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Abstract

This paper extends static typestate analysis to temporal specifications of groups of interacting objects, which are
expressed using tracematches. Unlike typestate, a tracematch state may change due to operations on any of a set of
objects bound by the tracematch. The paper proposes a lattice-based operational semantics which is proved equivalent
to the original tracematch semantics but is better suited to static analysis. The static analysis is presented next, and
is proved sound with respect to the semantics. The analysis computes precise local points-to sets and tracks the flow
of individual objects, thereby enabling strong state updates. A fully context-sensitive version of the analysis has
been implemented as instances of the IFDS and IDE algorithms. The analysis was evaluated on tracematches used in
earlier work and found to be very precise. Remaining imprecisions could be eliminated with more precise modeling
of references from the heap and of exceptional control flow.

1 Introduction
An object is not isolated; it interacts with other objects. For an object, a temporal specification can be expressed using
typestate [27]. At any time, the object is in some state, and the state changes when an operation is performed on the
object. Many programming errors can be detected by checking whether undesirable states are reachable. A multitude
of typestate checking tools, both dynamic and static, have been developed [1, 5, 6, 9, 12, 13, 15–19, 21, 23]. Temporal
specifications can be applied to express constraints on the interactions between software components. In this case,
the specified protocol may involve multiple interacting objects from different components. Some newer specification
mechanisms can express temporal properties of multiple objects [1,9,17,23]. These formalisms are mainly intended for
dynamic checking. In this paper, we extend techniques from static typestate verification to formulate and implement a
static analysis of such multi-object temporal specifications.

The static analysis has two classes of applications. First, it can be used for sound static program verification. The
analysis is intended to be precise: in the ideal case, all possible violations are ruled out statically, and the program
is therefore guaranteed to observe the specified protocol. However, it is not always possible to rule out all violations
statically. In this case, the program can be instrumented with dynamic checks that report violations at run time. The
second application of the static analysis is to reduce the overhead of these dynamic checks. If the analysis proves that
some instrumentation points cannot possibly lead to a violation, no instrumentation is required at those points. Thus,
the runtime overhead at those program points is reduced.

We have chosen tracematches [1] as the formalism for specifying the temporal properties to be checked. A trace-
match specifies which operations are relevant to the specification, how the operations identify the objects involved, the
sequence of operations leading to an undesirable state, and what should be done when a violation is detected at run
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1 void flatten(List in, List out) {
2 Iterator it = in.iterator();
3 while(it.hasNext()) {
4 List l = (List) it.next();
5 Iterator it2 = l.iterator();
6 while(it2.hasNext()) {
7 Object o = it2.next();
8 out.add(i);
9 }

10 }
11 }

makeiter(c,i)

next(i)

update(c)

hasNext(i)

next(i), hasNext(i)

next(i)

update(c)

hasNext(i)

Figure 1: Tracematch example: iterator safety

time. For our analysis, tracematches have two advantages over similar formalisms. First, they are widely applicable
because their semantics is intuitive and highly expressive compared to other regular-expression-based formalisms. A
key issue in defining such formalisms is how to tease apart the interactions between operations on different objects;
in some other systems, operations on different objects are not cleanly separated. Conceptually, a tracematch executes
a separate copy of a finite automaton for every possible combination of runtime objects. While other systems require
each automaton to bind all objects on the first state transition, tracematches do not have this restriction. Second,
the semantics of tracematches has been formally specified, which allows us to formally prove that the static analysis
soundly abstracts the semantics. The original tracematch paper motivates the design of a declarative semantics from
the programmer’s point of view, then proves it equivalent to an operational semantics better suited for implementa-
tion [1]. The operations, and how they bind objects, are specified using AspectJ pointcuts, which are in widespread
use and have a formal specification [3].

While the operational tracematch semantics is convenient for a dynamic implementation, it is difficult to abstract
statically because it is defined in terms of manipulating and simplifying boolean formulas, a relatively complicated
concrete domain. Thus, we have defined a new, equivalent semantics based on sets and lattices, which are more
convenient to reason about and to abstract. We have proven the two semantics bisimilar. The static analysis uses a
provably sound abstraction of the lattice-based semantics.

The formal definitions and correctness proofs are important because reasoning about interacting objects is subtle.
Allan et al. wrote this about their dynamic implementation:

In our experience it is very hard to get the implementation correct, and indeed, we got it wrong several
times before we formally showed the equivalence of the declarative and operational semantics. [1]

Similar pitfalls apply when defining a static analysis.
A key difference between our analysis and previous work on typestate verification is that in a tracematch, typestate

is associated not with a single object, but with a group of objects. Existing work on typestate verification (e.g. [15])
generally uses some abstraction of objects and adds the current state to each abstract object. This approach cannot
be applied when there is no single object to which the state can be attached. Thus, our analysis uses two separate
abstractions: the first models individual objects and the second models tracematch state of related groups of objects.
The first analysis uses a storeless heap abstraction similar to earlier work [10, 15, 20, 26]. The focus of the paper is on
the second analysis, which is novel. Indeed, we present a specific object analysis only for the sake of concreteness;
the object analysis could be replaced with more precise or cheaper variants if necessary for a particular application.

The example in Figure 1 illustrates the kind of property that the analysis verifies. The method flatten takes
a list of lists in, and adds all of their elements to the list out. The automaton on the right checks that a list is not
updated during iteration, and that every call to next on an iterator is preceded by a call to hasNext. A violation of
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the property causes the automaton to enter one of the final states. The tracematch associated with this automaton has
two parameters, the list (c) and the iterator (i). The next and hasNext operations bind the iterator i, update binds the
list c, and makeiter binds both. According to the declarative tracematch semantics, a copy of the automaton is made
for every possible runtime pair of list and iterator. Each operation causes a transition in those automata consistent
with the bindings. For example, the update(c) operation on runtime list object oc causes an update transition in all
automaton copies having oc as their list c.

Consider what information a static analysis needs to prove the absence of a violation. First, it needs precise
may-alias information to determine that the list out updated in line 8 is not aliased with the list in or any of the
lists it contains, over which the loops iterate. Interprocedural information is necessary because aliases may be made
elsewhere; for example, the caller of the method could pass in the same list as both in and out. In fact, since the
method could be called several times on different lists, context-sensitivity is useful. Precise must-alias information is
necessary to ensure that each call to hasNext occur on the same iterator as the subsequent call to next. In fact,
we need to know more than that a pair of variables are aliased. For example, it is not true that it2 in lines 6 and 7
always point to the same object. When control flows from line 6 to line 7, it2 continues to point to the same iterator,
but when control flows from line 7 around the outer loop and back to line 6, the object to which it2 points changes.
Thus, the blanket statement that it2 at line 6 is must-aliased to it2 at line 7 is false. Instead, the analysis must track
the flow of objects along control flow paths. To summarize, the analysis requires:

1. precise may- and must-alias information,

2. precise context-sensitive interprocedural information, and

3. flow-sensitive tracking of individual objects along control flow paths.

