
CS–2008–05

State-Complexity Hierarchies of Uniform

Languages of Alphabet-Size Length

Janusz Brzozowski and Stavros Konstantinidis

Technical Report 05

David R. Cheriton School of Computer Science
University of Waterloo

March 11, 2008
Revised April 20, 2008

State-Complexity Hierarchies of Uniform Languages of

Alphabet-Size Length ∗

Janusz Brzozowski
David R. Cheriton School of Computer Science

University of Waterloo

Waterloo, ON, Canada N2L 3G1

brzozo@uwaterloo.ca

and
Stavros Konstantinidis

Department of Mathematics and Computing Science

Saint Mary’s University

Halifax, NS, Canada B3H 3C3

s.konstantinidis@smu.ca

April 20, 2008

Abstract

We study the state complexity of a class of simple languages. If A is an
alphabet of k letters, a k-language is a nonempty set of words of length k, that
is, a uniform language of length k. By a new construction, we show that the
maximal state complexity of a k-language is (kk−1 − 1)/(k − 1) + 2k + 1, and
every k-language of this complexity is also a uniform language of length k of
the maximal state complexity previously known. We then prove that, for every
i between minimal and maximal complexities, there is a language of complexity
i: for each i we exhibit such a language. We introduce “pi automata” accepting
languages whose words are permutations of the alphabet; the complexities of
these languages form a complete hierarchy between k2 − k + 3 and 2k + 1. We
start with an automaton with k2−k+3 states and show that states can be added
one at a time, until the automaton has 2k+1 states. We construct another class
of automata, based on k-ary trees, whose languages define a complete hierarchy
of complexities between 2k + 1 and the maximal complexity. Here, we start
with an automaton with the maximal number of states and remove states one
at a time, until an automaton with 2k + 1 states is reached.

∗This research was supported by the Natural Sciences and Engineering Research Council of
Canada under grants no. OGP000871 and R220259.

1

1 Introduction

State complexity has received considerable attention recently [2]–[6]. In particular,
the problem of finding a tight upper bound on the state complexity of a uniform
language of length n has been considered in [2, 4]. We study a special class of uniform
languages, namely, the nonempty languages over an alphabet A of cardinality k in
which all the words are of length k. Such languages, called k-languages, have two
advantages. First, the special form of a k-language makes it easier to reason about its
state complexity. Second, in spite of their simplicity, k-languages exhibit a complete
hierarchy of state complexities.

The paper is organized as follows. The next section contains our basic terminol-
ogy and notation. Section 3 defines k-languages and shows a tight upper bound of
(kk−1−1)/(k−1)+2k +1 on the state complexity of these languages; this bound co-
incides with the maximal possible state complexity of languages of length k as shown
in [2, 4]. Sections 4–7 demonstrate constructively that there are k-languages of state
complexity i for every i between the minimum and maximum possible state com-
plexities. In particular, Section 4 does this for all i between complexities k + 2 and
k2−k+3. Section 5 defines Pi automata, which are used in Section 6 to establish all
state complexities between k2−k+3 and 2k +1. Finally, Section 7 shows a construc-
tion for automata with complexities between 2k + 1 and (kk−1 − 1)/(k− 1) + 2k + 1.
Section 8 concludes the paper.

2 Terminology and notation

The cardinality of a set S is denoted by |S|. If A is an alphabet, then A∗ denotes
the free monoid generated by A. The empty word is 1, and the length of a word
w ∈ A∗ is |w|. If u, v,w ∈ A∗ and w = uv, then u is a prefix of w and v is a suffix
of w. If w = uxv, then x is a factor of w. A language over an alphabet A is any
subset of A∗. If L is a language, and w ∈ Σ∗, the (left) quotient of L by w is

w−1L = {x | wx ∈ L}. (1)

A (deterministic finite) automaton is a tuple A = (A,Q, q0, τ, F), where A is a
finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, τ : Q× A → Q
is the transition function, and F ⊆ Q is the set of final states. Two states p and q
of A are distinguishable, if there exists a word w ∈ Σ∗ such that τ(p,w) ∈ F and
τ(q, w) 6∈ F , or vice versa.

For a regular language L, the number of distinct quotients is finite [1]. We define
the quotient automaton of L as A = (A,Q, q0, τ, F), where Q = {w−1L | w ∈ A∗},
q0 = 1−1L = L, τ(w−1L, a) = (wa)−1L, and F = {w−1L | 1 ∈ w−1L}. This
automaton is minimal.

2

The state complexity, c(L), of a language L is the number of states in the minimal
deterministic automaton accepting L.

From now on we assume that the alphabet A has k > 0 letters.

3 k-languages and complexity bounds

A language L is uniform (of length n) if all the words in L are of the same length
(n).

Proposition 1 Let Ln be a uniform language of length n over A. Then

1. If |w| > n, then w−1Ln = ∅.

2. If |u|, |v| ≤ n and |u| 6= |v|, then u−1Ln ∩ v−1Ln = ∅.

Proof: This is obvious.

By Proposition 1, two words of different lengths lead to distinguishable states in
the quotient automaton of Ln. Let the level of a state q (other than the rejecting
sink state ∞ corresponding to the empty quotient) be the length of any word leading
to q; thus 0 is the level of the start state, and k is the level of the single final state.
The level of ∞ is k + 1.

The problem of finding a tight upper bound on the state complexity of a uniform
language of length n has been considered in [2, 4], where it has been shown that this
bound is

Ck,n =
kr − 1

k − 1
+

n−r
∑

j=0

(2kj

− 1) + 1, (2)

where r = min{m | km ≥ 2kn−m

− 1}.
We study a special class of uniform languages called k-languages. These are

nonempty languages over an alphabet of cardinality k in which all the words are of
length k. We denote by Kk the set of all k-languages.

Theorem 1 The following bounds hold for k-languages, k ≥ 1:

1. If L ∈ K1, then c(L) = 3.

2. If L ∈ Kk, then k + 2 ≤ c(L), and the bound is reachable.

3. If L ∈ K2, then c(L) ≤ 5, and the bound is reachable.

4. For k ≥ 3, if L ∈ Kk, the bound below is reachable.

c(L) ≤ Bk =
kk−1 − 1

k − 1
+ 2k + 1, (3)

3

Proof:

1. Let A = {a}; there is only one language L = {a} in K1, and c(L) = 3.

2. By definition, a k-language L is nonempty. Suppose w = a1 · · · ak ∈ L. Then
(a1 · · · ai)

−1L is nonempty for all i = 0, . . . , k. By Proposition 1, all these k+1
quotients are distinct, and there is also an empty quotient with respect to any
word of length > k. Hence k+2 ≤ c(L). The language Lmin(k) = {ak}, meets
the bound, for any a ∈ A.

3. Let A = {a, b}; if L ∈ K2, L is a nonempty subset of {aa, ab, ba, bb}. Any such
L has one quotient by the empty word 1, and at most two by words of length
1. If it is nonempty, the quotient by any word of length 2 is 1, and there is also
the empty quotient. Thus there are at most 5 distinct quotients. One verifies
that {aa, bb} has complexity 5.

4. Let A = {a1, . . . , ak}. We have w−1L = ∅, if |w| > k, and w−1L = 1, if w ∈ L
(and hence |w| = k). Next, w−1L ⊆ A if |w| = k − 1; since A has cardinality
k, there are at most 2k − 1 such quotients which are nonempty. For any i,
0 ≤ i ≤ k− 2, there are at most ki distinct quotients, since there are ki words
of length i. Altogether, we have an upper bound of

1 + 1 + (2k − 1) + (1 + k + · · · + kk−2) =
kk−1 − 1

k − 1
+ 2k + 1.

