ful cleaning results without destroying the original unclean data. This enables
data processing without expert intervention if uncertain query answers are en-
countered. Further, it provides experts with a scope of the conflicting/uncertain
cleaning decisions that need to be addressed.

• Contrasting and comparing the uncertainty involved in the outputs of multiple
cleaning procedures, or the same procedure with multiple specifications. This
allow for using and integrating different cleaning tools appropriately in cleaning
workflows.

• Enabling new types of cleaning requirements defined on the query output, and
hence are independent from the implementation details of underlying cleaning
procedures.

• Allowing specifying cleaning requirements as query predicates by pushing the
expensive off-line clustering and matching tasks to model building.

Figure 2 gives an example for the output of the deterministic and probabilistic
deduplication approaches using census data with duplicate records. Ideally, a clean
version of the input table should contain one record per person. Duplicate detection
algorithms identify such duplicates by measuring their similarity (more details in Sec-
tion 2). The output of the duplicate detection algorithm is disjoint groups of record
identifiers, where each group denotes a set of duplicate records.
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In one-shot deduplication, records are strictly identified as either duplicates or non-
duplicates. However, with probabilistic deduplication, this restriction is relaxed to al-
low for “possible duplicates”. The question marks in Figure 2 refer to such possible
duplicates. The uncertainty in deciding on the true duplicates is described by an under-
lying uncertainty model that allows for querying all possible clean outcomes.

1.2 Contributions
We summarize our contributions as follows:

• We propose a complete uncertainty model that compactly encodes the space of
clean instances generated by deduplication procedures with uncertain cleaning
decisions.

• We extend our model to capture the inter-decision dependencies, and to track
the behavior of the cleaning algorithm. We show how our model is flexible in
that it can accommodate updates based on new evidences obtained from different
sources.

• We introduce new query types that exploit the modeling of all possible clean
instances, and are not supported under current one-shot cleaning approaches.

• We apply our model and techniques to the state-of-the-art deduplication algo-
rithms to demonstrate the flexibility of our methods in different settings.

The remainder of this paper is organized as follows. Section 2 discusses the short-
comings of current techniques. In Section 3, we introduce our basic uncertainty model,
and we show how to extend it in Section 4. We provide two case studies in Section 5.
In Section 6, we discuss querying and updating our uncertainty model. Section 7 gives
our experimental study. We briefly describe related works in Section 8. We conclude
with final remarks in Section 9.

2 Background and Shortcomings of the Current Tech-
niques

Deduplication algorithms are mainly based on two main operations: record matching,
and clustering. Matching is usually done by measuring record similarity based on a
distance measure, e.g., Euclidian distance, edit distance, and Q-grams [15]. The output
of record matching can be seen as a graph that connects each pair of similar records
with an edge weighted by the strength of their similarity. Clustering aims at grouping
records that represent the same entity. Thus, merging each cluster into one record gives
a clean duplicate-free version of the input data.

Many deduplication techniques adapt classical clustering algorithms for record
deduplication. One example is using the hierarchical clustering algorithm [23, 10,
15, 7] (also called greedy agglomerative clustering). Hierarchical clustering iteratively
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Figure 3: Example of Hierarchical Clustering

groups pairs of records (or record clusters) that are the closest, according to some dis-
tance metric. The algorithm terminates when the minimum pairwise distance is greater
than a given threshold. For example, in Figure 3, the algorithm clusters r4 and r5, r1

and r2, and finally r3 and {r4, r5}. The distance among record clusters is computed in
different ways. For example, in single-linkage [20], the distance between two clusters
is the distance between the two closest records in the two clusters.

Another family of deduplication algorithms builds on nearest neighbor (NN) tech-
niques to cluster duplicate records. For example, in [9], records are declared duplicates
if they represent a compact set, i.e., they are mutual nearest neighbors to each other,
and they have a sparse neighborhood, i.e., the surrounding space is relatively empty.

A common problem in deduplication algorithms is to identify the optimal settings
of algorithm parameters to generate the output with the highest accuracy. For exam-
ple, techniques based on hierarchical clustering, e.g., [7], assume that two records are
duplicates if their distance is less than a given threshold. Similarly, nearest neighbor-
based techniques, e.g., [9], assume that the sets of nearest neighbor records are du-
plicates if the sparseness of their neighborhood is above some cut-off threshold. In
many cases, using a single threshold value in all the decisions taken by the algorithm
does not give the best accuracy. Thus, several proposals assume an uncertainty re-
gion in the parameter domain, where the deduplication process cannot make a deter-
ministic decision [15, 18, 16, 25]. Hence, records can be classified as ‘duplicates’,
‘non-duplicates’, or ‘possible duplicates’ depending on the computed value of the used
metric, e.g., records’ distance. Possible duplicates are currently resolved by firing an
“exception” that is resolved through expert intervention [18, 22]. When the number of
such exceptions is large, or when experts are not available, the cleaning process either
stops or is forced to take destructive decisions, e.g., assume that possible duplicates are
non-duplicates, to generate a cleansed output. Such destructive decisions are usually
unrecoverable since undoing any decision requires restarting the whole deduplication
process.

3 A Basic Uncertainty Model
In this section, we give a complete uncertainty model that represents all possible clean
instances that can be generated by a deduplication process. To illustrate, assume a
simple relation R = {r1, r2, r3, r4}, where the deduplication process has classified
{r1, r2} as a set of possible duplicates, and {r3, r4} as a set of duplicates. Hence,
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Figure 4: Basic Uncertainty Model

we have two possible clean instances: {〈r3, r4〉, 〈r1, r2〉} and {〈r3, r4〉, r1, r2}, where
〈ri, rj〉 represents the record resulting from merging ri and rj . Clean instances have
clear analogy to the concept of ‘possible worlds’ in uncertain databases [6, 14, 4],
where possible worlds are all possible database instances originating from tuple-level
and/or attribute-level uncertainty.

In general, the number of possible clean instances is exponential in the number
of possible duplicates. Hence, explicit generation and storage of such space is not an
option. Lineage (a mechanism for tracking the sources of data items) has been used
in building complete uncertainty models that can describe arbitrary input instances
[6]. This motivates using lineage as a tool to describe the space of possible clean
instances. Note that lineage in our settings is ‘cleaning-oriented’, and hence it has
special interpretations that originate from the problem semantics, as we discuss below.