The analysis presented in this paper satisfies all three requirements.
The main contributions of this paper are:

1. We define a lattice-based operational semantics of tracematches which is better suited to static analysis than the
original semantics of Allan et al. [1]. We have proven that the two semantics are bisimilar. (Section 2)

2. We define a precise static abstraction of the lattice-based operational semantics. The first part is an abstraction
of the runtime objects occurring in the program. The second part is an abstraction of tracematch states. We have
proven that the overall abstraction is sound with respect to the operational semantics. (Section 3)

3. We express the static analysis as instances of the IFDS [24] and IDE [25] frameworks which efficiently support
fully context-sensitive interprocedural analyses. (Section 4)

4. We report experimental results from our implementation of the static analysis. We implemented the analysis in
Scala, using the tracematch implementation in the abc compiler [1,2] to provide the intermediate representation
to be analyzed. (Section 5)

2 Tracematch Semantics
Allan et al. [1] defined a declarative semantics of how tracematches ought to work, as well as an operational semantics
that they proved equivalent. We begin by reviewing their operational semantics and formalizing a few details that
were left implicit. Then we define an equivalent operational semantics based on sets and lattices. Finally, we extend
the operational semantics to a complete intermediate representation that includes instructions not directly related to
tracematches.
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2.1 Original Operational Semantics
A tracematch is applied to a program in an existing language such as Java or AspectJ. The program executes according
to the semantics of the base language, but the dynamic tracematch implementation maintains additional state to keep
track of the configuration of the tracematch. Each operation in the tracematch is defined in terms of a pointcut, a
predicate over instructions that may also bind objects involved in an instruction to tracematch parameters. In the abc
compiler, a matching phase identifies the set of instructions that match each pointcut, and a weaving phase inserts
additional code to update the tracematch state accordingly. We assume that these phases have already been performed.
Thus, the input to our static analysis is the original code with additional tracematch transition statements that specify
how to update the tracematch state.

The semantics of transition statements is defined in terms of a set Var of variables in the base language and a set
Obj ∪ {⊥} of values that those variables can take. The symbol ⊥ denotes the special null value and Obj denotes the
set of all non-null values. We assume the presence of an environment ρ : Env , Var → Obj ∪ {⊥} that gives the
value of each variable at each (dynamic) program point.

Definition 1. [1] A tracematch is a triple 〈F,A, P 〉, where

F is a finite set of tracematch parameters,

A is a finite alphabet of symbols (operations), and

P is a regular language over A. We let 〈Q,A, q0, Qf , δ〉 be a finite automaton that recognizes P . As is customary, Q
is a finite set of states, A is a finite alphabet, in this case the set of tracematch symbols, q0 ∈ Q is the unique
start state, Qf ⊆ Q is a set of final states, and δ ⊆ Q×A×Q is a transition relation. The automaton need not
be deterministic.

A transition statement comprises transition elements, which specify operations that cause the tracematch to change
states.

Definition 2. A transition element is a pair 〈a, b〉, where

a ∈ A is a symbol of the tracematch, and

b : F ↪→ Var is a partial map specifying the value to be bound to each of a subset of the tracematch parameters.
When the transition element is executed, each parameter f ∈ dom(b) is bound to the object currently pointed to
by program variable b(f).

Definition 3. A transition statement tr(T ) is a set T of transition elements.

Because multiple pointcuts may match the same instruction, the tracematch semantics allows multiple transition
elements in a single statement. When such a statement is executed, the tracematch non-deterministically follows the
transitions specified by each transition element individually.

The operational semantics expresses tracematch state using boolean formulas. The literals of these formulas are
true, false, and (f = o), where f ∈ F is any tracematch parameter and o ∈ Obj is any runtime value. A formula is
constructed from these literals using the boolean connectives ∧, ∨, and ¬. Let S denote the set of all formulas that
can be expressed in this way. The concrete runtime state σ̊ : Q → S of a tracematch maintains one such formula for
each state of the tracematch automaton. Intuitively, the formula associated with a state q is a predicate on tracematch
bindings which is satisfied by the bindings of exactly those copies of the automaton that are in state q.

When a tracematch element 〈a, b〉 is executed in environment ρ, a boolean formula is generated that evaluates to
true for tracematch bindings consistent with the objects bound in the transition element:

e̊0(b, ρ) ,
∧

f∈dom(b)

(f = ρ(b(f)))
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The formula for a set T of multiple transition elements is a disjunction of the formulas for the transition statements,
since the tracematch non-deterministically executes all of the transition elements:

e̊T (T, ρ) ,
∨

b:〈a,b〉∈T

e̊0(b, ρ)

Recall that a tracematch state σ̊ conceptually represents the state of different automata with different bindings. At
a transition, each automaton performs a transition if its bindings are consistent with the objects bound in the transition
(i.e. e̊0(b, ρ) is satisfied), or remains in its current state if its bindings are inconsistent (i.e. ¬e̊0(b, ρ) is satisfied). Thus,
the transition function is defined [1, 4] as:

e̊[T, ρ](̊σ) , λi.

 ∨
a,j:δ(j,a,i)

σ̊(j) ∧ e̊T (Ta, ρ)

 ∨(σ̊(i) ∧
∧
a∈A
¬e̊T (Ta, ρ)

)

where Ta , {b : 〈a, b〉 ∈ T}. In [1], the notation e(a) is used with the same meaning as e̊T (Ta, ρ).
Finally, a tracematch is defined to match when any suffix of the sequence of operations executed matches the

specification. Thus, every automaton is considered to potentially be in the initial state at all times. Therefore, the
transition function for transition statements in the operational semantics is:

〈tr(T ), ρ, σ̊〉 →̊ e̊[T, ρ](̊σ[q0 7→ true])

where σ̊[q0 7→ true] maps q0 to true and every other state q to σ̊(q).
At the beginning of program execution, the tracematch state is initialized to false for all states q ∈ Q.
After every transition statement, if the formula for any final state is not false, the tracematch is said to match and

its body is executed. When this happens, the formula is reset to false. To avoid complicating the semantics of tr(T ),
we define a separate body statement to perform these tasks. In the intermediate representation, a body is inserted
immediately following every transition statement tr(T ). The semantics of body is to reset the formulas of all final
states:

〈body, ρ, σ̊〉 →̊λq.
{
σ̊(q) if q 6∈ Qf
false if q ∈ Qf

Allan et al. [1] proved that this operational semantics is equivalent to the declarative semantics defined in terms
of operations on a multitude of automata, one for each possible set of objects bound to tracematch parameters. This
makes a dynamic implementation of tracematches practical, because it only has to manipulate one automaton with
boolean formulas on its states, rather than an unbounded collection of automata. However, boolean formulas are not
well suited to static abstraction.