Now consider the language Lmax(k) defined by the automaton

Amax(k) = (A,Q, q0, τ, F),where

• Q = R ∪ P ∪ {f} ∪ {∞},

• R = {w ∈ A∗ | |w| ≤ k − 2},

• P = {S | S ⊆ A,S 6= ∅},

• f 6∈ R ∪ P is the only final state,

• ∞ 6∈ R ∪ P ∪ {f} is the rejecting sink state,

• q0 = 1,

• F = {f}, and
•

τ(q, a) =















qa for all q = w ∈ R, |w| ≤ k − 3,
is defined below if q = w ∈ R, |w| = k − 2,
f for all q = S ∈ P , a ∈ S,
∞ otherwise.

4

It remains to define τ for states of level k − 2. There are s = kk−2 words of
length k−2, and r = (2k)k−1 ordered k-tuples of states chosen from the set of
2k subsets of A, such that at least one component of each k-tuple is nonempty.
We claim that there are at least as many k-tuples as there are words of length
k − 2; since 2k > k, we have (2k)k > (2k)k−2 > kk−2. Hence (2k)k ≥ kk−2 + 1,
and

r = (2k)k − 1 ≥ kk−2 = s.

Enumerate the k-tuples t1, . . . , tr in such a way that all the 2k − 1 different
subsets of A appear in the first kk−2 k-tuples; this is possible as k·kk−2 ≥ 2k−1,
for all k ≥ 3. Each k-tuple ti has the form ti = (Si1 , . . . , Sik), where Sij is a
subset of A for j = 1, . . . , k. Order the words of length k− 2 in some way, say
u1, . . . , us, and assign to ui the k-tuple ti. Since r ≥ s, each word of length
k− 2 is assigned a unique k-tuple. If Sij 6= ∅, define τ(ui, aj) = Sij ; otherwise,
τ(ui, aj) = ∞. It follows that

ui
−1Lmax(k) =

k
⋃

j=1

ajSij .

Since each ui has a distinct k-tuple, these quotients are distinct.

Notice that the states in R form a full k-ary tree in which the leaf nodes correspond
to the kk−2 distinct quotients. We claim that all the states in the tree correspond
to distinct quotients. Suppose |u| < k − 2 and u−1Lmax(k) = v−1Lmax(k), for
some v 6= u. By Proposition 1, we must have |u| = |v|. Let w be any word such
that |uw| = k − 2; because we have a full k-ary tree, uw is a different state from
vw. Since all the states in level k − 2 are distinguishable, so are u−1Lmax(k) and
v−1Lmax(k), and we have reached a contradiction. Consequently, Lmax(k) meets
the upper bound.

When the length n of the words in a uniform language is the same as the size k
of the alphabet, expression (2) becomes

Ck,k =
kr − 1

k − 1
+

k−r
∑

j=0

(2kj

− 1) + 1, (4)

where r = min{m | km ≥ 2kk−m

− 1}. We now show that the bound found using our
construction coincides with Ck,k:

Proposition 2 The bound Bk of Theorem 1 coincides with the bound Ck,k.

5

Proof: One verifies that, if r = k − 1, then Bk = Ck,k. Next we show that r must
be equal to k− 1. We use the fact that 2k > k+ 1 for all k > 1. First we prove that
r ≤ k − 1. For this it is sufficient to show that 1 + kk−1 ≥ 2kk−(k−1)

= 2k. The case
of k = 3 holds. Assume that the statement is true for some k ≥ 3. Then,

1 + (k + 1)k > 1 + kk ≥ 1 + 3kk−1 = 1 + kk−1 + 2kk−1 ≥ 2k + 2 · 2k−1 = 2k+1.

We prove that r ≥ k−1 by contradiction. Assume that r ≤ k−2. As 2k > k+1,
we have (2k)k > (k + 1)k, and hence 2k2

> kk + 1 and 2kk−r

> kk + 1, using the

assumption k − r ≥ 2. But 1 + kr < 1 + kk < 2kk−r

, contradicting the definition of
r. Hence, r ≥ k − 1. Altogether, r = k − 1.

f

{a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}

c
a b

a, b

1

b ca

c

a

a
b

c

b
ac

b
a

a, c
b, c a, b, c

Figure 1: Automaton Amax(3), state ∞ not shown.

Example 1 Consider the automaton Amax(3) of Fig. 1. The states corresponding
to words of length ≤ k − 2 = 1 are 1, a, b, and c, and form a ternary tree. The
states at level k − 1 = 2 are the nonempty subsets of {a, b, c}, and f accepts {1}.
State ∞ and transitions to it are not shown.

We assign the triple ({a}, {b}, {c}) to state a, ({a, b}, {a, c}, {b, c}) to state b,
and ({a, b, c}, ∅, ∅) to state c. Of course, there are many ways to assign such triples,
since there are (23)3 − 1 = 511 possible triples. The state complexity of Amax(3)
meets the upper bound of 13 for k = 3.

6

4 From k-complexity to k
2-complexity

It is our aim to show that for every i, such that k+2 ≤ i ≤ Bk, there exists a language
of state complexity i. We do this in several steps. We first study languages with
state complexities between k+2 = 1(k−1)+3 and k(k−1)+3, which are referred to
as k-complexity and k2-complexity, respectively. Note that, for k = 1, k-complexity
is both the upper and the lower bound, since the complexity of the only 1-language
is k + 2 = 3. Also, k2-complexity coincides with k-complexity for k = 1.

Proposition 3 Let k ≥ 1 and Lpowers(k) =
⋃

a∈A{a
k}; then c(Lpowers(k)) = k2 −

k + 3.

Proof: One verifies that the quotients of Lpowers(k) with respect to words in the set
{ai | a ∈ A, 0 ≤ i ≤ k−1} are all nonempty and pairwise distinct, and each contains

a word of length > 0; this gives 1+k(k−1) states. Moreover, (ak)
−1
Lpowers(k) = 1,

for all a ∈ A, and w−1Lpowers(k) = ∅ for all other words. Hence the proposition
follows.

Proposition 4 The following properties hold for Kk:

1. For each i such that 1 ≤ i ≤ k there is a language Li in Kk with complexity
i(k − 1) + 3.

2. For each i ≤ k − 1 and j such that i(k − 1) + 3 ≤ j ≤ (i+ 1)(k − 1) + 3 there
is a language Lj in Kk with complexity j.

Proof:

1. Let A = {a1, . . . , ak}. The language {ak
1 , . . . , a

k
i } has complexity i(k − 1) + 3.

The proof is similar to that of Proposition 3.

2. The language {ak
1 , . . . , a

k
i+1} has complexity (i+ 1)(k − 1) + 3. To reduce the

number of states by 1 we can use {ak−1
1 , ak−1

2 }A ∪ {ak
3 , . . . , a

k
i+1}. To reduce

the number of states by 2, use {ak−2
1 , ak−2

2 }A2 ∪{ak
3, . . . , a

k
i+1}. This approach

works until we get {a1, a2}A
k−1 ∪ {ak

3 , . . . , a
k
i+1}, which results in a reduction

of k − 1 states and the language has complexity i(k − 1) + 3, as required.

Corollary 1 For each i such that k + 2 ≤ i ≤ k2 − k + 3 there is a language with
complexity i.

7

5 Pi automata

We now introduce a class of automata, all of which have the same form, and differ
only in the state set and the transition function. These automata permit us to show
that for every i, such that k2 − k + 3 ≤ i ≤ 2k + 1, there exists a language of state
complexity i.

Definition 1 Let k ≥ 1, and let A = {a1, a2, . . . , ak} be an alphabet. A pi automa-
ton is an automaton Aπ(k) = (A,Qπ, ∅, τπ , {A}), where

• Qπ = Rπ ∪ {∞} is the set of states,

• ∞ is a rejecting sink state,

• Rπ is a subset of 2A which contains ∅ and A,

• for any q ∈ Qπ, a ∈ A,

τπ(q, a) =

{

q ∪ {a} if q ∈ Rπ, a 6∈ q, and q ∪ {a} ∈ Rπ,
∞ otherwise.

