JTop Algorithms for Top-k Join Queries

Reza Akbarinig, lhab F. llyas M. Tamer Ozsly Patrick ValdurieZ

! David R. Cheriton School of Computer Science,
University of Waterloo
2 INRIA and LINA, University of Nantes, France

University of

Waterloo
]

Technical Report CS-2008-03
February 2008

Top-k join queries have become very important imynanportant areas of computing. One of the mogtieht
algorithms for top-k join queries is the Rank-Jalgorithm[17][18]. However, there are many cases where Rank-
Join does much unnecessary access to the inpusdatees. In this report, we first show that thexr@ many cases
where Rank-Join’s stopping mechanism is not effici@and it does much unnecessary accesses to pibe data
sources. Then, we propose JTop, a family of muckenadficient algorithms for top-k queries. We pravat our
algorithms always perform less work than Rank-Jang thus are more efficient. We also show thap#réormance

of our algorithms can b®(n) times better than that of Rank-Join whetie the number of data items in the database.
We evaluated the performance of our algorithmsugincexperimentation over databases with differésttidutions.
The results show that over the tested databasedganithms significantly outperform Rank-Join.

JTop Algorithms for Top-k Join Queries 2

1. INTRODUCTION

Top-k queries have attracted much interest in mdifferent areas of computing such as network arstesy
monitoring [5][21], information retrieval [4][20][22], sensor networks[29][31], multimedia databases
[1][10][16][27], spatial data analysif33][19], probabilistic databasefR8], data stream management systems
[23][25], etc. The main reason is that they avoid owefming the user with large numbers of unintergssinswers.

The two main forms of top-k queries are top-k sdecand top-k join. The seminal work by Fagir8] on top-k
selection queries (or top-k queries for short) psEs a general model for answering top-k queriefolésws.
Suppose we have lists of n data items such that each data item has a looe¢ $c each list. The lists are sorted
according to the local scores of their data iteBach data item has an overall score, which is céedpbased on its
local scores in all lists using a given scoringcfion. The problem is to find tHedata items with the highest overall
scores. Most of the top-k algorithms work as fokowhey continually read the data items in thes lsgarting from
the head, and stop when a specific condition ors¢ie® data items holds. To decide when to stopssitzethe lists,
each top-k algorithm has stopping mechanisntagin[14] proposed a simple, yet efficient algorithmledlthe
Threshold Algorithm (TA)J14][16][27]. Its stopping mechanism (based on a thresh@d)been the basis for several
TA-style algorithms in distributed environmengsg.[3] [5][12][24]. Best Position Algorithms (BPA and BPAR)
which were recently proposed significantly outparfdr A.

Top-k join queries allow users to join multiple irtp and report the top-k join results. The answea top-k join
query is a set of join results ordered accordinghto scoring function. There has been work on tgpik queries
with different applications and with different assations,e.g.[17][26][30]. To our knowledge, the most efficient
algorithm for top-k join queries is the Rank-Jolgaaithm [17][18]. Rank-join continually reads the ranked inputs
and generates valid join data among the seen da#thits stopping condition decides to stop. Thepsing
mechanism of Rank-Join allows it to work on joinegas with ad-hoc join conditions. However, it does take
advantage of either specific information on thenjattribute values or the characteristics of therguAs we will
show later, there are many cases where Rank-Jopping mechanism becomes lazg, it stops too late, which
causes many unnecessary accesses in the inputs.

In this report, we propose a family of new algarithfor processing top-k join queries. They haveieffit stopping
mechanisms that make them much more efficient Reamk-Join, so their performance can@) times better than
that of Rank-Join. Our main contributions are sumired as follows:

e First, we propose SR_JTop, a new top-k join alparitwhich takes advantage of both sorted and random
accesses as well as information on the join caitiVe prove that SR_JTop always stops at a positlich is
lower than or equal to that of Rank-Join, therebingd less work. We also show that there is a addskatabases
over which the performance of SR_JTopd&) times better than that of Rank-Join wheres the number of
data items of the database.

e« Second, we propose a new algorithm, called BP_JWhyich is designed for systems with “position-based
indexing”,i.e. after accessing a data item in an index, we cawkts position in the index. BP_JTop takes into
account the position of seen data items, and hsto@ping mechanism which is more efficient thart thia
SR_JTop. We show that BP_JTop always stops at iiggow/hich is lower than or equal to that of SRogT
and there are databases over which BP_JTop st@ppasition which i©(m)times lower than that of SR_JTop
wherem is the number of scoring attributé®, those which are used in the scoring function.

e Third, we propose two new algorithms, LR_JTop and_BlTop, for systems where random accesses are
expensive or not supported, respectively. LR_JTogsda very limited number of random accesses taldlte
sourcesj.e. only for a set of final join data items. NR_JToped only sorted access to the data sources. We
show that LR_JTop and NR_JTop always stop at positivhich are lower than or equal to that of Rawik-J
We also show that their performance carQife) times better than Rank-Join.

« Our extensive experimental study under differentaddistributions shows that our algorithms yieldyhi
performance gains against the Rank-Join algorithm.

3 AXbarinia, I. F. llyas, M. T. Ozsu, P. Valduriez

The rest of this report is organized as follows.Skction 2, we give the problem definition. Sect®introduces
Rank-Join, the best algorithm proposed so far.dati8n 4, we describe the SR_JTop algorithm. IniiGed, we
describe the BP_JTop algorithm. In Section 6, wsedkee the LR_JTop and NR_JTop algorithms. Secigives a
performance evaluation of our algorithms. In Sec8pwe discuss related work. Section 9 concludes.

1. PROBLEM DEFINITION

In this report, we address the problem of top-k jquery processing. For simplicity, we assume thatquery
involves only two source®.g.two relations. However, our algorithms can be Igasitended to process multi-way
join queries. We also assume equi-joins. Like atratigprevious top-k join algorithme,.g.[17][26], we assume that
the scoring function is monotonic.

A possible SQL-like notation for expressing the-kgpin queries that we address is as follows:

SELECTSelect Expression

FROM R, R,

WHERE R..a =Ry.b

ORDER BY f(R.a;, Ri.a, . . ., Ramy, Re.by, Roby, . .., Bbm)
STOP AFTER k

In this queryf is a monotonic scoring function ovey, attributes fromR; andm, attributes fromR,. The attributes,
which are used in the scoring function, are cadlearing attributesin the above query, the attributs ..., a,; and
by, ..., by, are the scoring attributes.

Let us now model each joining source and its irgliegh a general model as follows. We model eatdtion R as a
data sourc®S(D, L, n, mpsuch thaD is a set oh data items (tuples d®), andL={ I, I,, ..., I, } be a set ofn lists,
where each list corresponds to an attributg.ikach listl; containsn pairs of the form{d, s),whered/D andsis a
non-negative real number that denotesltioal scoreof d in |;. Any data itemd//D appears once and only once in
each list. Each lidf is sorted in descending order of its local sconesce called “sorted list”. Lat(d, |) denote the
local score of a data itechin a sorted lisk;,. A set of two or more data sources is calletheabase

Now, we define the join operation as follows. Cdesitwo data sourcd3S;(D4, Ly, iy, m) andDS,(D,, Ly, np, mp).
Given two listd /1, andl' /1,, called join list§ then the join 0DS; andDS,, denoted asoin(DS DS,), is defined
as the set of pairgl, d') such thatl/D; andd'/D, andsc(d, I) = sc(d', I') Each paiird, d")is called a join data item.
For each join data itef, d'), we compute anverall score denoted byv(d, d")as follows. Given a scoring function
f, ov(d, d")is computed afs;, S, .., $u1, St S2 ..., Sm2) Such thas, = sc(d, |) for 1<u<m, ands', = sc(d, |) for 1<v<
m,. In other words, for computing the overall scofdd) d), we apply the scoring function on the local scarkd
andd'.

As defined in[15], we consider two modes of access to the sditesl The first mode isorted (or sequential)
accesshy which we access the next data item in the ddiseé Sorted access begins by accessing theditst item
of the list. The second mode of accessaisdom accesdy which we lookup a given data item in the list.this
report, we assume that sorted access is availabkaoh sorted lisi,e. including join lists. We also need random
accesses for most of our algorithms, but not athefm.

Let us now state the problem. Given two data s@P&(Dy, Ly, ny, my) andDSy (Do, Ly, My, M), two join listsl; /14
andl' /1, and a scoring functioh LetJ be the set of coupldd, d') involved inJoin(DS DS,). Our goal is to find a
setJ'[2 such that/J' /= k, and /{dy, d%)/0' andAd,, d5)/AJ-J') the overall score ofd;, d) is at least the overall
score of(d,, dY).

