

JTop Algorithms for Top-k Join Queries

Reza Akbarinia1, Ihab F. Ilyas1, M. Tamer Özsu1, Patrick Valduriez 2

1 David R. Cheriton School of Computer Science,
University of Waterloo

2 INRIA and LINA, University of Nantes, France

Technical Report CS-2008-03

February 2008

Top-k join queries have become very important in many important areas of computing. One of the most efficient
algorithms for top-k join queries is the Rank-Join algorithm [17] [18]. However, there are many cases where Rank-
Join does much unnecessary access to the input data sources. In this report, we first show that there are many cases
where Rank-Join’s stopping mechanism is not efficient, and it does much unnecessary accesses to the input data
sources. Then, we propose JTop, a family of much more efficient algorithms for top-k queries. We prove that our
algorithms always perform less work than Rank-Join, and thus are more efficient. We also show that the performance
of our algorithms can be O(n) times better than that of Rank-Join where n is the number of data items in the database.
We evaluated the performance of our algorithms through experimentation over databases with different distributions.
The results show that over the tested databases our algorithms significantly outperform Rank-Join.

JTop Algorithms for Top-k Join Queries 2

1. INTRODUCTION
Top-k queries have attracted much interest in many different areas of computing such as network and system
monitoring [5] [21], information retrieval [4] [20] [22], sensor networks [29] [31], multimedia databases
 [1] [10] [16] [27], spatial data analysis [33] [19], probabilistic databases [28], data stream management systems
 [23] [25], etc. The main reason is that they avoid overwhelming the user with large numbers of uninteresting answers.

The two main forms of top-k queries are top-k selection and top-k join. The seminal work by Fagin [13] on top-k
selection queries (or top-k queries for short) proposes a general model for answering top-k queries as follows.
Suppose we have m lists of n data items such that each data item has a local score in each list. The lists are sorted
according to the local scores of their data items. Each data item has an overall score, which is computed based on its
local scores in all lists using a given scoring function. The problem is to find the k data items with the highest overall
scores. Most of the top-k algorithms work as follows. They continually read the data items in the lists starting from
the head, and stop when a specific condition on the seen data items holds. To decide when to stop accessing the lists,
each top-k algorithm has a stopping mechanism. Fagin [14] proposed a simple, yet efficient algorithm called the
Threshold Algorithm (TA) [14] [16] [27]. Its stopping mechanism (based on a threshold) has been the basis for several
TA-style algorithms in distributed environments, e.g. [3] [5] [12] [24]. Best Position Algorithms (BPA and BPA2) [2]
which were recently proposed significantly outperform TA.

Top-k join queries allow users to join multiple inputs and report the top-k join results. The answer to a top-k join
query is a set of join results ordered according to the scoring function. There has been work on top-k join queries
with different applications and with different assumptions, e.g. [17] [26] [30]. To our knowledge, the most efficient
algorithm for top-k join queries is the Rank-Join algorithm [17] [18]. Rank-join continually reads the ranked inputs
and generates valid join data among the seen data until its stopping condition decides to stop. The stopping
mechanism of Rank-Join allows it to work on join queries with ad-hoc join conditions. However, it does not take
advantage of either specific information on the join attribute values or the characteristics of the query. As we will
show later, there are many cases where Rank-Join's stopping mechanism becomes lazy, i.e. it stops too late, which
causes many unnecessary accesses in the inputs.

In this report, we propose a family of new algorithms for processing top-k join queries. They have efficient stopping
mechanisms that make them much more efficient than Rank-Join, so their performance can be O(n) times better than
that of Rank-Join. Our main contributions are summarized as follows:

• First, we propose SR_JTop, a new top-k join algorithm which takes advantage of both sorted and random
accesses as well as information on the join condition. We prove that SR_JTop always stops at a position which is
lower than or equal to that of Rank-Join, thereby doing less work. We also show that there is a class of databases
over which the performance of SR_JTop is O(n) times better than that of Rank-Join where n is the number of
data items of the database.

• Second, we propose a new algorithm, called BP_JTop, which is designed for systems with “position-based
indexing”, i.e. after accessing a data item in an index, we can know its position in the index. BP_JTop takes into
account the position of seen data items, and has a stopping mechanism which is more efficient than that of
SR_JTop. We show that BP_JTop always stops at a position which is lower than or equal to that of SR_JTop,
and there are databases over which BP_JTop stops at a position which is O(m) times lower than that of SR_JTop
where m is the number of scoring attributes, i.e. those which are used in the scoring function.

• Third, we propose two new algorithms, LR_JTop and NR_JTop, for systems where random accesses are
expensive or not supported, respectively. LR_JTop does a very limited number of random accesses to the data
sources, i.e. only for a set of final join data items. NR_JTop does only sorted access to the data sources. We
show that LR_JTop and NR_JTop always stop at positions which are lower than or equal to that of Rank-Join.
We also show that their performance can be O(n) times better than Rank-Join.

• Our extensive experimental study under different data distributions shows that our algorithms yield high
performance gains against the Rank-Join algorithm.

 3 R. Akbarinia, I. F. Ilyas, M. T. Özsu, P. Valduriez

The rest of this report is organized as follows. In Section 2, we give the problem definition. Section 3 introduces
Rank-Join, the best algorithm proposed so far. In Section 4, we describe the SR_JTop algorithm. In Section 5, we
describe the BP_JTop algorithm. In Section 6, we describe the LR_JTop and NR_JTop algorithms. Section 7 gives a
performance evaluation of our algorithms. In Section 8, we discuss related work. Section 9 concludes.

1. PROBLEM DEFINITION
In this report, we address the problem of top-k join query processing. For simplicity, we assume that the query
involves only two sources, e.g. two relations. However, our algorithms can be easily extended to process multi-way
join queries. We also assume equi-joins. Like almost all previous top-k join algorithms, e.g. [17] [26], we assume that
the scoring function is monotonic.

A possible SQL-like notation for expressing the top-k join queries that we address is as follows:

SELECT Select Expression
FROM R1, R2
WHERE R1.ai = R2.bj
ORDER BY f(R1.a1, R1.a2, . . . , R1.am1, R2.b1, R2.b2, . . . , R2.bm2)
STOP AFTER k

In this query, f is a monotonic scoring function over m1 attributes from R1 and m2 attributes from R2. The attributes,
which are used in the scoring function, are called scoring attributes. In the above query, the attributes a1, …, am1 and
b1, …, bm2 are the scoring attributes.

Let us now model each joining source and its indices with a general model as follows. We model each relation R as a
data source DS(D, L, n, m) such that D is a set of n data items (tuples of R), and L={ l1, l2, …, lm } be a set of m lists,
where each list corresponds to an attribute in R. Each list l i contains n pairs of the form (d, s), where d∈D and s is a
non-negative real number that denotes the local score of d in l i. Any data item d∈D appears once and only once in
each list. Each list l i is sorted in descending order of its local scores, hence called “sorted list”. Let sc(d, li) denote the
local score of a data item d in a sorted list l i. A set of two or more data sources is called a database.

Now, we define the join operation as follows. Consider two data sources DS1(D1, L1, n1, m1) and DS2(D2, L2, n2, m2).
Given two lists l∈L1 and l'∈L2, called join lists1, then the join of DS1 and DS2, denoted as Join(DS1, DS2), is defined
as the set of pairs (d, d') such that d∈D1 and d'∈D2 and sc(d, l) = sc(d', l'). Each pair (d, d') is called a join data item.
For each join data item (d, d'), we compute an overall score, denoted by ov(d, d') as follows. Given a scoring function
f, ov(d, d') is computed as f(s1, s2, .., sm1, s'1, s'2, …, s'm2) such that su = sc(d, lu) for 1≤u≤ m1 and s'v = sc(d, lv) for 1≤v≤
m2. In other words, for computing the overall score of (d, d'), we apply the scoring function on the local scores of d
and d'.

As defined in [15], we consider two modes of access to the sorted lists. The first mode is sorted (or sequential)
access by which we access the next data item in the sorted list. Sorted access begins by accessing the first data item
of the list. The second mode of access is random access by which we lookup a given data item in the list. In this
report, we assume that sorted access is available on each sorted list, i.e. including join lists. We also need random
accesses for most of our algorithms, but not all of them.

Let us now state the problem. Given two data sources DS1(D1, L1, n1, m1) and DS2(D2, L2, n2, m2), two join lists l i∈L1
and l'∈L2, and a scoring function f. Let J be the set of couples (d, d') involved in Join(DS1, DS2). Our goal is to find a
set J'⊆J such that J'= k, and ∀(d1, d'1)∈J' and∀(d2, d'2)∈(J-J') the overall score of (d1, d'1) is at least the overall
score of (d2, d'2).

1 In this model, we assume that the join attribute is a scoring attribute, i.e. it is used in the scoring function. However, if it is not a

scoring attribute, we can simply assume it is, but with no impact on the scoring function, e.g. it has a zero coefficient in the
scoring function.