Definition 1 Duplicate Set. For an unclean relation R, a duplicate set, denoted D, is
a set of records in R identified by the cleaning process as duplicates. �

For each record r ∈ R that does not belong to any duplicate set, we define a
singleton duplicate set {r}.
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Definition 2 Uncertain Clean (U-Clean) Relation. For an unclean relation R, the
corresponding U-Clean relation Rc is a set of records created by merging each du-
plicate set D ⊆ R into a representative record. Records of Rc are called c-records.
�

A U-Clean relation Rc compactly encodes multiple clean instances of R, which are
defined as follow:

Definition 3 Clean Instance. For a U-Clean relation Rc, a clean instance is a set of
records I ⊆ Rc that is (1) consistent: records in I are c-records of disjoint duplicate
sets; and (2) maximal: the union of duplicate sets corresponding to c-records in I is
equal to the unclean relation R. �

Based on the above definitions, we next define our basic uncertainty model to en-
code the space of clean instances.

Definition 4 Uncertainty Model. For a U-Clean relation Rc, let the cleaning lineage
of Rc, denoted by Lc, be a mapping of each c-record r ∈ Rc to its duplicate set D ⊆ R.
The uncertainty model is the pair (Rc, Lc). �

We illustrate the above definitions using the example given in Figure 4. Figure 4(a)
shows the components of our uncertainty model for the unclean relation Person which
contains census data. A cleaning process identifies duplicate records, and generates the
corresponding U-Clean relation CleanedPerson. The cleaning lineage associates each
c-record in the U-Clean relation with its corresponding duplicate set. For example, the
c-record CP2 corresponds to the duplicate set {P1, P4}. The cleaning lineage can be
simply modeled as an additional column in the U-Clean relation, allowing for simple
identification of valid clean instances. For example, in Figure 4(a), the c-records CP1
and CP2 cannot co-exist in the same clean instance due to their intersecting cleaning
lineage.

Figure 4(b) shows the space of clean instances {I1, I2, I3, I4, I5} of the U-Clean
relation CleanedPerson. Each instance defines a possible partition of the unclean re-
lation. In the worst case, the number of such partitions is exponential in |Rc| (by
correspondence to the problem of set partitioning [5]).

An important property in uncertainty models is completeness, which is the model
ability to capture an arbitrary set of possible instances. The importance of model com-
pleteness, in our context, is to cover a wide class of cleaning algorithms, whose output
is representable as a set of possible clean instances, without being tied to the low level
details of each algorithm. We show that our model is complete with respect to the space
of possible clean instances.

Theorem 1 Given an arbitrary set of clean instances I = {I1, . . . , In}, we can always
construct a U-Clean relation Rc along with its cleaning lineage Lc, such that the set
of clean instances of Rc is the same as I. �
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Proof. Each input instance Ij ∈ I gives a different partition of the same un-
clean relation R. That is, each input instance is a set of non-intersecting duplicate sets
whose union is R. We extend R to be Ŕ by adding to R a dummy (empty) record λi

corresponding to each distinct duplicate set Di appearing in one or more instances in
I. We use these dummy records to control the clean instances generated from the U-
Clean relation Rc in order to match I. The U-Clean relation Rc is constructed by the
following procedure:

1. For each duplicate set Di appearing in one or more input instances, add to Rc a
c-record Ci whose lineage is Di. We call Ci the c-record corresponding to Di,
and equivalently, we call Di the duplicate set corresponding to Ci.

2. For each c-record Ci ∈ Rc, add identifier of a dummy record λi to the lineage
of Ci.

3. For each input instance Ij ∈ I, add to Rc a dummy c-record aj whose lineage is
the set of λi’s not included in the lineage of any c-record corresponding to any
duplicate set in Ij .

Let Í be the set of clean instances generated from the constructed relation Rc

according to Definition 3). We show the one-to-one correspondence of Í and I by
proving that: (i) for any input instance Ij ∈ I, duplicate sets in Ij correspond to non-
dummy c-records in one clean instance in Í; and (ii) for any clean instance Íj ∈ Í,
non-dummy c-records in Íj correspond to duplicate sets in one input instance in I.

We prove (i) as follows. Let Íj be the set of c-records in Rc corresponding to dupli-
cate sets in Ij in addition to the dummy c-record aj . The instance Íj is a clean instance
of Rc because: (1) the lineage of non-dummy c-records in Íj is non-intersecting; (2)
the lineage of aj is disjoint with the lineage of all other records in Íj ; and (3) the c-
records in Íj correspond to duplicate sets whose union gives the unclean relation Ŕ.
Hence, according to Definition 3, Íj is both consistent and maximal, and Íj is thus a
clean instance of Rc. The instance Ij can be simply obtained from Íj by removing aj ,
and removing λi’s from the lineage of non-dummy c-records in Íj

We prove (ii) by contradiction. Assume that there does not exist an input clean
instance I∗ ∈ I that contains duplicate sets corresponding to non-dummy c-records in
a clean instance Íj ∈ Í. Since Íj is maximal, the c-records in Íj must correspond to
duplicate sets whose union gives the unclean relation Ŕ. Let L be the set of λi’s that
are not included in the lineage of any non-dummy c-record in Íj . If L is empty, then
all c-records in Rc have non-intersecting lineage and included in Íj . Consequently,
there is exactly one clean instance in I containing duplicate sets corresponding to all
non-dummy c-records in Íj .

If L is non-empty, then based on our initial assumption that the instance I∗ does
not exist in I, there is no dummy c-record in Rc with lineage L. This is due to the
way dummy c-records are constructed (step (3) in the construction procedure of Rc).
Thus, no dummy c-record in Rc can be a member of Íj . However, this means that Íj is
non-maximal, a contradiction. �
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Figure 5: Modeling Arbitrary Input Instances

The intuition of the proof of Theorem 1 is that we can construct the relation Rc by
modifying the cleaning lineage to suppress any possible instance that is not included in
the given set of input instances I.

We illustrate the completeness of our model using the example depicted by Fig-
ure 5 which shows three input instances, I1, I2, and I3, each is represented as a set
of duplicate sets. We construct the U-Clean relation Rc by following the procedure
given in the proof of Theorem 1, where we create a c-record Ci corresponding to each
unique duplicate set, extend the lineage of Ci with the additional identifier λi, and
finally create three dummy c-records, a1, a2, and a3, each corresponding to one of
the input instances. It can be verified that no clean instance can be generated from
the constructed Rc other than the shown Í1, Í2, and Í3 instances. For example, al-
though the instance {C4, C7} is a clean instance with respect to the original lineage
keys {r1, r2, r3, r4, r5}, the added λi’s make this instance non-maximal. Further, the
dummy c-records prohibit creating any clean instance containing both C4 and C7. For
any clean instance of Rc, we can recover the corresponding input instance (I1, I2, or
I3) by simply removing the dummy records.