2.2 A Lattice-Based Operational Semantics
To enable static analysis, we define an equivalent semantics using sets and lattices, which are easier to abstract stati-
cally. The core of the construction is a binding lattice which specifies that a tracematch parameter has been bound to
some object (a positive binding) or that it has not yet been bound and may be bound later to any object except those in
a given set (a negative binding).

The binding lattice 〈Bind,v〉 is defined as follows. Its elements are Bind , Obj ] P(Obj) ] {⊥}. An element
o ∈ Obj indicates a positive binding while a set from P(Obj) indicates a negative binding. The element ⊥ indicates
an inconsistent binding that will never lead to a match. As a reminder that a set of values indicates negative bindings,
we will always write such a set with a bar above it: O. The bar is only a reminder; it has no semantic meaning. The
partial order v is defined as the reflexive transitive closure of the following rules: ⊥ v d for any d; O1 v O2 if
O1 ⊇ O2; and o1 v O2 if o1 6∈ O2. Intuitively, for an element higher in the order, there is more freedom to bind new
objects than for a lower element. We use > as a synonym for the empty set of negative bindings, since > = {} w d
for every d. The following proposition assures us that the binding lattice is indeed a lattice and provides a meet.



2 TRACEMATCH SEMANTICS 6

Proposition 1. 〈Bind,v〉 is a complete lattice with meet operator defined as:

l

d∈D

d ,

 ⊥ if D contains ⊥ or o1, o2 with o1 6= o2 or o1, O2 with o1 ∈ O2

o if the above case does not hold and o ∈ D⋃
O∈D O otherwise

Proof. We first show that the meet as defined is the greatest lower bound of D.

Case ⊥ ∈ D: In this case, ⊥ v d by definition for all d ∈ D, and ⊥ is the only lower bound of ⊥, so ⊥ is the glb.

Case o1, o2 ∈ D with o1 6= o2: In this case, ⊥ is the only lower bound of both o1 and o2, so ⊥ is the glb.

Case o1, O2 ∈ D with o1 ∈ O2: In this case, ⊥ is the only lower bound of both o1 and O2, so ⊥ is the glb.

Case o ∈ D and none of the above cases hold: In this case, D does not contain ⊥ or any positive bindings other
than o. Thus D only contains o and negative bindings. None of the negative bindings contain o. Therefore o is
a lower bound of each negative binding. Thus o is a lower bound of D. The only elements that can be lower
bounds of a positive binding are the positive binding itself or ⊥. Since o w ⊥, o is the glb.

Case none of the above cases hold: In this case, D contains only negative bindings. Their union contains all of them
and is therefore a lower bound. Other lower bounds are other sets that contain all of them, positive bindings not
contained in any of the negative bindings in D, and ⊥. All of these are less than

⋃
O∈D O. Thus the latter is the

glb.

Since 〈Bind,v〉 has a meet for arbitrary subsets, it is a complete meet semi-lattice. Thus it is a complete lattice [11,
Theorem 2.16].

Intuitively, if d ∈ D is the current binding for a variable and we positively (resp. negatively) bind o to the same
variable, the meet d u o (resp. d u {o}) gives the updated binding for the variable. The meet is extended pointwise on
maps from F to Bind.

In the lattice-based semantics, the concrete runtime state of a tracematch is σ ⊆ Q × (F → Bind). That is, the
state is a set of pairs each containing an automaton state and a map that associates an element of Bind with each
tracematch parameter. We use State , P(Q× (F → Bind)) to denote the domain of all possible tracematch states.

We begin defining the transition function by defining a binding map analogous to e̊0(b, ρ) which specifies that the
tracematch parameters must be consistent with the objects bound in a transition element 〈a, b〉. Each parameter not
bound is mapped to > to remain unrestricted.

e+0 (b, ρ) , λf.

{
ρ(b(f)) if f ∈ dom(b)
> otherwise

For negative bindings, a similar map is defined. However, to be consistent, all tracematch parameters must be consis-
tent, while to be inconsistent, at least one parameter need be inconsistent. Thus, the negative map is > for all but one
tracematch parameter:

e−0 (b, ρ, f) , λf ′.

{
{ρ(b(f))} if f = f ′

> otherwise

At a transition statement, given a current state q and binding map m, we either transition the state along the
automaton and update the binding map positively, or we stay in the current state and update the binding map negatively:

e+[a, b, ρ](q,m) ,
{〈
q′,m u e+0 (b, ρ)

〉
: δ(q, a, q′)

}
e−[b, ρ](q,m) ,

{〈
q,m u e−0 (b, ρ, f)

〉
: f ∈ dom(b)

}
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e[{〈a, b〉}, ρ](q,m) , e+[a, b, ρ](q,m) ∪ e−[b, ρ](q,m)

When a transition statement contains multiple transition elements, we apply all the associated positive updates to
the original state independently. We only remain in the current state if none of the transitions are taken; therefore, all
of the negative updates are applied in sequence:

e[{〈a1, b1〉 · · · 〈an, bn〉}, ρ](q,m) ,

 ⋃
1≤i≤n

e+[ai, bi, ρ](q,m)

 ∪ e−[b1, ρ](· · · (e−[bn, ρ](q,m)) · · · )

The tracematch transition statement performs the above operations on each pair in the set describing the current
tracematch state, as well as on the pair 〈q0, λf.>〉 that describes the initial state:

〈tr(T ), ρ, σ〉 →
⋃

〈q,m〉∈σ∪{〈q0,λf.>〉}

e[T, ρ](q,m)

The body statement executes the tracematch body when σ contains a pair 〈q,m〉 such that q is a final state and
m(f) is not ⊥ for any f . When this happens, all such pairs are removed from the tracematch state:

〈body, ρ, σ〉 → {〈q,m〉 ∈ σ : q 6∈ Qf}

We have been careful to construct the lattice-based semantics to be equivalent to the original tracematch semantics.
The following function sσ makes this precise by defining a translation from a state σ in the lattice-based semantics to
an equivalent state σ̊ in the boolean-formula-based semantics.

sd(〈f, d〉) ,


false if d = ⊥

(f = o) if d is a positive binding o∧
o∈O ¬(f = o) if d is a negative binding O

sm(m) ,
∧
f∈F

sd(〈f,m(f)〉)

sσ(σ) ,λq.
∨

〈q,m〉∈σ

sm(m)

We have proven that the two semantics are bisimilar:

Theorem 1. The transition relations →̊ and→ are bisimilar with bisimulation relation σ̊Rσ , sσ(σ)(q) ⇐⇒ σ̊(q).
That is,

• for every σ there exists σ̊ with sσ(σ)(q) ⇐⇒ σ̊(q) such that 〈tr(T ), σ〉 → 〈σ′〉 =⇒ 〈tr(T ), σ̊〉 →̊ 〈̊σ′〉 ∧
σ̊′(q) ⇐⇒ sσ(σ′)(q), and conversely,

• for every σ̊ there exists σ with sσ(σ)(q) ⇐⇒ σ̊(q) such that 〈tr(T ), σ̊〉 → 〈̊σ′〉 =⇒ 〈tr(T ), σ〉 →
〈σ′〉 ∧ σ̊′(q) ⇐⇒ sσ(σ′)(q).

The following lemmas are needed to prove the theorem.

Lemma 1.
sd(〈f, d1 u d2〉) = sd(〈f, d1〉) ∧ sd(〈f, d2〉)

Proof. Using case analysis on d1 and d2.
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Case d1 = ⊥ or d2 = ⊥: Then sd(〈f, d1 u d2〉) = sd(〈f,⊥〉) = false. On the other side, sd(〈f, d1〉) = false or
sd(〈f, d2〉 = false, so their conjunction is false.

Case d1 = d2 = o: Then sd(〈f, d1 u d2〉) = sd(〈f, o〉) = sd(〈f, o〉) ∧ sd(〈f, o〉) = sd(〈f, d1〉) ∧ sd(〈f, d2〉).

Case d1 = o1 and d2 = o2 where o1 6= o2: Then sd(〈f, d1 u d2〉) = sd(〈f,⊥〉) = false. On the other side, sd(〈f, d1〉)∧
sd(〈f, d2〉) = (f = o1) ∧ (f = o2) = false since o1 6= o2.

Case d1 = O1 and d2 = o2 where o2 ∈ O1: Then sd(〈f, d1 u d2〉) = sd(〈f,⊥〉) = false. On the other side, sd(〈f, d1〉)∧
sd(〈f, d2〉) =

∧
o∈O1

¬(f = o)∧ (f = o2) =
∧
o∈O1

¬(f = o)∧¬(f = o2)∧ (f = o2) = false since o2 ∈ O1.

Case d1 = O1 and d2 = o2 where o2 6∈ O1: Then sd(〈f, d1 u d2〉) = sd(〈f, o2〉) = (f = o2). On the other side,
sd(〈f, d1〉) ∧ sd(〈f, d2〉) =

∧
o∈O1

¬(f = o) ∧ (f = o2) = (f = o2) since (f = o2) =⇒ ¬(f = o) for all
o 6= o2, and o2 6∈ O1.

Case d1 = O1 and d2 = O2: Then sd(〈f, d1 u d2〉) = sd(〈f,O1 ∪O2〉) =∧
o∈O1∪O2

¬(f = o). On the other side, sd(〈f, d1〉) ∧ sd(〈f, d2〉) =∧
o∈O1

¬(f = o) ∧
∧
o∈O2

¬(f = o) =
∧
o∈O1∪O2

¬(f = o).

Lemma 2.
sm(m1 um2) = sm(m1) ∧ sm(m2)

Proof.

sm(m1 um2) =
∧
f∈F

sd(〈f, (m1 um2)(f)〉) definition of sm

=
∧
f∈F

sd(〈f,m1(f) um2(f)〉) definition of uF→Bind

=
∧
f∈F

sd(〈f,m1(f)〉) ∧ sd(〈f,m2(f)〉) Lemma 1

=
∧
f∈F

sd(〈f,m1(f)〉) ∧
∧
f∈F

sd(〈f,m2(f)〉)

= sm(m1) ∧ sm(m2) definition of sm

Lemma 3.
sm(e+(b, ρ)) = e̊0(b, ρ)
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Proof.

sm(e+(b, ρ)) =
∧
f∈F

sd(〈f, e+(b, ρ)(f)〉) definition of sm

=
∧

f∈dom(b)

sd(〈f, ρ(b(f))〉) ∧
∧

f /∈dom(b)

sd

(〈
f, ∅
〉)

definition of e+

=
∧

f∈dom(b)

f = ρ(b(f)) ∧
∧

f /∈dom(b)

∧
o∈∅

¬(f = o) definition of sd

= e̊0(b, ρ) ∧ true empty conjunction
= e̊0(b, ρ)

Lemma 4. ∨
f∈dom(b)

sm(e−(b, ρ, f)) = ¬e̊0(b, ρ)

Proof. ∨
f∈dom(b)

sm(e−(b, ρ, f)) =
∨

f∈dom(b)

∧
f ′∈F

sd(〈f ′, e−(b, ρ, f ′)(f ′)〉)

=
∨

f∈dom(b)

sd (〈f, ρ(b(f))
〉)
∧

∧
f ′∈{F\f}

sd

(〈
f ′, ∅

〉)
=

∨
f∈dom(b)

¬(f = ρ(b(f))) ∧
∧

f ′∈{F\f}

∧
o∈∅

¬(f ′ = o)


=

∨
f∈dom(b)

¬(f = ρ(b(f)))

= ¬
∧

f∈dom(b)

(f = ρ(b(f)))

= ¬e̊0(b, ρ)

Lemma 5. For all q ∈ Q, ∨
〈q,m〉∈e−[bn,ρ](···(e−[b1,ρ](σ))··· )

sm(m) = sσ(σ)(q) ∧
∧

1≤i≤n

¬e̊0(bi, ρ)

Proof. We use induction on n. In the base case, n = 0, so the right-hand side is
∨
〈q,m〉∈σ sm(m) and the left-hand

side is sσ(σ)(q) ∧ true. These are equal by the definition of sσ .
For the inductive case, let σ′ = e−[b(n−1), ρ](· · · (e−[b1, ρ](σ)) · · · ). We will show that if∨

〈q,m〉∈σ′
sm(m) = sσ(σ)(q) ∧

∧
1≤i≤n−1

¬e̊0(bi, ρ)

then ∨
〈q,m〉∈e−[bn,ρ](σ′)

sm(m) = sσ(σ)(q) ∧
∧

1≤i≤n

¬e̊0(bi, ρ)
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Case dom(bn) = ∅: In this case, e−[bn, ρ](σ′) = ∅, so
∨
〈q,m〉∈e−[bn,ρ](σ′)

sm(m) = false, and ¬e̊0(bn, ρ) =
¬true = false, so the right-hand side is also false.