JTop Algorithms for Top-k Join Queries 4

2. RANK-JOIN
Rank-Join [17] is the best algorithm proposed so far for processing top-k join queries in relational databases. In this
section, we introduce this algorithm which is useful for comparison with our algorithms.

Rank-Join’s main assumptions are: the scoring function is monotonic; it works on relational databases and assumes
that the tuples of each input relation are ranked according to the scoring function. If each input relation has only one
scoring attribute (i.e. one of its attributes is used in the scoring function), then a sorted list (e.g., an index on that
attribute) gives a ranked list of tuples. But, if there are two or more scoring attributes (say u > 1) for an input relation
R, then none of the sorted lists ranks R’s tuples according to the scoring function, because more than one attribute of
R influences the scoring function. In this case, Rank-Join fragments1 R vertically into u relations, i.e. one relation per
scoring attribute, and considers a join operation between any two fragments. Then, it treats each of these u fragments
as an input relation which is ranked according to the scoring function.

Let us now briefly describe the Rank-Join algorithm. It continually does sorted access to the sorted lists in parallel,
and for each new seen tuple in a list, produces valid join combinations with all seen tuples seen so far in the other
lists. It stops if there are at least k join tuples whose overall scores are higher than or equal to a threshold which is
computed as follows. Let m be the number of input lists, i.e. m=m1+m2. For each list l i (1≤i≤m), let hi be the top (i.e.
first) local score in l i, and ci be the last local score which is seen in l i under sorted access. Let f be the scoring
function, then the threshold of Rank-Join is the maximum of m values as follows:

TRJ = Max {f(c1, h2, …, hm),

f(h1, c2, h3,…, hm),

f(h1, h2, c3, h4,…, hm),

…,

f(h1, h2, h3,…, hm-1, cm)}

In other words, TRJ is the maximum of m values such that each value is computed by applying the scoring function on
the last seen score from one list and the first seen scores from the other lists.

With this threshold, Rank-Join works correctly (see the proof in [18]). However, there are many cases where the
threshold decreases very slowly. Thus, the algorithm needs to go deep in the lists before the threshold becomes less
than or equal to the overall score of k join tuples. In these cases, we say that the threshold is lazy, i.e. it moves very
slowly. In the following, we define the problem of lazy threshold, and show that, if only one of the scoring attributes
has a low impact on the scoring function then Rank-Join suffers from the lazy threshold problem. Let si

(p) be the local
score which is at position p in list l i, i.e. the pth score seen in l i. Without loss of generality, assume that, at each step,
the last seen data items in all lists are at the same position. Let τp be the value of threshold at position p. Thus, τ1 is
the value of threshold at the first position. Also let δ≥0 be a very small default real number. Then lazy threshold is
defined as follows.

Definition 1: Lazy threshold. A threshold τ is lazy if τ1 - τp ≤ (p-1)∗δ for each p≥2.

In other words, at each step the decrease in the value of a lazy threshold is at most δ. If the threshold of an algorithm
is lazy, then the algorithm may stop very late or after accessing all data items of all lists. We show that in the cases
where at least one of the scoring attributes has a low progressive impact on the scoring function, Rank-Join’ threshold
mechanism is lazy. Let us formally define the low progressive impact of a scoring attribute.

Definition 2: Low progressive impact. An attribute i has a low progressive impact on the scoring function f if for
each position p we have f(x1, x2, …, xi-1, si

(p-1), x+-1, …, xm) - f(x1, x2, …, xi-1, si
(p), x+-1, …, xm) ≤ ε for each xj ≥0,

where 0≤ε is a very small default real number.

1 Rank-Join could also pre-compute the total score per tuple in each relation, and work on it. However, this is very costly because

for each scoring function, it has to do this pre-computation for all tuples.

 5 R. Akbarinia, I. F. Ilyas, M. T. Özsu, P. Valduriez

In other words, a scoring attribute has a low progressive impact on the scoring attribute if at each step, its
contribution to the reduction of the scoring function is at most ε. One case where an attribute has a low progressive
impact is when all values of the attribute are equal or very close to each other. Another case is where the coefficient
of the attribute in the scoring function is very small, e.g. close to zero.

The following lemma shows that the threshold of the Rank-Join algorithm is lazy if there is at least one scoring
attribute whose progressive impact is low with ε≤δ.

Lemma 1. If in the inputs of Rank-Join, there is at least one scoring attribute whose progressive impact on the
scoring attribute is low with ε≤δ, then Rank-Join’s threshold is lazy.

Proof. Without loss of generality, assume the low progressive impact scoring attribute is the first attribute of the
scoring function. Let l1 be the sorted list corresponding to the first attribute of the scoring function, and s1

(p) be the
local score which is at position p in l1. Let τ1 and τp be the value of TRJ (i.e. Rank-Join’s threshold) at positions 1 and
p respectively. Using the definition of TRJ, we have τp ≥ f(s1

(p), h2, …, hm). Using the monotonicity of the scoring
function and the definition of TRJ, we have τ1 ≤ f(h1, h2, …, hm). Thus, we have:

τ1 - τp ≤ f(h1, h2, …, hm) - f(s1
(p), h2, …, hm) (1)

Since the first scoring attribute has a low progressive impact on the scoring function, we have the following
inequalities:

f(s1
(1), h2, …, hm) - f(s1

(2), h2, …, hm) ≤ ε

f(s1
(2), h2, …, hm) - f(s1

(3), h2, …, hm) ≤ ε

…

f(s1
(p-1), h2, …, hm) - f(s1

(p), h2, …, hm) ≤ ε

Thus, we have f(s1
(1), h2, …, hm) - f(s1

(p), h2, …, hm) ≤ (p-1)∗ε . Since s1
(1) = h1, we have f(h1, h2, …, hm) - f(s1

(p), h2,
…, hm) ≤ (p-1)∗ε . By comparing this equation with equation 1, we have τ1 - τp ≤ (p-1)∗ε . Thus, for ε≤δ, we have τ1 -
τp ≤ (p-1)∗ δ . □

As we show in the next sections, the performance of our JTop algorithms can be O(n) times better than Rank-Join
where n is the number of data items in the database. Unlike Rank-Join, the cases, where the threshold of JTop
algorithms is lazy, are very restricted. For example, the threshold of SR_JTop and BP_JTop may be lazy only if all
the scoring attributes of one of the data sources have a low progressive impact on the scoring function.

The main differences between the requirements of Rank-Join and those of JTop algorithms are as follows. Rank-join
assumes a general “black box” join condition, and requires no sorted access on the join attribute. JTop algorithms
work on equi-join queries and need sorted access to be available on the join attribute. In addition, some of the JTop
algorithms take advantage of random accesses, thus they need random access to be available on the scoring attributes.
But, Rank-Join does not require the availability of random access.

3. SR_JTop
In this section, we propose SR_JTop, a new algorithm for efficient top- join query processing. It does both random
and sorted access to the lists. It is designed for systems where random data access has very low cost when it is done
just after a sorted access to the data. As an example of these systems, we can mention database systems in which from
each index entry there is a pointer to the whole tuple. Thus, when the value of an attribute of a tuple is seen in the
index built on that attribute, i.e. via sorted access, then accessing the values of the other attributes of the tuple is done
easily, i.e. just by one additional I/O.

In the rest of this section, we first propose the SR_JTop algorithm. Then, we prove its correctness, analyze its
threshold and compare its performance against Rank-Join.

JTop Algorithms for Top-k Join Queries 6

3.1 Algorithm
Let DS1(D1, L1, n1, m1) and DS2(D2, L2, n2, m2) be two given input data sources, and f be a given scoring function.
Before describing our algorithm, let us define the overall score of a single data item. Let d∈D1 be a data item, and s1,
s2, …, sm1 be its local scores in the sorted lists of DS1, then the overall score of d is computed as ov(d) = f(s1, s2, …,
sm1, 0, 0, …, 0). In other words, the overall score of a single data item is computed by applying the scoring function
on its local scores while putting zero (we assume that the scores are positive numbers) for the scores of the other side.
In a similar way, for a data item d'∈D2 with local scores s'1, s'2, …, s'm2, the overall score is computed as ov(d') = f(0,
0, .., 0, s'1, s'2, …, s'm2).

The SR_JTop algorithm works as follows.

1. Do continually sorted access in parallel to each list l in DS1 or DS2. As a data item d is seen under sorted access
in a list l, do random access to read all local scores of d. Maintain the local scores of the seen data items.

2. Produce new valid join combinations of d with all data items seen in the opposite data source so far, and
compute the overall score of the new join data items (if any). Maintain in a set Y the k produced join data items
whose overall scores are the highest among all join data items produced so far.

3. Choose bdj1 (called best data for join in DS1) and bdj2 (called best data for join in DS2) as follows:

 bdji (for i=1,2): Let Si be the set of data items seen in DSi such that the join attribute value of each d∈Si is
lower than or equal to the last local score which is seen under sorted access in the join list of the opposite data
source. Then, bdji∈Si is the data item whose overall score is the highest among all data involved in Si, i.e.
ov(bdji)≥ov(d) for each d∈Si. If Si={} then let bdji be a virtual data whose local scores are equal to the last
local scores seen in the lists of DSi.