We note that our basic model is similar in principle to the ULDB model [6], which
is intended for general uncertain relations. The ULDB model is based on x-relations
and lineage. In an x-relation, a tuple is a set of exclusive alternatives that are non-
overlapping with the alternatives of other tuples. However, in our settings, c-records
correspond to arbitrary (possibly intersecting) duplicate sets, and hence they cannot be
described as x-tuples with non-overlapping alternatives.

Although our basic uncertainty model is complete, it has two main limitations:

• Record Dependencies: Maintaining lineage of c-records in the U-Clean relation
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does not allow encoding record correlations beyond whether records co-exist in
the same clean instance or not. For example, the c-records of the duplicate sets
{r1, r2} and {r3, r4} co-exist in the same clean instances, however, they may be
correlated through the decision that r1 and r3 are possible duplicates. That is, the
duplicate sets {r1, r2} and {r3, r4} requires the non-existence of the duplicate
set {r1, r3}.

• Model Updatability: The model encodes cleaning lineage as flat sets of record
identifiers. Updating the model by overriding uncertain cleaning decisions, e.g.,
through expert intervention, is not possible since intermediate cleaning decisions
are not captured.

In Section 4, we address these limitations by constructing a model that captures the
intermediate cleaning decisions.

4 Extending the Model with Uncertain Decisions
The uncertainty model described in Section 3 is viewed as a compact representation
of possible outputs of the cleaning process. In this section, we build on this model by
constructing a probability space that maps each clean instance to a possible execution
path of the deduplication process. We discuss this mapping in Section 4.1. We discuss
the representation of the probability space in Section 4.2, followed by a description of
model construction in Section 4.3.

4.1 Mapping Clean Instances to Execution Paths
Due to uncertainty in duplicate detection, an uncertain deduplication process has a set
of possible execution paths, in contrast to the single execution path of its deterministic
counterpart. To illustrate, consider applying the single-linkage hierarchical clustering
on a relation R = {r1, r2, r3}, where the distance between r1 and r2 is equal to 7, and
the distance between r2 and r3 is equal to 3. Using a deterministic distance threshold
τ = 6, the algorithm will declare r2 and r3 as duplicates, and will declare {r2, r3}
and r1 as non-duplicates. Thus, the algorithm will follow the execution path that is
highlighted in bold in Figure 6. The distance between each pair of clusters is shown
above the oval representing that pair.

Alternatively, an uncertain deduplication process defines a range of thresholds
[τ1, τ2], such that any pair of records/record clusters whose distance falls within that
range is a possible duplicate. Figure 6 shows all possible execution paths of such pro-
cess. The outcome of each path is a possible clean instance of the input relation, where
each instance takes a (Yes/No) decision on each possible duplicate set. For example,
the instance I2 assumes that r2 and r3 are duplicates, while the instance I5 assumes
that they are non-duplicates. Each execution path maps to exactly one clean instance.
Furthermore, the same c-record can be generated by different execution paths, e.g.,
〈r1, r2, r3〉 is generated in both clean instances I1 and I3.
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Figure 6: Execution Paths of Single-Linkage Deduplication

Each execution path can be seen as a Boolean assignment to the uncertain decisions.
Hence, the joint distribution on these assignments gives us a probability space whose
elements are equivalent to the set of clean instances.

Different deduplication algorithms generate different execution paths for the same
input data. The reason is that each algorithm defines the order and the criteria of record
matching differently. For instance, in our hierarchical deduplication example, merging
r1 and r2 in a specific execution path rules out the possibility of r1 being merged with
any other record in the same execution path since {r1, r2} is now a cluster. However,
there exist general restrictions that hold for any algorithm. For example, any clean
instance cannot have conflicting c-records, e.g., 〈r1, r2〉 and 〈r1, r3〉.

We thus emphasize that we are not after modeling the global space of possible clean
instances, i.e., all possible partitions of the input relation under any algorithm, but we
are after modeling the clean instances for a given algorithm. Hence, our focus is on
providing the machinery that can be used to probabilistically model the uncertainty in
a wide class of deduplication algorithms.

4.2 Modeling Uncertain Decisions
Since the execution paths of a given algorithm cannot be enumerated due to their ex-
ponential growth, we show how to concisely represent the probability space using ad-
ditional constructs. We define Uncertain Cleaning Decision as follows.

Definition 5 Uncertain Cleaning Decision. An uncertain cleaning decision
U(D1, ..., Dm), where Di, 1 ≤ i ≤ m, are duplicate sets, evaluates the possibil-
ity that records in

⋃m
i=1 Di are duplicates. U(D1, ..., Dm) has two possible outcomes:

True, where a c-record corresponding to the duplicate set
⋃m

i=1 Di replaces c-records
corresponding to D1 through Dm; and False, where D1, ..., Dm represent separate
entities and hence left unmerged. �

Each uncertain decision divides the space of clean instances into two sets, corre-
sponding to the two possible outcomes of the decision. All possible clean instances
corresponding to the True outcome of a decision U(D1, ..., Dm) contain a c-record
r corresponding to

⋃m
i=1 Di (or further merge r with other c-records). On the other
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hand, all possible clean instances corresponding to the False outcome do not contain
a c-record for

⋃m
i=1 Di. For example in Figure 6, U({r2, r3}, {r1}) evaluates the pos-

sibility that {r1, r2, r3} is a duplicate set, which generates a c-record 〈r1, r2, r3〉, or
alternatively, the duplicate sets {r2, r3} and {r1} are left unmerged, and thus become
candidates to merge with other c-records.

Assume that the cleaning process has generated the c-record r for the dupli-
cate set {r1, r2, r3}. Although the model in Section 3 is capable of identifying the
possible clean instances containing r, it does not capture how r is actually gener-
ated. For example, r can be generated in various ways using hierarchical dedupli-
cation: U({r1}, {r2}) followed by U({r3}, {r1, r2}), or U({r2}, {r3}) followed by
U({r1}, {r2, r3}). Furthermore, each one of these decisions depends on a set of other
decisions. For example, merging r3 with {r1, r2} assumes that {r1, r2} is declared as
a duplicate set, i.e., U({r1}, {r2}) is True.

We view an uncertain decision U as a Boolean random variable that is equal to
True iff: (1) U is considered in a randomly chosen execution path of the dedupli-
cation process, and (2) its outcome is True in that path. Since the existence of c-
records depends on the outcomes of the uncertain decisions, c-records are also viewed
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as Boolean random variables, reflecting the event that they appear in the output gener-
ated by a randomly chosen execution path. In the following, we use ‘c-record’ to refer
to ‘c-record variable’, and ‘decision’ to refer to ‘decision variable’, when it is clear
from the context.