Case 6 ∃ 〈q,m〉 ∈ σ′: In this case, e−[bn, ρ](σ′) = ∅, so
∨
〈q,m〉∈e−[bn,ρ](σ′)

sm(m) = false, and sσ(σ′)(q) = false,
so the right-hand side is also false.

Case dom(bn) 6= ∅ and ∃ 〈q,m〉 ∈ σ′:∨
〈q,m〉∈e−[bn,ρ](σ′)

sm(m)

=
∨

〈q,m〉∈σ′

∨
f∈dom(bn)

sm(m u e−(bn, ρ, f))

=
∨

〈q,m〉∈σ′

∨
f∈dom(bn)

sm(m[f 7→ m(f) u {ρ(bn(f))}])

=
∨

〈q,m〉∈σ′

∨
f∈dom(bn)

∧
f ′∈F

sd

(〈
f ′,m[f 7→ m(f) u {ρ(bn(f))}](f ′)

〉)

=
∨

〈q,m〉∈σ′

∨
f∈dom(bn)

sd (〈f,m(f) u {ρ(bn(f))}
〉)
∧

∧
f ′∈F\{f}

sd (〈f ′,m(f ′)〉)


=

∨
〈q,m〉∈σ′

∨
f∈dom(bn)

sd (〈f,m(f)〉) ∧ sd
(〈
f, {ρ(bn(f))}

〉)
∧

∧
f ′∈F\{f}

sd (〈f ′,m(f ′)〉)


=

∨
〈q,m〉∈σ′

∨
f∈dom(bn)

sd (〈f, ρ(bn(f))
〉)
∧
∧
f ′∈F

sd (〈f ′,m(f ′)〉)


=

∨
〈q,m〉∈σ′

∨
f∈dom(bn)

¬(f = ρ(bn(f))) ∧ sm (m)

=

 ∨
〈q,m〉∈σ′

∨
f∈dom(bn)

¬(f = ρ(bn(f)))

 ∧
 ∨
〈q,m〉∈σ′

∨
f∈dom(bn)

sm (m)


=

¬ ∧
f∈dom(bn)

(f = ρ(bn(f)))

 ∧
 ∨
〈q,m〉∈σ′

sm (m)


=¬e̊0(bn, ρ) ∧ sσ(σ)(q) ∧

∧
1≤i≤n−1

¬e̊0(bi, ρ)

=sσ(σ)(q) ∧
∧

1≤i≤n

¬e̊0(bi, ρ)

Lemma 6. Every tracematch state in the original semantics has an equivalent in the lattice-based semantics. Formally,
for every σ̊ ∈ Q→ S, there exists a σ ∈ State such that for all q ∈ Q, σ̊(q) ⇐⇒ sσ(σ)(q).

Proof. Let σ̊(q) be an arbitrary boolean formula. It has an equivalent formula in disjunctive normal form as a disjunc-
tion of conjunctions of literals of the forms (f = o) and ¬(f = o). Simplify the DNF formula using the following
identities:
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• Replace (f = o1) ∧ (f = o2) with false if o1 6= o2.

• Replace (f = o) ∧ ¬(f = o) with false.

• Replace (f = o1) ∧ ¬(f = o2) with just (f = o1) if o1 6= o2.

• Remove true from any conjunction in which it appears.

• Eliminate any conjunctions containing false.

Then each resulting conjunction contains, for each f ∈ F , either a single literal (f = o), or a set of literals ¬(f = o).
In the former case define m(f) , o. In the latter case define m(f) , {o : ¬(f = o) is a literal in the conjunction}.
Then sm(m) is exactly the conjunction. Define sσ as the set of all pairs 〈q,m〉 such that sm(m) is a conjunction in
the formula normalized from σ̊(q). Then sσ(σ)(q) ⇐⇒ σ̊(q) for all q as required.

Having proved the lemmas, we now give a proof of Theorem 1.

Proof of Theorem 1. For every σ we can define σ̊ , sσ(σ), and this definition ensures that σ̊(q) ⇐⇒ sσ(σ)(q).
Conversely, for every σ̊, Lemma 6 constructs a σ such that the same property holds. It remains to show that if the
property holds and 〈tr(T ), σ〉 → 〈σ′〉 and 〈tr(T ), σ̊〉 →̊ 〈̊σ′〉, then σ̊′ = sσ(σ′).

σ̊′ = λq.

0@ _
a,j:δ(j,a,q)

(̊σ[q0 7→ true](j) ∧ e̊(a, {〈a1, b1〉 · · · 〈an, bn〉}, ρ))

1A ∨ σ̊[q0 7→ true](q) ∧
^
a∈A

¬e̊(a, {〈a1, b1〉 · · · 〈an, bn〉}, ρ)

!

= λq.

0@ _
a,j:δ(j,a,q)

 
sσ(σ ∪ {〈q0, λf.>〉})(j) ∧

_
i:ai=a

e̊0(bi, ρ)

!1A ∨
0@sσ(σ ∪ {〈q0, λf.>〉})(q) ∧

^
1≤i≤n

¬e̊0(bi, ρ)

1A
= λq.

0@ _
a,j:δ(j,a,q)

0@ _
〈q,m〉∈σ∪{〈q0,λf.>〉}

sm(m) ∧
_

i:ai=a

sm(e+(bi, ρ))

1A1A ∨
0@ _
〈q,m〉∈e−[bn,ρ](···(e−[b1,ρ](σ∪{〈q0,λf.>〉}))··· )

sm(m)

1A
= λq.