4. Stop when there are at least k produced joint data items whose overall scores are at least the SR_JTop threshold
computed as follows. Let (c1, c2, …, cm1) and (c'1, c'2, …, c'm2) be the last local scores seen under sorted access in
the lists of DS1 and DS2 respectively. Let (e1, e2, …, em1) and (e'1, e'2, …, e'm2) be the local scores of bdj1 and bdj2

respectively. Then the threshold of SR_JTop, denoted by TSR_JT, is the maximum of three values as follows:

TSR_JT = Max {f(c1, c2, …, cm1, c'1, c'2, …, c'm2),

 f(c1, c2, …, cm1, e'1, e'2, …, e'm2),

 f(e1, e2, …, em1, c'1, c'2, …, c'm2)}

5. Return Y to the user.

The threshold of SR_JTop is designed based on the fact that any unproduced join data (d, d'), i.e. a join data which
has not been produced by the algorithm, has at least one unseen element, i.e. d or d' or both. If only one of its
elements is unseen, e.g. d', then the highest overall for the unproduced join data (d, d') is when d is a special seen data
which is called best data for join in DS1. Otherwise, i.e. if both d are d' are unseen, then their local score in any list is
lower than or equal to the last local score seen in the list under sorted access.

Let us illustrate SR_JTop with the following example.

Example 1. Consider the two data sources shown in Figure 1. The join lists are l2 from DS1 and l'1 from DS2. Assume
a top-3 query Q, i.e. k=3, and suppose the scoring function is f(x1, x2, x'1, x'2) = x1 + x2 + x'1 + x'2, i.e. it computes the
sum of the local scores of the data item in all lists. Let us apply SR_JTop on this example. At position 1, the set of
seen data items in DS1 is {d1, d2}. The join attribute values of d1 and d2, i.e. 99 and 97 respectively, are lower than or
equal to the local score which is at position 1 in the join list of DS2, i.e. 99, thus we have S1= {d1, d2}. Since the
overall score of d2 is higher than that of d1, we have bdj1 = d2. In DS2, we have S2= {d'1}, thus bdj2 = d'1. At this
position, there is only one produced join data item, i.e. (d1, d'1), and its overall score is ov(d1, d'1)= 399. At position
2, there is one new seen data item in DS1, i.e. d3, and two new data items in DS2, i.e. d'2 and d'3. At this position, the
seen data items in DS1 are {d1, d2, d3}, but only the join attribute value of d3, i.e. 96, is lower than or equal to the
local score which is at 2nd position in the join list of DS2, i.e. 96. Thus we have S1= {d3}, and bdj1 = d3. In DS2, we
have S2= {d'2, d'3}, and since the overall score of d'2 and d'3 is the same, i.e. equal to 196, we can choose one of them

 7 R. Akbarinia, I. F. Ilyas, M. T. Özsu, P. Valduriez

as bdj2. For example we choose bdj2 = d'2. At this position, there are two new join data items (d3, d'2) and (d3, d'3)
with overall scores ov(d3, d'2) = ov(d3, d'3) = 390. Let us now compute the threshold of SR_JTop for 2nd position. The
last local scores which are seen under sorted access in DS1 and DS2 are (c1, c2) = (98, 97) and (c'1, c'2) = (96, 100)
respectively. Since bdj1 = d3 and bdj2 = d'2, we have (e1, e2) = (98, 96) and (e'1, e'2) = (96, 100). Therefore, the
threshold of SR_JTop at 2nd position is computed as TSR_JT = max {f(98, 97,96, 100)), f(98, 97, 96, 100), f(98, 96, 96,
100)} = 391. Since at 2nd position there are not k produced join data items with overall scores higher than or equal to
TSR_JT, the algorithm does not stop at this position. At position 3, there is no new seen data item in DS1 and not in
DS2. There is no modification in bdj1 and bdj2, i.e. bdj1 = d3 and bdj2 = d'2. Thus, we have (e1, e2) = (98, 96) and (e'1,
e'2) = (96, 100). For the last seen local scores in DS1 and DS2 we have (c1, c2) = (97, 96) and (c'1, c'2) = (96, 100).
Therefore, the threshold is computed as TSR_JT = max {f(97, 96, 96, 100)), f(97, 96, 96, 100), f(98, 96, 96, 100)} =
390. Since we have 3 join data items whose overall scores are at least TSR_JT, i.e. (d1, d'1), (d3, d'2) and (d3, d'3), the
algorithm stops at position 3.

If we apply Rank-Join on this example, at position 1, the threshold of rank-join is TRJ = f(101, 99, 99, 100) = 399.
For the other positions, Rank-Join has the same threshold value, because in each position, one of the m values, which
are used in computing the threshold, is obtained by applying the scoring function on the last local score seen in l'2 and
the first local scores in the other lists. Since the local score at any position of l'2 is equal to 100, the Rank-Join’s
threshold at any position is equal to TRJ = = f(101, 99, 99, 100) = 399. In this database, there is only one join data
item whose overall score is higher or equal to 399, i.e. (d'1, d'1). The overall score of any other join data item is less
than 399, i.e. this can be seen by regarding the fact that d1 and d'1 (and also d2) can not take part in any other join data
item. Therefore, there is not k=3 join data items with an overall score higher than or equal to the threshold of Rank-
Join in any position. Hence, it does not stop before the nth position, i.e. it reads all the n local scores in all lists1.

3.2 Correctness and Analysis
The following theorem provides the correctness of our SR_JTop algorithm.

1 Notice that over the database of Example 1, if we use a scoring function in which join attribute values have no impact, e.g. f(x1,

x2, x'1, x'2) = x1+ x'2, then we will have a better result for SR_JTop; it stops at 2nd position. However, this makes no difference for
Rank-Join, i.e. stops at nth position.

 DS1 DS2
Position l1 l2 l'1 l'2

1 d2 : 101 d1 : 99 d'1 : 99 d'1 : 100

2 d3 : 98 d2 : 97 d'3 : 96 d'2 : 100

3 d1 : 97 d3 : 96 d'2 : 96 d'3 : 100

4 d4 : x4 d6 : x6 d'5 : x'5 d'4 : 100

5 … … … …

… di : xi dp : xp d'j : x'j d'q : 100

… … …

n … … … d'n : 100

Figure 1. Example database. There are two data sources each one with two sorted lists. The join lists are l2 and l'1.

JTop Algorithms for Top-k Join Queries 8

Theorem 1. If the scoring function f is monotonic, then SR_JTop finds correctly the top-k answers.

Proof. Let TSR_JT be the value of SR_JTop’s threshold when it stops. To prove the theorem, it is sufficient to show
that every unproduced join data, i.e. a valid join data which is not produced by SR_JTop before its end, has an
overall score which is less than or equal to TSR_JT. Let (d, d') be an unproduced join data. Since (d, d') has not been
produced by SR_JTop, at least one of its elements, i.e. d or d', has not been seen by SR_JTop. Thus, there are three
possible cases for d and d': 1) None of them are seen by SR_JTop; 2) d is seen but not d'; 3) d' is seen but not d. We
show that in all these three cases the overall score of (d, d') is at most the threshold of SR_JTop, i.e. TSR_JT.

Let us start with the first case. Let (s1, s2, …, sm1) and (s'1, s'2, …, s'm2) be the local scores of d and d' respectively.
Since d and d' are not seen by SR_JTop, their local scores in any list are less than the last local scores in the lists.
Thus, we have si ≤ ci and s'j ≤ c'j for 1≤i ≤m1 and 1≤j ≤m2. Therefore, since the scoring function is monotonic, we
have f(s1, s2, …, sm1, s'1, s'2, …, s'm2) ≤ f(c1, c2, …, cm1, c'1, c'2, …, c'm2). Since TSR_JT ≥ f(c1, c2, …, cm1, c'1, c'2, …,
c'm2), we have TSR_JT ≥ f(s1, s2, …, sm1, s'1, s'2, …, s'm2), thus the threshold of SR_JTop is greater than or equal to the
overall score of (d, d').

In the second case, d' is not seen, thus we have s'j ≤ c'j for 1≤j ≤m2. The data item d is seen by SR_JTop. According
to the definition of bdj1, i.e. best data for join in DS1, the overall score of bdj1 must be higher than or equal to that of
d, i.e. ov(d) ≤ ov(bdj1), thus we have f(s1, s2, …, sm1, 0, 0, …, 0) ≤ f(e1, e2, …, em1, 0, 0, …,0). Since s'1 ≤ c'1 and the
scoring function is monotonic, we have f(s1, s2, …, sm1, s'1, 0, …, 0) ≤ f(e1, e2, …, em1, c'1, 0, …, 0), i.e. we replace one
of the zeros with corresponding values in the inequality s'1 ≤ c'1. By continuing this replacement, we have f(s1, s2, …,
sm1, s'1, s'2, …, s'm2) ≤ f(e1, e2, …, em1, c'1, c'2, …, c'm2). Since TSR_JT ≥ f(e1, e2, …, em1, c'1, c'2, …, c'm2), we have TSR_JT
≥ f(s1, s2, …, sm1, s'1, s'2, …, s'm2). Thus in the second case like the first one, the threshold of SR_JTop is greater than
or equal to the overall score of (d, d'). In a similar way, we can do the proof for the third case. Therefore, in all the
three cases the overall score of the unproduced join tuple is at most TSR_JT. □

By the following theorem, we compare the stop positions of SR_JTop and Rank-Join.