Constructing the probability space on execution paths requires identifying the de-
pendencies among their components. We identify two types of such dependencies: (1)
dependencies of c-records on uncertain decisions, these dependencies are common for
all deduplication algorithms; and (2) dependencies among uncertain decisions, these
dependencies are algorithm-specific. We describe the first type of dependencies and
give a general overview on the second type of dependencies, with concrete examples
given in Section 5.
• Record-Decision Dependencies. Let U be the set of all uncertain decisions. For a
c-record r with a corresponding duplicate set D, let U+

r be the set of decisions that
generate r, and U−r be the set of decisions that results in merging D with other records.
That is,

U+
r = {U(D1, ..., Dm) ∈ U :

m⋃
i=1

Di = D} (1)

U−r = {U(D1, ..., Dm) ∈ U : D ⊂
m⋃

i=1

Di} (2)

The existence of a c-record r is conditioned on the event that a randomly chosen
execution path assigns a True outcome to a decision that generates r, and False to
all decisions that merge r with other records. Hence r is True iff at least one decision
in U+

r is True, and all decisions in U−r are False. We formulate such condition,
denoted as λ(r), as follows:

λ(r) = (
∨

U∈U+
r

U) ∧ (
∧

U∈U−r ¬U) (3)

Based on Equation 3, we have (λ(r) → r), and (¬λ(r) → ¬r), which means
that λ(r) is necessary and sufficient condition for the existence of r. For example,
Figure 7(a) shows an example U-Clean relation and the set of uncertain decisions gen-
erated by a cleaning process. Figure 7(b) shows a truth table template listing the truth
value of a c-record r given each possible truth assignment of λ(r). Because of the
equivalence of r and λ(r), the truth values are always equal. Figure 7(b) also gives an
example truth table for the c-record C5. Based on the given set of uncertain decisions,
λ(C5) = (U2) ∧ (¬U3). The truth table shows all possible assignments of U2 and U3

along with the corresponding C5 value.
If both U+

r and U−r are empty, then existence of c-record r is unconditioned, i.e.,
λ(r) = True. In other words, the c-record r would exist in all possible clean instances.
• Decision-Decision Dependencies. An uncertain decision U depends on previous
decisions considered by the deduplication algorithm before considering U . These pre-
vious decisions are classified as prerequisite decisions, denoted by U+

U , that must be
True in order to consider U , and conflicting decisions, denoted by U−U , that have to be
False if U = True. The precondition of having U equal to True is encoded using
an expression λ(U), defined as follows:
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λ(U) = f(U+
U ,U−U ) (4)

where f is an algorithm-specific logical function. If the sets U+
U and U−U are empty,

then the decision variable U has no prerequisites or conflicts, i.e., λ(U) = True. The
condition λ(U) is necessary, but not sufficient, for U to be True.

Figure 7(b) shows a truth table template for the possible truth assignments of a
decision variable U given the expression λ(U). Given that λ(U) = True, the variable
U can be either True or False representing possible decision outcomes. However,
given that λ(U) = False, the variable U must be False. Figure 7(b) gives an
example truth table for the decision variable U4, where λ(U4) = (U1) ∧ (¬U2) (based
on the dependencies of the hierarchical deduplication discussed in Section 5). The
truth table shows all possible assignments of U1 and U2 along with the corresponding
U4 value.

4.3 Model Construction
The expressions λ(r) and λ(U), given in Section 4.2, encode the necessary conditions
for generating a c-record r, or an uncertain cleaning decision U , respectively. Hence,
the random variable representing r is conditionally independent from all other variables
given λ(r), and, similarly, U is conditionally independent from all other variables given
λ(U). Conditional independence allows maintaining a small set of dependencies while
still being able to derive all possible dependencies, similar to Bayesian networks. We
introduce a graphical representation of our dependency model based on the concept of
conditional independence. Specifically, our extended model is defined as follows:

Definition 6 Extended Uncertainty Model. For a U-Clean relation Rc, and
a set of uncertain cleaning decisions U , let G(V,E) be a DAG, denoted as
Dependency-Graph, where the set of vertices G.V includes a node per each c-
record r ∈ Rc and a node per each decision U ∈ U , while the set of edges G.E
encodes the expressions λ(r) and λ(U) for each r ∈ Rc, and each U ∈ U . The
extended uncertainty model is the triple (Rc,U , G). �

Encoding the condition λ(r) in G is done by labeling all edges (U, r) for U ∈ U+
r

with ′T ′, and labeling all edges (U, r) for U ∈ U−r with ′F ′. Hence, for a given c-
record r, we can construct the expression λ(r) using the edge labels. Encoding λ(U)
is done differently according to the underlying deduplication algorithm as we show in
Section 5.

The extended uncertainty model given in Definition 6 still encodes the entire clean-
ing lineage of c-records. The cleaning lineage of a c-record r is obtained from any
of the decision nodes that generate r. Hence, the model is still complete. However,
the model further maintains dependency information that allows additional functional-
ities that are not supported by the lineage-based model. Specifically, we describe how
to use the dependencies captured by our model in revising cleaning decisions and in
computing the probabilities of cleaning outcomes in Section 6.

Algorithm 1 describes model construction. The algorithm initializes the U-Clean
relation Rc and the nodes of the Dependency-GraphG with the set of base records
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Algorithm 1 Uncertain-Dedup(R)
Require: R: Unclean relation

1: Rc ← R
2: U ← φ
3: Create a decision queue Q initialized with all uncertain decisions with empty pre-

requisites (Section 5)
4: Create G = (V,E), with V = records in Rc, and E = φ
5: while (Q is not empty) do
6: Remove first decision Ui(D1, ..., Dm) from Q
7: if (Ui’s outcome is deterministically True) then
8: Construct a c-record ri corresponding to

⋃m
j=1 Dj

9: Add ri to Rc, and create a node ri in G.V
10: Remove from Rc and G.V all c-records corresponding to any duplicate set

D1, ..., Dm

11: else if (Ui’s outcome is a uncertain) then
12: Add Ui to U , and G.V
13: Add ri to Rc, and create a node ri in G.V
14: Update G.E based on λ(ri) and λ(Ui) (Section 5)
15: Generate new decisions based on current Rc and add them to Q (Section 5)
16: end if
17: end while
18: return (Rc,U , G)

in the unclean relation R. Initially, the set of edges G.E is empty. The algorithm
maintains a queue of cleaning decisions, ordered by the sequence in which they should
be considered by the deduplication algorithm (e.g., closest-pairs first in case of hierar-
chical deduplication). For each examined decision Ui(D1, ..., Dm), the corresponding
c-record ri is created and added to Rc and G.V . If the outcome of Ui is determin-
istically True, we remove all c-records corresponding to any of the duplicate sets
D1, ..., Dm from both Rc and G.V . On the other hand, if Ui is uncertain, we keep all
c-records corresponding to the duplicate sets D1, ..., Dm, and insert Ui into the set of
uncertain decisions U and G.V . We also update G.E to capture the new dependencies.
The algorithm terminates when Q is empty, where it returns (Rc,U , G).

