
Worst Case Optimal Union-Intersection

Expression Evaluation?

Ehsan Chiniforooshan, Arash Farzan, Mehdi Mirzazadeh??

David R. Cheriton School of Computer Science, University of Waterloo

Technical Report CS-2008-02

February 8, 2008

? A preliminary version of this work has been published in the proceedings of Inter-

national Colloquium on Automata, Languages and Programming(ICALP) 2005 [4].
?? Email addresses: {echinifo,afarzan,mmirzaza}@cs.uwaterloo.ca

Abstract. We consider the problem of evaluating an expression con-

sisting of unions and intersections of some sorted sets in the comparison

model. Given the expression and the sizes of the sets, we are interested

in the worst-case complexity of evaluating the expression in terms of the

sizes of the sets. We assume the sets in the given expression are indepen-

dent. We show a lower bound on this problem and present an algorithm

that matches the lower bound asymptotically.

1 Introduction

In this paper, we study the problem of evaluating a set expression consisting

of a number of union and intersection operators. Sets are known to be sorted

and we also assume that sets are independent (that is no set occurs more than

once in the expression). Although the worst case complexity in terms of the

collective size of the entire input is straightforward, we measure the running

time of algorithms depending on the individual sizes of the input sets; we are

interested in a worst-case optimal algorithm.

The problem arises in the context of evaluating search queries in text database

systems; most text search engines maintain a set S(w), for each word w, con-

sisting of documents that contain w [1,8,11]. Thus, answering to a query, such

as “Database OR Search AND Engine”, requires evaluation of the expression

S(Database) ∪ (S(Search) ∩ S(Engine)). Note that the queries and their corre-

sponding expressions can become complicated if the queries are automatically

generated [7].

Different variations of the problem have been studied before. The simplest

case which is finding intersection or union of two sets is equivalent to the problem

of merging two ordered sets of sizes m and n, studied by Hwang and Lin [6].

They present an algorithm that matches the information theoretic lower bound
⌈

log
(

m+n
n

)⌉

. Note that this bound does not allow exhaustive listing of the entire

output. They choose sorted arrays as the format of the input and a list of cross

pointers between arrays as the output format. Later Brown and Tarjan [2,3] and

Pugh [10] showed how data structures such as AVL-tree, B-tree, or skip-list can

be used as the format of the input and the output.

Later, Demaine, López-Ortiz, and Munro [5] studied a more general case in

which the expression involves more than two sets. The expressions they consid-

ered, were limited to union or intersection of a number of sets; that is operations

are either all unions or all intersections. Their algorithm is adaptive; they do not

focus on the worst-case complexity of the problem. They define the difficulty of

every possible input I as an integer D(I), which measures how complicated a

proof for the input I is; they focus on minimizing the maximum value of f(I)
D(I)

among all inputs I of size n, where f(I) is the running time of the algorithm

on I . This problem was generalized by Mirzazadeh [9] to general expressions

consisting of both union and intersection operators.

Neither of the adaptive algorithms that we mentioned work optimally in the

worst case in terms of the sizes of the input sets. In this paper, we consider

the worst case complexity as mentioned. We present a lower bound and then an

evaluation algorithm that matches the lower bound.

The rest of this paper is organized as follows: In Section 2 we give some

definitions and preliminary observations. In Section 3, Theorem 4, we present

our lower bound and finally, in Section 4, the optimal algorithm is described.

2 Definitions and Preliminaries

We study the problem of evaluating a set expression when the inputs are ordered

sets and the output is required to be an ordered set as well. We formally define

an input as a pair (T, Γ), where T and Γ are defined as follows. T is an union-

intersection tree representing the expression: every internal node v is assigned a

union or an intersection operator π(v) and each leaf v of T corresponds to an

input set and is assigned an integer size(v). We call T the signature of the input

I . Also, Γ is an assignment function that assigns an ordered set of size size(v)

to each leaf v. For an internal node v with k children u1, . . . , uk, we denote by

Γ (v), the union or the intersection of Γ (u1), Γ (u2), . . . , and Γ (uk), depending

on the operator assigned to v. By the result of an input (T, Γ) we mean the set

Γ (Root(T)). We denote the set of nodes of a tree T and the set of leaves of T

by VT and leaves(T), respectively. Without loss of generality, we assume that

every internal node has at least two children, and that the operator assigned to

every internal node other than the root differs from the operator assigned to its

parent.

In this paper, we focus on the comparison-based algorithms which are those

that, for any input I = (T, Γ), use only comparisons in the input sets to compute

the result. In our model, the algorithm has oracle access to Γ , which means that

the algorithm reads the signature of the input and can later submit queries of

the form (x, y) to the oracle, where x and y are members of the input sets.

Then, the oracle informs the algorithm with the comparative values of x and y,

that is, the algorithm is told whether x is less than, equal to, or greater than y

according to Γ . In such situations we say x and y are touched by the algorithm.

We show the interaction between the algorithm A and the oracle O on the input

(T, Γ) by 〈A,O(Γ)〉(T) = (q1, r1, . . . , qk, rk, R) where qi is the ith query of the

algorithm, ri is the response of O to the ith query, and R = Γ (Root(T)) is the

result. We expect the algorithm to specify subintervals of input sets that appear

in the result, rather than to write all elements of the result. This allows us to

generate the output in sub-linear time if possible. More precisely, we define the

output format below. We use S[i] to denote the ith element of a sequence S.

Definition 1. Consider an input I = (T, Γ) and a set S. A cross reference

representation of S is a sequence of items (v1, b1, b
′
1), . . . , (vn, bn, b

′
n) where vi is

a leaf of T , 1 ≤ bi ≤ b′i ≤ size(vi), for every 1 ≤ i ≤ n, Γ (vj)[b
′
j] < Γ (vj+1)[bj+1],

for every 1 ≤ j < n, and S = ∪ni=1 ∪
b′

i

j=bi
{Γ (vi)[j]}.

A leaf v of an expression tree T is a shallow leaf if v is a child of Root(T) and

the root operation is union: π(Root(T)) = ∪.