Moreover, Aπ(k) satisfies the following conditions:

• For every state q other than ∅ and ∞ there is a predecessor state p such that
τ(p, a) = q, for some a ∈ q \ p.

• For every state q other than A and ∞ there is a successor state s such that
τ(q, a) = s, for some a ∈ s \ q.

Proposition 5 Every pi automaton Aπ(k) accepts a uniform language of length
k in which all the words are permutations of the alphabet A. Moreover, Aπ(k) is
minimal.

Proof: Since every state q, other that ∅ and ∞, has a predecessor p such that
|p| = |q| − 1, it follows that there is a path from the initial state to q spelling some
word u. The empty path spelling 1 takes state ∅ to itself. Thus, for any state q ∈ Rπ

there is a path from the initial state to q. Moreover, if there is a transition from a
state p to a state q, then q = p ∪ {a}, for some a 6∈ p. Hence any word u from the
initial state to any state q ∈ Rπ is a permutation of the letters of q. For q = A, every
word taking the initial state to A is a permutation of all the letters of the alphabet
A, as required.

Dually, since every state q ∈ Rπ \ {A} has a successor s such that |s| = |q| + 1,
and τ(q, s) = q ∪ {a}, for some a 6∈ q, there is a path from q to A spelling a word v

8

which is a permutation of the letters of A \ q. The empty path from A to A spells
the word 1 over the empty alphabet. Thus every state in Rπ is distinguishable from
every other state in Rπ. Also, every state in Rπ is distinguishable from state ∞,
which accepts no words. Therefore Aπ(k) is minimal.

A language is called a permutation language if it is accepted by a pi automaton.

Example 2 Figure 2 shows three pi automata, where we omit the rejecting state ∞
and all the transitions to it. Also, we do not show the letter causing a transition
from a state p to a state q, since that letter is the only letter which is in q but not
in p.

In Fig. 2 (a), we show the only pi automaton over the 1-letter alphabet {a}; it
accepts the language L = {a}. The automaton in Fig. 2 (b) is a pi automaton over
the 2-letter alphabet {a, b} and it accepts L = {ab, ba}. The language accepted by
the pi automaton of Fig. 2 (c) is L = {abcd, bacd}.

{b}

{a, b, c, d}

{a, b, c}

{a, b}

{a}

∅

{b}

{a}

∅

{a, b}

∅

{a}

(c)(b)(a)

Figure 2: Pi automata.

6 From k
2-complexity to 2k-complexity

We now consider the hierarchy of languages with complexities between k2 − k + 3
and 2k + 1; we call the latter 2k-complexity.

9

6.1 The automaton A0(k)

Let A = {a1, a2, . . . , ak}, and define the circular order to be that of the word xk =
a1a2 · · · aka1a2 · · · ak−1. For i = 0, . . . , k, let Ci be the set of all subsets S of A of
cardinality i, such that the letters of S can be arranged to form a factor of length
i of xk. Such subsets are called circular; otherwise, they are noncircular. In case
S = ∅, we consider it to be circular, and the corresponding factor is 1.

For example, if A = {a, b, c, d}, then x4 = abcdabc, word ac is in circular order,
but is not circular, while cd and dab are. Hence {a, c} is noncircular, whereas {c, d}
and {a, b, d} are circular.

We now define a pi automaton that uses circular sets as states. Let A0(k) =
(A,Q0, ∅, τ0, {A}), where Q0 = R0 ∪{∞}, R0 =

⋃k
i=0Ci, and for any q ∈ Q0, a ∈ A,

τ0(q, a) =

{

q ∪ {a} if q ∈ R0, a 6∈ q, and q ∪ {a} ∈ R0,
∞ otherwise.

The language Lcir(k) is defined to be the language accepted by A0(k).

Example 3 For k ≤ 3, all subsets of A are circular. The automata A0(1) and
A0(2) are shown in Figs. 2 (a) and (b), respectively. The language Lcir(3) =
{abc, acb, bac, bca, cab, cba} consists of all the permutations of {a, b, c}.

For k = 4, let A = {a, b, c, d}. There are 14 circular subsets; we list them
in groups of the same cardinality: C0 = {∅}, C1 = {{a}, {b}, {c}, {d}}, C2 =
{{a, b}, {b, c}, {c, d}, {d, a}}, C3 = {{a, b, c}, {b, c, d}, {c, d, a}, {d, a, b}}, and C4 =
{{a, b, c, d}}. There are two noncircular subsets {a, c} and {b, d}.

The automaton A0(4) is shown in Fig. 3 (a), where we represent states by words
instead of sets of letters to make their circularity explicit.

For k = 5, there are 10 noncircular subsets of A = {a, b, c, d, e}: {a, c}, {b, d},
{c, e}, {d, a}, {e, b}, {a, b, d}, {b, c, e},{c, d, a}, {d, e, b}, {e, a, c}.

Proposition 6 The language Lcir(k) of A0(k) has complexity k2 − k + 3.

Proof: There is one circular set of cardinality 0 and one of cardinality k. For each
cardinality i, 1 ≤ i ≤ k − 1, there are k circular sets, for a total of 2 + (k − 1)k.
Adding state ∞, A0(k) has k2 − k + 3 states. It is minimal by Proposition 5.

10

(b)

1

ab

a b c d

bc cd da

dabcdabcdabc

abcd

1

ab

a b c d

bc cd da

dabcdabcdabc

abcd

ac bd

(a)

Figure 3: Automata: (a) A0(4); (b) A1(4) = Aall(4).

6.2 The automaton Aall(k)

Next, we introduce a pi automaton Aall(k) with 2k + 1 states; the state set of this
automaton consists of all the 2k subsets of A plus the sink state ∞. Let Aall(k) =
(A,Qall, ∅, τall, {A}), where Qall = Rall ∪ {∞}, Rall = 2A, and for any q ∈ Qall,
a ∈ A,

τall(q, a) =

{

q ∪ {a} if q ∈ Rall and a 6∈ q,
∞ otherwise.

The language Lall(k) is defined to be the language accepted by Aall(k).

Proposition 7 The language Lall(k) consists of all the words which are permuta-
tions of A, and has complexity 2k + 1.

Proof: Aall(k) has 2k + 1 states and is minimal by Proposition 5.

The automaton of Fig. 3 (b) is Aall(4).

6.3 A hierarchy of pi automata

Let q ⊆ A. The predecessor distance dp(q) of q is the minimum number of letters
that have to be removed from q to obtain a circular set. Similarly, the successor
distance ds(q) of q is the minimum number of letters that have to be added to q
to obtain a circular set. The distance d(q) of q is defined as the maximum of the
predecessor and successor distances. Thus all circular sets have distance 0. For

11

A = {a, b, c, d, e, f, g, h}, the set {c, f, h} has predecessor distance 2 and successor
distance 3.

We now define a class of automata inductively. The basis is the automaton
A0(k) above. Given an automaton Ai(k) = (A,Qi, ∅, τi, {A}), define Ai+1(k) =
(A,Qi+1, ∅, τi+1, {A}), where Qi+1 = Qi ∪ Ri+1, Ri+1 = {q | d(q) = i + 1}, and for
any q ∈ Qi+1, a ∈ A,

τi(q, a) =

{

q ∪ {a} if q 6= ∞, a 6∈ q, and q ∪ {a} ∈ Qi+1,
∞ otherwise.

Proposition 8 For every k ≥ 1, there exists an integer nk, 0 ≤ nk < k such that
Ank

(k) = Ank+1(k) = Aall(k).