1 In this model, we assume that the join attribata scoring attributée. it is used in the scoring function. However, ifsitnot a
scoring attribute, we can simply assume it is, \mith no impact on the scoring functioe.g.it has a zero coefficient in the
scoring function.

JTop Algorithms for Top-k Join Queries 4

2. RANK-JOIN
Rank-Join[17] is the best algorithm proposed so far for pssing top-k join queries in relational datababeshis
section, we introduce this algorithm which is us&fu comparison with our algorithms.

Rank-Join’s main assumptions are: the scoring fands monotonic; it works on relational databaaed assumes
that the tuples of each input relation are rankambaling to the scoring function. If each inputat&n has only one
scoring attributei(e. one of its attributes is used in the scoring fiom)t then a sorted lise(g.,an index on that
attribute) gives a ranked list of tuples. Buthiéte are two or more scoring attributes (8ay1) for an input relation
R, then none of the sorted lists raris tuples according to the scoring function, beeamsre than one attribute of
Rinfluences the scoring function. In this case, IR3min fragmentsR vertically intou relations,i.e. one relation per
scoring attribute, and considers a join operatietwken any two fragments. Then, it treats eachexfel fragments
as an input relation which is ranked accordinghdgcoring function.

Let us now briefly describe the Rank-Join algorithtrcontinually does sorted access to the soiigtd in parallel,
and for each new seen tuple in a list, produces yain combinations with all seen tuples seenaoiri the other
lists. It stops if there are at ledsjoin tuples whose overall scores are higher thaaqual to ahresholdwhich is

computed as follows. Leh be the number of input listse. m=my+m,. For each list; (1<i<m), leth; be the topi(e.

first) local score inl;, andc; be the last local score which is seen;innder sorted access. Liebe the scoring
function, then the threshold of Rank-Join is theimam ofm values as follows:

TRJ: Max {f(clv hZa ey hn)y
f(hlr CZ! h?n"'! hT'I)y
f(hlr hZ! Cs, h41"'1 h‘ﬂ)a

f(hlr hZ! h31 ey h‘ﬂ—l! Cm)}

In other wordsTg; is the maximum ofn values such that each value is computed by appthi@ scoring function on
the last seen score from one list and the firat seeres from the other lists.

With this threshold, Rank-Join works correctly (dke proof in[18]). However, there are many cases where the
threshold decreases very slowly. Thus, the algoritleeds to go deep in the lists before the thrdshetomes less
than or equal to the overall scorekgbin tuples. In these cases, we say that thelibtdss lazy,i.e. it moves very
slowly. In the following, we define the problemlaky threshold, and show that, if only one of therig attributes
has a low impact on the scoring function then Rawik-suffers from the lazy threshold problem. §8tbe the local
score which is at positiopin list l;, i.e. thepth score seen il Without loss of generality, assume that, at esiep,

the last seen data items in all lists are at theesposition. Letr, be the value of threshold at positipnThus, 7; is

the value of threshold at the first position. Alsb 30 be a very small default real number. Then lazgghold is
defined as follows.

Definition 1: Lazy threshold. A thresholdris lazy ifr; - 7, < (p-1).dfor each p2.

In other words, at each step the decrease in the wd a lazy threshold is at madtif the threshold of an algorithm
is lazy, then the algorithm may stop very late ftieraaccessing all data items of all lists. We shbat in the cases
where at least one of the scoring attributes Has/g@rogressive impact on the scoring function, IRaain’ threshold
mechanism is lazy. Let us formally define the lawgressive impact of a scoring attribute.

Definition 2: Low progressive impact. An attribute i has a low progressive impact on sicering function f if for
each position p we have (%, ..., X1, S®, X1, oo, %) - 0% %, -y X1, P %o, ., %) < € for each x>0,
where (eis a very small default real number.

1 Rank-Join could also pre-compute the total scerayple in each relation, and work on it. Howevkis is very costly because
for each scoring function, it has to do this preapatation for all tuples.

5 AXbarinia, I. F. llyas, M. T. Ozsu, P. Valduriez

In other words, a scoring attribute has a low peegive impact on the scoring attribute if at eatdp,sits
contribution to the reduction of the scoring funatiis at most. One case where an attribute has a low progressive
impact is when all values of the attribute are éguarery close to each other. Another case is wiiee coefficient

of the attribute in the scoring function is veryadlre.g.close to zero.

The following lemma shows that the threshold of Benk-Join algorithm is lazy if there is at leasecscoring
attribute whose progressive impact is low witid.

Lemma 1. If in the inputs of Rank-Join, there is at lease@toring attribute whose progressive impact on the
scoring attribute is low witle<¢, then Rank-Join’s threshold is lazy.

Proof. Without loss of generality, assume the low proguesgmpact scoring attribute is the first attribuié the
scoring function. Let |, be the sorted list corresponding to the firstitate of the scoring function, argf® be the
local score which is at positignin |,. Let 7; and 7, be the value ofg; (i.e. Rank-Join’s threshold) at positions 1 and
p respectively. Using the definition dk; we haver, > f(s,®, hy, ..., hy). Using the monotonicity of the scoring
function and the definition dfg;, we haver; <f(hy, hy, ..., k). Thus, we have:

rl_rp Sf(hlv hZ! "'!hﬂ)_f(sﬂ.(p)! h21---1hn) (1)

Since the first scoring attribute has a low progives impact on the scoring function, we have thkofang
inequalities:

f(s by, o) -fE&@ hy, .) <€
f(s? hy, ..) -fE&® hy, ...,) <€

f&." by v) - f(& P by B <€

Thus, we havé(s,?, hy, ..., h) - f(s®, hy, ..., h) < (p-1)Z . Since 5, = hy, we havef(hy, h,, ..., h) - f(s®, hy,
...,) <(p-1)L£. By comparing this equation with equation 1, e, - 7, < (p-1).£. Thus, fore<d, we haver, -
I, <(p-1)Jd.o

As we show in the next sections, the performanceunfJTop algorithms can k@(n) times better than Rank-Join
wheren is the number of data items in the database. ¥riRlank-Join, the cases, where the threshold of JTop
algorithms is lazy, are very restricted. For exampthe threshold of SR_JTop and BP_JTop may bedabyif all

the scoring attributes of one of the data souress la low progressive impact on the scoring functio

The main differences between the requirements akRain and those of JTop algorithms are as folld®ank-join

assumes a general “black box” join condition, amguires no sorted access on the join attributep Hlgorithms
work on equi-join queries and need sorted accebe tavailable on the join attribute. In additioame of the JTop
algorithms take advantage of random accessesthtbysieed random access to be available on thengatributes.
But, Rank-Join does not require the availabilityaridom access.

3. SR JTop

In this section, we propose SR_JTop, a new algurittr efficient top- join query processing. It ddasth random
and sorted access to the lists. It is designedyfstems where random data access has very lowvbest it is done
just after a sorted access to the data. As an deaohthese systems, we can mention database sygtemhich from
each index entry there is a pointer to the whopgetuThus, when the value of an attribute of aduplseen in the
index built on that attributé.e. via sorted access, then accessing the valueg a@ifthier attributes of the tuple is done
easily,i.e. just by one additional 1/0.

In the rest of this section, we first propose tHe $Top algorithm. Then, we prove its correctnesslyae its
threshold and compare its performance against Raimk-

JTop Algorithms for Top-k Join Queries 6

3.1 Algorithm

Let DS(D;, Ly, n;, m) and DS(D,, L,, n,, mp) be two given input data sources, drge a given scoring function.
Before describing our algorithm, let us define dlverall score of a single data itethetd/D; be a data item, ars,

S, ..., $1 be its local scores in the sorted lists of,[X8en the overall score df is computed asv(d) = f(g, &, ...,
S 0, O, ..., 0)In other words, the overall score of a singleadsgm is computed by applying the scoring function
on its local scores while putting zero (we assumag the scores are positive numbers) for the safréee other side.

In a similar way, for a data itediZD, with local scores', s, ..., Sna the overall score is computed@agd’) = f(0,
0,.,0,9, S5 ..., Sn2-

TheSR_JTop algorithm works as follows.

1. Do continually sorted access in parallel to eastl In DS, or DS. As a data itend is seen under sorted access
in a listl, do random access to read all local scoreks bfaintain the local scores of the seen data items.

2. Produce new valid join combinations dfwith all data items seen in the opposite data swo far, and
compute the overall score of the new join data st€iinany). Maintain in a sef thek produced join data items
whose overall scores are the highest among alldata items produced so far.