We define
(

s
s1,...,sn

)

, when s ≤
∑n

i=1 si, as the number of ways to select sets

X1, . . . , Xn of sizes s1, . . . , sn, respectively, such that Xi’s are subsets of a given

set X of size s and ∪ni=1Xi = X . Note that this definitions matches definition of

the traditional notation
(

s
s1,...,sn

)

when
∑n

i=1 si = s. Also for a union-intersection

tree, we define functions ψ∗ and ψ over the set of nodes of T as follows: for a

leaf v we define ψ(v) = size(v). If v is an internal node and u1, . . . , uk is the list

of children of v, we define ψ(v) = minki=1 ψ(ui) when v is an intersection node,

and ψ(v) =
∑k

i=1 ψ(ui), when V is a union node. In fact ψ(v) is the maximum

potential size of Γ (v), considering the subtree rooted at v. Also, for every node

v we define ψ∗(v) = minψ(u), where the minimum is taken over all ancestors u

of v, including v itself. Intuitively, ψ∗(v) is the maximum “contribution” of Γ (v)

to the result at the root of the tree. We observe that the values of ψ and ψ∗ for

all nodes of an expression tree T can be evaluated in time O (|VT |).

Observation 1 Suppose v is an internal node with k children u1, . . . , uk.
∑k

i=1 ψ
∗(ui) ≥ ψ∗(u) if u is a union node and

∑k

i=1 ψ
∗(ui) ≥ 2ψ∗(u), if u

is an intersection node.

We present an algorithm such that for every signature T , the maximum

running time of the algorithm, over all possible inputs with the signature T , is

asymptotically minized.

3 Lower Bounds

In this section, fixing an arbitrary union-intersection tree T , we present a lower

bound on the maximum number of comparisons performed by any algorithm

when it is run on inputs with the signature T . For this purpose, we design

an adversary B that for any given algorithm A and any signature T , as the

algorithm A proceeds and compares members of the input, B fixes comparative

values of members and responds to A. In this manner, an assignment function

Γ is constructed gradually and we make sure that there is always an assignment

Γ such that the responses of B to A are consistent with it. For two members

x and y, if some certain conditions (which we define later in this section) hold,

we say x and y are similar. We empower the oracle by assuming that when a

query (x, y) is submitted, in addition to comparative values of x and y, A is

informed of whether x and y are similar or not. It is clear that any lower bound

for algorithms working in this new model is a lower bound for algorithms working

in the comparison model as well.

Fixing a set OT of size ψ∗(Root(T)), B responds queries so that OT becomes

the final result. We spread the elements of OT over the nodes of T such that

every vertex v is labeled by a subset of OT of size ψ∗(v) in a manner that for

every union (intersection) vertex v, the union (the intersection) of labels of its

children is the label of v.

Let us define the previously mentioned labeling more formally. For conve-

nience, rather than using real numbers, we will use triples of integers for rep-

resenting members of our sets. Triples are compared to each other according to

their lexicographic order. We define the set OT as {(1, 0, 0), (2, 0, 0), . . . , (m, 0, 0)}

where m = ψ∗(Root(T)). Given a triple x = (i, j, k), we call i, j, and k the first,

the second, and the third coordinates of x, respectively.

Definition 2. Given a signature T , Λ : VT 7→ 2OT is a proof labeling for

T if it has the following properties: First, Λ(Root(T)) = OT . Second, for every

vertex v ∈ VT , |Λ(v)| = ψ∗(v). Third, for a non-leaf node v is with children

u1, . . . , uk, if v is a union node: ∪ki=1Λ(ui) = Λ(v), and if v is an intersection

node: Λ(ui) = Λ(v), for 1 ≤ i ≤ k.

The adversary B chooses a proof labeling Λ arbitrarily from all possible

labelings. Then, B divides the sequence of members of every leaf v of T into

ψ∗(v) regions, each of sizes
⌊

size(v)
ψ∗(v)

⌋

or
⌈

size(v)
ψ∗(v)

⌉

. For a leaf v and integers i

and a, if the ith member of Λ(v) is (a, 0, 0), then the ith region of v is called

an a-region. For any a and any a-region R, B sets the first coordinates of all

members of R to a at the beginning. Thus, given a member x of an a-region and

a member y of a b-region such that a 6= b, whenever a query (x, y) is submitted,

B can answer the query without knowing anything about the second and the

third coordinates.

For any region R, the second coordinate of exactly one element of R, which

is called the key member of R, will be zero. The strategy is to determine the

second coordinates of triples of a region R in such a way that A does not touch

the key member of R before touching at least log |R| members of R where |R|

denotes the length of R. The second coordinates of members of a region are all

distinct and the third coordinates of non-key members are zero. Moreover, the

third coordinates of the key members are determined in such a way that A needs

to touch all key members (actually we will prove a stronger fact).

We now explain the strategy of determining second coordinates of the triples,

which is essentially an adversary to binary searching. For every region R we

consider a variable S storing a subsequence in R, initially R. At any point,

the following condition will hold: The second coordinate of every member in

R\S is already fixed, the second coordinate of every member of R placed before

members of S is at most −|S|, and the second coordinate of every member of

R placed after members of S is at least |S|. Now whenever a member s of S

is touched, if s is the only member of S, B sets its second coordinate to zero.

Otherwise, depending on whether s is in the first half or in the second half of S,

B considers s and members of S placed after or before s, fixes second coordinates

of these members as explained in Figure 1, and deletes them from S. Then, by

touching a member of a region R of size n, the length of S is reduced to at

most bn2 c. Since the value of 0 is not assigned to the second coordinate of any

member unless |S| = 1, log |R| members of R have already been touched at the

time the key member of R is being touched. Whenever a member is touched

in which the second coordinate is not determined before, before attempting to

answer the query, B determines the second coordinate according to the method

we described here. Therefore, we have the following theorem.

Fig. 1: How to determine the second coordinates of members.

if |S| = 1 then

– set the second coordinate of s equal to zero;
– set S equal to the empty sequence;

else

suppose s is the ith member of R;
if i < |S| − i+ 1 then

– assign values −(|S|−1), −(|S|−2), . . . , −(|S|− i) to the second
coordinates of the first i members of S;
– Remove the first i members of S from it;

else

– assign values i − 1, i, . . . , |S| − 1 to the second coordinates of
the last |S| − i+ 1 members of S;
– Remove the last |S| − i+ 1 members of S from it;

Theorem 1. If all key members of L ⊆ leaves(T) are touched by A in 〈A,B〉(T),

then A has submitted at least
∑

v∈L ψ
∗(v) · lgd size(v)

ψ∗(v) + 1e queries.