Proof: Automaton A0(k) contains all the states of distance 0. If Ai(k) contains all
the states of distance ≤ d, then Ai+1(k) contains all the states of distance ≤ d+ 1.
Since the distance is certainly less than k, we eventually include all the states, and
obtain automaton Aall(k).

6.4 From Ai(k) to Ai+1(k)

Recall that xk = a1a2 · · · aka1a2 · · · ak−1 is the word that defines the circular order.
Suppose we have a set q that is not circular, and suppose the predecessor and
successor distances of q are dp(q) and ds(q), respectively.

After we add the smallest number, ds(q), of letters to q so that it becomes
circular, we obtain a circular word v which is a factor of xk. We can think of q as
being represented by a word v#, which is v with each missing letter replaced by #.
All such words v# have the same length, if the #s represent the smallest number
of missing letters. By definition, it is possible to remove dp(q) letters from q, and
hence also from v#, to obtain another circular word u, which is a factor of v.

Example 4 If A = {a, . . . , i} and q = {b, e, g, h}, then dp(q) = 2, ds(q) = 3,
d(q) = 3, and q is in A3(9). Here we can choose v# = e#gh##b, and v = efghiab
or v′# = b##e#gh and v′ = bcdefgh. To get a circular word by removing letters,
we must remove b and e to obtain the word u = gh.

Consider the predecessors of q. We have p1 = {e, g, h}, p2 = {b, g, h}, p3 =
{b, e, h}, and p4 = {b, e, g}. Their predecessor and successor distances are dp(p1) =
1, ds(p1) = 1, dp(p2) = 1, ds(p2) = 2, dp(p3) = 2, ds(p3) = 4, and dp(p4) = 2,
ds(p4) = 3. Hence d(p1) = 1, d(p2) = 2, d(p3) = 4, and d(p4) = 3, and only p1 and
p2 are in A2(9).

Now consider the successors of q. We have s1 = {a, b, e, g, h}, s2 = {b, c, e, g, h},
s3 = {b, d, e, g, h}, s4 = {b, e, f, g, h}, and s5 = {b, e, g, h, i}. Their predecessor and

12

successor distances are dp(s1) = 3, ds(s1) = 2, dp(s2) = 3, ds(s2) = 2, dp(s3) = 3,
ds(s3) = 2, dp(s4) = 1, ds(s4) = 2, and dp(s5) = 2, ds(s5) = 2. Hence d(s1) = 3,
d(s2) = 3, d(s3) = 3, d(s4) = 2, and d(s5) = 2, and only s4 and s5 are in A2(9).

If we want to add q to pi automaton A2(9), then we can use τ(p1, b) = q or
τ(p2, e) = q, and τ(q, f) = s4 or τ(q, i) = s5.

The set q = {a, b, e, f} over the alphabet {a, . . . , i} has dp(q) = ds(q) = d(q) = 2,
and hence belongs to A2(9). However, no predecessor of q belongs to A1(9). This
shows that it is not possible to add states of distance i+ 1 to Ai(k) in an arbitrary
order to obtain Ai+1(k).

Lemma 1 Suppose q ⊆ A, and dp(q), ds(q) ≥ 1. Then there exists a predecessor p
of q such that dp(p) = dp(q) − 1 and ds(p) ≤ ds(q). Dually, there exists a successor
s of q, such that ds(s) = ds(q) − 1 and dp(s) ≤ dp(q).

Proof: If dp(q), ds(q) ≥ 1, then v# of q has the form c1#
ic2 or c1#

iy##jc2, where
|c1|, |c2| ≥ 1, c1 and c2 are circular, i, j ≥ 1, and y# is a factor of v#. We call c1 and
c2 the end blocks of v#. Construct a predecessor p of q in one of the following ways:

1. If |c1| ≤ |c2|, remove the first letter of c1.

2. If |c1| > |c2|, remove the last letter of c2.

Suppose |c1| ≤ |c2|. If v# = c1#
ic2, then |c1| is the predecessor distance of q. If

we remove the first letter a of c1 = ac′1 to obtain a predecessor p, then dp(p) = |c′1|.
Thus the predecessor distance decreases by 1. In the second case, let |y#|A be the
number of letters in y#. If v# = c1#

iy##jc2 and |y#|A ≤ |c2|, then the predecessor
distance of q is |c1| + |y#|A. If v# = c1#

iy##jc2 and |y#|A > |c2|, then the
predecessor distance of q is |c1| + |c2|. In either case, it necessary to remove c1 to
define the predecessor distance. If we remove the first letter a of c1 = ac′1, then the
predecessor again distance decreases by 1.

A similar argument works if |c1| > |c2|, and we remove the last letter of c2 to get
a predecessor p.

In both of these cases, the number of #s that have to be replaced by letters
cannot possibly increase, since the letter removed from an end block need not be
replaced to get a circular word. Hence ds(p) ≤ ds(q).

Let q′ = A \ q; then dp(q) = ds(q
′), and ds(q) = dp(q

′). For suppose that, by
adding a set r to q, we obtain a circular set q∪r. Since the complement of a circular
set is circular, we know that A\(q∪r) is also circular. Now adding r to q corresponds
to subtracting r from q′. Thus, by removing r from q′ we get a circular set, and
dp(q

′) = |r| = ds(q). A similar argument works for the second claim.

13

Consequently, to find a successor s of q satisfying ds(s) = ds(q) − 1 and dp(s) ≤
dp(q), find a predecessor p′ of q′ as above. Then let s = A \ p′.

Recall that Qi(k) = Qi is the set of states of pi automaton Ai(k), for 0 ≤ i ≤ nk.
For any state q ⊆ A, let the sum of q be σ(q) = dp(q) + ds(q). For a fixed i ≥ 0,

define Pj = {q ⊆ A | d(q) = i+ 1, and σ(q) = j}, where j > 0. Let Si,j =
⋃j

h=1 Ph,
and let Qi,j = Qi ∪ Si,j.

Lemma 2 If i ≥ 0, j ≥ 1, and q ∈ Qi,j, then q has a predecessor p and successor
s, such that p, q ∈ Qi,j−1.

Proof: There are no states with j = 1, for then one of the distances dp(q), ds(q)
would have to be 0, and q would be circular. If j = 2, then we must have i = 0,
and dp(q) = 1, ds(q) = 1; clearly, each such state has a circular predecessor p and a
circular successor s, which are both in Q0. Consequently, Q1,2 = Q1. Now suppose
that the lemma holds for j ≥ 2, and consider a state q ∈ Pj+1; then σ(q) = j + 1.
By Lemma 1, q has a predecessor p such that dp(p) = dp(q) − 1 and ds(p) ≤ ds(q);
hence σ(p) ≤ σ(q) − 1. Similarly q has a successor s with σ(s) ≤ σ(q) − 1.

Lemma 2 gives us the order in which nodes have to be added to Ai(k) to get
Ai+1(k).

Example 5 First, we illustrate the use of complements in finding successors. Let
A = {a, . . . , i}. Consider the complement of q = {b, e, g, h}, namely, q′ = {a, c, d, f, i},
and find its representation as v′# = ia#cd#f . We have dp(q) = 2 = ds(q

′), and
ds(q) = 3 = dp(q

′). To find a successor s of q with the smallest distance, we
find the predecessor p′ of q′. We must delete f from the end block f of q′, ob-
taining p′ = {a, c, d, i}, dp(p

′) = 2 and ds(p
′) = 1. Hence we have the successor

s = {b, e, f, g, h} of q with dp(s) = ds(p
′) = 1 and ds(s) = dp(p

′) = 2.
Now we illustrate how states can be added with the aid of Lemma 2. As we have

seen in Example 4, the set q = {a, b, e, f} over the alphabet {a, . . . , i} belongs to
A2(9), but has no predecessor in A1(9). Also, d(q) = dp(q) = ds(q) = 2, and σ(q) =
4. Thus q is in Q1,4. We must consider a predecessor and a successor of q as obtained
in the proof of Lemma 1. One choice is p = {b, e, f} and s = {a, b, c, e, f} both with
distance 2 and sum 3. Hence these states are in Q1,3, and we must continue. We
find a predecessor pp = {e, f}, which is circular, and a successor ps = {b, d, e, f},
which has sum 2. Thus pp ∈ Q0 and ps ∈ Q1,2. Similarly, for s = {a, b, c, e, f}, we
find a predecessor sp = {a, b, c, e} ∈ Q1,2 and successor ss = {a, b, c, d, e, f} ∈ Q0.