Algorithm 1 is a generic algorithm that is used to construct our uncertainty model.
The implementation details are defined based on the adopted deduplication approach.

To support a specific deduplication technique, we define two main tasks: (1) mod-
eling uncertainty in clustering as a set of dependent deduplication decisions, and (2)
defining dependency among decisions as necessary and/or sufficient conditions for de-
cision checking and c-records creation. The complexity of these tasks depends on the
specific deduplication approach. In Section 5, we give two case studies for hierarchical
deduplication and NN-based deduplication.

15



5 Case Studies
In the this section, we show how to use our techniques to model two deduplication
algorithms: hierarchical deduplication, which has been widely used in related works
(e.g., [23, 10, 15, 7]) and NN-based clustering [9].

5.1 Hierarchical Deduplication
In hierarchial clustering, two clusters are considered duplicates, and hence merged,
if their distance is less that a threshold τ . As we showed in Section 4.1, uncertainty
emerges from the fact that no single threshold could yield a perfect separation between
duplicates and non-duplicates [9]. Thus, in uncertain hierarchical deduplication, we
use a range of possible thresholds [τl, τu] such that records/clusters with distances be-
low τl are duplicates, records/clusters with distances above τu are non-duplicates, and
records/clusters with distances in [τl, τu] are possible duplicates.
• Uncertain Decisions and Dependencies. Each step in hierarchical deduplication
merges a pair of records/clusters. Hence, an uncertain decision U takes the form
U(D1, D2), where D1 and D2 are duplicate sets. Based on this constraint, we identify
the following decision dependencies. U(D1, D2) implies that: (1) both D1 and D2 are
singletons or already declared as duplicate sets by some previous decision; and (2) all
previous decision Ui that has either D1 or D2 as a parameter are equal to False. We
formulate these dependencies using the following logical expressions:

U(D1, D2)→
(|D1| = 1 ∨ ∃U1(D11, D12) ∈ U(D11 ∪D12 = D1 ∧ U1))∧
(|D2| = 1 ∨ ∃U2(D21, D22) ∈ U(D21 ∪D22 = D2 ∧ U2))

(5)

where |Di| indicate the cardinality of a duplicate set Di, and

U(D1, D2)→ ∀Ui(D1, Di), Uj(Dj , D2) ∈ U(¬Ui ∧ ¬Uj) (6)

•Graphical Dependency Structure. Based on Equations 5 and 6, the prerequisites of
U(D1, D2) are encoded as follows:

λ(U(D1, D2)) =

(
∨

Ui∈U+
D1

Ui) ∧ (
∨

Uj∈U+
D2

Uj) ∧ (
∧

Uk∈U−(D1,D2)

¬Uk) (7)

where U+
Di

is the set of decisions that generate Di in U , while U−(D1,D2)
is the set of

decisions that merge D1 or D2 with any other duplicate set.
Figure 8 shows how to use our Dependency-Graph to represent the sequence

of uncertain decisions in the hierarchical deduplication example in Figure 6.
We encode the expression λ(U) as follows. A decision node Ui(Di1, Di2) is con-

nected to another decision node Uj(Dj1, Dj2) in the following cases:

• If Ui ∈ U+
Dj1

. Edge is labeled ′T ′
1, e.g., (U2, U3).

• If Ui ∈ U+
Dj2

. Edge is labeled ′T ′
2, e.g., (U1, U4).
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Figure 8: Dependency-Graph for Hierarchical Deduplication

• If Ui ∈ U−(Dj1,Dj2)
. Edge is labeled ′F ′, e.g., (U1, U2).

For a node U(D1, D2), labeling an edge (U,Ui) with T1 denotes that Ui must be
True for D1 to exist. Similarly, labeling (U,Ui) with T2 denotes that Ui must be
True for D2 to exist. Labeling (U,Ui) with F denotes that Ui must be False for U
to be True.
• Quantifying Uncertainty in Decisions. A probability density function (PDF) fτ (.)
is assumed on the threshold range [τl, τu] to represent the uncertainty on the correct
threshold. Such PDF can be obtained by analyzing the underlying data, or using do-
main experience. For example, in [25], a range of thresholds is obtained such that the
rates of false positives and false negatives are minimized. If no other evidences are
available, we can assume a uniform distribution over the threshold range. We use the
threshold PDF as follows. Given a decision Ui(D1, D2), the distance di between the
duplicate sets D1 and D2 is mapped to the threshold range, such that Ui=True at every
threshold τ > di. Since each decision is dependent on a set of prerequisites, the prob-
ability computed using fτ (.) is actually conditioned on the event that the decision’s
prerequisites are already satisfied. That is,

Pr(Ui|λ(Ui) = True) =
∫ τu

di

fτ (x) dx (8)

• Constructing the Model. Decisions are created in hierarchical deduplication iter-
atively. The initial decision inserted in the priority queue Q (line 3 in Algorithm 1) is
the closet pair of records. Every time a new cluster is created, we search for the current
closest clusters and we insert their matching decision in Q (line 15). We create edges
(line 14) among uncertain decisions as described in this section, and between uncertain
decisions and c-records as described in Section 4.3.
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5.2 NN-based Deduplication
The NN-based deduplication algorithm in [9] defines a duplicate set as a compact set
that has a sparse neighborhood. A set of records S is compact if ∀r ∈ S, the dis-
tance between r and any other record in S is less than the distance between r and any
record not in S. The neighborhood growth of a record r, denoted ng(r), is the number
of records whose distance to r is smaller than double the distance between r and its
nearest neighbor. A set S has a sparse neighborhood if (Aggr∈S ng(r) < C), where
Agg is an aggregate function such as max or avg, and C is a cut-off threshold for
neighborhood sparseness. An uncertain NN-based deduplication algorithm is the same
as the previous algorithm with the exception that a range of cut-off thresholds [Cl, Cu]
is used to express the uncertainty in determining neighborhood sparseness. Such po-
tential uncertainty is also noted in [9], where it is shown that the accuracy of duplicate
detection improves by tuning C.
•Uncertain Decisions and Dependencies. Decisions in NN-based deduplication have
the form U(D1, ..., Dm), where each duplicate set Di is a singleton set representing
a base record r ∈ R. Let S(U) = ∪m

j=1Dj . For each compact set, the uncertain
NN-based algorithm declares S(U) as a duplicate set if its aggregated neighborhood
growth is less than Cl, a non-duplicate set if its neighborhood growth is greater than
Cl, or a possible duplicate set if its neighborhood growth is in [Cl, Cu].