Theorem 2. The position, at which SR_JTop stops, is always lower than or equal to that of Rank-Join.

Proof. Assume Rank-Join stops at position p. We show that SR_JTop stops at a position lower than or equal to p. For
this, it is sufficient to show that the value of SR_JTop’s threshold at p is less than or equal to that of Rank-Join. Let
TRJ and TSR_JT be the threshold value of Rank-Join and SR_JTop respectively. Recall that TRJ is computed as the
maximum of m1 + m2 values such that each value is computed by applying the scoring function on the last seen score
from one list and the first seen scores from the other lists. We show that each of the three values used for computing
TSR_JT are less than or equal to one of the values used in computing TRJ, thus they are less than or equal to TRJ, and
thereby TSR_JT ≤ TRJ.

This is done by the following inequalities:

 f(c1, c2, …, cm1, c'1, c'2, …, c'm2) ≤ f(c1, h2, h2 …, hm1+ m2)

 f(c1, c2, …, cm1, e'1, e'2, …, e'm2) ≤ f(c1, h2, h2 …, hm1+ m2)

f(e1, e2, …, em1, c'1, c'2, …, c'm2)} ≤ f(h1, h2, h2 …, hm1+ m2 – 1, c'm1+ m2)

These inequalities are implied by using the monotonicity of the scoring function as well as the fact that any local
score in the list, e.g. ci or ei, is lower than or equal to the first local score of the list, i.e. hi. □

Theorem 2 shows that the position at which SR_JTop stops is always lower than or equal to that of Rank-Join. We
also make the following observation for the difference between the performance of SR_JTop and Rank-Join.

Observation 1. There is a class of databases over which the number of accesses to the data sources done by
SR_JTop is O(n) times lower than that of Rank-Join where n is the number of data items.

Proof. An example of these databases is that of Figure 1. If we apply SR_JTop on this database, it stops at 3rd
position. However, Rank-Join reads all data items of the database. There are many examples over which we have this
high difference between SR_JTop and Rank-Join, in particularly when the following conditions hold:

 9 R. Akbarinia, I. F. Ilyas, M. T. Özsu, P. Valduriez

1) The top-k join data items are produced after accessing the early positions of the lists.

2) Some of the scoring attributes, but not all of them, have a low progressive impact on the scoring function, e.g. all
values of one of the attributes are equal or very close.

Over all the databases which the above conditions hold, it is very probable that the stop position of SR_JTop be O(n)
times lower than that of Rank-Join. □

Let us now discuss the cases where the threshold of SR_JTop, i.e. TSR_JT, may be lazy. According to the definition of
TSR_JT, it is the maximum of three values, and in each of these values, we use (c1, c2, …, cm1), or (c'1, c'2, …, c'm2), i.e.
the last seen local scores in DS1 and DS2. Assume at least one attribute from each data source does not have a low
progressive impact on the scoring function, e.g. au from DS1 and a'v from DS2 for some 1≤u≤m1 and 1≤v≤m1. Let lu
and l' v and be the corresponding sorted lists of attributes au and a'v respectively. Also, let cu be c'v be the last local
scores seen in lu and l' v respectively. In each of the three values of TSR_JT there exist cu or c'v, and the attributes au and
a'v does not have a low progressive impact on the scoring function, thus none of the three values of TSR_JT decreases
slowly, therefore their maximum, i.e. TSR_JT, does not decrease slowly. Thus, if at least one of the scoring attributes of
each data source does not have a low progressive impact on the scoring function, then the threshold of SR_JTop is
not lazy. In other words, only in the cases where all scoring attributes of one of the data sources have low progressive
impacts on the scoring function, TSR_JT may be lazy. This is stated in the following theorem.

Theorem 3. Only in the cases where all scoring attributes of one of the data sources have low progressive impacts
on the scoring function, the threshold of SR_JTop may be lazy.

Proof. Implied by the above discussion. □

4. LEVERAGING SEEN POSITONS
Position-based indexing is a mechanism to report the position (rank) of a data in a sorted list when it is seen via
sorted or random access [2]. The position of a data in a list is formally defined as follows. Let j be the number of data
items which are before a data item d in a list l i, then the position of d in l i is equal to (j + 1). For example, if the
sorted list is implemented using an array structure, then the position of each data item is the index of the element
containing the data item (and its local score). For the other data structures such as linked list, B+-tree, etc. we can add
a field to each element of the data structure to denote its position in the list. We can also have a separate data
structure that maintains for each data, its positions in all lists. Thus, with only one access to the data, we obtain its
position in any list.

In this section, we propose BP_JTop, an efficient top-k join algorithm for systems with position-based indexing. We
show that exploiting position information leads to design faster stopping mechanisms in answering top-k join queries.

4.1 BP_JTop
BP_JTop is similar to JTop with respect to performing both sorted and random access to the lists. However,
BP_JTop takes into account the positions of seen data items and develops a threshold which is much tighter than that
of JTop. In contrast to JTop, which as part of its threshold uses the last local scores seen under sorted access,
BP_JTop uses the local scores that are at best positions. These positions are usually much deeper than the last
position seen under sorted access.

BP_JTop works as follows:

1. Do continually sorted access in parallel to each list l in DS1 or DS2. As a data item d is seen under sorted access
in a list l, do random access to read all local scores of d. Maintain the local scores of the seen data item. Maintain
also the positions of each data seen under sorted or random access.

2. Produce new valid join combinations of d with all data items seen in the opposite data source so far. Maintain the
k join data items whose overall scores are the highest among all join data items produced so far. Maintain in a set
Y the k produced join data items whose overall scores are the highest among all join data items produced so far.

JTop Algorithms for Top-k Join Queries 10

3. Let Pl be the set of positions which are seen under sorted or random access in l. Let bpl, called best position in l,
be the highest position in Pl such that any position between 1 and bpl is also involved in Pl.

4. Choose data items bdj1 (called best data for join in DS1) and bdj2 (called best data for join in DS2) as follows:

 bdji (for i=1, 2): Let Bi be the set of seen data items in the data source DSi such that each d∈Bi has a join
attribute value which is lower than or equal to the local score which is at the best position in the join list of the
other data set. Then bdji∈Bi is the data whose overall score is the highest among the data involved in Bi. If Bi
={} then let bdji be a virtual data whose local scores are equal to the last local scores at best positions in the
lists of DSi.

5. Stop when there are at least k produced join data items whose overall scores are at least the BP_JTop threshold
computed as follows. Let (b1, b2, …, bm1) and (b'1, b'2, …, b'm2) be the local scores which are at best positions in
the lists of DS1 and DS2 respectively. Let (e1, e2, …, em1) and (e'1, e'2, …, e'm2) be the local scores of bdj1 and bdj2

respectively. Then, the threshold of SR_JTop, denoted by TSR_JT, is the maximum of three values as follows:

TBP-JT = Max {f(b1, b2, …, bm1, b'1, b'2, …, b'm2),

 f(b1, b2, …, bm1, e'1, e'2, …, e'm2),

 f(e1, e2, …, em1, b'1, b'2, …, b'm2)}

6. Return Y to the user.

4.2 Correctness and Analysis
The following theorem provides BP_JTop’s correctness.

Theorem 4. If the scoring function f is monotonic, then BP_JTop finds correctly the top-k join answers.

Proof. Let l be a sorted list in DS1, and bpl be the best position in l when BP_JTop stops. Let bl be the local score
which is at bpl in l. The definition of best position implies that all positions before bpl in the list l are seen. Thus, any
unseen data d involved in DS1 has a position higher than bpl in l. Thus, the local score of d in l, i.e. sc(d, l), is lower
than or equal to the local score which is at bpl, i.e. bl≥ sc(d, l). Using this inequality and in a way similar to the proof
of Theorem 1, i.e. correctness of SR_JTop, we can easily show that the overall score of each unproduced join data is
lower than or equal to the threshold of BP_JTop. □

The following theorem compares the performance of SR_JTop and BP_JTop.

Theorem 5. The number of sorted (random) accesses done by BP_JTop is always lower than or equal to that of
SR_JTop.