Figure 4 summarizes the order of adding the states to Q1. Predecessors are shown
on the left and successors on the right. States in Q0 and Q1,2 are in Q1. Thus we
first add {b, e, f} and {a, b, c, e, f}, and then {a, b, e, f}.

14

{b, d, e, f} ∈ Q1,2

{a, b, e, f} ∈ Q1,4

{a, b, c, e, f} ∈ Q1,3{b, e, f} ∈ Q1,3

{e, f} ∈ Q0 {a, b, c, d, e, f} ∈ Q0

{a, b, c, e} ∈ Q1,2

Figure 4: Adding states to Qi.

Theorem 2 Let k ≥ 1. For every i such that k2 − k + 3 ≤ i ≤ 2k + 1, there exists
a permutation k-language of state complexity i.

Proof: There is nothing to prove for k = 1, so assume that k > 1. Automaton
A0(k) has k2 − k + 3 states, by Proposition 6. By adding states to any minimal pi
automaton Ai using Lemmas 1 and 2, we obtain another pi automaton, Ai+1, which
is still minimal. By Proposition 8, we eventually reach Aall(k), which has 2k + 1
states, by Proposition 7. Hence the claim holds.

6.5 The automaton A1(k)

A state is near-circular if its distance is 1. Recall that, if either the predecessor
or successor distance a state is 0, then the state is circular. Thus if the distance
is 1, both predecessor and successor distances must be 1. We now define the near-
circular language Lnrcir(k) as the language accepted by the automaton A1(k) =
(A,Q1, ∅, τ1, A).

Proposition 9 The number of near-circular states in A1(k) is 0 for k ≤ 3, 2 for
k = 4, and 2k2 − 8k for k > 4.

Proof: When k ≤ 3, all states are circular. If k = 4, there are two near-circular
states, as shown in Fig. 3 (b).

For k > 4, states of cardinality 0, 1, k− 1 and k are all circular. It is convenient
now to represent states by words in circular order instead of sets. Suppose that
x = a1a2 · · · ai−1ai is in circular order and is a near-circular state of cardinality i,
1 < i < k − 1.

Since x must become circular after some letter is added, there must exist b ∈ A
such that w = a1a2 · · · ajbaj+1 · · · ai−1ai is circular. There must be a gap in the

15

circular order between ai and a1; for aj+1 · · · aia1 · · · aj would be circular, otherwise.
Also, b cannot be the first nor the last letter of w, because then x would be circular.
Moreover, x must have a circular subset of cardinality i− 1. This can only happen
in two ways: either a1a2 · · · ai−1 is circular, or a2a3 · · · ai is circular. Thus there are
two circular words, w′ = a1a2 · · · ai−1bai and w′′ = a1ba2 · · · ai−1ai, beginning with
a1, after b is inserted.

If i = 2, the two ways of inserting b coincide. For i = k − 2, after b is in-
serted, only one letter, say c is missing in w. Thus ca1a2 · · · ajbaj+1 · · · ai−1ai is
a circular permutation of a1a2 · · · ajbaj+1 · · · ai−1aic. Consequently, for each circu-
lar w = a1a2 · · · ajbaj+1 · · · ai−1ai, u = aj+1 · · · ai−1aica1a2 · · · aj is also circular.
Hence, a1a2 · · · ajaj+1 · · · ai−1ai and aj+1 · · · ai−1aia1a2 · · · aj are both near-circular
and represent the same state. Thus, if we count two near-circular states beginning
with each letter as above, we count each state twice. Therefore the total number of
near-circular states of cardinality 2 and k − 2 is only k, and not 2k.

For any i such that 2 < i < k − 2, the two words w′ and w′′ above represent
distinct states, and so the number of near-circular states of cardinality i is 2k. There
are k − 5 lengths i such that 2 < i < k − 2.

We can now find the total number of near-circular states as follows: There are
k such states for length 2 and k − 2, and 2k such states for the k − 5 other lengths.
Thus the total is 2k + (k − 5)2k = 2k2 − 8k.

Proposition 10 For k ≤ 3, Lnrcir(k) = Lcir(k). The state complexity of Lnrcir(k)
is 17 for k = 4, and 3k2 − 9k + 3 for k > 4.

Proof: The automaton A1(k) is minimal, since it is a pi automaton. The state
complexity of Lnrcir(k) is the number of near-circular states plus the state complexity
of Lcir(k), that is, c(Lnrcir(4)) = 17, and, for k > 4, c(Lnrcir(k)) = 2k2 − 8k+ k(k−
1) + 3 = 3k2 − 9k + 3.

Example 6 Automaton A1(4) is shown in Fig. 3 (b). Automaton A1(5) has 33 =
25 + 1 states, and A1(5) = A2(5) = Aall(5). For k = 6, let A = {a, b, c, d, e, f}.
There are 32 circular states, and 24 near-circular states:

N2 = {{a, c}, {a, e}, {b, d}, {b, f}, {c, e}, {d, f}}

N3 = {{a, b, d}, {a, b, e}, {a, c, d}, {a, c, f}, {a, d, e}, {a, d, f}, {b, c, e},

{b, c, f}, {b, d, e}, {b, e, f}, {c, d, f}, {c, e, f}}

N4 = {{a, b, c, e}, {a, b, d, f}, {a, c, d, e}, {a, c, e, f}, {b, c, d, f}, {b, d, e, f}

Thus A1(6) has a total of 57 states. On the other hand, Aall(6) has 65 states; hence
A2(6) 6= A1(6). This leaves 8 states to be accounted for.

16

6.6 The automata Aj(k)

We do not know a formula for the cardinality of Aj(k), for j > 1. However, we
have calculated some values for small k, as shown in Table 1. The dashes indicate
that the automata are not needed, since the complexity of Aall has already been
reached. The numbers in boldface indicate the last automaton needed to reach Aall.
For example, for k = 6, automaton A2(6) has 65 states – as many as Aall(6); hence
Aj(6) = A2(6) for all j ≥ 2.

Table 1: Complexities for small values of k.

k k + 2 A0 A1 A2 A3 A4 Aall cmax

1 3 − − − − − 3 3
2 4 5 − − − − 5 5
3 5 9 − − − − 9 13
4 6 15 17 − − − 17 38
5 7 23 33 − − − 33 189
6 8 33 57 65 − − 65 1, 620
7 9 45 87 129 − − 129 19, 737
8 10 59 123 231 257 − 257 299, 850
9 11 75 165 363 507 513 513 5, 381, 353

7 From 2k-complexity to maximal complexity

Before attacking the main problem of establishing a complete hierarchy between
2k-complexity and maximal complexity, we prove three lemmas for later use. Sub-
section 7.1 may be omitted on first reading.

7.1 Three technical lemmas

Lemma 3 For all integers k ≥ 2 and h ≥ 1,

2h <
kh+1 − 1

k − 1
.

Proof: The statement follows easily by induction on h, using the fact that kh+2−1 =
kh+2 − kh+1 + kh+1 − 1 = kh+1(k − 1) + kh+1 − 1 in the induction step from h to
h+ 1.