3. Choosehdj; (calledbest data for join in D andbdj, (calledbest data for join in DS as follows:

bdj (for i=1,2): LetS be the set of data items seen in, B&h that the join attribute value of eabhS is
lower than or equal to the last local score whichden under sorted access in the join list obgposite data
source. Thenbdj /5 is the data item whose overall score is the highesng all data involved I8, i.e.
ov(bdj)>ov(d) for eachd/S. If S={} then letbdj be a virtual data whose local scores are equ#iddast
local scores seen in the lists of DS

4. Stop when there are at le&gproduced joint data items whose overall scoresaateast the SR_JTop threshold
computed as follows. Let{, G, ..., G,)) and €'3, €5, ..., Chy) be the last local scores seen under sorted aotess
the lists of D$ and DS respectively. Letd;, e, ..., 1) and €', €5, ..., eny) be the local scores bflj; andbdj,
respectively. Then the threshold of SR_JTop, dehby sg ;7, is the maximum of three values as follows:

Tsr a7 = Max {f(cy, ¢, .-, Gu1, C'1, C2 --vy C2)s
fiCCo, ..oy Gny, €1, €2 ..., B2,
f(e &, ..., &, C'1, €, ..., C}
5. ReturnY to the user.

The threshold of SR_JTop is designed based oratttetat any unproduced join d4th d'), i.e. a join data which
has not been produced by the algorithm, has at t@@s unseen elemernite. d or d' or both. If only one of its
elements is unseee,g.d', then the highest overall for the unproduced {dta(d, d')is whend is a special seen data
which is called best data for join in R®therwisej.e. if both d ared' are unseen, then their local score in any list is
lower than or equal to the last local score sedharlist under sorted access.

Let us illustrate SR_JTop with the following exampl

Example 1. Consider the two data sources shown in Figurehg.jdin lists aré, from DS andl'; from DS. Assume

a top-3 queng, i.e. k=3, and suppose the scoring functiorf(ig, X, X1, X%) =X; + X, + X'y + X', i.€. it computes the
sum of the local scores of the data item in alkliket us apply SR_JTop on this example. At pasiti, the set of
seen data items in R$ {d,, d,}. The join attribute values af; andd,, i.e. 99 and 97 respectively, are lower than or
equal to the local score which is at position %he join list of DS, i.e. 99, thus we hav&= {d,, d,}. Since the
overall score ofl, is higher than that af;, we havebdj; = d,. In DS, we haveS,= {d';}, thus bdj, = d';. At this
position, there is only one produced join data jteen (d;, d';), and its overall score Bv(d;, d;)= 399. At position

2, there is one new seen data item in,D8. d;, and two new data items in B$.e. d', andd';. At this position, the
seen data items in R@re {d;, dy, d3}, but only the join attribute value ak, i.e. 96, is lower than or equal to the
local score which is at"? position in the join list of DS i.e. 96. Thus we have;S {ds}, and bdj, = ds. In DS, we
haveS= {d', d';}, and since the overall score d$ andd's is the same,e. equal to 196, we can choose one of them

7 AXbarinia, I. F. llyas, M. T. Ozsu, P. Valduriez

DS, DS
Position I R I I’

1 d;: 101 d:99 di: 99 d; : 100
2 d;: 98 4 : 97 dz: 96 dz: 100
3 d; : 97 G : 96 dy: 96 dz: 100
4 ds: X ds : X ds: X's d,: 100
5

di:x dy 2 %p dj: x| dy: 100
n g': 100

Figure 1. Example database. There are two data sources eachitln two sorted lists. The join lists dgeandl';.

ashdj,. For example we choodmlj, = d',. At this position, there are two new join datarite(s, d') and @5, d's)
with overall scoresv(ds, d) = ov(ds, d's) = 390. Let us now compute the threshold of SR_Jdog"™ position. The
last local scores which are seen under sorted sieed3S and DS are €3, ¢) = (98, 97) and 'y, c5) = (96, 100)
respectively. Sincéddj; = d; andbdj, = d',, we have ¢, &) = (98, 96) andd;, e€5) = (96, 100). Therefore, the
threshold of SR_JTop af%position is computed &g jr = max (98, 97,96, 100))(98, 97, 96, 100¥(98, 96, 96,
100)} = 391. Since at"d position there are nétproduced join data items with overall scores highan or equal to
Tsr T, the algorithm does not stop at this positionpAsition 3, there is no new seen data item in B8l not in
DS;. There is no modification ibdj, andbdj,, i.e. bdj; = d; andbdj, = d',. Thus, we haveg(, &) = (98, 96) and€y,
e’) = (96, 100). For the last seen local scores in &%l DS we have ¢;, ¢,) = (97, 96) and (4, c%) = (96, 100).
Therefore, the threshold is computedTag ;+ = max {f{(97, 96, 96, 100)){(97, 96, 96, 100){(98, 96, 96, 100)} =
390. Since we have 3 join data items whose ovecaltes are at lea$tg s, i.e. @i, d'4), (d3, d') and €, d'3), the
algorithm stops at position 3.

If we apply Rank-Join on this example, at positigrthe threshold of rank-join i&; = (101, 99, 99, 100= 399.
For the other positions, Rank-Join has the sanestiotd value, because in each position, one afntlialues, which
are used in computing the threshold, is obtaineddplying the scoring function on the last locarecseen i, and
the first local scores in the other lists. Since kbcal score at any position bf is equal to 100, the Rank-Join’s
threshold at any position is equalTg; = = f(101, 99, 99, 100= 399. In this database, there is only one joita da
item whose overall score is higher or equal to 3@9(d';, d';). The overall score of any other join data iteness
than 399j.e. this can be seen by regarding the fact thandd'; (and alsal,) can not take part in any other join data
item. Therefore, there is nkt3 join data items with an overall score higher tbarequal to the threshold of Rank-
Join in any position. Hence, it does not stop keefbenth position,i.e. it reads all the local scores in all lists

3.2 Correctnessand Analysis
The following theorem provides the correctnesswf®R_JTop algorithm.

! Notice that over the database of Example 1, iluse a scoring function in which join attribute \edthave no impacg,.g.f(x,
Xa, X1, X2) = X+ X5, then we will have a better result for SR_JToptdps at ? position. However, this makes no difference for
Rank-Joinj.e. stops ahth position.

JTop Algorithms for Top-k Join Queries 8

Theorem 1. If the scoring function f is monotonic, then SR _pJfinds correctly the top-k answers.

Proof. Let Tsg st be the value of SR_JTop’s threshold when it stdpsprove the theorem, it is sufficient to show
that every unproduced join datee. a valid join data which is not produced by SR_Jbefore its end, has an
overall score which is less than or equal’¢g ;r. Let (d, d') be an unproduced join data. Sif{de d') has not been
produced by SR_JTop, at least one of its eleméntg] or d', has not been seen by SR_JTop. Thus, there ae thr
possible cases farandd': 1) None of them are seen by SR_JTopd & seen but nd’; 3) d' is seen but nal. We
show that in all these three cases the overalkesof{d, d')is at most the threshold of SR_JTop, Tsg i+

Let us start with the first case. Let,(s, ..., $1) and €', S5, ..., Swo) be the local scores df andd' respectively.
Sinced andd' are not seen by SR_JTop, their local scores inliahgre less than the last local scores in this.i
Thus, we haves < ¢ ands) < ¢} for 1<i <my and1<j <m,. Therefore, since the scoring function is monatpnie

havef(s, S, ..., $1 S1, S2, .-y Sn2) < f(C, G, ..., Gu1, C'1, C5, ..., Cho). SinceTsg 57> f(Cy, G, ..., Gy, C'1, C5, ...,

C'm2), We haveTsg j1>f(S, ©, -..0 S ST, S2, --.» Sm2), thus the threshold of SR_JTop is greater thaegoil to the
overall score ofd, d).

In the second casd, is not seen, thus we hasg< cj for 1<5j <m,. The data itend is seen by SR_JTop. According
to the definition otdj,, i.e. best data for join in DSthe overall score didj, must be higher than or equal to that of
d, i.e. ov(d)< ov(bd}), thus we havé(s;, S, ..., $. 0, 0, ..., 0K f(e, &, ..., &1, 0, O, ...,0)Sinces'; < c'; and the
scoring function is monotonic, we haffg,, S, ..., $1, S, 0, ..., 0<f(e, &, ..., &1 C1, O, ..., 0)i.e. we replace one
of the zeros with corresponding values in the irditjus’; < c';. By continuing this replacement, we hd(®, s, ...,
Sn1 S1, S -.vy Sm2) <f(€1, &, ..., &1, C'1, C%, ..., Cho). SINCETsR 37> f(er, &, ..., &1, C1, C5, ..., Cho), We haveTsg 7
>f(s, &, ...y $1 ST, S ..., Sw2)- Thus in the second case like the first one, ltiheshold of SR_JTop is greater than
or equal to the overall score (@, d"). In a similar way, we can do the proof for thedhtase. Therefore, in all the
three cases the overall score of the unproducedijpie is at mostsg 1.0

By the following theorem, we compare the stop pasét of SR_JTop and Rank-Join.
Theorem 2. The position, at which SR_JTop stops, is alwaysidkan or equal to that of Rank-Join.