From now on, when we talk about the strategy of B for responding a given

query (x, y), we assume second coordinates of x and y have already been deter-

mined.

Given a query (x, y) if x and y are from two a-regions, for some a, and the

second coordinate of one of x or y is non-zero (that is at most one of x and y is

a key member), B has enough information to answer the query. We define two

members x and y to be similar if x and y are key members of two a-regions, for

some a. As noted before, A will be informed by B if x and y are similar upon

comparing them. In Subsection 3.1 we show that B can respond to queries on

similar members in such a manner that in the end for each member x, A knows

which members are similar to x.

Theorem 2. For any signature T and any deterministic comparison-based al-

gorithm A, if after an interaction 〈A,B〉(T) = (q1, r1, . . . , qk, rk, R), A knows

all sets of similar members, then k ≥ 1
2 (l1 + log6 l2) where l1 and l2 are defined

below, L is the set of non-shallow leaves of T , and u1, . . . , uk are children of v

in the expressions.

l1 =
∑

v∈L ψ
∗(v) · lg(size(v)

ψ∗(v) + 1)

l2 =
∏

v:π(v)=∪

(

ψ∗(v)
ψ∗(u1),...,ψ∗(uk)

)

Proof. For any proof labeling Λ that B fixes, since every non-shallow leaf v has

an intersection ancestor, any member of Λ(v) appears in Λ(u) for at least another

leaf u of the tree. Thus, any key member of a non-shallow leaf is similar to at

least another member. Therefore, A has touched all key members of non-shallow

leaves of T in 〈A,B〉(T). Thus, using Theorem 1, we have k ≥ l1.

Moreover, for any member of the resultR, A is aware of all similar members to

that member (as an assumption in the description of the theorem; to be proved in

Section 3.1). This means that A has enough information to figure out what proof

labeling B has fixed and thus Λ can be expressed as a function of the sequence

of responses of B, (r1, . . . , rk). Hence, (r1, . . . , rk) is different for different Λ’s.

Using the fact that queries can have only six different values together with the

fact that the number of possible proof labelings is l2, we have k ≥ log6 l2. Putting

these lower bounds for k together, we conclude that k ≥ 1
2 (l1 + log6 l2). ut

3.1 The Game

In this part we fix an a and focus on answering queries on key members of a-

regions (which are similar). Let’s focus on the subtree of T consisting of leaves

of T that contain a-regions and their ancestors, and ignore the rest of the tree.

We invent a two player game between A and B, in which A submits queries

between key members of a-regions until it knows whether a key member of an

a-region appears in the result; B aims to avoid premature ending of the game

before A has enough information for determining the set of members similar to

a key member of an a-region. The configuration of the game at some specific

point is a tuple (T ,G) where T is a union-intersection tree in which internal

nodes can have one or more children; the additional rule is that if the root is a

union node, it should only have one child. Also, G is a graph defined on leaves

of T storing the history of queries submitted. Throughout the rest of the paper,

we assume implicitly that the history of queries are augmented to contain its

transitive closure, so it represents not only the history of queries but whatever

knowledge we can infer from submitted queries as well.

Each leaf is representing only one key member (the key member of its a-

region, in our application) and thus we can view a query as comparing a pair

of leaves of T . Moreover, each edge of G is labeled with one of <, =, or >,

demonstrating the response to that query. We assume A does not submit the

same query more than once during the game. v ∈ leaves(T) is G-identical to

u ∈ leaves(T) if there is an edge labeled with = between v and u in G.

The game finishes when all possible queries are exhausted or as soon as the

root in (T ,G) has a witness which proves the key member belongs to the result.

A witness of a node v is a subset of nodes where every two leaves belonging to S

are G-identical. Furthermore, it is defined recursively as follows. The only witness

of a leaf v is {v}. A set S is a witness of a union node v if v ∈ S and S \ {v} is

a witness of a child of v. For an intersection node v, S is a witness of v if v ∈ S

and every child u of v has a witness Wu such that S = {v} ∪
⋃

uWu. When the

game finishes, B wins if G is connected which means the set of similar members

to the key member is determined. Otherwise if the graph is disconnected A is

the winner. We prove that B has a winning strategy.

Figure 2 illustrates a game in which A has won. However, in the illustrated

Fig. 2 An example of a game in which A has won. A has compared y and z and
the answer has been =. Then, A compares x and y and regardless of the reply
he can compute the value of the root without submitting any query about t.

∩

∪

∩

x

y

z t
=

game, B could answer in a smarter way and win the game. In this section, our

aim is to prove that if G is initially an empty graph, then B always can win the

game. We show a game with starting tree T and starting graph G by (T ,G).

We define (T ,G) is reducible to (T ′,G′) if B has a wining strategy in (T ′,G′),

then B has a winning strategy in (T ,G). In addition, we say that a vertex of

T is unmatched if either it is an internal node or if it is the only vertex of its

connected component in G. Graph G is an equivalency graph when all the edges

in G are labeled with =. A graph is called v-small when each outgoing edge

(v, i) from node v is labeled with v < i, and every edge with no endpoint in v is

labeled with =. If G is v-small, for some v, then (T ,G) is a v-small game.

We define four operations which can be used to reduce a game instance to

a smaller one. The operations have particular preconditions which should hold

before the operation is applied.

Contract:

Preconditions:

1. G is an equivalency graph.

2. An internal vertex u ∈ VT − (leaves(T) ∪ {Root(T)}) has exactly one

child v

Operation: If v is a leaf, u is deleted and v becomes a child of the parent of

u. Otherwise, u and v are both deleted and children of v become the children

of the parent of u.

Intersection-pruning:

Preconditions:

1. G is an equivalency graph.

2. v1, v2 children of an intersection node u are connected in G with an edge

label =.

Operation: v1 is deleted.

Union-pruning:

Preconditions:

1. G is v-small. v is a child of a union node u, and u has at least two

children.

Operation: v is removed.

Intersection-deletion:

Preconditions:

1. G is v1-small when v1, . . . , vk are children of an intersection node u other

than root.