The NN-based algorithm does not enforce any dependency between decision.
While independence between non-intersecting decisions is straightforward, it is nec-
essary to show that independence holds for intersecting decisions. We observe that in-
tersecting compact sets must have containment relationship. That is, ∀Ui, Uj(S(Ui) ∩
S(Uj) = φ∨ (S(Ui) ⊂ S(Uj))∨ (S(Uj) ⊂ S(Ui))). We verify this fact by contradic-
tion. Assume that ∃Ui, Uj(S(Ui)∩S(Ui) 6= φ∧S(Ui)−S(Uj) 6= φ∧S(Uj)−S(Uj) 6=
φ). Let ki and kj denote the cardinality of S(Ui) and S(Uj), respectively, and assume,
without loss of generality, that ki ≤ kj . According to the definition of compact sets [9],
the ki−1 nearest neighbours of a records x ∈ S(Ui) are equal to S(Ui)−{x}, and sim-
ilarly, the kj−1 NNs of x ∈ S(Uj) are equal to S(Uj)−{x}. For x ∈ S(Ui)∩S(Uj),
the ki − 1 NNs of x are not contained in the set of the kj − 1 NNs of x because
S(Uj)− S(Ui) 6= φ. This contradicts the fact that ki − 1 NNs of x must be contained
in the kj − 1 NNs of x, assuming that the k-NNs of x are uniquely defined, i.e., no ties
in distance.

Furthermore, declaring records in a compact set as duplicates does not require its
(compact) subsets to be duplicates, according to the algorithm in [9]. Additionally, if
two sets S1 and S2, S1 ∈ S2, are declared as duplicate sets, the algorithm consider
all records in the larger set S2 as duplicates. If follows that arbitrary assignments of
decisions outcomes are possible. Thus, the random variables representing the uncertain
decisions are independent, i.e., λ(U) = True,∀U ∈ U , and hence there are no edges
connecting decision nodes in G.
• Quantifying Uncertainty in Decisions. Similar to our discussion on the uncertain
hierarchical deduplication algorithm, we assume a PDF fC(.) on the range [Cl, Cu]
that expresses the uncertainty about the correct sparseness cut-off. The conditional
probability of a decision U is the same as its marginal probability, since all decisions
have empty prerequisites. This probability is computed as follows:
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Pr(U |λ(U) = True) = Pr(U) =
∫ Cu

Aggr∈S(U)ng(r)

fC(x) dx (9)

• Constructing the Model. The queue Q in Algorithm 1 contains decisions corre-
sponding to all possible compact sets. These decisions could be either inserted at the
beginning of the algorithm (line 3), or incrementally constructed and inserted into Q
(line 15). Decisions are retrieved from Q in any arbitrary order. Edges are only created
(line 14) between uncertain decisions and dependent c-records (Section 4.3).

6 Querying and Updating the Uncertainty Model
In this section, we discuss new data cleaning operations that are enabled using our un-
certainty model. We describe in Section 6.1 how to compute the marginal probabilities
of c-records, since we need it in the rest of this section. In Section 6.2, we discuss
updating the uncertainty model using additional evidences. We discuss supporting new
types of queries in Section 6.3.

6.1 Computing the Marginal Probabilities of c-records
Based on our probability space, the marginal probability of a c-record r is the sum-
mation of the probabilities of all clean instances containing r. We use the conditional
independence between nodes in G to compute the probability of each node based on
Bayes rule. The marginal probability of a c-record r, denoted Pr(r), is computed
as Pr(r) = Pr(λ(r)). For example in Figure 8, assume the shown matchings have
the following conditional probabilities: Pr(U1|λ(U1)) = 0.8, Pr(U2|λ(U2)) = 0.6,
Pr(U3|λ(U3)) = 0.8, and Pr(U4|λ(U4)) = 0.6. The membership probability of the
c-record r1 is computed as follows:

Pr(r1) = Pr(λ(r1))
= Pr(¬U2 ∧ ¬U4)
= Pr(¬U4|¬U2) · Pr(¬U2)
= Pr(¬U4|¬U2, U1) · Pr(¬U2|U1) · Pr(U1)
+Pr(¬U4|¬U2,¬U1) · Pr(¬U2|¬U1) · Pr(¬U1)
= (1.0)(0.4)(0.8) + (1.0)(0.4)(0.2) = 0.4

Similar to computing individual record’s probability, we apply Bayes chain rule to
compute the joint probability of multiple records.

In general, Bayesian inference is known to be in NP-hard [8]. Approximate in-
ference, e.g., Markov chain Monte Carlo (MCMC) method [2] can be used to provide
more efficient computation of records’ marginal and joint probabilities. In our model
prototype, we experimented with an approximate inference methods based on Gibbs
Sampling [2], as we discuss in our experiments.

6.2 Updating the Uncertainty Model
The uncertainty we capture in our model can be updated/revised in different ways:

19



• Revising Record Matchings. An expert may confirm/invalidate record matchings.
Such revisions are encoded by the model without re-cleaning the data.

• Changing the Similarly Measure. A more elaborate, e.g., domain-specific, simi-
larity measure may be used to re-evaluate uncertain decisions.

• Tuning the Parameters of the Cleaning Process. Tuning the parameters of the
cleaning process, e.g., changing the range of possible similarity thresholds, re-
sults in modifying the outcomes of uncertain decisions.

We show here how to support update operation on our model through revising the
outcomes of uncertain cleaning decisions. An uncertain decision Ui is revised by set-
ting its conditional truth value Ui|(λ(Ui) = True) (represented as ‘?’ in the truth
table in Figure 7(b)) to either True or False. Revising an uncertain decision Ui does
not override its pre-conditions λ(Ui). For example, revising the uncertain decision
U({r1, r2}, {r3}) affects the matching between {r1, r2} and r3, but not between r1 and
r2. Thus, updating Ui only affects its descendant nodes in the Dependency-Graph.
We distinguish between two possibilities according to how Ui|(λ(Ui) = True) is set:

• Ui|(λ(Ui) = True) is set to False. In this case, the variable Ui is False,
regardless of λ(Ui). For example in Figure 8, setting U4|(λ(U4) = True) to
False, where λ(U4) = (U1 ∧ ¬U2), results in U4 = False regardless of U1

and U2.