Proof. Assume Rank-Join stops at positipiWe show that SR_JTop stops at a position lowan tr equal te. For
this, it is sufficient to show that the value of SRop’s threshold gi is less than or equal to that of Rank-Join. Let
Try and Tsg 1 be the threshold value of Rank-Join and SR_JTepeively. Recall thalg; is computed as the
maximum ofm; + m, values such that each value is computed by appthi@ scoring function on the last seen score
from one list and the first seen scores from theiotists. We show that each of the three valued s computing
Tsr_jt are less than or equal to one of the values usedmputingTg;, thus they are less than or equalltg and
therebyTSR_JT < TRJ.

This is done by the following inequalities:
f(C1, Gy ++vy Gna, €'y €2y vnny) <F(Cy, Mo, o -y Pz md)
f(ci, Gy ...y Gna, €1, €%, ..ty Em2) <F(Cy, o, o -y g m)
fer, &, ..., €1, C1, C%, ..., G} <f(hy, Mo, Mo ..., Baaemz -1 Cinte md

These inequalities are implied by using the mornicitynof the scoring function as well as the falat any local
score in the liste.g.c or g, is lower than or equal to the first local scof¢he list,i.e. h;. o

Theorem 2 shows that the position at which SR_J§tops is always lower than or equal to that of Ramik. We
also make the following observation for the diffeze between the performance of SR_JTop and Rank-Joi

Observation 1. There is a class of databases over which the nurberccesses to the data sources done by
SR_JTop is O(n) times lower than that of Rank-Wgiere n is the number of data items.

Proof. An example of these databases is that of Figuré We apply SR_JTop on this database, it stop8“at
position. However, Rank-Join reads all data itefrth® database. There are many examples over wradhmave this
high difference between SR_JTop and Rank-Joinaitiqularly when the following conditions hold:

9 AXbarinia, I. F. llyas, M. T. Ozsu, P. Valduriez

1) The top-k join data items are produced afteessitig the early positions of the lists.

2) Some of the scoring attributes, but not allhefh, have a low progressive impact on the scoringtion,e.qg.all
values of one of the attributes are equal or viryec

Over all the databases which the above conditiolt fit is very probable that the stop positiorS&_JTop bé(n)
times lower than that of Rank-Join.

Let us now discuss the cases where the thresh@®RodTopj.e. Tsg_jr, may be lazy. According to the definition of
Tsr_jm it is the maximum of three values, and in eacthe$e values, we u$e, G, ..., G), Or (C'y, C, ..., Cn2), i.€.
the last seen local scores in Déhd DS. Assume at least one attribute from each dataceadwes not have a low
progressive impact on the scoring functierg.a, from DS anda’, from DS for somelsusm, andlsvsm,. Letl,
andl', and be the corresponding sorted lists of attribateanda’, respectively. Also, let, bec', be the last local
scores seen iy andl', respectively. In each of the three value3f ;1 there exist, or c',, and the attributes, and
a', does not have a low progressive impact on tharggdunction, thus none of the three valued gf ;r decreases
slowly, therefore their maximumeg. Tsg_j1, does not decrease slowly. Thus, if at least drleeoscoring attributes of
each data source does not have a low progresspa&ctnon the scoring function, then the threshol&Rf JTop is
not lazy. In other words, only in the cases whdlrecaring attributes of one of the data sourcesHaw progressive
impacts on the scoring functiofgg_;t may be lazy. This is stated in the following tresar

Theorem 3. Only in the cases where all scoring attributes o¢ @f the data sources have low progressive impacts
on the scoring function, the threshold of SR_JTap be lazy.

Proof. Implied by the above discussian.

4. LEVERAGING SEEN POSITONS

Position-based indexing is a mechanism to repatpibsition (rank) of a data in a sorted list whers iseen via

sorted or random accef®y. The position of a data in a list is formallgfthed as follows. Letbe the number of data
items which are before a data itehin a listl;, then thepositionof d in |; is equal to(j + 1). For example, if the

sorted list is implemented using an array strugtthien the position of each data item is the indeihe element

containing the data item (and its local score).therother data structures such as linked listjriBe; etc. we can add
a field to each element of the data structure teotke its position in the list. We can also haveepasate data
structure that maintains for each data, its passtim all lists. Thus, with only one access to dla¢a, we obtain its
position in any list.

In this section, we propose BP_JTop, an efficiepthk join algorithm for systems with position-basedexing. We
show that exploiting position information leadsdisign faster stopping mechanisms in answering o queries.

4.1 BP_JTop

BP_JTop is similar to JTop with respect to perfergniboth sorted and random access to the lists. kHawe
BP_JTop takes into account the positions of se&mitkans and develops a threshold which is muditdigthan that
of JTop. In contrast to JTop, which as part oftiieeshold uses the last local scores seen underdsaccess,
BP_JTop uses the local scores that arbest positionsThese positions are usually much deeper tharatte
position seen under sorted access.

BP_JTop works as follows:

1. Do continually sorted access in parallel to eastl In DS, or DS. As a data itend is seen under sorted access
in a listl, do random access to read all local scoraek bfaintain the local scores of the seen data itdaintain
also the positions of each data seen under sortexthdom access.

2. Produce new valid join combinationsafvith all data items seen in the opposite datacso far. Maintain the
k join data items whose overall scores are the kiglimong all join data items produced so far. Méinin a set
Y thek produced join data items whose overall scoreshardighest among all join data items producedaso f

JTop Algorithms for Top-k Join Queries 10

3. LetP, be the set of positions which are seen underdgarteandom access inLet bp, calledbest positiorin |,
be the highest position B such that any position between 1 &pdis also involved irP,.

4. Choose data itentwdj; (calledbest data for join in DS andbdj, (calledbest data for join in DS as follows:

bdj (for i=1, 2) Let B; be the set of seen data items in the data sdd&such that eacd/B; has a join
attribute value which is lower than or equal to liheal score which is at the best position in thie jist of the
other data set. TheodjB; is the data whose overall score is the highestgntioe data involved iB;. If B,

={} then letbdj be a virtual data whose local scores are equtiledast local scores at best positions in the
lists of DS.

5. Stop when there are at le&sproduced join data items whose overall scoresatleast the BP_JTop threshold
computed as follows. Leb{, b, ..., b)) and o'y, b, ..., by be the local scores which are at best positions i
the lists of D$ and DS respectively. Letd, &, ..., 1) and €', €5, ..., eny) be the local scores bflj; andbdj,
respectively. Then, the threshold of SR_JTop, d=hbyTsg j7, is the maximum of three values as follows:

Tap.or= Max {f(by, by, ..., by, b, b, .., by,
f(bby, ..., B, €%, €% ..., &),
fiee, ..., &, b1, DY, ..., by}
6. ReturnYto the user.

4.2 Correctnessand Analysis
The following theorem provides BP_JTop’s correctnes

Theorem 4. If the scoring function f is monotonic, then BP_gTinds correctly the top-k join answers.

Proof. Let| be a sorted list in DSandbp be the best position inwhen BP_JTop stops. Lbt be the local score
which is atbp in |. The definition of best position implies that pdsitions befordop in the listl are seen. Thus, any
unseen datd involved in DS has a position higher thdm in I. Thus, the local score dfin |, i.e. sc(d, 1) is lower
than or equal to the local score which idpti.e. b> sc(d, I) Using this inequality and in a way similar to {eof

of Theorem 1,i.e. correctness of SR_JTop, we can easily show tleapterall score of each unproduced join data is
lower than or equal to the threshold of BP_JTop.

The following theorem compares the performanceRfH op and BP_JTop.

Theorem 5. The number of sorted (random) accesses done byT®ip i3 always lower than or equal to that of
SR_JTop.

Proof. Since both BP_JTop and SR_JTop do sorted accdssfi@n each sorted access they do random accéss to
lists, to prove the theorem it is sufficient to shithat BP_JTop does less number of sorted acceBbas, we must
show that BP_JTop stops at a position which is totivan or equal to that of SR_JTop. For this, isufficient to
show that when SR_JTop stops, its threshold isenigtan or equal to that of BP_JTop. L&t a list, ang be the
position at which SR_JTop stops. under sorted access. Lebe the local score which is pt Let bp be the best
position in the list when SR_JTop stops, abdbe the local score &ify. Since all positions befone are seen, we
havebp> p. Thus since the lists are sorted, we hiawe. Using this inequality and the monotonicity of teoring
function, it can be easily shown that each of tired values, which are used in the threshold ofJBBp, is lower
than or equal to one of the three values usederthiteshold of SR_JTop. Thus, the threshold of BBpJs lower
than or equal to that of SR_JTap.