0@ _
a,j:δ(j,a,q)

_
〈q,m〉∈σ∪{〈q0,λf.>〉}

_
i:ai=a

(sm(m) ∧ sm(e+(bi, ρ)))

1A ∨
0@ _
〈q,m〉∈e−[bn,ρ](···(e−[b1,ρ](σ∪{〈q0,λf.>〉}))··· )

sm(m)

1A
= λq.

0@ _
1≤i≤n

_
j:δ(j,ai,q)

_
〈q,m〉∈σ∪{〈q0,λf.>〉}

sm(m u e+(bi, ρ))

1A ∨
0@ _
〈q,m〉∈e−[bn,ρ](···(e−[b1,ρ](σ∪{〈q0,λf.>〉}))··· )

sm(m)

1A
= λq.

0@ _
1≤i≤n

_
〈q,m〉∈e+[ai,bi,ρ](σ∪{〈q0,λf.>〉})

sm(m)

1A ∨
0@ _
〈q,m〉∈e−[bn,ρ](···(e−[b1,ρ](σ∪{〈q0,λf.>〉}))··· )

sm(m)

1A
= λq.

0@ _
1≤i≤n

_
〈q,m〉∈e+[ai,bi,ρ](σ∪{〈q0,λf.>〉})

sm(m)

1A ∨
0@ _
〈q,m〉∈e−[bn,ρ](···(e−[b1,ρ](σ∪{〈q0,λf.>〉}))··· )

sm(m)

1A
= λq.

_
〈q,m〉∈(

S
1≤i≤n e+[ai,bi,ρ](σ∪{〈q0,λf.>〉}))∪e−[b1,ρ](···(e−[bn,ρ](σ∪{〈q0,λf.>〉}))··· )

sm(m)

= sσ

0@0@ [
1≤i≤n

e+[ai, bi, ρ](σ ∪ {〈q0, λf.>〉})

1A ∪ e−[b1, ρ](· · · (e−[bn, ρ](σ ∪ {〈q0, λf.>〉})) · · · )

1A
= sσ(σ′)
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2.3 Full Intermediate Representation
So far, we have considered only the two statements that directly affect the tracematch state, tr(T ) and body. We now
extend the intermediate representation (IR) with the instructions necessary to express other interesting operations that
occur in Java programs. The full set of instructions in the intraprocedural IR is:
s ::= v1 ← v2 | v ← e | e← v | v ← new | v ← null | tr(T ) | body

In the instructions, v represents a local variable and e represents any expression accessing the heap, such as an
access of a field or array element. In many similar analyses, different accesses to the heap are distinguished and
the analysis reasons about the heap. We do not do this for two reasons. First, our focus is on the tracematch analysis
rather than analysis of the object abstraction, which has been thoroughly studied in previous work. More precise object
abstractions from previous work could be substituted. Second, as long as the program maintains some reference from a
local variable to the object being tracked, that reference gives the analysis the most precise information possible about
the identity of the object, because unlike heap locations, local variables cannot be aliased. Therefore, a tracematch
analysis should model references from local variables as precisely as possible (including interprocedurally and context-
sensitively), since local variables are the most likely source of precise information. Although information about heap
references (such as the reference counts of [10] or the access paths of [15]) can be added to the analysis, our focus is
on taking full advantage of the information available from local variables.

To the operational semantics, we add a set h containing all objects referenced from the heap. The instructions tr(T )
and body defined earlier do not change the environment ρ or the heap h. The operational semantics of the remaining
instructions is unsurprising, except that the effect of the load instruction v ← e is non-deterministic, because we do
not know which specific object from h is loaded:

〈v1 ← v2, ρ, h, σ〉 → 〈ρ[v1 7→ ρ(v2)], h, σ〉
〈v ← e, ρ, h, σ〉 → 〈ρ[v 7→ o], h, σ〉 for every o ∈ h
〈e← v, ρ, h, σ〉 → 〈ρ, h ∪ {ρ(v)}, σ〉

〈v ← new, ρ, h, σ〉 → 〈ρ[v 7→ o], h, σ〉 with o fresh
〈v ← null, ρ, h, σ〉 → 〈ρ[v 7→ ⊥], h, σ〉

3 Static Abstraction
The static analysis is presented in two parts. We first define the object abstraction, then the abstraction of tracematch
states.

3.1 Object Abstraction
The object abstraction represents an object by the set of local variables pointing to them. This is the same abstraction
as the nodes in Sagiv et al.’s shape analysis [26]. However, the tracematch object abstraction is simpler than the shape
analysis because it tracks only the nodes, not the pointer edges between objects. We define Obj] , P(Var) as the set
of all sets of variables. The function βo[ρ] : Obj→ Obj] gives for each concrete object o its abstract counterpart, the
set of variables pointing to it:

βo[ρ](o) , {v ∈ Var : ρ(v) = o}

The set of variables in the abstraction of each object is exact; it is neither a may-point-to nor a must-point-to
approximation. In addition, every abstract object except the empty set ∅ represents at most one concrete object at
any given point of execution, since a given variable only points to one object at a time. This enables very precise
flow-sensitive analysis including strong updates.
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JsKo](o]) ,


o] ∪ {v1} if s = v1 ← v2 ∧ v2 ∈ o]
o] \ {v1} if s = v1 ← v2 ∧ v2 6∈ o]
o] \ {v} if s ∈ {v ← null, v ← new}
o] if s ∈ {e← v, tr(T ),body}

undefined if s = v ← e

focus[h]](v, o]) ,

{ {
o] \ {v}

}
if o] 6∈ h]{

o] \ {v}, o] ∪ {v}
}

if o] ∈ h]

JsKO] [h]](O]) ,

{ {
JsKo](o]) : o] ∈ O]

}
if s 6= v ← e⋃

o]∈O] focus[h]](v, o]) if s = v ← e

JsKρ](ρ], h]) ,

{
JsKO] [h]](ρ]) ∪ {{v}} if s = v ← new

JsKO] [h]](ρ]) otherwise

JsKh](ρ], h]) , JsKO] [h]]
({

h] ∪ {o] ∈ ρ] : v ∈ o]} if s = e← v
h] otherwise

)
JsKρh](ρ], h]) ,

〈
JsKρ](ρ], h]), JsKh](ρ], h])

〉
Figure 2: Transfer function for the object abstraction

The analysis computes for each program point a set containing all abstract objects for which a concrete object
may exist. Because the objects are represented by the local variables pointing to them, the set can be thought of as an
abstraction of the concrete environment ρ. The abstraction function βρ : Env×P(Var)→ P(Obj]) for environments
is defined as:

βρ(ρ, h) , {βo[ρ](o) : o ∈ range(ρ) ∪ h \ {⊥}}
The set captures both may-alias and must-alias relationships between local variables. If variables x and y point

to distinct objects, βρ(ρ, h) will not contain any set containing both x and y. If variables x and y point to the same
object, every set in βρ(ρ, h) will contain either both x and y, or neither of them.