Proof. Since both BP_JTop and SR_JTop do sorted access and after each sorted access they do random access to the
lists, to prove the theorem it is sufficient to show that BP_JTop does less number of sorted accesses. Thus, we must
show that BP_JTop stops at a position which is lower than or equal to that of SR_JTop. For this, it is sufficient to
show that when SR_JTop stops, its threshold is higher than or equal to that of BP_JTop. Let l be a list, and p be the
position at which SR_JTop stops, i.e. under sorted access. Let c be the local score which is at p. Let bpl be the best
position in the list l when SR_JTop stops, and bl be the local score at bpl. Since all positions before p are seen, we
have bpl≥ p. Thus since the lists are sorted, we have bl≥c. Using this inequality and the monotonicity of the scoring
function, it can be easily shown that each of the three values, which are used in the threshold of BP_JTop, is lower
than or equal to one of the three values used in the threshold of SR_JTop. Thus, the threshold of BP_JTop is lower
than or equal to that of SR_JTop. □

The following observation shows that the performance of BP_JTop can be O(m) times better than that of SR_JTop
where m is the total number scoring attributes.

Observation 2. There is a class of databases over which the number of sorted (or random) accesses done by
BP_JTop is O(m) times lower than that of SR_JTop where m is the total number scoring attributes.

 11 R. Akbarinia, I. F. Ilyas, M. T. Özsu, P. Valduriez

Proof. It is sufficient to show that there are databases over which the number of sorted accesses done by BP_JTop is
O(m) times lower than that of SR_JTop. In other words, under sorted access, BP_JTop stops at a position which is
O(m) times lower than the position at which SR_JTop stops. Let SR_JTop stops at position j. For simplicity assume
that j=(m-1)∗u where u is an integer. Let bdj1 and bdj2 be the best data for join at position u. Consider all cases
where the two following conditions hold:

1) Each of the top-k join answers have a local score at a position which is less than or equal to u.

2) If a data item is at a position in interval [1 .. u)] in any list, then m-2 of its corresponding local scores in other lists
are at positions which are in interval [((u + 1) .. j], and one of its corresponding local scores is in a position higher
than j.

3) The join local scores of bdj1 and bdj2 at position u are lower than the local score which is at position j in the join
list of the opposite data source. This guarantees that the best data for join, i.e. bdj1 and bdj2, at positions u and j be
the same.

In all cases where the two above conditions hold, we can argue as follows. After doing its sorted access and random
access at position u, BP_JTop has seen all positions in interval [1.. u], i.e. under sorted access, and for each seen data
item it has seen m-2 positions in interval [u + 1) .. j], i.e. under random access. Let ns be the total number of seen
positions in interval [1..j], then we have:

ns = (number of seen positions in [1..u]) + (number of seen positions in [(u + 1) .. j])

After replacing the number of seen positions, we have:

ns = u∗m + u∗m∗(m-2) = ((j/(m-1)∗m) + (((j/(m-1) ∗m) ∗ (m-2))

After simplifying the right side of the equation, we have ns=m∗j. Thus, when BP_JTop is at position u, it has seen all
positions in interval [1 .. j] in all lists. Therefore, the best position in each list is at least j. Also, Condition 3 assures
that bdj1 and bdj2 at positions u and j are the same. Therefore, the threshold of BP_JTop at position u is equal to the
threshold of SR_JTop at u. Thus, BP_JTop stops at u which is (m-1) times lower than j. In other words, BP_JTop
stops at a position which is O(m) times lower than the position at which SR_JTop stops. □

5. LIMITING RANDOM ACCESSES
In the previous sections, we assumed that random access to the data is available and its cost is very low. In this
section, we deal with systems where random accesses are very expensive or impossible. As an example of such
systems, we can mention information retrieval systems in which sorted lists correspond to lists of ranked documents.
We propose two top-k join algorithms, LR_JTop and NR_JTop for such systems. LR_JTop does a very limited
number of random accesses to the data sources, i.e. only for a set of final join data items, and NR_JTop does no
random access.

We show that both LR_JTop and NR_JTop stop at positions which are lower than or equal to that of Rank-Join, and
their performance can be O(n) times better than that of Rank-Join where n is the number of data items of the
database.

5.1 LR_JTop
The main difference between SR_JTop and LR_JTop is their stopping condition. For describing the stopping
condition of LR-SR_JTop, we need to give some definitions about optimistic and pessimistic overall score of a single
or join data as follows. Since LR_JTop does no random access, some of the data items may be partially seen during
its execution, i.e. only part of their local scores are seen. Let d be a data which is seen in at least one of the lists of
DS1 or DS2. Let l be a list in DS1 (or DS2), and c be the last local score seen in l. Let optimistic local score of data
item d in the list l, denoted as opt(d, l), be a function computed as follows. If the local score of d is seen in l then
opt(d, l)=sc(d, l), else opt(d, l)=c. In other words, if the data is not seen in l, then we choose the last seen local score
in l as the optimistic local score of the data in l, else we choose its real value. Let f be the scoring function. Assume d
is involved in DS1. Then, the optimistic overall score of a single data d, denoted by opt-ov(d), is defined as opt-

JTop Algorithms for Top-k Join Queries 12

ov(d)= f(x1, x2, …, xm1, 0, 0, …, 0) where xi= opt(d, l) for 1≤i≤m1. In other words, we apply the scoring function on
the optimistic local scores of d, while setting zero for the other inputs of the scoring function. Similarly, for a data d'
that belongs to DS2, the optimistic overall score is defined as opt-ov(d')= f(0, 0, …,0, x'1, x'2, …, x'm2) where x'j=
opt(d', lj) for 1≤j≤m2. Now, we define the optimistic overall score of a join data (d, d') to be opt-ov(d, d')= f(x1, x2,
…, xm1, x'1, x'2, …, x'm2) where xi= opt(d, l) and x'j= opt(d', lj) for 1≤i≤m1 and 1≤j≤m2.

Let us now define the pessimistic overall score of a join data. Let pessimistic local score of data item d in the list l,
denoted as psm(d, l), be a function computed as follows. If the local score of d is seen in l then psm(d, l)=sc(d, l), else
psm(d, l)=0. Now, we define the pessimistic overall score of a join data (d, d') to be psm-ov(d, d')= f(x1, x2, …, xm1,
x'1, x'2, …, x'm2) where xi= psm(d, l) and x'j= psm(d', lj) for 1≤i≤m1 and 1≤j≤m2.

The stopping condition of SR_JTop and LR_JTop differs in two aspects. First, SR_JTop compares the overall score
of the produced join data items, i.e. the k highest ones, with its threshold, while LR_JTop compares their pessimistic
overall scores with its threshold. This is because with LR_JTop, the values of the join data in some lists may be
unseen. The second difference is in their threshold. The threshold of SR_JTop is designed based on the fact that with
SR_JTop for any unproduced join data item (d, d') at least one of its elements, i.e. d or d', is not seen by SR_JTop.
However, with LR_JTop, this is not true due to no random accesses. Thus, there may be unproduced join data items
such that both of their elements are partially seen, i.e. both of them can be seen in some lists. In the design of
LR_JTop we use another property as follows: for any unproduced join data item (d, d’) at least one of its elements
has an unseen join attribute value. Based on this property, in the threshold of LR_JTop, we use two special seen data
items from each data source: Ubdj1 and Sbdj2 from DS1, and also Ubdj2 and Sbdj2 from DS2.

5.1.1 Algorithm
LR_JTop works as follows:

1. Do continually sorted access in parallel to each list in DS1 and DS2, and maintain the seen local scores.

2. As a data item d is seen in the join lists of DS1 or DS2, compare it with the seen data items in the opposite data
set, and produce new valid join combinations of d with them.

3. Choose the seen data items Ubdj1 and Ubdj2 respectively from DS1and DS2 as follows:

 Ubdji (for i=1,2): Let Ui be the set of seen data in DSi whose local score in the join list of DSi is not seen.
Then, Ubdji is the data in Ui whose optimistic overall score is the highest. If Ui={} then let Ubdji be a virtual
data whose local scores are equal to the last local scores seen in the lists of DSi.

4. Choose the seen data items Sbdj1 and Sbdj2 respectively from DS1 and DS2 as follows:

Sbdji (for i=1,2): Let Si be the set of seen data in DSi whose local score in the join list of DSi is seen, and the
local score is lower than or equal to the last local score which is seen in the join list of the opposite data
source. Then, Sbdji is the data in Si whose optimistic overall score is the highest. If Si={} then let Sbdji be a
virtual data whose local scores are equal to the last local scores seen in the lists of DSi.

5. Stop when there are at least k join data items whose pessimistic overall scores are at least the LR_JTop’s
threshold computed as follows. Let f be the scoring function, then the LR_JTop’s threshold is the maximum of
three values as follows:

TLR_JT = Max (opt_ov(Ubdj1, Ubdj2),

 opt_ov(Sbdj1, Ubdj2),

 opt_ov(Ubdj1, Sbdj2)}

 13 R. Akbarinia, I. F. Ilyas, M. T. Özsu, P. Valduriez

6. Let Y be the set of produced join data items. For each data (d, d')∈Y, do random access to find its unseen local
scores (if any)1. Return the k join data items whose overall scores are the highest among the join data items
involved in Y.

5.1.2 Correctness and Analysis
The following theorem proves LR_JTop’s correctness.

Theorem 6. If the scoring function f is monotonic, then LR_JTop finds correctly the top-k join answers.