17

Lemma 4 For all integers k ≥ 5,

kk−2 − 1 ≥
kk−2 − 1

k − 1
+ 2k − 1.

Proof: One verifies that the claim holds for k = 5, so assume that k ≥ 6. Let m =
(kk−2−1)/(k−1), and suppose, for the sake of contradiction, that the lemma does not
hold. Then kk−2−1 < m+2k−1, (k−1)m < m+2k−1, and (k−2)m < 2k−1. One
verifies that, for k ≥ 6, we always have 2k − 1 ≤ kk−3, and hence, (k − 2)m < kk−3.
From the definition of m, we then have (k − 2)(kk−2 − 1) < (k − 1)kk−3. This is
equivalent to kk−1 +kk−3 +2 < 3kk−2 +k. Since kk−1 ≥ 3kk−2 for k ≥ 3, this means
that kk−3 + 2 < k, which is impossible for k > 3. Hence the lemma holds.

Lemma 5 For all integers k > 0, kk ≥ (k + 1)k−1.

Proof: The lemma holds for k = 1, so assume that k ≥ 2. The claim is equivalent
to

kk(k + 1) ≥ (k + 1)k =

k
∑

i=0

(

k
i

)

ki,

which, in turn, is equivalent to

kk+1 ≥
k−1
∑

i=0

(

k
i

)

ki.

So it is sufficient to show that
(

k
i

)

≤ kk−i

for i = 0, . . . , k − 1. This holds trivially for i ∈ {0, k − 1}. So assume 0 < i < k− 1.
As

(

k
i

)

=
(i+ 1) · · · (k)

(k − i)!
=

(i+ 1) · · · (i+ k − i)

(k − i)!
,

we need to show (k − i)!kk−i ≥ (i+ 1) · · · (i+ k − i), or
(

k−i
∏

r=1

r

)

kk−i =

k−i
∏

r=1

(rkk−i) ≥
k−i
∏

r=1

(i+ r).

For this, it is sufficient to show that rkk−i ≥ i+r for all r = 1, . . . , k−i. The smallest
value of rkk−i occurs when r = 1, and i = k− 2, and that value is 1 · kk−(k−2) = k2.
The largest value of i + r occurs when r = k − i, and that value is k. Since k2 ≥ k
for k ≥ 2, the claim follows.

18

7.2 Targeted tree structures

We require some notation involving trees. In a tree T , the level of any node is the
distance of the node from the root. Thus the level of the root is 0, and the height
of T is the largest level of the nodes in T . We write NT [j, l] to denote the j-th node
(counting from left to right) at level l of T . We denote by T [j, l, h] the subtree of T
whose root is NT [j, l] and whose remaining nodes are all the descendants of NT [j, l]
in T of level at most h.

If T is a full k-ary tree, then T [j, l, h] has height h− l, kh−l leaves, and

1 + k + · · · + kh−l =
kh−l+1 − 1

k − 1

nodes. For example, consider the tree T that results if we remove states f and ∞
from the automaton of Fig. 1. The tree T [2, 1, 2] is the subtree of T whose root is
the second node at level 1, NT [2, 1] = b, and whose other nodes are {a, b}, {a, c},
and {b, c}.

Definition 2 A targeted tree structure is a directed graph (T, t) consisting of a
nonempty tree T of some height h and a node t not in T such that

1. Every node of T at level h has at least one edge going to t.

2. For every node in T , there is a path from that node to t.

The level of node t is h+ 1, and the height of (T, t) is h+ 1.

The automaton in Fig. 1 is a targeted tree structure (T, f) of height 3.

Lemma 6 Let k ≥ 2 and h ≥ 1, let T be a full k-ary tree of height h, let m =
(kh+1−1)/(k−1) be the number of nodes in T , let (T, t) be a targeted tree structure,
and let n be any integer such that 0 < n ≤ m− (h+1). Then it is possible to remove
n nodes other than the root from T , in such a way that the resulting graph is a
targeted tree structure (T ′, t) of height h+ 1.

Proof: When k ≥ 2 and h ≥ 1, by Lemma 3, we have m−2h > 0. Thusm−(h+1) ≥
m− 2h > 0, and n always exists.

We use induction on the height h. For h = 1, the tree consists of the root and k
leaves. As n ≤ k − 1, we can remove any n of the leaves and the resulting graph is
a targeted tree structure of height 2.

Assume the claim holds for h ≥ 1. Let (T, t) be a targeted tree structure of
height h+ 2, and let n be an integer satisfying 0 < n ≤ (kh+2 − 1)/(k− 1)− (h+ 2).
Then

n ≤
k(kh+1 − 1) + k − 1

k − 1
− (h+ 2) = km− (h+ 1) = (k − 1)m+m− (h+ 1).

19

Then we can write n = pm + r, for some p ≤ k − 1 and 0 ≤ r < m, such that
r ≤ m− (h+ 1) if p = k − 1.

Note that T consists of the root and the k subtrees T [j, 1, h+1], for j = 1, . . . , k,
and each such subtree has m nodes. Also, each (T [j, 1, h + 1], t), is a targeted tree
structure with T of height h + 1. First, we remove the p subtrees T [j, 1, h + 1] for
j = 1, . . . , p, and the resulting graph is still a targeted tree structure. In doing so
we remove pm nodes from (T, t).

If r ≤ m − (h + 1), we can remove r nodes from T [p + 1, 1, h + 1] using the
induction hypothesis, and we are done. In particular, this holds when p = k − 1.

If r > m−(h+1), we must have n = pm+r, where p ≤ k−2, and 1 ≤ r ≤ m−1,
where 1 ≤ r because m− (h+ 1) > 0. Thus we can write r = m− 1− (h− s), where
h − s ≥ 0, that is, r = m− (h + 1) + s, where 1 ≤ s ≤ h. Now, since m − (h + 1)
satisfies the condition of the lemma, the induction hypothesis applies, and we can
remove m− (h+ 1) nodes from T [p+ 1, 1, h + 1].

We still need to remove s nodes to make the induction step go through. We
claim that s ≤ m − (h + 1). We know that s ≤ h, so it is sufficient to show that
h ≤ m − (h + 1). This last inequality is equivalent to 2h < m, which holds by
Lemma 3. Thus we can remove s nodes from T [p + 2, 1, h + 1] using the induction
hypothesis, and the lemma holds.

7.3 The automaton A′
max(k)

For k ≥ 3, we now define an automaton A′
max(k) over the alphabet A = {a1, . . . , ak},

which accepts a language of maximal complexity. We will show that it is possible
to remove some states from A′

max(k) one at a time, in such a way that the resulting
automaton is always minimal. This will establish a complexity hierarchy from 2k +1
to the maximal complexity.

First we give an informal description of A′
max(k). The automaton is a particular

instance of the automaton Amax(k) defined in Theorem 1; here we choose a specific
way of assigning k-tuples of level-(k − 1) states to the kk−2 states at level k − 2.
We start with a full k-ary tree Tk−1 of height k − 1 in which each node is labeled
by the word of A∗ that takes the root to that node. Then we consider Tk−1 as an
automaton where the transition from a node (state) labeled w with |w| < k − 1
under input a is the node (state) wa, and there are no other transitions for the time
being.

For l ≥ 0, we order the set Al of all kl words of length l in lexicographical
order: 1, 2, . . . , kl. If w ∈ Al, let ν(w) be the position of w in this order; then w is
the label of node NTk−1

[ν(w), l] in the tree. In Tk−1 there are kk−2 nodes at level
k − 2 and kk−1 nodes at level k − 1. Since we are dealing with the case k ≥ 3, we

20

have kk−1 > 2k − 1, as is easily verified. We define tree T ′
k−1 by deleting all nodes

NTk−1
[j, k− 1] such that j > 2k − 1, and also interpret this tree as an automaton as

above. Note that, since kk−1 > 2k − 1, all the nodes at level k− 1 in T ′
k−1 belong to

the subtree T ′
k−1[1, 1, k − 1].