The following observation shows that the perfornean€ BP_JTop can b@&(m) times better than that of SR_JTop
wherem is the total number scoring attributes.

Observation 2. There is a class of databases over which the nurobesorted (or random) accesses done by
BP_JTop is O(m) times lower than that of SR_JTogrevim is the total number scoring attributes.

11 Akbarinia, I. F. llyas, M. T. Ozsu, P. Valduriez

Proof. It is sufficient to show that there are databases which the number of sorted accesses done by B is
O(m) times lower than that of SR_JTop. In other wordgjer sorted access, BP_JTop stops at a positiwhs
O(m) times lower than the position at which SR_JTaypst Let SR_JTop stops at positjofror simplicity assume
thatj=(m-1)/&1 whereu is an integer. Lebdj; andbdj, be the best data for join at positianConsider all cases
where the two following conditions hold:

1) Each of the top-k join answers have a localesedr position which is less than or equal.to

2) If a data item is at a position in interval [11)] in any list, themm-2 of its corresponding local scores in other lists
are at positions which are in interval [((u + 1)],..and one of its corresponding local scoresnig iposition higher
thanj.

3) The join local scores difdj; andbdj, at positionu are lower than the local score which is at position the join
list of the opposite data source. This guaranteassthe best data for joing. bdj; andbdj,, at positionsu andj be
the same.

In all cases where the two above conditions hoklcen argue as follows. After doing its sorted as@nd random
access at positiom BP_JTop has seen all positions in interval [1..i.e. under sorted access, and for each seen data
item it has seem-2 positions in interval [u + 1) .. j},e. under random access. Ltbe the total number of seen
positions in interval [1..j], then we have:

ns = (number of seen positions in [1..u]) + (numbieseen positions in [(u + 1) .. j])
After replacing the number of seen positions, wesha
ns = u/m + ummm-2) = ((i/(m-1Y) + (((i/(m-1) [i) L(m-2))

After simplifying the right side of the equationewavens=m/y. Thus, when BP_JTop is at positionit has seen all

positions in interval [1 .. j] in all lists. Thewatk, the best position in each list is at lgagiso, Condition 3 assures
thatbdj; andbdj, at positionau andj are the same. Therefore, the threshold of BP_&tf @ositionu is equal to the

threshold of SR_JTop at Thus, BP_JTop stops atwhich is(m-1) times lower thar. In other words, BP_JTop
stops at a position which is Q) times lower than the position at which SR_JTapst o

5. LIMITING RANDOM ACCESSES

In the previous sections, we assumed that randamsacto the data is available and its cost is l@my In this
section, we deal with systems where random acces®sesery expensive or impossible. As an examplsugh
systems, we can mention information retrieval systén which sorted lists correspond to lists ofkethdocuments.
We propose two top-k join algorithms, LR_JTop anB_NTop for such systems. LR_JTop does a very limite
number of random accesses to the data soureesnly for a set of final join data items, and NRopTdoes no
random access.

We show that both LR_JTop and NR_JTop stop at ipositwhich are lower than or equal to that of Raak, and
their performance can b®(n) times better than that of Rank-Join wheres the number of data items of the
database.

51 LR_JTop

The main difference between SR_JTop and LR _JTotheg stopping condition. For describing the stogpi
condition of LR-SR_JTop, we need to give some d@dims about optimistic and pessimistic overallrgcof a single

or join data as follows. Since LR_JTop does no oaméccess, some of the data items may be parsiedig during

its executionj.e. only part of their local scores are seen. déte a data which is seen in at least one of tie dis
DS, or DS. Letl be a list in D$(or DS)), andc be the last local score seenlirLet optimistic local score of data
item d in the list,|denoted aspt(d, 1) be a function computed as follows. If the locadre ofd is seen id then
opt(d, I)=sc(d, 1) elseopt(d, I)=c. In other words, if the data is not seen,ithen we choose the last seen local score
in | as the optimistic local score of the dat#, ielse we choose its real value. Ebk the scoring function. Assurde

is involved in DS. Then, theoptimistic overall score of a single data denoted byopt-ov(d) is defined a®pt-

JTop Algorithms for Top-k Join Queries 12

ov(d)=f(x, %, ..., %1 0, O, ..., Owherex= opt(d, I) for 1<i<m,. In other words, we apply the scoring function on
the optimistic local scores df while setting zero for the other inputs of thersing function. Similarly, for a datd’
that belongs to DS the optimistic overall score is defined @st-ov(d’)= f(0, O, ...,0, X' X5, ..., Xy Wherex|j=
opt(d', |) for 1<j<m,. Now, we define theptimistic overall score of a join daf@, d') to beopt-ov(d, d')= f(x, X,

oo Yo X' X2, .0y Xmo) Wherex= opt(d, [) andx’j= opt(d', |) for 1<ism, and Kj<m,.

Let us now define the pessimistic overall scora ¢din data. Lepessimistic local score of data item d in the llist
denoted apsm(d, |) be a function computed as follows. If the locare ofd is seen il thenpsm(d,)=sc(d, l)else
psm(d, 1)=0 Now, we define th@essimistic overall score of a join daf@& d') to bepsm-ov(d, d)= f(x %, ..., %1
X'1, X2, ..., Xm2) wherex;= psm(d, l)andx’= psm(d', J) for 1<i<m; and Kj<m,.

The stopping condition of SR_JTop and LR_JTop difie two aspects. First, SR_JTop compares theatharore
of the produced join data iteni. thek highest ones, with its threshold, while LR_JTompares their pessimistic
overall scores with its threshold. This is becawité LR_JTop, the values of the join data in sonsésImay be
unseen. The second difference is in their threshidié threshold of SR_JTop is designed based ofatie¢hat with
SR_JTop for any unproduced join data iteind") at least one of its elements. d or d', is not seen by SR_JTop.
However, with LR_JTop, this is not true due to aadom accesses. Thus, there may be unproducedgtantems
such that both of their elements are partially séenboth of them can be seen in some lists. In thégdesf
LR_JTop we use another property as follows: for angroduced join data itefdl, d’) at least one of its elements
has an unseen join attribute value. Based on tbisapty, in the threshold of LR_JTop, we use twecsal seen data
items from each data sourdgbdj; andSbhdj from DS, and alsdJbdj, andSbdj from DS..

5.1.1 Algorithm
LR_JTop works as follows:

1. Do continually sorted access in parallel to eastii DS and DS, and maintain the seen local scores.

2. As a data itend is seen in the join lists of Q®r DS, compare it with the seen data items in the opeakita
set, and produce new valid join combinationsl @fith them.

3. Choose the seen data itebisdj; andUbdj, respectively from D&nd DS as follows:

Ubdj (for i=1,2): Let U; be the set of seen datalr§ whose local score in the join list BfS is not seen
Then,Ubdj is the data inJ; whose optimistic overall score is the highestH{} then letUbdj be a virtual
data whose local scores are equal to the last soraies seen in the lists DS.

4. Choose the seen data iteBtsdj andSbdj respectively from DSand DS as follows:

Shdj (for i=1,2): Let § be the set of seen datalx§ whose local score in the join list BfS is seenand the
local score is lower than or equal to the last lammre which is seen in the join list of the oposiata
source. ThenSbhdj is the data ir§ whose optimistic overall score is the highesiS#{} then letShdj be a
virtual data whose local scores are equal to tsiddaal scores seen in the listds.

5. Stop when there are at ledstoin data items whose pessimistic overall sconesa least the LR_JTop’s
threshold computed as follows. Liebe the scoring function, then the LR_JTop’s thoédhs the maximum of
three values as follows:

Tir st =Max (opt_ov(Ubdj, Ubdp),
opt_ov(Shdpubdp),
opt_ov(Ukdpbdj)}

13 Akbarinia, I. F. llyas, M. T. Ozsu, P. Valduriez

6. LetY be the set of produced join data items. For eata @, d')/, do random access to find its unseen local
scores (if any) Return thek join data items whose overall scores are the Bighsmong the join data items
involved inY.

5.1.2 Correctness and Analysis
The following theorem proves LR_JTop’s correctness.

Theorem 6. If the scoring function f is monotonic, then LR_gTioads correctly the top-k join answers.