In addition to the sets of variables, the abstraction also tracks a subset h] ⊆ Obj] of nodes that represent objects
that may be pointed to from the heap, rather than only from local variables. The heap abstraction is defined by:

βh(ρ, h) , {βo[ρ](o) : o ∈ h}

Finally, we combine βρ and βh into a single abstraction function βρh(ρ, h) , 〈βρ(ρ, h), βh(ρ, h)〉. On the com-

bined abstraction, we define the partial order
〈
ρ]1, h

]
1

〉
v
〈
ρ]2, h

]
2

〉
if ρ]1 ⊆ ρ]2 ∧ h

]
1 ⊆ h]2, which induces a join

operator
〈
ρ]1, h

]
1

〉
t
〈
ρ]2, h

]
2

〉
,
〈
ρ]1 ∪ ρ

]
2, h

]
1 ∪ h

]
2

〉
. The property that ρ] ⊇ h] is always maintained.

The transfer function JsKρh] on this combined abstraction is defined in Figure 2 in terms of several helper functions.
The core helper function is JsKo] , which models the effect of each instruction on the objects represented by an abstract
object o]. For statements that write to local variables, o] is updated to contain the new set of variables pointing to
the object. When the analysis encounters a heap load instruction, it is uncertain whether the object being loaded is
represented by o] and whether the destination variable v should therefore be added to o]. Thus, we leave Jv ← eKo]

undefined. For all other statements, however, JsKo] gives the exact new abstraction of every object. This property is
key to tracking the flow of individual objects (as mentioned in the introduction) and is used again in the tracematch
state abstraction. Formally:

Proposition 2. If s is any statement except v ← e, and 〈s, ρ, h, σ〉 → 〈ρ′, h′, σ′〉, then for any concrete object o that
exists prior to the execution of s,

JsKo](βo[ρ](o)) = βo[ρ′](o)
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Proof. Case s = v1 ← v2 and ρ(v2) = o:

βo[ρ′](o) = βo[ρ[v1 7→ ρ(v2)]](o)
= βo[ρ[v1 7→ o]](o)
= {v : ρ[v1 7→ o](v) = o}
= {v : ρ(v) = o} ∪ {v1}
= βo[ρ](o) ∪ {v1}

JsKo](βo[ρ](o)) = βo[ρ](o) ∪ {v1} since v2 ∈ βo[ρ](o)

Case s = v1 ← v2 and ρ(v2) 6= o:

βo[ρ′](o) = βo[ρ[v1 7→ ρ(v2)]](o)
= βo[ρ[v1 7→ o′ : o 6= o′]](o)
= {v : ρ(v) = o} \ {v1}
= βo[ρ](o) \ {v1}

JsKo](βo[ρ](o)) = βo[ρ](o) \ {v1} since v2 6∈ βo[ρ](o)

Case s = v ← null:

βo[ρ′](o) = βo[ρ[v 7→ ⊥]](o)
= {v′ : ρ(v′) = o} \ {v}
= βo[ρ](o) \ {v}
= JsKo](βo[ρ](o))

Case v ← new:

βo[ρ′](o) = βo[ρ[v 7→ o′]](o) with o′ fresh
= {v′ : ρ(v′) = o} \ {v} since o 6= o′

= βo[ρ](o) \ {v}
= JsKo](βo[ρ](o))

Case s ∈ {e← v, tr(T ),body}: For these statements, ρ′ = ρ and JsKo] is the identity. Thus JsKo](βo[ρ](o)) =
βo[ρ](o) = βo[ρ′](o).

To precisely handle the uncertainty in heap loads we use the materialization or focus operation from [10,15,20,26].
The abstract object o] is split into two, one representing the single concrete object that may have been loaded, and the
other representing all other objects previously represented by o]. This is done only if o] ∈ h] (i.e. if o] may represent
an object referenced from the heap). Focus is important to regain the precision lost when an object is referenced
only from the heap, in which case the analysis lumps it together with all other such objects. However, in order for
a tracematch operation to be performed on the object, it must first be loaded into a variable, at which point focus
separates it from the other objects. If multiple tracematch operations are performed on it, this uniqueness is necessary
to guarantee that the operations are performed on the same concrete object.
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Two additional special cases are handled. For an allocation instruction, a new abstract object containing only
the destination variable v is created and added to ρ]. For a heap store instruction, all abstract objects containing the
variable v being written are added to h], the set of abstract objects that may be reachable from the heap.

On the object abstraction, we define the correctness relation 〈ρ, h〉Rρh
〈
ρ], h]

〉
if βρh(ρ, h) v

〈
ρ], h]

〉
. The

transfer function preserves the correctness relation:

Theorem 2. If 〈s, ρ, h, σ〉 → 〈ρ′, h′, σ′〉 and 〈ρ, h〉Rρh
〈
ρ], h]

〉
, then 〈ρ′, h′〉Rρh JsKρh](ρ], h]).

The following lemma is needed to prove the theorem.

Lemma 7. If s is any statement except v ← new, and 〈s, ρ, h, σ〉 → 〈ρ′, h′, σ′〉, then range(ρ) ∪ h \ {⊥} ⊇
range(ρ′) ∪ h′ \ {⊥}.

Proof. Since x ⊇ x′ implies x \ {⊥} ⊇ x′ \ {⊥} for any x, x′, for all but the last case, we show that range(ρ) ∪ h ⊇
range(ρ′) ∪ h′.

Case s = v1 ← v2: range(ρ′) = range(ρ[v1 7→ ρ(v2)]) ⊆ range(ρ). Also, h′ = h. Thus range(ρ) ∪ h ⊇ range(ρ′) ∪
h′.

Case s = v ← e: range(ρ′) = range(ρ[v 7→ o]) for some o ∈ h. Thus range(ρ′) ∪ h′ = range(ρ[v 7→ o]) ∪ h ⊆
range(ρ) ∪ h since o ∈ h.

Case s = e← v: range(ρ′) ∪ h′ = range(ρ) ∪ h ∪ {ρ(v)} = range(ρ) ∪ h.