Proof. All join data items found by LR_JTop have a pessimistic overall score higher than or equal to LR_JTop’s
threshold, i.e. TLR_JT. Thus, their real overall score is higher than TLR_JT. Therefore, to prove the theorem, it is
sufficient to show that any unproduced join data has an overall score lower than or equal to TLR_JT. Let (d, d') be an
unproduced join data item. We must show that ov(d, d')≤ TLR_JT. As explained before, d and d' are necessarily in one
of the following situations: 1) The join attribute value of none of d and d' is seen by LR_JTop; 2) The join attribute
value of d is seen but not that of d'; 3) The join attribute value of d' is seen but not that of d. Using the definition of
Ubdj1, Ubdj2, Sbdj1 and Sbdj2, we can show that in the first situation opt_ov (d, d')≤ opt_ov(Ubdj1, Ubdj2), in the
second situation opt_ov (d, d')≤ opt_ov(Sbdj1, Ubdj2), and in the third situation opt_ov (d, d')≤ opt_ov(Ubdj1, Sbdj2).
Thus, opt_ov(d, d')≤ TLR_JT. Since the optimistic overall score of each data is higher than or equal to its real overall
score, we have opt_ov (d, d')≥ ov (d, d'). Therefore, we have ov(d, d')≤ TLR_JT . □

The following theorem compares LR_JTop and Rank-Join in terms of the position at which they stop.

Theorem 7. The position, at which LR_JTop stops, is always lower than or equal to that of Rank-Join.

Proof. Let p be the position at which Rank-Join stops. To prove the theorem it is sufficient to show that LR_JTop
stops at most at p. Let Jk be the set of answers. The stopping condition of Rank-Join implies that all local scores of
the join data involved in Jk are seen at most at position p. Thus, at most at p, LR_JTop also produces these data items,
and their pessimistic local score is equal to their real overall score, i.e. because all their local scores are seen.
Therefore, to prove the theorem, it is sufficient to show that at p, the threshold of LR_JTop is less than or equal to
that of Rank-Join, i.e. TLR_JT ≤ TRJ. This can be done by showing that each of the three values used in computing the
threshold of LR_JTop is less than or equal to at least one of the values which are used in the threshold of Rank-Join.
Without loss of generality assume that the join lists in DS1 and DS2 are l1 and l'1 respectively. Let c1 and c'1 be the
local scores which are at p in l1 and l'1 respectively. Since the join attribute value of Ubdj1 and Ubdj2 are not seen,
then at p, we have opt(Ubdj1, l1)= c1 and opt(Ubdj2, l'1)= c'1, i.e. their optimistic local score in the join lists is equal
to the last seen local score in the lists. Thus, for the first value of TLR_JT we have: opt_ov(Ubdj1, Ubdj2)= f(c1, x2, …,
xm1, c'1, x'2, …, x'm2) where xi= opt(d, li) and x'j= opt(d', l'j) for 1≤i≤m1 and 1≤j≤m2. Let hi be the first local score of
list l i, for 1≤i≤ m1+m2. Then, since the scoring function is monotonic, we have f(c1, x2, …, xm1, c'1, x'2, …, x'm2)≤ f(c1,
h2, …, h m1 + m2). The right side of this equation is one of the values used in the threshold of Rank-Join, thus we have
opt_ov(Ubdj1, Ubdj2) ≤ TRJ. In a similar way, we can show that opt_ov(Sbdj1, Ubdj2) ≤ TRJ and opt_ov(Ubdj1, Sbdj2)≤
TRJ. Thus, we have TLR_JT ≤ TRJ. □

Theorem 7 shows that the position at which LR_JTop stops is always lower than or equal to that of Rank-Join. We
also make the following observation for the difference between the performance of LR_JTop and Rank-Join.

Observation 3. There are databases over which the number of accesses to the data sources done by LR_JTop is
O(n) times lower than that of Rank-Join where n is the number of data items.

Proof. An example of these databases is Example 1. If we apply LR_JTop on this database then it stops at position 3.
However, Rank-Join reads all data items of the database. □

1 An optimization to LR_JTop is to remove from Y all join data whose optimistic overall score is less than the pessimistic overall

score of at least k join data involved in Y. This can be done before each random access to the lists.

JTop Algorithms for Top-k Join Queries 14

Let us now discuss the cases where the threshold of LR_JTop may be lazy. Let l1 and l'1 be the join lists in DS1 and
DS2 respectively, and c1 and c'1 be the last local scores which are seen in l1 and l'1 respectively. As shown in the proof
of Theorem 7, we have opt(Ubdj1, l1)= c1 and opt(Ubdj2, l'1)= c'1. According to its definition, LR_JTop’s threshold,
i.e. TLR_JT, is the maximum of three values, and in each of these values, we use Ubdj1 or Ubdj2. Thus, in each of the
three values, we use c1 or c'1. Therefore, as in the proof of Theorem 3, we can show that if the join attributes do not
have a low progressive impact on the scoring function, then the threshold of LR_JTop is not lazy. However, even if
the join attributes have a low progressive impact, the threshold of LR_JTop may not be lazy, because the local scores
of Sbdj1 and Sbdj2 may avoid the lazyness of the threshold.

5.2 NR_JTop
In this section, we propose NR_JTop, a top-k join algorithm that does no random access to the lists, i.e. it does only
sorted access.

5.2.1 Algorithm
The first steps of NR_JTop are the same as LR_JTop, i.e. until stopping sorted accesses and having the Y set. But in
contrast to LR_JTop, NR_JTop does not do random access to find the unseen local scores of the data involved in Y.
It does sorted access to the lists, and after each sorted access, removes useless join data items from Y, i.e. those that
cannot be an answer. It continues until there remains only k join data in Y. For removing useless data from Y,
NR_JTop uses the following rule: If the optimistic overall score of a join data is lower than the pessimistic overall
score of at least k join data, then it cannot be a top-k join data item.

The NR_JTop algorithm works as follows:

Steps 1 to 5: same as in LR_JTop, i.e. until it stops doing sorted access to the lists.

6. Let Y be the set of produced join data. Let L1 and L2 be the set of sorted lists of DS1 and DS2 respectively. Let
L⊆ L1∪L2 be the set of sorted lists such that for each list l∈L there is at least one join data item in Y which has an
unseen local score in l.

7. For each l∈L and in parallel, continue doing sorted access to l. After each sorted access, remove useless join data
items from Y as follows. Let Yk ⊆Y be the set of k join data items whose pessimistic overall score is the highest
among the join data involved in Y. Remove from Y each join data item whose optimistic overall score is lower
than or equal to the pessimistic overall score of all join data items involved in Yk.

If Y ≤ k, then stop.

8. Return Yk to the user.

In step 6 of NR_JTop, after each sorted access and even if the algorithm does not see an unseen local score of any
join data item, it checks Y for the useless join data items. The reason is that each sorted access may reduce the
optimistic overall scores of some data items, i.e. because in computing the optimistic overall score, for unseen local
scores, we consider the last local score seen in the list. Thus, each sorted access may reduce the optimistic overall
score of some join data items; even if it does not see an unseen local score of any join data item.

5.2.2 Correctness and Analysis
The following lemma proves NR_JTop’s correctness.

Theorem 8. If the scoring function f is monotonic, then NR_JTop finds correctly the top-k join answers.

Proof. The threshold of NR_JTop is the same as LR_JTop, thus Theorem 6, i.e. the correctness of NR_JTop, implies
that at step 5 of the algorithm, the set Y involves all top-k answers. Thus, to prove the theorem, it is sufficient to show
that LR_JTop finds correctly the top-k answers from Y. This can be done easily by using the fact that for any two join
data items (d1, d'1) and (d2, d'2), if opt_ov(d2, d'2)≤ psm_ov(d1, d'1) then we have ov(d2, d'2)≤ ov(d1, d'1). Thus, the k
join data items that finally remain in Y are the top-k join answers. □

The following theorem compares the performance of NR_JTop and Rank-Join.

 15 R. Akbarinia, I. F. Ilyas, M. T. Özsu, P. Valduriez

Theorem 9. The number of accesses to the data sources done by NR_JTop is always less than or equal to that of
Rank-Join.

Proof. Let p be the position at which Rank-Join stops. Let Jk be the set of answers. The stopping condition of Rank-
Join implies that all local scores of the join data involved in Jk are seen at most at position p, and their overall score is
higher than the maximum possible overall score of any join data item which is not involved in Jk. Theorem 7 implies
that with LR_JTop, all top-k answers are involved in the set Y before position p. This is also true for NR_JTop, since
LR_JTop and NR_JTop have the same threshold. Thus for proving the theorem, it is sufficient to show that at most at
p, the pessimistic overall score of top-k answers becomes higher than or equal to the optimistic overall score of other
join data involved in Y. This can be done easily by using the fact that at p, the pessimistic overall score of top-k
answers are equal to their overall score, i.e. because their local scores are seen, and their overall score is higher than
or equal to the maximum possible overall score of any other join data items, i.e. their optimistic overall score. □

The following observation shows that performance of NR_JTop can be O(n) times better than that of Rank-Join.