Proof. All join data items found by LR_JTop have a pessimioverall score higher than or equal to LR_J%op’
threshold,i.e. T.r 5+ Thus, their real overall score is higher thBR ;+ Therefore, to prove the theorem, it is
sufficient to show that any unproduced join data &a overall score lower than or equalltg ,r Let(d, d) be an
unproduced join data item. We must show thatl, d'x T r s+ As explained beforel andd' are necessarily in one
of the following situations: 1) The join attribut@lue of none ofl andd' is seen by LR_JTop; 2) The join attribute
value ofd is seen but not that af; 3) The join attribute value af is seen but not that af Using the definition of
Ubdj;, Ubdj,, Shdj and Shdj, we can show that in the first situatiopt_ov (d, d'¥ opt_ov(Ubdj, Ubd}), in the
second situationpt_ov (d, d'¥ opt_ov(Sbdj Ubdp), and in the third situatioapt_ov (d, d’¥ opt_ov(Ubdj, Shd}).
Thus,opt_ov(d, d’¥ Tr s+ Since the optimistic overall score of each dathigher than or equal to its real overall
score, we havept_ov (d, d} ov (d, d') Therefore, we havev(d, d')xs Tr 1. O

The following theorem compares LR_JTop and Rank-ifoterms of the position at which they stop.
Theorem 7. The position, at which LR_JTop stops, is alway®laan or equal to that of Rank-Join.

Proof. Let p be the position at which Rank-Join stops. To pritwetheorem it is sufficient to show that LR_JTop
stops at most gi. Let J, be the set of answers. The stopping conditionaifkRloin implies that all local scores of
the join data involved id, are seen at most at positipnThus, at most gt, LR_JTop also produces these data items,
and their pessimistic local score is equal to tmeal overall scorei.e. because all their local scores are seen.
Therefore, to prove the theorem, it is sufficiemtshow that ap, the threshold of LR_JTop is less than or equal to
that of Rank-Joini.e. T r_jr< Trs This can be done by showing that each of theethiedues used in computing the
threshold of LR_JTop is less than or equal to astlene of the values which are used in the thtéskfdRank-Join.
Without loss of generality assume that the joitslis DS and DS arel; andl'; respectively. Let; andc'; be the
local scores which are gtin |; andl'; respectively. Since the join attribute valuelifdj; andUbdj, are not seen,
then atp, we haveopt(Ubdj, |;)= ¢, andopt(Ubdp, I'y)= c';, i.e. their optimistic local score in the join listsagual

to the last seen local score in the lists. ThustHe first value off g ;rwe haveopt_ov(Ubdj, Ubdp)= f(cyi, %, ...,

Xm1, C'1, X2, ..., Xm2) Where x= opt(d, k) andx’= opt(d', I}) for 1<ism; and kj<m,. Leth; be the first local score of
list I;, for 1<i< m;+m,. Then, since the scoring function is monotonic,hagef(cy, X, ..., 1, C'1, X%, ..., X< f(Cy,

h,, ..., hmi+m2. The right side of this equation is one of the valused in the threshold of Rank-Join, thus we have
opt_ov(Ubdj, Ubdp) < Tg; In a similar way, we can show thait_ov(Shdj Ubdp) < Tryandopt_ov(Ubdj, Shdj)<

TRJ. ThUS, we haVé—LR_JTS TRJ. O

Theorem 7 shows that the position at which LR_J3myps is always lower than or equal to that of Ramik. We
also make the following observation for the diffece between the performance of LR_JTop and Ramk-Joi

Observation 3. There are databases over which the number of aeset® the data sources done by LR_JTop is
O(n) times lower than that of Rank-Join where thesnumber of data items.

Proof. An example of these databases is Example 1. Ifppéyd.R_JTop on this database then it stops atipos3.
However, Rank-Join reads all data items of theldetan

1 An optimization to LR_JTop is to remove frorrall join data whose optimistic overall score issiehan the pessimistic overall
score of at leadtjoin data involved irY. This can be done before each random access listthe

JTop Algorithms for Top-k Join Queries 14

Let us now discuss the cases where the threshdl® odTop may be lazy. Lét andl'; be the join lists in DSand
DS, respectively, and; andc'; be the last local scores which are sedn @amdl'; respectively. As shown in the proof
of Theorem 7, we havept(Ubdj, |,)= ¢, andopt(Ubdp, I'1)= c¢';. According to its definition, LR_JTop’s threshold,
i.e. T.r_jm, is the maximum of three values, and in each e$ehvalues, we uddbdj, or Ubdj,. Thus, in each of the
three values, we usg or c';. Therefore, as in the proof of Theorem 3, we dawsthat if the join attributes do not
have a low progressive impact on the scoring fonctihen the threshold of LR_JTop is not lazy. Hesveeven if
the join attributes have a low progressive impthg,threshold of LR_JTop may not be lazy, becalsddcal scores
of Sbdj andSbdj may avoid the lazyness of the threshold.

5.2 NR_JTop
In this section, we propose NR_JTop, a top-k jégordthm that does no random access to the ligsit does only
sorted access.

5.2.1 Algorithm

The first steps of NR_JTop are the same as LR_JTemuntil stopping sorted accesses and havingrteet. But in
contrast to LR_JTop, NR_JTop does not do randorasacto find the unseen local scores of the datalvad inY.

It does sorted access to the lists, and after satbd access, removes useless join data items¥ram those that
cannot be an answer. It continues until there resnanlyk join data inY. For removing useless data fror
NR_JTop uses the following rule: If the optimistigerall score of a join data is lower than the peissic overall
score of at leadt join data, then it cannot be a top-k join datanite

The NR_JTop algorithm works as follows:
Steps 1 to 5: same as in LR_JToe, until it stops doing sorted access to the lists.

6. LetY be the set of produced join data. LetandL, be the set of sorted lists of P&nd D$ respectively. Let
L/7L,/A,be the set of sorted lists such that for each/iktthere is at least one join data item¥imhich has an
unseen local score In

7. For eacH/L and in parallel, continue doing sorted accedsAdter each sorted access, remove useless join dat
items fromY as follows. Lety, /% be the set ok join data items whose pessimistic overall scortéshighest
among the join data involved i Remove fron each join data item whose optimistic overall sdsreower
than or equal to the pessimistic overall scordlgbi data items involved iY,.

If /Y/<k, then stop.
8. Returny, to the user.

In step 6 of NR_JTop, after each sorted accessewaed if the algorithm does not see an unseen kmak of any
join data item, it check¥ for the useless join data items. The reason isahah sorted access may reduce the
optimistic overall scores of some data iteires,because in computing the optimistic overall scfweunseen local
scores, we consider the last local score seeneitigh Thus, each sorted access may reduce thmisiit overall
score of some join data items; even if it doesse@tan unseen local score of any join data item.

5.2.2 Correctness and Analysis
The following lemma proves NR_JTop’s correctness.

Theorem 8. If the scoring function f is monotonic, then NR_gTiads correctly the top-k join answers.

Proof. The threshold oNR_JTop is the same as LR_JTop, thus Theoreare.@he correctness of NR_JTop, implies
that at step 5 of the algorithm, the ¥ativolves all top-k answers. Thus, to prove thetke, it is sufficient to show
that LR_JTop finds correctly the top-k answers frénThis can be done easily by using the fact thatfty two join
data itemdqd,, d) and(d,, dY), if opt_ov(d, d3)< psm_ov(¢ d}) then we havev(d, d%)< ov(d, dj). Thus, thek
join data items that finally remain Mare the top-k join answers.

The following theorem compares the performanceRf llfop and Rank-Join.

15 Akbarinia, I. F. llyas, M. T. Ozsu, P. Valduriez

Theorem 9. The number of accesses to the data sources dohRRbyTop is always less than or equal to that of
Rank-Join.

Proof. Let p be the position at which Rank-Join stops. Lebe the set of answers. The stopping conditionafkR
Join implies that all local scores of the join dateolved inJ, are seen at most at positipnand their overall score is
higher than the maximum possible overall scorengfjain data item which is not involved dp. Theorem 7 implies
that with LR_JTop, all tofanswers are involved in the &before positiorp. This is also true for NR_JTop, since
LR_JTop and NR_JTop have the same threshold. Tryzéving the theorem, it is sufficient to showatlat most at
p, the pessimistic overall score of top-k answerb®s higher than or equal to the optimistic oVes@ire of other
join data involved inY. This can be done easily by using the fact thai, dhe pessimistic overall score of top-k
answers are equal to their overall scae,because their local scores are seen, and theialbgeore is higher than
or equal to the maximum possible overall scorengf@her join data itemsge. their optimistic overall scorex

The following observation shows that performanc&lBf JTop can b®(n) times better than that of Rank-Join.

Observation 4. There are databases over which the number of aeset®o the data sources done by NR_JTop is
O(n) times lower than that of Rank-Join where thesnumber of data items.

Proof. An example of these databases is that of Examplevie apply NR_JTop on this database then it seips
position 3. However, Rank-Join reads all data itefrtbe database

6. PERFORMANCE EVALUATION

In this section, we compare our algorithms with Raain through experimentation. The rest of thistisa is
organized as follows. We first describe our experital setup. Then, we compare the performance roélgorithms
with Rank-Join by varying experimental parameterchsas the number of scoring attributes, the nurob&rp data
items requested.e. k, the type of the scoring function, the number atbdtems in data sources, etc.