2. Each of v2, . . . , vk has a G-identical node outside the set v2, . . . , vk (when

k ≥ 2).

3. The parent of u has at least two children.

Operation: u, v1, . . . , vk are removed.

Lemma 1. if (T ′,G′) is obtained by application of one of the above four opera-

tions on (T ,G), then (T ,G) can be reduced to (T ′,G′).

Proof. (T ′,G′) are obtained from (T ,G) by removing some vertices from T , and

G′ is essentially the relevant part of G on T ′; more specifically, G′ is the projection

of the query history on the existing vertices in T ′. We show a strategy for B to

reduce (T ,G) to (T ′,G′). Each query asked by A in (T ,G) involves comparing

two leaves x, y. The idea is that B simulates on (T ,G), the query-answering

strategy in (T ′,G′), and as new queries in (T ′,G′) arrive, we keep both G and

G′ updated.

Let us assume a new query (x, y) in (T ′,G′) arrives. If both x, y are present

in T ′ then B imitates the answer to query in (T ′,G′) and also updates G′ ac-

cordingly. The case where x or y has been deleted and not present in T ′ is

more interesting; we first determine if x, y have G-identical nodes in G ′; if both

x, y have G-identical nodes x′, y′ in G′, the query (x, y) is answered as if query

(x′, y′) is asked in (T ′,G′), and edges (x, y) ∈ G and (x′, y′) ∈ G′ are updated

accordingly. If only one node, say y, has a G-identical node, B answers the query

declaring that x < y. In this case the edge x, y in G is labeled accordingly, how-

ever no update in G′ is necessary. The last case where none of x, y has G-identical

nodes in G′ never happens, since in each operation at most one node that has

no G-identical node is deleted.

It is easy to check that B can use the previously mentioned strategy and

answer queries with consistency. We now reason on the correctness of the re-

duction. We have to show that B losing in (T ,G) implies that B also loses in

(T ′,G′); Or equivalently, if A has a winning strategy in (T ,G) , then it also wins

in (T ′,G′).

We argue by showing that there is a witness in (T ,G) if and only if there is a

witness in (T ′,G′). The manner by which we keep G and G′ updated, guarantees

us that two nodes are G-identical if and only if they are G ′-identical (provided

they exist in G′). Hence, a witness in (T ′,G′) can be clearly extended to a witness

in (T ,G). The reverse is less trivial and one has to observe that the node v of a

v-small game that is deleted in (T ′,G′) can never be part of a witness in (T ,G).

Thus, the projection of the witness of (T ,G) is a witness of (T ′,G′).

If A has a winning strategy then two cases are possible. First, after submitting

a number of queries B finds a witness W for T without making G connected.

In this case, we know there also exists a witness for (T ′,G′). We argue that

G′ is also not connected and thus, A wins in (T ′,G′). It is easy to check that

none of the above four operations– contract, intersection-pruning, union-pruning,

and intersection-deletion – deletes an entire connected component in G, so each

connected component in G is also present in G ′ (although with possibly fewer

vertices or broken apart into more than one component).

Second, the other way A can win is by exhausting all possible queries without

giving a witness. In this case, since there is no witness in (T ,G), none exists in

(T ′,G′) either. Moreover, since all queries are exhausted in (T ,G), queries in

(T ′,G′) are exhausted as well. Hence, A also wins in (T ′,G′). ut

Theorem 3. Suppose that (T,G) is a game with the following properties:

1. G is an equivalency graph.

2. All children of every union node are unmatched.

3. Each intersection node has at least one unmatched child.

4. Every intersection node with an internal node child has at least two children.

5. If the root is a union node, it has only one child.

Then, B has a winning strategy.

Proof. We use induction on the number of components of G plus the number n of

leaves of T to prove the theorem. The base case n = 1 is trivial as G is complete

when n = 1. We assume that no contract nor intersection-pruning operation is

possible; otherwise, due to Lemma 1 we can repeatedly apply these operations,

each time obtaining a smaller game, until no more operation is possible. It is

easy to check that after these changes, still the five properties mentioned in the

description of the theorem holds. After all these changes if n = 1 the problem is

trivial as explained. So, assume n > 1 and thus by property 5 T has no shallow

leaf.

Let us first prove that in (T ,G) the game has not finished yet. For this

purpose, we first prove that (T ,G) does not have a witness. Assume to the

contrary that W is a witness. A witness of size 1 is not possible because T does

not have a shallow leaf, every internal node other than the root has at least

two children, and n > 1. Therefore, there is no unmatched leaf in W because

all leaves in W are G-identical. This contradict properties 2 and 3 mentioned

in the theorem which imply every witness has an unmatched leaf. Thus, A has

not won yet and so it must submit a query. Also, still more queries can be

submitted because due to properties 2 and 3 there is still an unmatched leaf and

we assumed T has at least two leaves. So, by definition the game is not finished

yet and hence A must submit a new query.

If the algorithm submits a query (u, v) in which u and v are G-identical,

B trivially answers u = v. Considering the first query (u, v) submitted by A

such that u and v are not G-identical, the adversary B responds to this query

according to the following strategy. In the following, a matched leaf is a leaf

that is not unmatched. Also, an unmatched leaf, depending on it having an

unmatched sibling or not, is called a normal-unmatched or a last-unmatched

leaf, respectively.

If the parent of u or the parent of v, say that of u, is a union node, the u is

normal-unmatched, by property 2 and the fact that no contraction is possible.

Then, B would answer u is less than v and then it obtains a u-small game in

which preconditions of union-pruning(u) hold. So, by applying this operation we

reduce the game to a smaller one in which the five properties mentioned in the

theorem hold and thus B wins by induction.

Otherwise, if u or v, say u, is a last-unmatched leaf, we can observe that the

second and the third preconditions for the operation intersection-deletion(p), for

p the parent of u, hold (note that all siblings of u are in different components

otherwise an intersection-pruning is possible). Now if B says u is smaller than

v, G will get u-small and so we can apply intersection-deletion(p) to reduce the

game to a smaller one.

Otherwise, B will say u and v are equal and then the number of components is

reduced. Since neither u nor v is last-unmatched, after this response still property

3 holds and so by induction in the new game B can win. ut

Having proved Theorem 3, we know the adversary can respond to queries on

key members of a-regions such that the algorithm knows all members similar to

the key member of each a-region, for every 1 ≤ a ≤ m, and also that (a, 0, 0) is

in the result of the root. Thus, Theorem 2 yields the following theorem.