• Ui|(λ(Ui) = True) is set to True. In this case, Ui becomes equivalent to
λ(Ui), which means that we cannot rule out any of the two possible outcomes
of Ui. For example in Figure 8, setting U4|(λ(U4) = True) to True results
in having U4 =True only when U1 =True and U2 =False, and having
U4 =False otherwise. A special case is when λ(Ui) is always True (e.g., Ui

has no parent nodes in the graph G. In this case, Ui is known to be always True.
For example, U1 in Figure 8 has no parents, i.e., λ(Ui) =True. Thus, setting
Ui|(λ(Ui) = True) to True is equivalent to setting Ui =True.

Let Pa(v) denote the parents of a node v in our Dependency-Graph. When a
decision node Ui becomes deterministic (either True or False), we remove Ui from
the Dependency-Graph G. A node n that is a child of Ui, i.e., Ui ∈ Pa(n), may
in turn become deterministic in the following two cases:

• n is a decision-node and λ(n) becomes False based on the value of Ui. In this
case, n is set to False since its pre-condition λ(n) is False. For example in
Figure 8, setting U1 =True makes λ(U2) = ¬U1 =False and subsequently
U2 =False.

• n is a record-node and λ(n) becomes either True or False. In this case, n fol-
lows the value of λ(n) (i.e., λ(n)→ n, and ¬λ(n)→ ¬n). For example, having
U1 =True and U4 =False results in λ(r4) = U1 ∧ ¬U4 =True, and thus
r4 =True, and having λ(r2) = ¬U1 ∧ ¬U2 =False, and thus r2 =False.
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Algorithm 2 Update Decision(Ui, d)

Require: Ui: Uncertain decision to be revised
Require: d: the new outcome of Ui, either True or False

1: if (d = True ∧ Pa(Ui) = φ) ∨ d = False then
2: for each child n of Ui do
3: if n is a decision-node and λ(n) = False then
4: Update Decision(n,False)
5: else if n is a record-node and λ(n) = False then
6: Remove n from both G and Rc

7: end if
8: end for
9: Remove Ui from U , and G (and all connected edges)

10: end if

We recursively repeat the above update procedure on reaching decision-nodes
that become deterministic. The details of the model update procedure, called
Update Decision, is given in Algorithm 2. The algorithm checks if the decision
variable Ui has a deterministic value. If this is the case, the children nodes of Ui are re-
evaluated, and the algorithm is recursively called if any child decision-node becomes
deterministic. Record nodes that become False result in removing the corresponding
c-records from the U-Clean relation Rc and from the graph G. Decision nodes that
become either True or False are removed from the graph G and from U .

For example, in Figure 8, assume that we set (U2|λ(U2) = True) to be False. In
this case, we remove U2 and all its connected edges. In addition, we remove the nodes
U3 and r5 since their values become False. Setting U3 to False will not affect any
children nodes, i.e., remain uncertain, and thus the algorithm terminates.

6.3 Querying the Uncertainty Model
Modeling uncertainty in deduplication process allows for new types of queries that are
not supported using one-shot deduplication approach. In the following, we describe
examples of possible queries.

6.3.1 Retrieving α-certain Answers

Certain answers over uncertain/inconsistent databases has been studied extensively
(e.g., [17]). Our model allows for quantifying the confidence in existence of c-records
in output, which can be used to report c-records that exhibit a minimum degree of cer-
tainty. For example, a user can define a probability threshold α such that all c-records
with existence probabilities greater than α are reported. We call this type of queries α-
certain queries. Using probabilities as predicates necessitates computing the marginal
probabilities of c-record. In large dependency graphs, probability computation could
be expensive, and thus could be done either off-line, where indexes on the probability
value can be used for efficient retrieval, or by using approximate inference techniques
[8]. We use the approximate computation of marginal probabilities in our experiments.
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Note that the reported c-records do not necessarily represent a valid clean instance.
However, it is always possible to compute the probability of co-existence of multiple
records in query output using our uncertainty model.

6.3.2 Most Probable Clean Instance

Obtaining the most probable clean instance is equivalent to the problem of finding
Maximum A Posteriori (MAP) in Bayesian Networks. Finding the exact MAPs or ap-
proximating MAPs with a constant ratio bound is NP-hard [1]. However, in some
special cases, it is possible to find MAPs more efficiently. For example, in the
Dependency-Graph generated by the uncertain NN-based deduplication, decision
variables are independent. Hence, finding the most probable instance can be done in
polynomial time by setting each uncertain decision separately to its most probable out-
come. Assignments of c-records variables are then obtained based on the dependencies
of c-records on decisions.

In the general case, the most probable instance can be approximated using Monte-
Carlo techniques, similar to [26]. The main idea is to iteratively draw samples
from the joint probability distribution of uncertain decisions. Iterative generation
of samples is efficiently performed by exploiting conditional independence in our
Dependency-graph.

6.3.3 Extracting Clean Instances

Our model allows efficient extraction of clean instances corresponding to a specific
value of cleaning parameters, e.g., similarity thresholds. Hence, the cost of construct-
ing the uncertainty model to compactly encode a wide range of clean instances is amor-
tized over the number of clean instances requested by the user.

Enabling this operation in our model requires keeping additional metadata that al-
lows setting the outcome of each uncertain decision based on the given parameter value.
For example, in uncertain hierarchical deduplication, we annotate each uncertain deci-
sion U(D1, D2) with the computed distance between D1 and D2. Similarly, in uncer-
tain NN-based deduplication, we annotate each uncertain decision with the aggregate
neighborhood growth of its corresponding compact set. Once all decisions’ outcomes
are set, it is straightforward to retrieve the set of c-records that belong to the required
clean instance. Complexity of extraction of a clean instance is polynomial as it re-
quires a linear scan of uncertain decisions, followed by evaluation of the prerequisites
of c-records.

7 Experiments
In this section, we describe the experimental study we conducted to evaluate our tech-
niques.
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Figure 9: Performance of Hierarchical Deduplication
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7.1 Experiments Setup
All experiments were conducted on a SunFire X4100 server with Dual Core 2.2GHz
processor, and 2GB of RAM. We use a synthetic data generator that is part of the
Febrl project (Freely Extensible Biomedical Record Linkage) [12]. Datasets generated
using Febrl exhibit the content and statistical properties of real-world datasets [11],
including the frequency distributions of attribute values, error types, and error positions
within attribute values. The distance between records is computed in Febrl based on the
similarity between their attributes. The runtime reported in our experiments does not
include the time required for computing the distance between records. Our experiments
parameters are listed as follows:

• Dataset size: The number of records in the input unclean relation (default is
100,000).