6.1 Experimental Setup

We implemented the JTop algorithms and Rank-Joilaiwa. To evaluate our algorithms, we tested thesn both
independent and correlated databases, thus covafipgactical cases. The independent databasesnifitem and
Gaussian databases generated using the two mddalplity distributionsi¢e. uniform and Gaussian). With Uniform
and Gaussian databases, the positions of a dataritany two lists are independent of each otherg&nerate the
uniform database, the scores of the data itemagdh st are generated using a uniform random ggémerand then
the list is sorted. To generate the Guassian ds¢althe scores of the data items in each list aegs§&an random
numbers with a mean of 0 and a standard deviafidn o

In addition to these independent databases, wearselated databasds. databases where the positions of a data
item in the lists are correlated. This is to takéiaccount applications where there are correlat@mong the
positions of a data item in different lists. Inguirfrom[24], we use a correlation parameter(0 <a < 1), and
generate the data items of each data source abthelated database as follows. For the firstdighe data source,
we randomly select the position of data items.séie the position of a data item in the first Itbien for each list;

(2 <i <£m) we generate a random numipén interval [1 ..nZ&] wheren is the number of data items, and we put the
data item at a positiomwhose distance fromy isr. If p is not freej.e. occupied previously by another data item, we
put the data item at the free position closegt By controlling the value ofi, we can create databases with stronger
or weaker correlations. In our tests, the defaalte fora is 0.01. After setting the positions of all datems in all
lists, we generate the scores of the data itenes@h list in such a way that they follow the Zig#vi[34] with the
Zipf parametep = 0.7.

In our tests, the scoring function has the follayiarm:f,, (Xy, Xo, -+, %01 X1y «evy Xm2) = WA X) + Xo, ooy Y1 + X'1, -,
X'mz- In this scoring function, we use the paramebein order to control the progressive impact of aiethe
attributesj.e. x;, on the scoring function. In our tests, we use farsions of this scoring functiofy; fy s, fo.1, andfy,
i.e.with w=1, 0.5, 0.1, and 0. The scoring functfprcomputes the sum of the local scores for eachittata This is
our default scoring function. The attribute has no impact on the scoring functifgnand its impact offs, fo 1 is
lower than that of the other attributes.

JTop Algorithms for Top-k Join Queries 16

Our default settings for different experimentalgraeters are shown in Table 1. The default valugofarselectivity
is 0.01. To provide this selectivity, we randomblext some scores from the join list of one datare® of the
database, and repeat them in the join list of therodata source. In our tests, the default nurobeata items in
each data source is 20,000. Typically, users aezdsted in a small number of top answers, thusssnbtherwise
specified we set=20. The default number for the scoring attributesath data source isiz. m=m,=2.

Table 1. Default setting of experimental parameters

Parameter Default values
Number of data items in each data source 20,000

k 20

Join selectivity 0.01

Scoring function SUM

Number of scoring attributes per data source ;=m= 2

To evaluate the performance of the algorithms, wasure the two following metrics:

1) Stop position. This is the position at which an algorithm stophkisTmetric can also be used for comparing the
number of sorted accesses done by algorithms, betha number of sorted accesses is proportiorsiboposition.

2) Number of accesses. This is the total number of sorted and random ssgzdone by an algorithm. For Rank-Join
and NR_JTop algorithms, this metric measures thabeun of sorted accesses. For the other JTop digwsijtin
addition to sorted accesses, this metric also sotingt random accesses that they do after seeitgdeda item via
sorted access for the first time.

6.2 Performance Results

6.2.1 Effect of the number of scoring attributes
In this section, we compare the performance ofldap algorithms with Rank-Join by varying the numbiescoring
attributes per data source. Let us denotelblye number of scoring attributes per data soureen= m=m,.

Over the uniform database, with the number of spaittributes per data source equal to 2, 3 andl the other
parameters set as in Table 1, Figures 2 and 3 shewesults measuring number of accesses and skitiop
respectively. The number of accesses done by Jlgmpitams is much lower than that of Rank-Joig. they
outperform Rank-Join by a factor of at least 2.2whe3. BP_JTop is the strongest performer: it outpenfoRank-
Join by a factor of approximately for m=3. Even the NR_JTop algorithm, which does no randuoess,
outperforms Rank-Join by a factor of about 3. Om ¢$bcond metrid,e. stop position, generally JTop algorithms
outperform Rank-Join with factors higher than thathumber of accessesg.SR_JTop outperforms Rank-Join by a
factor of at least 6 when m=3. However, on bothritet NR_JTop outperforms Rank_Join with the saawtofs,
because NR_JTop does no random access.

6.2.2 Effect of k

We now study the effect of the number of requesiesiversj.e. k, on performance. Figure 4 shows how the stop
position increases over the uniform database, ivitteasingk up to 50, and the other parameters set as in Table
The stop position of all five algorithms increaseéth k because more data items are needed to be retiaroeder to
obtain the top-k join data items. However, the éase is very small. The reason is that over thioumidatabase,
when an algorithmi . any of the five algorithms) stops its executionddop-k query, with a high probability, it has
seen also thék + 1)th join data item. Thus, with a high probability,stops at the same position for a top-(k+1)

query.

17 Akbarinia, I. F. llyas, M. T. Ozsu, P. Valduriez

B Rank-Joir e BERank-Joir Stop position —e—Rank-Joil
Number of accesses BSR JTop Stop position mSR JTop . P PE . |-m—sr_Top
Uniform database, k=20 OBP _JTop Uniform database, k=20 OBP _JTop SUUDU”' orm database, m1=m2= 2 BP_ITo
LR _JT OLR_JTop _JTop
180000 ENR*JTOOPP 20000 ENR_JTop —%—NR_JTop
160000 = 17500 =
140000] M 6000 —
= 15000 1
120000 1 5 c
= 12500 S
S 100000 4] @
k] S 10000 © 4000
5 80000 a g
a
g 60000 g 7500 8
& 5000 |
S 400001 20001 —
z
o4 0l
2 3 4 2 3 4 o
) . 10 20 30 40 50
Number of attributes per data source Number of attributes per data source ‘

Figure 2. Number of accesses vsFigure 3. Stop position vs. number ofFigure 4. Stop position vsk
number of scoring attributes per datacoring attributes per data source

source
Rank-J Rank-J e :
Number of accesses BRankcJor Number of accesses BRankyor Stop position over Uniform | —#—Rank-Joi
. mSR_JTop ESR_JTop —m—SR_JTop
Uniform database, k=20, m1=m2=2| OBP_JTop k=20, m1=m2=2 OBP_JTop database, k=20, m1=m2= 2 BP 170
100000 OLR_JTop 30000 OLWR_JTop |, IR ITop
mNR_JTop ENR_JTop NR_JTop
— 12000 |
75000 =4
20000 S
& M %] 2
8000 |
‘S5 50000 5 S
2 5 o
10000+
E 250004 E & 4000
z z
04 L | | 0 0 : : : :
1 f0.5 fo.1 fo Uniform Gaussian Corelated 10000 20000 30000 40000 50004
Scoring functions Databases Number of data items

Figure 5. Number of accesses vsFigure 6. Number of accesses ovefFigure 7. Stop position vs. humber
different scoring functions different databases of data items

6.2.3 Effect of scoring function

We now investigate the impact of our scoring fumsi on the performance of the JTop algorithms aackRoin.
Over the uniform database, Figure 5 shows the numbeaccesses done by the five algorithms with gbering
function equal td,, fos, fo.1, andfy (i.e.w=1, 0.5, 0.1, and 0) as described in Sedfidn and the other parameters
set as in Table 1. With decreasing the parametére number of accesses done by Rank-Join in@ eigaficantly.
The reason is that decreastoglecreases the progressive impact of one of thbwtis on the scoring function, thus
the threshold of Rank-Join decreases more slowlyt stops later. The worst performance of Rank-dsiwith the
scoring functiorfy, because the progressive impact of the scorindpatit x, is zero. Thus the threshold of Rank-Join
does not decrease, and it has to read all data itdrthe data sources. Unlike Rank-Join, the nunolberccesses
done by JTop algorithms decreases with decreasegarametes.

6.2.4 Results over different databases

Figure 6 shows the number of accesses done byghdtams over uniform, Gaussian and correlatea@loases, with
the other parameters set as in Table 1. Over r@étatabases, JTop algorithms outperform significé&rank-Join.
Over the correlated database, the performanceeofite algorithms is much better than that over €3&an and
uniform databases. The reason is that in a highiyetated database, the top-k data items are luliséd over low
positions of the lists, so usually the algorithnts ribt need to go much down in the lists, and thep soon.
However, due to their efficient stopping mechanidipp algorithms stop much sooner than Rank-Join.