We can write 2k − 1 = ck + d, where 0 ≤ d < k. If d = 0, then each of the first
c nodes at level k − 2 has k successors, and all the nodes at level k − 1 of T ′

k−1 can
be reached from the first c nodes at level k − 2. If d > 0, then we need the first
c + 1 nodes at level k − 2 to reach all the nodes at level k − 1 of T ′

k−1. Also, the
(c + 1)st node w has only d < k successors. For each letter a of the alphabet such
that ν(wa) > 2k −1, we introduce a transition from w to ak−1

1 = NT ′

k−1
[1, k−1], the

first node at level k − 1.
In general, there are additional nodes at level k − 2 that are not used for the

purpose of reaching all the nodes at level k − 1. The transition from such a node
i under input a1 is to node NT ′

k−1
[1, k − 1]. Let K be the set of the first k nodes

at level k − 1, and let B = K \ {NT ′

k−1
[1, k − 1]}. For node i and letters a2, . . . , ak,

we choose a (k − 1)-tuple of elements from B, as is explained below. This general
structure is shown in Fig. 5 for k = 4; the figure is discussed in detail in Example 7
below. The transitions from nodes at level k−1 to state t are like those in the proof
of Theorem 1, and are defined below.

Definition 3 Let k ≥ 3, and 2k − 1 = ck + d, where 0 ≤ d < k. Also, define

• A = {a1, . . . , ak},

• q0 = 1 (the empty word),

• Q≤k−2 = {w ∈ A∗ | |w| ≤ k − 2},

• Qk−2,≤c = {w ∈ Ak−2 | ν(w) ≤ c},

• wk−2,c+1 ∈ Ak−2 is the label of NT ′

k−1
[c+ 1, k − 2],

•

S =

{

{w ∈ Ak−2 | ν(w) > c} if d = 0,
{w ∈ Ak−2 | ν(w) > c+ 1} otherwise,

• Qk−1 = {w ∈ Ak−1 | ν(w) ≤ 2k − 1},

• B = {NT ′

k−1
[2, k − 1], . . . , NT ′

k−1
[k, k − 1]},

• t and ∞ are two distinct elements not in A∗,

21

• Q = Q≤k−2 ∪Qk−1 ∪ {t,∞}.

• ψ : S → Bk−1 \ {(NT ′

k−1
[2, k − 1], . . . , NT ′

k−1
[k, k − 1])} is a mapping assigning

to each w ∈ S a distinct (k−1)-tuple of elements of B. This is possible because
(k − 1)k−1 ≥ kk−2 by Lemma 5, and hence (k − 1)k−1 > kk−2 − ck. Let ψi(w)
be the ith component of the (k − 1)-tuple of w.

• ϕ : Qk−1 → (2A) \ {∅} is a mapping assigning to each w ∈ Qk−1 a distinct
nonempty subset of A. This is possible, since Qk−1 has exactly 2k−1 elements.

Then our automaton is A′
max(k) = (A,Q, q0, τ, {t}), where

τ(q, a) =



































qa if q ∈ Q≤k−2, qa ∈ Q≤k−2 ∪Qk−1,
NT ′

k−1
[1, k − 1] if d > 0, q = wk−2,c+1, qa 6∈ Qk−1,

NT ′

k−1
[1, k − 1] if q ∈ S, a = a1,

ψi−1(q) if q ∈ S, i > 1, a = ai,
t if q ∈ Qk−1, and a ∈ ϕ(q),
∞ otherwise.

level k − 1 = 3
1 2 3 4 5 6 7 8 9 10 14 15131211

1 2 3 4 i

1

1

2

level k − 4 = 0

level k − 3 = 1

subtree T ′

3[1, 1, 3]

level k − 2 = 2

Figure 5: Illustrating the construction of automaton A′
max(4).

Example 7 In Fig. 5, k = 4, Q≤k−2 is the set of nodes of the full k-ary tree of
height 2. Next, Qk−1 = {w ∈ A3 | ν(w) ≤ 15} is the set of nodes at level 3 of the k-
ary tree T ′

3 of height 3, after nodes of level 3 with positions higher than 15 have been
deleted from the full k-ary tree T3 of height 3. Since 15 = 3 ·4+3, we have c = 3 and

22

d = 3. The first rule of τ defines the tree T ′
3. Since d > 0, the node wk−2,c+1 = w2,4

at level k − 2 = 2 is needed to cover all the nodes in Qk−1 = Q3. The second rule
states that all the unused letters of the alphabet (here only a4) should be sent from
w2,4 to NT ′

3
[1, k − 1] = NT ′

3
[1, 3]. In this case, all the 2k − 1 = 15 nodes at level

k − 1 = 3 can be reached from the leaves of the subtree T ′
3[1, 1, k − 1] = T ′

3[1, 1, 3] of
T ′

3 with root NT ′

3
[1, 1].

The nodes in S, left over at level k − 2 = 2, like the typical node i in Fig. 5,
have one edge connected to node NT ′

3
[1, k− 1] = NT ′

3
[1, 3], as stated by the third rule

of τ . The k − 1 = 3 additional edges are chosen according to the mapping ψ. For
example, for node i we can assign the (k − 1)-tuple (3-tuple) (3, 2, 4), as follows:
τ(i, b) = 3, τ(i, c) = 2, and τ(i, d) = 4. The edges from nodes at level k − 1 = 3 to
the target state t of T ′

3 (not shown) are omitted in Fig. 5; they are chosen according
to the mapping ϕ.

7.4 Hierarchy between 2k + 1 and maximal complexity

In A′
max(k) we are able to remove any of the nodes NT ′

k−1
[i, k − 1], for i = ck +

1, . . . , 2k − 1 = ck + d, without disconnecting the automaton. Also, we can remove
any k − 1 leaves from every subtree T ′

k−1[j, k − 2, k − 1], for j = 2, . . . , c, without
disconnecting the automaton. Moreover, each tree T ′

k−1[j, 1, k − 2], for j = 2, . . . , k

can be totally removed, or we can remove up to (kk−2 − 1)/(k − 1) − (k − 2) nodes
from that tree according to Lemma 6 without disconnecting the automaton. We
note that when we remove nodes, the remaining ones are all distinguishable and,
therefore, the resulting automaton is minimal. We never remove the special nodes
NT ′

k−1
[1, k − 1], . . . , NT ′

k−1
[k, k − 1].

Theorem 3 For k ≥ 3 and each i such that 2k + 1 ≤ i ≤ kk−1−1
k−1 + 2k + 1 there is a

language of state complexity i.

Proof: First we prove that the automaton A′
max of Definition 3 is minimal. By

construction, every state in Q is reachable from the initial state q0. Every two
states at level k − 1 are distinguishable, because each accepts a different nonempty
subset of A.

If d = 0, every two nodes in Qk−2,≤c are distinguishable, because the transition
under input a1 takes each state to a different state at level k − 1. Every two nodes
in S are distinguishable from each other because each has a distinct (k− 1)-tuple of
nodes from B, so that at least one input leads to two different states at level k − 1.
Any state in S has a transition to NT ′

k−1
[1, k − 1] under a1, and states in Qk−2,≤c \

{NT ′

k−1
[1, k−2]} do not have such transitions. Finally, state NT ′

k−1
[1, k−2] is different

23

from any state in S, because the (k − 1)-tuple (NT ′

k−1
[2, k − 1], . . . , NT ′

k−1
[k, k − 1])

is not assigned to any state in S. If d > 0, the arguments above also work, if we
replace Qk−2,≤c by Qk−2,≤c ∪ {wk−2,c+1}. Note that the removal of any node from
level k− 2 does not affect the distinguishability of the remaining nodes at this level.