Theorem 4. For any signature T and any deterministic comparison-based algo-

rithm A, there is an input with the signature G such that A submits Ω(l1 +lg l2)

queries where l1 and l2 are defined in the same way as in Theorem 2. ut

4 The Worst-Case Optimal Algorithm

In this section, we present our algorithm which matches the lower bound in

Section 3. First we study two special cases separately; these special problems

come in handy in solving the general problem.

The first special case involves evaluating union of a series of sets: X1 ∪X2 ∪

. . . ∪ Xk. Hwang and Lin [6] studied this problem for k = 2. They showed to

compute A ∪ B, tight lower and upper bounds of Θ
(

lg
(|A|+|B|

|A|

)

)

exist. We

extend their result to values of k > 2. We Define si = |Xi|, for 1 ≤ i ≤ k and

s =
∑k

i=1 si. We first show a non-optimal result in Lemma 2 and immediately

improve it to the optimal result in Lemma ??.

Lemma 2. Suppose X is a collection of n setsX1, X2, . . . , Xn of sizes s1, s2, . . . , sn

respectively, s =
∑n

i=1 si, and smax = maxni=1 si. Then,
⋃n

i=1Xi can be computed

in (non-optimal) time O
(

∑k
i=1 lg

(

s+smax

si

)

)

.

Proof. We use the follwoing algorithm to compute ∪ni=1Xi.

1. If there is only one set in X , we are done; otherwise, we select the two

smallest sets in X , say Xa and Xb.

2. We compute Xa∪Xb, using the trivial merge algorithm, with at most |Xa|+

|Xb| comparisons.

3. We replace Xa and Xb with Xa ∪ Xb in X , and repeat the procedure from

step 1.

Clearly, the worst case running time happens when all sets in X are disjoint.

In this case, the above-mentioned algorithm works similar to Huffman coding;

consider each set Xi as a symbol with frequency |Xi|/
∑n

i=1 |Xi|. Then, in each

step of the algorithm, we select two elements with smallest frequencies and cre-

ate a new element based on them. Therefore, the depth of a set Xi in the corre-

sponding Huffman tree shows the number of times that Xi or a superset of Xi is

selected in step 1 of our algorithm. So, the overall number of comparisons will be

∑n

i=1 |Xi|h(Xi), where h(Xi) is the depth of Xi in the corresponding Huffman

tree. Also, Huffman trees have the property that the depth of a node with fre-

quency p is at most lg(p−1)+1. This means the number of comparisons in our al-

gorithm is at most
∑n
j=1 |Xj | (lg(

∑n
i=1 |Xi|/|Xj |) + 1) =

∑n
i=1 si (lg(s/si) + 1).

The following inequalities complete the proof:

n
∑

i=1

si

(

1 + lg
s

si

)

= s+

n
∑

i=1

si lg
s

si

≤ 2
n

∑

i=1

si lg
s+ si
si

≤ 2

n
∑

i=1

si lg
s+ smax

si

≤ 2
n

∑

i=1

lg

(

s+ smax

si

)

.

ut

Lemma 3. Suppose X is a collection of n setsX1, X2, . . . , Xn of sizes s1, s2, . . . , sn

respectively, s =
∑n

i=1 si, and smax = maxni=1 si. Then,
⋃n

i=1Xi can be computed

in (optimal) time O
(

∑k

i=1 lg
(

s
si

)

)

.

Proof. We separate out the largest set (say X1), and apply Lemma 2 to compute

X2,k = X2 ∪ . . . ∪Xk in O
(

∑k

i=2 lg
(

s′+s′
max

si

)

)

, where s′, s′max are the sum and

the maximum of set sizes taken over 2, . . . , k. Since s′ + s′max ≤ s, the time is

O
(

∑k

i=2 lg
(

s
si

)

)

.

We use the algorithm of Hwang and Lin [6] to compute the union of the

largest set and the remaining sets (X1 ∪ X2,k) in O(lg
(

s
s1

)

). Therefore, the

overall time is O(
∑n

i=1 lg
(

s
si

)

).

The next step is to show the bound we achieved in Lemma 3 is indeed optimal.

That is we must show that
∑n
i=1 lg

(

s
si

)

is in O(lg
(

s
s1,s2,...,sn

)

):

Lemma 4. If s ≤
∑n

i=1 si, then
∑n

i=1 lg
(

s
si

)

= O(lg
(

s
s1,s2,...,sn

)

) .

Proof. We define ti = min
{

s,
∑i

j=1 sj

}

and t′i = min
{

s,
∑n

j=i sj

}

), for 1 ≤ i ≤

n. We define t0 = t′n+1 = 0.

We prove the lemma in a series of steps:

Step 1.
(

s
s1,...,sn

)

≥
∏n
i=1

(

t′
i

si

)

.

Define a setX = {x1, . . . , xs}. By induction on i we prove the number of ways

to select subsetsX1, . . . ,Xi of sizes s1, . . . , si ofX such that |X−∪ij=1Xj | ≤ t′i+1

is great than or equal to
∏j
i=1

(

t′
i

si

)

. The base case where i = 0 is trivial. We show

that if sets X1, . . . , Xi−1 have been selected such that |Xj | = sj for every j,

1 ≤ j ≤ i − 1, and |X − ∪i−1
j=1Xj | ≤ t′i, there are at least

(

t′
i

si

)

ways to choose

the set Xi of size si such that |X − ∪ij=1Xj | ≤ t′i+1. Set Y = X − ∪i−1
j=1Xj .

Since |Y | ≤ t′i, there exists a set Y ′ of size t′i such that Y ⊆ Y ′ ⊆ X . For every

subset Xi of size si of Y ′, we have |Xi ∩ Y | ≥ si − |Y ′ − Y | = si − (t′i − |Y |).

Therefore, |Y −Xi| ≤ t′i − si ≤ t′i+1 while Y −Xi = X − ∪ij=1Xi. However, Xi

is an arbitrary subset of size si of Y ′ with size t′i. Hence, there are
(

t′
i

si

)

choices

for Xi. Thus, the induction hypothesis for i = n proves the claim.