Observation 4. There are databases over which the number of accesses to the data sources done by NR_JTop is
O(n) times lower than that of Rank-Join where n is the number of data items.

Proof. An example of these databases is that of Example 1. If we apply NR_JTop on this database then it stops at
position 3. However, Rank-Join reads all data items of the database. □

6. PERFORMANCE EVALUATION
In this section, we compare our algorithms with Rank-Join through experimentation. The rest of this section is
organized as follows. We first describe our experimental setup. Then, we compare the performance of our algorithms
with Rank-Join by varying experimental parameters such as the number of scoring attributes, the number of top data
items requested, i.e. k, the type of the scoring function, the number of data items in data sources, etc.

6.1 Experimental Setup
We implemented the JTop algorithms and Rank-Join in Java. To evaluate our algorithms, we tested them over both
independent and correlated databases, thus covering all practical cases. The independent databases are uniform and
Gaussian databases generated using the two main probability distributions (i.e. uniform and Gaussian). With Uniform
and Gaussian databases, the positions of a data item in any two lists are independent of each other. To generate the
uniform database, the scores of the data items in each list are generated using a uniform random generator, and then
the list is sorted. To generate the Guassian database, the scores of the data items in each list are Gaussian random
numbers with a mean of 0 and a standard deviation of 1.

In addition to these independent databases, we use correlated databases, i.e. databases where the positions of a data
item in the lists are correlated. This is to take into account applications where there are correlations among the
positions of a data item in different lists. Inspired from [24], we use a correlation parameter α (0 ≤α ≤ 1), and
generate the data items of each data source of the correlated database as follows. For the first list of the data source,
we randomly select the position of data items. Let p1 be the position of a data item in the first list, then for each list Li
(2 ≤ i ≤ m) we generate a random number r in interval [1 .. n∗α] where n is the number of data items, and we put the
data item at a position p whose distance from p1 is r. If p is not free, i.e. occupied previously by another data item, we
put the data item at the free position closest to p. By controlling the value of α, we can create databases with stronger
or weaker correlations. In our tests, the default value for α is 0.01. After setting the positions of all data items in all
lists, we generate the scores of the data items in each list in such a way that they follow the Zipf law [34] with the
Zipf parameter θ = 0.7.

In our tests, the scoring function has the following form: fw (x1, x2, .., xm1, x'1, …, x'm2) = ω∗(x1) + x2, .., xm1 + x'1, …,
x'm2. In this scoring function, we use the parameter ω in order to control the progressive impact of one of the
attributes, i.e. x1, on the scoring function. In our tests, we use four versions of this scoring function: f1, f0.5, f0.1, and f0 ,
i.e. with ω= 1, 0.5, 0.1, and 0. The scoring function f1 computes the sum of the local scores for each data item. This is
our default scoring function. The attribute x1 has no impact on the scoring function f0, and its impact on f0.5, f0.1 is
lower than that of the other attributes.

JTop Algorithms for Top-k Join Queries 16

Our default settings for different experimental parameters are shown in Table 1. The default value for join selectivity
is 0.01. To provide this selectivity, we randomly select some scores from the join list of one data source of the
database, and repeat them in the join list of the other data source. In our tests, the default number of data items in
each data source is 20,000. Typically, users are interested in a small number of top answers, thus unless otherwise
specified we set k=20. The default number for the scoring attributes of each data source is 2, i.e. m1=m2=2.

Table 1. Default setting of experimental parameters

Parameter Default values

Number of data items in each data source 20,000

k 20

Join selectivity 0.01

Scoring function SUM

Number of scoring attributes per data source m1=m2= 2

To evaluate the performance of the algorithms, we measure the two following metrics:

1) Stop position. This is the position at which an algorithm stops. This metric can also be used for comparing the
number of sorted accesses done by algorithms, because the number of sorted accesses is proportional to stop position.

2) Number of accesses. This is the total number of sorted and random accesses done by an algorithm. For Rank-Join
and NR_JTop algorithms, this metric measures the number of sorted accesses. For the other JTop algorithms, in
addition to sorted accesses, this metric also counts the random accesses that they do after seeing each data item via
sorted access for the first time.

6.2 Performance Results

6.2.1 Effect of the number of scoring attributes
In this section, we compare the performance of our JTop algorithms with Rank-Join by varying the number of scoring
attributes per data source. Let us denote by m the number of scoring attributes per data source, i.e. m= m1=m2.

Over the uniform database, with the number of scoring attributes per data source equal to 2, 3 and 4, and the other
parameters set as in Table 1, Figures 2 and 3 show the results measuring number of accesses and stop position
respectively. The number of accesses done by JTop algorithms is much lower than that of Rank-Join; e.g. they
outperform Rank-Join by a factor of at least 2.5 when m≥3. BP_JTop is the strongest performer: it outperforms Rank-
Join by a factor of approximately 5 for m≥3. Even the NR_JTop algorithm, which does no random access,
outperforms Rank-Join by a factor of about 3. On the second metric, i.e. stop position, generally JTop algorithms
outperform Rank-Join with factors higher than that on number of accesses; e.g. SR_JTop outperforms Rank-Join by a
factor of at least 6 when m=3. However, on both metrics, NR_JTop outperforms Rank_Join with the same factors,
because NR_JTop does no random access.

6.2.2 Effect of k
We now study the effect of the number of requested answers, i.e. k, on performance. Figure 4 shows how the stop
position increases over the uniform database, with increasing k up to 50, and the other parameters set as in Table 1.
The stop position of all five algorithms increases with k because more data items are needed to be returned in order to
obtain the top-k join data items. However, the increase is very small. The reason is that over the uniform database,
when an algorithm (i.e. any of the five algorithms) stops its execution for a top-k query, with a high probability, it has
seen also the (k + 1)th join data item. Thus, with a high probability, it stops at the same position for a top-(k+1)
query.

 17 R. Akbarinia, I. F. Ilyas, M. T. Özsu, P. Valduriez

6.2.3 Effect of scoring function
We now investigate the impact of our scoring functions on the performance of the JTop algorithms and Rank-Join.
Over the uniform database, Figure 5 shows the number of accesses done by the five algorithms with the scoring
function equal to f1, f0.5, f0.1, and f0 (i.e. ω= 1, 0.5, 0.1, and 0) as described in Section 6.1, and the other parameters
set as in Table 1. With decreasing the parameter ω, the number of accesses done by Rank-Join increases significantly.
The reason is that decreasing ω decreases the progressive impact of one of the attributes on the scoring function, thus
the threshold of Rank-Join decreases more slowly, so it stops later. The worst performance of Rank-Join is with the
scoring function f0, because the progressive impact of the scoring attribute x1 is zero. Thus the threshold of Rank-Join
does not decrease, and it has to read all data items of the data sources. Unlike Rank-Join, the number of accesses
done by JTop algorithms decreases with decreasing the parameter ω.

6.2.4 Results over different databases
Figure 6 shows the number of accesses done by the algorithms over uniform, Gaussian and correlated databases, with
the other parameters set as in Table 1. Over all three databases, JTop algorithms outperform significantly Rank-Join.
Over the correlated database, the performance of the five algorithms is much better than that over Gaussian and
uniform databases. The reason is that in a highly correlated database, the top-k data items are distributed over low
positions of the lists, so usually the algorithms do not need to go much down in the lists, and they stop soon.
However, due to their efficient stopping mechanism, JTop algorithms stop much sooner than Rank-Join.

Number of accesses
Uniform database, k=20

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

2 3 4

Number of attributes per data source

N
u

m
be

r
of

 a
cc

es
se

s

R ank-J o in
S R _J To p
B P _J To p
LR _J To p
NR _J To p

S top position
Uniform database , k=20

0

2500

5000

7500

10000

12500

15000

17500

20000

2 3 4

Number of attributes per data source

S
to

p
 p

os
it

io
n

R a nk-J o in
S R _J To p
B P _J To p
LR _J To p
NR _J To p

S top position
Uniform database, m1=m2= 2

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

10 2 0 3 0 4 0 50

k

St
op

 p
os

it
io

n

R a nk-J o in
S R _J To p
B P _J To p
LR _J To p
NR _J To p

 Figure 2. Number of accesses vs.
number of scoring attributes per data
source

Figure 3. Stop position vs. number of
scoring attributes per data source

Figure 4. Stop position vs. k

Number of accesses
Uniform database, k=20, m1=m2=2

0

25000

50000

75000

100000

f1 f 0.5 f 0.1 f0

Scoring functions

N
u

m
be

r
of

 a
cc

es
se

s

Rank-J o in
SR_JTop
BP _JTop
LR_JTo p
NR_JTop

Number of accesses
k=20, m1=m2=2

0

10000

20000

30000

Uniform Gaussian Correlated

Databases

N
um

b
er

 o
f a

cc
es

se
s

Rank-J o in
SR_J To p
BP _J To p
LR_J To p
NR_J To p

Stop position over Uniform
database, k=20, m1=m2= 2

0

4000

8000

12000

10000 20000 30000 40000 50000

Number of data items

S
to

p
 p

os
it

io
n

Rank-J o in
SR_J To p
BP _J To p
LR_J To p
NR_J To p

 Figure 5. Number of accesses vs.
different scoring functions

Figure 6. Number of accesses over
different databases

Figure 7. Stop position vs. number
of data items

JTop Algorithms for Top-k Join Queries 18

6.2.5 Effect of the number of data items
We now vary the number of data items in each data source, and investigate its effect on performance. Figure 7 shows
how stop position increases over the uniform database with increasing the number of data items up to 50,000, and
with the other parameters set as in Table 1. Increasing the number of data items has a considerable impact on the
performance of all five algorithms. The reason is that when we enlarge the lists and generate random data for them,
the top-k data items are distributed over higher positions in the lists.