• Maximum records per cluster (K): The maximum number of records allowed
per cluster (default is 5).

• Percentage of Duplicates: The percentage of the input relation that represent
duplicate records (default is 10%).

• Range of Uncertainty: The width of the parameter range used in deduplication
(default is 2, which is 10% of broadest range width).

We implemented hierarchical deduplication and NN-based deduplication (Sec-
tion 5). We report the running time of (1) uncertain deduplication, (2) determinis-
tic deduplication, (3) extracting a clean instance, and (4) answering α-certain queries
(Section 6). We omit running times for obtaining the most probable clean instance as
they are almost equal to α-certain queries. We use sampling to compute the marginal
probabilities in case of hierarchical deduplication, and we use exact computation in
case of NN-based deduplication.

7.2 Performance Results of Hierarchical Deduplication
The running time of uncertain hierarchical deduplication is greater than the determinis-
tic version of the algorithm (Figure 9). This is due to the increased number of decisions
and records that are constructed in case of uncertain clustering. However, extracting
a clean instance takes less than a second in most cases. Consequently, our approach
is more efficient if the user requests multiple clean instances at various values of the
cleaning parameters. For example, using our approach to build more than 3 instances
under the default configuration consumes less time than performing multiple invoca-
tions of the deterministic algorithm.
Effect of Dataset Size. In Figure 9(a), both deterministic and uncertain versions of
the algorithm show rapid increase in running time for larger datasets. This is due to
the inherent complexity of the hierarchical clustering [20]. The ratio between running
times of the deterministic and uncertain versions is almost fixed for all dataset sizes.
The running time of α-certain queries is noticeably affected by the increasing size (and
complexity) of the Dependency-Graph.
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Effect of K. As shown in Figure 9(b), the running time of uncertain deduplication
shows a linear increase when K grows, while the running time of the deterministic al-
gorithm slightly increases. The reason is that the number of uncertain decisions rapidly
increases for larger clusters.
Effect of Percentage of Duplicates. Figure 9(c) shows the running times against the
percentage of duplicates in the dataset. The uncertain algorithm suffers from noticeable
increase in the running time because of the additional uncertain decisions, which in turn
results in exponential increase in the number of c-records.
Effect of Parameter Range. Figure 9(d) shows the effect of increasing the width of the
parameter range that we consider in uncertain deduplication algorithm. Increasing the
width of parameter range results in converting more certain decisions into uncertain
decisions which increases the number of generated c-records, and hence the running
time.

7.3 Performance Results of NN-based Deduplication
Running time of uncertain NN-based deduplication is almost identical to the determin-
istic version of the algorithm (Figure 10). This is due to two facts: (1) the number of
cleaning decisions is the same in both cases, which is equal to the number of compact
sets, and (2) most of the execution time is consumed in obtaining the compact sets
rather than constructing the Dependency-Graph.

Execution of clean instance extraction is less than 0.2 seconds in all cases. We also
notice that the running time of α-certain queries is less than 0.1 seconds in all cases.
This is due to the simple dependencies among vertices in the Dependency-Graph.
Effect of K. Figure 10(b) shows the effect of changing the value of K. We notice
that the increase in the running time is insignificant in both uncertain and deterministic
cases. The reason is that the number of compact sets of a specific size declines quickly
as the size increases. For example, the number of compact sets of size 2 represents
73% of the total number of compact sets.
Effect of Percentage of Duplicates. Figure 10(c) shows the effect of the percentage
of duplicates. The NN-based deduplication is slightly affected by the percentage of
duplicates in dataset. The reason is that construction of compact sets relies on the
relative distances between records rather than the actual number of duplicates in the
dataset. Consequently, the number of compact sets (and hence, the number of uncertain
decisions) does not increase significantly for greater percentage of duplicates.
Effect of Parameter Range. Figure 10(d) shows that expanding the parameter range
does not introduce new compact sets. Thus, the number of uncertain decisions consid-
ered by the algorithm, and subsequently the running time, remain fixed.

7.4 Quality of Uncertain Deduplication
We use recall and precision metrics to measure the quality of the most probable in-
stance. Recall is the fraction of true pairs of duplicate records reported by an algo-
rithm, and precision is the fraction of record pairs an algorithm returns which are truly
duplicate [9]. We use the harmonic mean of precision and recall (called F-measure)
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to indicate the overall output quality. We compare the most probable clean instance
with the instance representing the highest quality within the specified range. We obtain
such instance by performing an exhaustive search over the specified range of thresh-
olds using the deterministic algorithm. Note that users cannot be expected to guess
the threshold value that generates this best case cleaned instance. We assume that the
cleaning parameter is uniformly distributed over the entire range of possible values.

We notice that the difference between quality of the most probable instance and
the maximum quality is less than 0.09. The reason is that the most probable instance
represents the clean instance that has the highest chance of being produced by any
random run of the algorithm, and hence it materialize decisions’ outcomes that are
produced by the majority of runs. Such characteristics make the most probable instance
robust to incorrect decisions produced at single threshold values.

8 Related Work
A number of integrated data cleaning systems have been proposed with different fo-
cuses and goals. For example, AJAX [18] is an extensible and flexible framework
attempting to separate the logical and physical levels of data cleaning. The logical
level supports the design of the data cleaning workflow and specification of cleansing
operations performed, while the physical level regards their implementation. Potter’s
Wheel [24] is an interactive data cleansing system that integrates data transformation
and error detection using spreadsheet-like interface. IntelliClean [21] is a rule based
approach to data cleaning that focuses on duplicates elimination. The described ap-
proaches share a common weakness of inability to handle and capture uncertainty in
the process.

Bhattacharya and Getoor have introduced in [7] a new technique to measure the
similarity between records based on their relationship with other entities. The proposed
technique is based on hierarchical clustering. Although quality of the proposed distance
metric is superior to other metrics, determining the distance cut-off threshold remains
a source of uncertainty.

The ConQuer system [3] addresses the duplicate elimination problem with an em-
phasis on providing consistent query answers. The authors assume that clustering of
records is deterministically resolved and that uncertainty only emerges from merging
clustered records into a representative records.

9 Conclusion
In this paper, we introduced a novel approach to the problem of duplicate detection,
treating deduplication procedures as data processing tasks with uncertain outcomes.
We introduced a complete lineage-based uncertainty model that compactly encodes the
space of possible clean instances. We provided an extended model that captures the
behavior of the cleaning process by modeling uncertain cleaning decisions. We show
how to use our model to capture uncertainty in two concrete deduplication approaches:
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hierarchical deduplication and NN-based deduplication. We also described how to
support new query types and update operations on our model.
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