Step 2.
(

ti
si

)(

t′
i

si

)

≥
(

s
si

)

.

We consider the set X = {x1, . . . , xs}, and define Y = {x1, . . . , xti} and

Y ′ = {x1, . . . , xsi
, xti+1, . . . , xs}. Hence, |Y | = ti and |Y ′| ≤ t′i. We define a

subset pair as a pair (A,B) such that |A| = |B| = si, A ⊆ Y , and B ⊆ Y ′.

Clearly the number of subset pairs is at most
(

ti
si

)(

t′
i

si

)

. We now prove that the

number of subset pairs is greater than or equal to the number of subsets of X

which is
(

s
si

)

. We define the result of a subset pair (A,B) as the set (A − Y ′) ∪

(B−Y)∪ (Y ∩ Y ′ ∩A∩B). For every subset S ⊆ X of size si, we can construct

a subset pair T = (A,B) such that the result of T is S. Since S ⊆ Y ∪ Y ′ and

|Y ∩ Y ′| = |S|, |(Y ∩ Y ′)−S| = |S − Y ′|+ |S − Y |. Therefore, there are disjoint

subsets X ′ and X ′′ of Y ∩ Y ′ of sizes |X ′| = |S − Y ′| and |X ′′| = |S − Y |, such

that X ′ ∪X ′′ = (Y ∩ Y ′) − S. If we define A = ((Y ∩ Y ′) −X ′) ∪ (S − Y ′) and

B = ((Y ∩ Y ′) −X ′′) ∪ (S − Y), it is easy to verify that (A,B) is a subset pair

and its result is X .

Step 3. 1
2

∑n
i=1 lg

(

s
si

)

≤ lg
(

s
s1,...,sn

)

.

Step 1 implies that lg
(

s
s1,...,sn

)

≥
∑n

i=1 lg
(

t′
i

si

)

. One can prove similarly that

lg
(

s
s1,...,sn

)

≥
∑n

i=1 lg
(

ti
si

)

. Therefore, 2 lg
(

s
s1,...,sn

)

≥
∑n

i=1

(

lg
(

ti
si

)

+ lg
(

t′
i

si

)

)

.

Step 2 implies that lg
(

ti
si

)

+ lg
(

t′
i

si

)

≥ lg
(

s
si

)

. These two facts together show that

1
2

∑n
i=1 lg

(

s
si

)

≤ lg
(

s
s1,...,sn

)

.

Step 3 directly implies the lemma. ut

Lemma 3 and Lemma 4 together imply the following corollary:

Corollary 1. A cross reference representation of the union of sets X1, X2, . . . , Xk

can be computed in time O
(

lg
(

s
s1,...,sk

)

)

where si = |Xi| and s =
∑k

i=1 si. ut

To obtain the sorted array representation rather than a cross reference represen-

tation, one can expand the ranges of the output to have the union in the sorted

list format again. The time this takes is proportional to the size of the output,

which is at most O(
∑k

i=1 |Xk|):

Corollary 2. A sorted array representation of the union of sets X1, X2, . . . , Xn

can be computed in time O
(

s+ lg
(

s
s1,...,sk

)

)

where si = |Xi| and s =
∑k

i=1 |Xi|.

ut

The second special case has the form Y ∩ (X1 ∪X2 ∪ . . . ∪Xk) , given that

|Y | ≥ |Xi| for all i. This problem for the case where k = 1 (i.e. computing Y ∩X)

has been studied and tight lower and upper bounds of Θ(|X | lg |X|+|Y |
|X|) already

exist [6]. To solve the problem for k > 1, we first create a boolean array B of

size |Y |, so that each element y in Y has an associated element in the array,

namely B[y]. We consider a specific representation for members of Y such that

the representation for each member y of Y also includes a point to B[y]; then

we can access B[y] in constant time. We initialize all the elements in it to false.

We compute the intersection of each Xi with Y separately (Yi = Y ∩ Xi) in

O
(

∑k
i=1 |Xi| lg

|Xi|+|Y |
|Xi|

)

time using Hwang and Lin’s algorithm [6]. When Yi’s

are all computed, we consider them one by one and for each Yi, for all y ∈ Yi, we

set B[y] = true. Then we scan array B and return as output each element b such

that B[b] is true. It is clear that going through all Yi’s will take
∑k
i=1 |Y ∩Xi|

which is less than the time consumed for all Yi’s. Also creatingB in the beginning

and scanning it in the end takes time O(|Y |); therefore:

Theorem 5. The result set of Y ∩ (X1 ∪ X2 ∪ . . . ∪ Xk) can be computed in

O
(

|Y | +
∑k

i=1 |Xi| lg
|Xi|+|Y |

|Xi|

)

time. ut

We now turn to the general case and describe the algorithm. We generalize

the problem and define two types of problems: in the first type, we are interested

in computing Γ (v) ∩ U , for a given “universe set” U . In the second type we

are asked to compute Γ (v). The procedures Compute (v, U) and Compute(v)

(Figure 3) are designed to solve these two types of problems. The intuition behind

the universe set U in Compute (v, U) is the following: consider an intersection

node v with its children u1, . . . , uk. Suppose we somehow have processed the

subtree rooted at ui for some i, and have obtained Γ (ui). It makes perfect sense

to pass Γ (ui) as a universe set to subtrees rooted at children of v other than

ui so that they only report back elements that are also in the universe set and

ignore those that do not appear in the universe set. As for Compute(v) it turns

out that, for some nodes v, the size of the possible result of a node is less than

any universe set we can possibly provide with in advance. In these cases we do

not pass any universe set as it will not save any computation time.

Next, we investigate the correctness and the running time of the algorithm.

Theorem 6. Every time that procedure Compute(v, U) in Algorithm 1 is

called, the precondition |U | ≤ ψ∗(v) holds (Line 1) and the procedure computes

Γ (v)∩U . Also, every time that procedure Compute(v) in Algorithm 2 is called,

the precondition ψ(v) = ψ∗(v) holds (Line 1) and the procedure computes Γ (v).

Proof. The fact that the procedures produce the right output is trivial by using

an induction on the height of the tree.