JTop Algorithms for Top-k Join Queries 18

6.2.5 Effect of the number of data items

We now vary the number of data items in each datiace, and investigate its effect on performandgurié 7 shows
how stop position increases over the uniform daehsith increasing the number of data items upQ@®@, and
with the other parameters set as in Table 1. lisangathe number of data items has a consideraljj@dton the
performance of all five algorithms. The reasorhisttwhen we enlarge the lists and generate randdanfdr them,
the top-k data items are distributed over highesitmms in the lists.

7. RELATED WORK

Efficient processing of top-k queries is an impottand hard problem that is still receiving muctestion. One of
the most efficient algorithms for top-k selectiomeges is the TA algorithm which was proposed byes& groups
[14][16][27]. Several TA-style algorithmsge. extensions of TA, have been proposed for procgdsio-k queries in
different environmentse.g.[3][5] [12][24][32]. Recently, we proposed efficient algorithmalled BPA[2], which

by taking into account the positions of seen dieims develop a stopping mechanism which is mucte mtiicient
than TA. The idea of best positions which we usegart of the BP_JTop algorithm is inspired fromABPlowever,

top-k selection algorithms, including BPA, assurhattthere is no join operation in the query. Otlisewtheir
stopping mechanisms do not work correctly.

In previous works on top-k join queries, the madiicient top-k join algorithm is Rank-JoifiL7][18] which we
already discussed much. [26], the authors introduce tl3¢ algorithm which deals with efficient processingab-k
join queries over ranked input¥* maps the top-k join problem to a search problerthenCartesian space of the
ranked inputs. luses a version of th&* search algorithm to guide navigation in this spceroduce the results.
The experimental studies reported[18] show that Rank-Join significantly outperfodh. In [30], ranked join
indices are proposddr the efficient evaluation of top-k join querigghe indices need to be pre-produced, and make
the number of requested resulits, k, limited to a predefined numbeg,g. K, thus the user can not chodséo a
higher number thaK. In[1] and[8], the relational algebra is extended to suppamk queriesi.e. top-k join queries,
as a first-class construct. J8], the authors also present a pipelined and mergal execution model of rank query
plans. In[9], top-k join query processing is extended toraggte queries. The tdpjoin queries are also discussed
briefly in [7] as a possible extension to their algorithm \tewaluates to-selection queries.

8. CONCLUSION

In this report, we addressed the problem of pracgss top-k join queries, and proposed JTop, ailfaof efficient
algorithms for top-k queries. The main idea isaketadvantage of the specific information on jdinitaute values as
well as the characteristics of the underlying systé/e analytically compared our algorithms with Rdoin, which
is considered as the most efficient algorithm fup-k queries, and proved that our algorithms alwstpe sooner
than Rank-Join, and thus are more efficient. We sl®wed that there are databases over which tfierpance of
our algorithms i$D(n) times better than that of Rank-Join whetie the number of data items in the database.

We conducted an extensive experimental study ttuateathe performance of our algorithms under diffié data
distributions. The performance evaluation showst theer the tested databases our algorithms sigumitig
outperform the Rank-Join algorithm.

REFERENCES

[1] S. Adali, C. Bufi, and M. L. Sapino. Ranked relasoQuery languages and query processing methods fo
multimedia.Multimedia Tools and Application24(3), 197-214, 2004.

[21 R. Akbarinia, E. Pacitti and P. Valduriez. Bestifior algorithms for top-k querie¥/LDB Conf, 495-506,
2007.

[3] H. Bast, D. Majumdar, R. Schenkel, M. Theobald &dVeikum. |O-Top-k: index-access optimized top-k
query processing/LDB Conf, 475-486, 2006.

[41 N. Bruno, L. Gravano and A. Marian. Evaluating togueries over web-accessible databa$§&3E Conf, 369-
382, 2002.

19 Akbarinia, I. F. llyas, M. T. Ozsu, P. Valduriez

[5] P.Cao and Z. Wang. Efficient top-k query calcwalatin distributed network®ODC Conf, 206-215, 2004.

[6] G. Das, D. Gunopulos, N. Koudas and N. Sarkas. @dJop-k Query Answering for Data Stread&éDB
Conf, 183-194, 2007.

[71 K.C.-C. Chang and S.-W. Hwang. Minimal probing: gaging expensive predicates for top-k quer&fd&MOD
Conf, 2002.

[8] C.Li, K. C.-C. Chang, I.F. llyas, S. Song. RankSQIuery Algebra and Optimization for Relational Hop
QueriesSIGMOD Conf. 131-142, 2005.

[91 C.Li, K. C.-C. Chang, I.F. llyas. Supporting adehanking aggregateSIGMOD Conf61-72, 2006.

[10] S. Chaudhuri, L. Gravano and A. Marian. Optimiziog-k selection queries over multimedia repositiieEE
Trans. on Knowledge and Data Engineetiag(8), 992- 1009, 2004.

[11] P. Ciaccia and M. Patella. Searching in metric epadth user-defined and approximate distan&&dv
Transactions on Database Systems (TOR%[4), 398-437, 2002.

[12] G. Das, D. Gunopulos, N. Koudas and D. Tsirogianhiswering top-k queries using viewd.DB Conf, 451-
462, 2006.

[13] R. Fagin. Combining fuzzy information from multipdgstemsJ. Comput. System S&8(1), 83-99, 1999.
[14] R. Fagin, A. Lotem and M. Naor. Optimal aggregatdgorithms for middleware?ODS Conf.102-113, 2001.

[15] R. Fagin, J. Lotem and M. Naor. Optimal aggregatifgorithms for middlewarel. Comput. System S®6(4),
614-656, 2003.

[16] U. Guntzer, W. Kiel3ling and W.-T. Balke. TowardBaént multi-feature queries in heterogeneous
environmentslEEE Int. Conf. on Information Technology, CodimgiaComputing (ITCG$419-428, 2001.

171 I.F. llyas, W.G. Aref, A.K. EImagarmid. Supportiigp-k Join Queries in Relational DatabasdsDB Conf,
754-765, 2003.

[18] I.F. llyas, W.G. Aref, A.K. EImagarmid. Supportitgp-k join queries in relational databasésDB Journa)
13(3), 207-221, 2004.

[19] G.R. Hjaltason and H. Samet. Index-driven simijesitarch in metric spacesCM Transactions on Database
Systems (TODS28(4), 517-580, 2003.

[20] B. Kimelfeld and Y. Sagiv. Finding and approximatitop-k answers in keyword proximity searefoDS Conf.
173-182, 2006.

[21] N. Koudas, B.C. Ooi, K.L. Tan and R. Zhang. Approate NN queries on streams with guaranteed
error/performance boundgLDB Conf, 804-815, 2004.

[22] X. Long and T. Suel. Optimized query executionargke search engines with global page ordekhdB Conf,
129-140, 2003.

[23] A. Metwally, D. Agrawal, A. El Abbadi. An integradeefficient solution for computing frequent andop
elements in data streands.ACM Transactions on Database Systems (TOBI%B), 1095-1133, 2006.

[24] S. Michel, P. Triantafillou and G. Weikum. KLEE:ffamework for distributed top-k query algorithrvd.DB
Conf, 637-648, 2005.

[25] K. Mouratidis, S. Bakiras and D. Papadias. Contirsumonitoring of top-k queries over sliding windows
SIGMOD Conf. 635-646, 2006.

[26] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, Jv#ter. Supporting incremental join queries onked input.
VLDB Conf, 281-290, 2001.

JTop Algorithms for Top-k Join Queries 20

[27] S. Nepal and M.V. Ramakrishna. Query processinges image (multimedia) databad€DE Conf, 22-29,
1999.

[28] C. Re, N.N. Dalvi, D. Suciu. Efficient Top-k Quéegyaluation on Probabilistic DatlCDE Conf, 886-895,
2007.

[29] A. Silberstein, R. Braynard, C.S. Ellis, K. Munagahd J. Yang. A sampling-based approach to optiminp-
k queries in sensor network€DE Conf, 2006.

[30] P. Tsaparas, T. Palpanas, Y. Kotidis, N. KoudasSiivastava. Ranked Join IndicéSDE Conf, 2003.
[31] M. Wu, J. Xu, X. Tang and W-C Lee. Monitoring topleery in wireless sensor networkSDE Conf, 2006.

[32] D. Xin, J. Han and K. C-C. Chang. Progressive ahelctive merge: computing top-k with ad-hoc ranking
functions.SIGMOD Conf.103-114, 2007.

[33] M. L. Yiu, X. Dai, N. Mamoulis, M. Vaitis. Top-k Sgial Preference Querid€€DE Conf, 1076-1085, 2007.
[34] G.K. Zipf. Human Behavior and the Principle of Least Efféwldison-Wesley Press, 1949.