For any two states p and q at any level l ≤ k − 3, every word of length k − l− 2
leads to distinguishable states at level k− 2. Hence p and q are also distinguishable,
and automaton A′

max(k) is of maximal state complexity, according to Theorem 1.
Our challenge is to remove states of A′

max(k) in such a way that all the remaining
states are reachable from q0 and can reach the final state t and remain distinguish-
able. Since A′

max(k) has (kk−1 − 1)/(k− 1) + 2k + 1 states, and we wish to reach an
automaton with 2k + 1 states, we need to be able to remove n states, where

n ≤ B′
k = (kk−1 − 1)/(k − 1).

The case of k = 3 can be resolved easily by using the automaton of Fig. 1. For
example, one can remove nodes {b}, {c}, {a, c}, and {b, c} in any order, and the
resulting automaton is always minimal. From now on we assume that k ≥ 4.

Let m = (kk−2 − 1)/(k − 1); each subtree T ′
k−1[i, 1, k − 2], for i = 2, . . . , k, is of

height k − 3 and has m nodes. Also, (T ′
k−1[i, 1, k − 2], NT ′

k−1
[1, k − 1]) is a targeted

tree structure. By Lemma 6 with h = k − 3, we can remove any n nodes from this
structure and the result is still a targeted tree structure, as long as n ≤ m− (k− 2).
Also, the entire subtree can be removed without affecting the minimality of the
resulting automaton.

Suppose now that we wish to remove n ≤ B′
k states from A′

max(k), and n =
pm+ r, where 0 ≤ p ≤ k, and 0 ≤ r < m. We distinguish three cases:

Case 1 p ≤ k − 2: Remove the p trees T ′
k−1[i, 1, k − 2], for i = 2, . . . , p + 1. If

r ≤ m− (k − 2), remove r nodes from T ′
k−1[p+ 2, 1, k − 2] using Lemma 6. If

r > m− (k− 2), then r = m− (k− 2) + s, for some s such that 1 ≤ s < k− 2,
since r < m. Remove m − (k − 2) nodes from T ′

k−1[p + 2, 1, k − 2] using
Lemma 6. Finally, remove s leaves from T ′

k−1[2, k − 2, k − 1]; this is possible,
since s < k − 2, and there are k leaves.

Case 2 p = k: First, remove the tree T ′
k−1[1, 1, k − 1] except for the branch

NT ′

k−1
[1, 1], . . . , NT ′

k−1
[1, k − 2]

and the k leaves
NT ′

k−1
[1, k − 1], . . . , NT ′

k−1
[k, k − 1].

As the tree T ′
k−1[1, 1, k − 1] has m+ 2k − 1 nodes, we have removed m+ 2k −

1− (k−2+k) = m+2k −2k+1 nodes. Next remove the trees T ′
k−1[i, 1, k−2],

24

for i = 2, . . . , k − 1, with a total of m(k − 2) nodes. By now we have removed
m+ 2k − 2k + 1 +m(k− 2) = m(k− 1) + 2k − 2k+ 1 nodes, and we still need
to remove km+ r − (m(k − 1) + 2k − 2k + 1) = m+ r − 2k + 2k − 1.

Recall that we must have n ≤ B′
k; hence km+r ≤ (kk−1−1)/(k−1). The last

inequality reduces to r ≤ 1. To use Lemma 6, we need m+ r − 2k + 2k − 1 ≤
m− (k − 2), or 2k − 2k + 1 − r ≥ k − 2. Since 2k − 2k > k − 2, for k ≥ 3, we
have the required inequality, and we can remove m + r − 2k + 2k − 1 nodes
from T ′

k−1[1, k, k − 2] using Lemma 6.

Case 3 p = k − 1: Here n = kk−2 − 1 + r and Lemma 4 implies that, if k > 4, then
n ≥ m+ 2k − 1 + r. This, in turn, implies that n > m+ 2k − 1 − (2k − 2) =
m + 2k − 2k + 1. In fact the same holds when k = 4. So, as in the previous
case, we remove m+ 2k − 2k + 1 nodes from the tree T ′

k−1[1, 1, k − 1] except
for the (2k − 2) special nodes.

We still need to remove

n′ = (pm+ r) − (m+ 2k − 2k + 1) = (k − 2)m+ r − (2k − 2k + 1)

nodes. One verifies that k − 1 < 2k − 2k + 1. Also (k − 1)m > (k − 2)m + r,
since r < m. Hence n′ < (k − 1)m − (k − 1). Since n′ < (k − 1)m, we
can write n′ = p′m + r′ with p′ ≤ k − 2 and 0 ≤ r′ < m. Now remove the
trees T ′

k−1[j, 1, k − 2], for j = 2, . . . , p′ + 1 for a total of p′m nodes. Then, if
r′ ≤ m− (k − 2), remove r′ nodes from T ′

k−1[p
′ + 2, 1, k − 2] using Lemma 6.

Otherwise, we have m− (k − 2) < r′ < m; hence we can write r′ = m− (k −
2) + r′′, with 1 ≤ r′′ < k − 2. Now it cannot be that p′ = k − 2, for then
n′ = (k − 2)m + r′ and n′ < (k − 1)m − (k − 1) = (k − 2)m + m − (k − 1),
and r′ < m − (k − 1). Hence also r′ ≤ m− (k − 2), which is a contradiction.
Therefore, we have p′ ≤ k − 3. So we can remove m − (k − 2) nodes from
T ′

k−1[p
′ + 2, 1, k − 2] and r′′ nodes from T ′

k−1[p
′ + 3, 1, k − 2].

8 Conclusions

We have studied k-languages, which are uniform languages of length k over an al-
phabet of k letters. For these languages the minimal state complexity is k + 2 and
the maximal one is (kk−1 − 1)/(k − 1) + 2k + 1. We have shown that for every i be-
tween the minimal and maximal complexities there is a k-language of complexity i.
In proving this result, we have introduced two new types of automata: pi automata
accepting languages which are permutations of the alphabet, and targeted tree struc-
tures. It is hoped that these ideas will help to improve our understanding of the
state complexity of more general finite languages.

25

References

[1] J. A. Brzozowski, “Derivatives of regular expressions”, J. Assoc. Comp. Mach.

vol. 11, no. 4, pp. 481–494, October 1964.

[2] C. Câmpeanu, “How many states can a minimal DFA have that accepts words
of length less than or equal to l?” In J. Dassow, M. Hoeberechts, H. Jürgensen,
and D. Wotschke, eds., Pre-Proceedings of Descriptional Complexity of For-

mal Systems, London, ON, Canada, Aug. 21–24, 2002. (The journal version
appeared as [4].)

[3] C. Câmpeanu, K. Culik, K. Salomaa, S. Yu, “State complexity of basic op-
erations on finite languages”, Proc. Fourth Int. Workshop on Implementing

Automata WIA’99, Potsdam, Germany, July 17–19, LNCS 2214, pp. 60–70,
2001.

[4] C. Câmpeanu, W. H. Ho, “The Maximum state complexity for finite languages”,
J. Automata, Languages and Combinatorics, vol. 9, no. 2/3, pp. 189–202, 2004.

[5] A. Salomaa, K. Salomaa, S. Yu, “State complexity of combined operations”,
Theoretical Computer Science, vol. 383, no. 2–3, pp. 140–152, 2007.

[6] S. Yu, Q. Zhuang, K. Salomaa, “The state complexities of some basic operations
on regular languages”, Theoretical Computer Science, vol. 125, no. 2, pp. 315–
328, 1994.

26