Fig. 3 The general algorithm.
Procedure Compute(v, U);

1 // precondition: |U | ≤ ψ∗(v).

begin

switch type of node v do

2 case Leaf: return Γ (v) ∩ U ;
case Union:

foreach ui child of v do

if ψ(ui) < |U | then

3 Xi ←− Compute(ui)
else

4 Xi ←− Compute(ui, U)

5 return U ∩ (X1 ∪X2 ∪ . . . ∪Xk)

case Intersection:

X ←− U ;
foreach ui child of v do

6 X ←− Compute(ui, X)
return X

end

Procedure Compute(v);
1 // precondition: ψ(v) = ψ∗(v).

begin

switch type of node v do

2 case Leaf: return Γ (v) ;
case Union:

foreach ui child of v do

3 Xi ←− Compute(ui)
4 return X1 ∪X2 ∪ . . . ∪Xk ;

case Intersection:

j ←− minindex(ψ(ui)) ;
5 X ←− Compute(uj) ;

foreach ui child of v do

if i 6= j then

6 X ←− Compute(ui, X)

return X

end

Algorithm 1 Computing the in-
tersection of U with the result set of
the subtree rooted at v (i.e. Γ (v) ∩
U).

Algorithm 2 Computing the re-
sult set of the subtree rooted at v
(i.e. Γ (v)).

Thus we only show that preconditions mentioned in line 1 of Algorithm 1

and in line 1 of Algorithm 2 always hold whenever they are called.

In Algorithm 1, we have three recursive calls. The first one is in line 3: since

ψ(ui) < |U | and, by precondition, |U | ≤ ψ∗(v), therefore ψ(ui) < ψ∗(v). By

definition of ψ∗(ui), the latter inequality implies that ψ∗(ui) = ψ(ui) which

means the precondition will hold. The second recursive call occurs in line 4; we

know that ψ(ui) ≥ |U | and since ψ∗(v) ≥ |U |, we can deduce ψ∗(ui) ≥ |U |.

Thus the precondition will hold. The last recursive call occurs in line 6; since

v is an intersection node, ψ(ui) ≥ ψ(v) for each i. By definition ψ(v) ≥ ψ∗(v);

hence ψ(ui) ≥ ψ∗(v). Since ψ∗(ui) = min{ψ(ui), ψ
∗(v)}, so ψ∗(ui) = ψ∗(v).

By precondition ψ∗(v) ≥ |U |, and therefore ψ∗(ui) ≥ |U |. As |U | ≥ |X |, the

precondition will hold.

Similarly in Algorithm 2, there are three recursive calls. The first one is in

line 3; since v is of type union ψ(ui) ≤ ψ(v) and by precondition ψ(v) = ψ∗(v);

so ψ(ui) = ψ∗(ui) which implies the precondition will hold. Second recursive

call occurs in line 5; because v is of type intersection, ψ(v) = ψ(uj) for j =

minindex(ψ(ui)) where ui’s are children of v. By precondition ψ(v) = ψ∗(v);

so ψ∗(uj) = min{ψ(uj), ψ
∗(v)} = min{ψ(uj), ψ(v)} = ψ(uj), and hence the

precondition will hold. The third and last recursive call occurs in line 6. we know

that ψ∗(ui) = min{ψ(ui), ψ
∗(v)} = min{ψ(ui), ψ(v)} = ψ(uj), and |X | ≤ ψ(uj),

so |X | ≤ ψ∗(ui). ut

Next, we analyze the running times of the procedures by measuring the time

we spend at each node v of the tree, not taking into account the time we spend

in recursive calls. The total running time of the algorithm will be, of course,

the sum of such processing times in nodes of the tree. It is easy to see that no

computation is involved in intersection nodes. Here, we analyze two other types

of nodes (i.e. leaf and union) separately:

Processing Time in Union Nodes: Line 5 is the only one in Algorithm 1 on

which we spend some computing time. Also, in Algorithm 2, only line 4 involved

computation. These two are exactly the special cases we studied in the beginning

of this section. We can prove the following lemma.

Lemma 5. Processing a union node v takes time of

O
(

∑k

i=1 ψ
∗(ui) + lg

(

ψ∗(v)
ψ∗(u1),...,ψ∗(uk)

)

)

where u1, . . . , uk are children of v.

Proof. In Algorithm 1, the only line that we spend some time on computing is

line 5. Since |Xi| ≤ |U |, the computation can be done in

O
(

|U | +
∑k

i=1 |Xi| lg
|Xi|+|U |

|Xi|

)

, by Theorem 5. As |U | < ψ∗(ui), by the precon-

dition, and |Xi| ≤ |U |, |Xi| < ψ∗(ui). Given that |U | < ψ∗(v) and |Xi| ≤ ψ∗(ui),

|U |+
∑k

i=1 |Xi| lg
|Xi|+|U |

|Xi|
is of O

(

ψ∗(v) +
∑k

i=1 ψ
∗(ui) lg ψ∗(ui)+ψ

∗(v)
ψ∗(ui)

)

. Finally,

since by Observation 1, ψ∗(v) ≤
∑k
i=1 ψ

∗(ui) and the term lg ψ∗(ui)+ψ
∗(v)

ψ∗(ui)
is not

less than one, we can eliminate the term ψ∗(v). Thus, the processing time of line 5

in Algorithm 1 isO
(

∑k

i=1 ψ
∗(ui) lg ψ∗(ui)+ψ

∗(v)
ψ∗(ui)

)

= O
(

∑k

i=1 ψ
∗(ui) +

∑k

i=1 lg
(

ψ∗(v)
ψ∗(ui)

)

)

which is, by Lemma 4, of O
(

∑k

i=1 ψ
∗(ui) + lg

(

ψ∗(v)
ψ∗(u1),...,ψ∗(uk)

)

)

.