7. RELATED WORK
Efficient processing of top-k queries is an important and hard problem that is still receiving much attention. One of
the most efficient algorithms for top-k selection queries is the TA algorithm which was proposed by several groups
 [14] [16] [27]. Several TA-style algorithms, i.e. extensions of TA, have been proposed for processing top-k queries in
different environments, e.g. [3] [5] [12] [24] [32]. Recently, we proposed efficient algorithms, called BPA [2], which
by taking into account the positions of seen data items develop a stopping mechanism which is much more efficient
than TA. The idea of best positions which we used as part of the BP_JTop algorithm is inspired from BPA. However,
top-k selection algorithms, including BPA, assume that there is no join operation in the query. Otherwise, their
stopping mechanisms do not work correctly.

In previous works on top-k join queries, the most efficient top-k join algorithm is Rank-Join [17] [18] which we
already discussed much. In [26], the authors introduce the J* algorithm which deals with efficient processing of top-k
join queries over ranked inputs. J* maps the top-k join problem to a search problem in the Cartesian space of the
ranked inputs. It uses a version of the A* search algorithm to guide navigation in this space to produce the results.
The experimental studies reported in [18] show that Rank-Join significantly outperform J*. In [30], ranked join
indices are proposed for the efficient evaluation of top-k join queries. The indices need to be pre-produced, and make
the number of requested results, i.e. k, limited to a predefined number, e.g. K, thus the user can not choose k to a
higher number than K. In [1] and [8], the relational algebra is extended to support rank queries, i.e. top-k join queries,
as a first-class construct. In [8], the authors also present a pipelined and incremental execution model of rank query
plans. In [9], top-k join query processing is extended to aggregate queries. The top-k join queries are also discussed
briefly in [7] as a possible extension to their algorithm which evaluates top-k selection queries.

8. CONCLUSION
In this report, we addressed the problem of processing of top-k join queries, and proposed JTop, a family of efficient
algorithms for top-k queries. The main idea is to take advantage of the specific information on join attribute values as
well as the characteristics of the underlying system. We analytically compared our algorithms with Rank-Join, which
is considered as the most efficient algorithm for top-k queries, and proved that our algorithms always stop sooner
than Rank-Join, and thus are more efficient. We also showed that there are databases over which the performance of
our algorithms is O(n) times better than that of Rank-Join where n is the number of data items in the database.

We conducted an extensive experimental study to evaluate the performance of our algorithms under different data
distributions. The performance evaluation shows that over the tested databases our algorithms significantly
outperform the Rank-Join algorithm.

REFERENCES
[1] S. Adali, C. Bufi, and M. L. Sapino. Ranked relations: Query languages and query processing methods for

multimedia. Multimedia Tools and Applications, 24(3), 197-214, 2004.

[2] R. Akbarinia, E. Pacitti and P. Valduriez. Best position algorithms for top-k queries. VLDB Conf., 495-506,
2007.

[3] H. Bast, D. Majumdar, R. Schenkel, M. Theobald and G. Weikum. IO-Top-k: index-access optimized top-k
query processing. VLDB Conf., 475-486, 2006.

[4] N. Bruno, L. Gravano and A. Marian. Evaluating top-k queries over web-accessible databases. ICDE Conf., 369-
382, 2002.

 19 R. Akbarinia, I. F. Ilyas, M. T. Özsu, P. Valduriez

[5] P. Cao and Z. Wang. Efficient top-k query calculation in distributed networks. PODC Conf., 206-215, 2004.

[6] G. Das, D. Gunopulos, N. Koudas and N. Sarkas. Ad-hoc Top-k Query Answering for Data Streams. VLDB
Conf., 183-194, 2007.

[7] K.C.-C. Chang and S.-W. Hwang. Minimal probing: supporting expensive predicates for top-k queries. SIGMOD
Conf., 2002.

[8] C. Li, K. C.-C. Chang, I.F. Ilyas, S. Song. RankSQL: Query Algebra and Optimization for Relational Top-k
Queries. SIGMOD Conf., 131-142, 2005.

[9] C. Li, K. C.-C. Chang, I.F. Ilyas. Supporting ad-hoc ranking aggregates. SIGMOD Conf, 61-72, 2006.

[10] S. Chaudhuri, L. Gravano and A. Marian. Optimizing top-k selection queries over multimedia repositories. IEEE
Trans. on Knowledge and Data Engineering, 16(8), 992- 1009, 2004.

[11] P. Ciaccia and M. Patella. Searching in metric spaces with user-defined and approximate distances. ACM
Transactions on Database Systems (TODS), 27(4), 398-437, 2002.

[12] G. Das, D. Gunopulos, N. Koudas and D. Tsirogiannis. Answering top-k queries using views. VLDB Conf., 451-
462, 2006.

[13] R. Fagin. Combining fuzzy information from multiple systems. J. Comput. System Sci., 58(1), 83-99, 1999.

[14] R. Fagin, A. Lotem and M. Naor. Optimal aggregation algorithms for middleware. PODS Conf., 102-113, 2001.

[15] R. Fagin, J. Lotem and M. Naor. Optimal aggregation algorithms for middleware. J. Comput. System Sci., 66(4),
614-656, 2003.

[16] U. Güntzer, W. Kießling and W.-T. Balke. Towards efficient multi-feature queries in heterogeneous
environments. IEEE Int. Conf. on Information Technology, Coding and Computing (ITCC), 419-428, 2001.

[17] I.F. Ilyas, W.G. Aref, A.K. Elmagarmid. Supporting Top-k Join Queries in Relational Databases. VLDB Conf.,
754-765, 2003.

[18] I.F. Ilyas, W.G. Aref, A.K. Elmagarmid. Supporting top-k join queries in relational databases. VLDB Journal,
13(3), 207-221, 2004.

[19] G.R. Hjaltason and H. Samet. Index-driven similarity search in metric spaces. ACM Transactions on Database
Systems (TODS), 28(4), 517-580, 2003.

[20] B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers in keyword proximity search. PODS Conf.,
173-182, 2006.

[21] N. Koudas, B.C. Ooi, K.L. Tan and R. Zhang. Approximate NN queries on streams with guaranteed
error/performance bounds. VLDB Conf., 804-815, 2004.

[22] X. Long and T. Suel. Optimized query execution in large search engines with global page ordering. VLDB Conf.,
129-140, 2003.

[23] A. Metwally, D. Agrawal, A. El Abbadi. An integrated efficient solution for computing frequent and top-k
elements in data streams. J. ACM Transactions on Database Systems (TODS), 31(3), 1095-1133, 2006.

[24] S. Michel, P. Triantafillou and G. Weikum. KLEE: A framework for distributed top-k query algorithms. VLDB
Conf., 637-648, 2005.

[25] K. Mouratidis, S. Bakiras and D. Papadias. Continuous monitoring of top-k queries over sliding windows.
SIGMOD Conf., 635-646, 2006.

[26] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, J. S. Vitter. Supporting incremental join queries on ranked input.
VLDB Conf., 281–290, 2001.

JTop Algorithms for Top-k Join Queries 20

[27] S. Nepal and M.V. Ramakrishna. Query processing issues in image (multimedia) databases. ICDE Conf., 22-29,
1999.

[28] C. Re, N.N. Dalvi, D. Suciu. Efficient Top-k Query Evaluation on Probabilistic Data. ICDE Conf., 886-895,
2007.

[29] A. Silberstein, R. Braynard, C.S. Ellis, K. Munagala and J. Yang. A sampling-based approach to optimizing top-
k queries in sensor networks. ICDE Conf., 2006.

[30] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, D. Srivastava. Ranked Join Indices. ICDE Conf., 2003.

[31] M. Wu, J. Xu, X. Tang and W-C Lee. Monitoring top-k query in wireless sensor networks. ICDE Conf., 2006.

[32] D. Xin, J. Han and K. C-C. Chang. Progressive and selective merge: computing top-k with ad-hoc ranking
functions. SIGMOD Conf., 103-114, 2007.

[33] M. L. Yiu, X. Dai, N. Mamoulis, M. Vaitis. Top-k Spatial Preference Queries. ICDE Conf., 1076-1085, 2007.

[34] G.K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley Press, 1949.