In Algorithm 2, only line 4 is important. Due to Corollary 2, the result

can be computed in O(s + lg
(

s
|X1|+...+|Xk|

)

) where s =
∑k

i=1 |Xi|. By pre-

condition of this procedure ψ∗(v) = ψ(v), for each child ui of v, ψ∗(ui) =

min{ψ(ui), ψ
∗(v)} = min{psi(ui), ψ(v)} = ψ(ui). Therefore, ψ∗(v) = ψ(v) =

∑k

i=1 ψ(ui) =
∑k

i=1 ψ
∗(ui). Also, |Xi| ≤ ψ(ui) = ψ∗(ui) for every i. Thus,

(

∑

k

i=1
|Xi|

|X1|,...,|Xk|

)

≤
(

∑

k

i=1
ψ∗(ui)

ψ∗(u1),...,ψ∗(uk)

)

=
(

ψ∗(v)
ψ∗(u1),...,ψ∗(uk)

)

. Hence, since s ≤
∑k
i=1 ψ

∗(ui)

the running time is in O
(

∑k
i=1 ψ

∗(ui) + lg
(

ψ∗(v)
ψ∗(u1),...,ψ∗(uk)

)

)

. ut

We make a slight change in the algorithm to save time: in the case when the

root of the whole tree is of type union, we take union using the algorithm in

Corollary 1 instead of that in Corollary 2 in the root. That is, we do not expand

the ranges in the result and we keep it in the cross reference format. Then, in

the case when v is the root and is a union node, we can get a better result than

Lemma 5.

Lemma 6. If the root is a union node, processing time in the root takes time of

O
(

lg
(

ψ∗(root)
ψ∗(u1),...,ψ∗(uk)

)

)

where u1, . . . , uk are children of the root. ut

Here we claim that the term
∑k

i=1 ψ
∗(ui) in Lemma 5 is negligible when it is

summed over all union nodes. In the sum, ψ∗ of all the children of union nodes

are added together, which means the sum is over all the intersection nodes and

leaves. Now we argue that if S is the set of all intersection nodes of T , we have

∑

v∈S ψ
∗(v) ≤

∑

v∈L ψ
∗(v) where L is the set of non-shallow leaves. This can

be proved by writing the inequalities of Observation 1 for all nodes of the tree,

and summing them all together.

Theorem 7. Processing in union nodes and leaves takes time of

O (t+
∑

v∈L ψ
∗(v) +

∑

union node v

lg
(

ψ∗(v)
ψ∗(u1),ψ∗(u2),...,ψ∗(uk)

)

) where L is the set of

non-shallow leaves and t is the time we spend in non-shallow leaves. ut

Processing Time in Leaf Nodes: If v is a leaf, in line 2 in Algorithm 1, we

compute the intersection of Γ (v) and U . As a precondition, we know that |U | <

ψ∗(v) and also by definition that ψ∗(v) ≤ ψ(v) = size(v), so |U | < size(v). In

the second special case, Theorem 5, it is shown how to compute the intersection

in time O(|U | lg |U |+size(v)
|U |). Since |U | < ψ∗(v) ≤ size(v), the processing time is

in O
(

ψ∗(v) lg ψ∗(v)+size(v)
ψ∗(v)

)

.

In line 2 of Algorithm 2, we simply return Γ (v) which, by precondition, has

size ψ∗(v). In case v is a shallow leaf by the argument mentioned in Theorem 7,

we use a slightly different method to take the union at the root, and therefore we

do not spend any time in the shallow leaves (we do spend, however, some time

in the root for computing the union, which has been accounted for in Theorem

7.) Thus the following theorem holds:

Theorem 8. In Algorithms 1 and 2, the time spent in each non-shallow leaf is

O
(

ψ∗(v) lg(size(v)
ψ∗(v) + 1)

)

and we spend no time in shallow leaves. ut

We conclude from Theorems 4, 8, and 7 that our algorithm is optimal.

5 Conclusion

We studied the problem of evaluating an expression of sorted sets with union

and intersection operands. Complexity of algorithms were measured in terms of

the sizes of the input sets. We proved lower bounds on the worst case complexity

of algorithms that can solve this problem, and later presented an algorithm that

asymptotically matches the lower bound.

An immediate extension to this work is changing its format of input/output

to a more appropriate format. Our assumption for the format of the input is

lists of elements of sets, and the format of the output is a list of cross-references

which specify the ranges of the elements. However, with a little effort, the format

of both the input and the output can be changed to balanced search trees. More

specifically, we choose B-trees. Adapting the lower bounds is straightforward;

Theorem 4 will still hold without any modification. As for the upper bound,

it is sufficient to show that we can handle the two special cases in Section 4

with the same time complexity, since the general algorithm only uses these two

for computation. These two special cases can be dealt with in the same way

Demaine et al. [5] handled B-tree representations of their input sets. It is easy

to see that the extra work for assembling and disassembling the B-trees in their

scheme does not affect our bounds in Corollary 2 and Theorem 5.

As a future work, one can consider expressions that can have operands of

type complement besides those of type union and intersection.

6 Acknowledgments

The authors would like to thank Peyman Afshani, Alex Lópex-Ortiz, Reza Dorri,

Narges Simjour, and anonymous referees for their useful comments.

References

1. Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web

search engine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

2. Mark R. Brown and Robert E. Tarjan. A fast merging algorithm. J. ACM,

26(2):211–226, 1979.

3. Mark R. Brown and Robert E. Tarjan. Design and analysis of a data structure for

representing sorted lists. SIAM Journal on Computing, 9(3):594–614, 1980.

4. Ehsan Chiniforooshan, Arash Farzan, and Mehdi Mirzazadeh. Worst case optimal

union-intersection expression evaluation. In Lúıs Caires, Giuseppe F. Italiano, Lúıs

Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP, volume 3580 of

Lecture Notes in Computer Science, pages 179–190. Springer, 2005.

5. Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Adaptive set inter-

sections, unions, and differences. In SODA ’00: Proceedings of the eleventh annual

ACM-SIAM symposium on Discrete algorithms, pages 743–752, Philadelphia, PA,

USA, 2000. Society for Industrial and Applied Mathematics.

6. F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly

ordered sets. SIAM Journal on Computing, 1(1):31–39, 1972.

7. G. Lee, M. Park, and H. Won. Using syntactic information in handling natural

language quries for extended boolean retrieval model, 1999.

8. M.I. Mauldin. Lycos: design choices in an internet search service. IEEE Expert,

12(1):8–11, 1997.

9. Mahdi Mirzazadeh. Adaptive comparison-based algorithms for evaluating set

queries, 2004.

10. William Pugh. A skip list cookbook. Technical report, University of Maryland at

College Park, College Park, MD, USA, 1990.

11. Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Com-

pressing and Indexing Documents and Images. Morgan Kaufmann Publishers, San

Francisco, CA, 1999.