Case s ∈ {body, tr(T )}: Since ρ′ = ρ and h′ = h, range(ρ′) ∪ h′ = range(ρ) ∪ h.

Case s = v ← null: range(ρ′) = range(ρ[v 7→ ⊥]) ⊆ range(ρ)∪{⊥}. Since h = h′, this implies that range(ρ)∪h \
{⊥} ⊇ range(ρ′) ∪ h′ \ {⊥}.

Proof of Theorem 2. We first prove the theorem for the special case when
〈
ρ], h]

〉
= βρh(ρ, h).

By the definitions of Rρh and v, the conclusion of the theorem is equivalent to βρ(ρ′, h′) ⊆ JsKρ](ρ], h]) ∧
βh(ρ′, h′) ⊆ JsKh](ρ], h]). We first prove βρ(ρ′, h′) ⊆ JsKρ](ρ], h]).

Case s ∈ {v1 ← v2, v ← null, e← v}:

JsKρ](ρ], h]) = JsKO] [h]](ρ])

= {JsKo](o]) : o] ∈ ρ]}
= {JsKo](βo[ρ](o)) : o ∈ h ∪ range(ρ) \ {⊥}}
⊇ {JsKo](βo[ρ](o)) : o ∈ h′ ∪ range(ρ′) \ {⊥}} (Using Lemma 7)
= {βo[ρ′](o) : o ∈ h′ ∪ range(ρ′) \ {⊥}} (Using Proposition 2)
= βρ(ρ′, h′)

Case s = v ← new: Let o′ be the newly created object. Since h′ = h and ρ′ = ρ[v 7→ o′], range(ρ) ∪ {o′} ∪ h ⊇
range(ρ′) ∪ h′.
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JsKρ](ρ], h]) = JsKO] [h]](ρ]) ∪ {v}
= {JsKo](o]) : o] ∈ ρ]} ∪ {v}
= {JsKo](βo[ρ](o)) : o ∈ h ∪ range(ρ) \ {⊥}} ∪ {v}
= {βo[ρ′](o) : o ∈ h ∪ range(ρ) \ {⊥}} ∪ {v} Proposition 2
= {βo[ρ′](o) : o ∈ h ∪ range(ρ) \ {⊥} ∪ o′} since {v} = βo[ρ′](o′)
⊇ {βo[ρ′](o) : o ∈ h′ ∪ range(ρ′) \ {⊥}}
= βρ(ρ′, h′)

Case s = v ← e: Let o′ ∈ h be the object such that ρ′ = ρ[v 7→ o′] (the object being loaded).

JsKρ](ρ], h]) = JsKO] [h]](ρ])

=
⋃
o]∈ρ]

focus[h]](o])

=
⋃

o∈h∪range(ρ)\{⊥}

focus[h]](βo[ρ](o))

=
⋃

o∈range(ρ)\{⊥}\h

focus[h]](βo[ρ](o)) ∪
⋃

o∈h\{⊥}

focus[h]](βo[ρ](o))

= {βo[ρ](o) \ {v} : o ∈ range(ρ) \ {⊥} \ h} ∪
⋃

o∈h\{⊥}

{βo[ρ](o) \ {v}, βo[ρ](o) ∪ {v}}

⊇ {βo[ρ[v 7→ o′]](o) : o ∈ range(ρ) \ {⊥} \ h} ∪
⋃

o∈h\{⊥}

{βo[ρ[v 7→ o′]](o)}

= {βo[ρ′](o) : o ∈ range(ρ) ∪ h \ {⊥}}
⊇ {βo[ρ′](o) : o ∈ range(ρ′) ∪ h′ \ {⊥}}
= βρ(ρ′, h′)

Case s ∈ {tr(T ),body}: In this case, ρ′ = ρ, h′ = h, thus JsKρ](ρ], h]) = ρ] = βρ(ρ′, h′).

Next we prove βh(ρ′, h′) ⊆ JsKh](ρ], h]).

Case s ∈ {v1 ← v2, v ← null, v ← new}:

JsKh](ρ], βh(ρ, h)) = JsKh](ρ], h])
= JsKO] [h]](h])
= {JsKo](o]) : o] ∈ h]}
= {JsKo](βo[ρ](o)) : o ∈ h}
= {JsKo](βo[ρ](o)) : o ∈ h′} (Since h = h′)
= {βo[ρ′](o) : o ∈ h′}(Using Proposition 2)
= βh(ρ′, h′)
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Case s = e← v:

JsKh](ρ], h]) = JsKO] [h]](h] ∪ {o] ∈ ρ] : v ∈ o]})
= {JsKo](o]) : o] ∈ h] ∪ {o] ∈ ρ] : v ∈ o]}}
= {JsKo](o]) : o] ∈ h]} ∪ {JsKo](o]) : o] ∈ ρ] ∧ v ∈ o]}
= {JsKo](βo[ρ](o)) : o ∈ h} ∪ {o] ∈ ρ] : v ∈ o]}
= {βo[ρ](o) : o ∈ h} ∪ {βo[ρ](ρ(v))}
= {βo[ρ](o) : o ∈ h ∪ {ρ(v)}}
= {βo[ρ′](o) : o ∈ h′}
= βh(ρ′, h′)

Case s = v ← e: Let o′ ∈ h be the object such that ρ′ = ρ[v 7→ o′] (the object being loaded).

JsKh](ρ], h]) = JsKO] [h]](h])

=
⋃
o]∈h]

focus[h]](o])

=
⋃
o]∈h]

{o] \ {v}, o] ∪ {v}}

=
⋃
o∈h

{βo[ρ](o) \ {v}, βo[ρ](o) ∪ {v}}

⊇
⋃
o∈h

{βo[ρ[v 7→ o′]](o)}

= {βo[ρ′](o) : o ∈ h}
= βh(ρ′, h)
= βh(ρ′, h′)

Case s ∈ {tr(T ),body}: In this case, ρ′ = ρ, h′ = h, thus JsKh](ρ], h]) = h] = βh(ρ′, h′).

This completes the proof for the special case when
〈
ρ], h]

〉
= βρh(ρ, h). In general,

〈
ρ], h]

〉
w βρh(ρ, h). Since

JsKρh] is monotone, JsKρh](ρ], h]) w JsKρh](βρh(ρ, h)), which we just proved is greater than βρh(ρ′, h′). Thus, the
theorem holds in the general case.

3.2 Tracematch Abstraction
We next define an abstraction of the tracematch state. An obvious abstraction would be to simply reuse the concrete
state domain State, but replace each concrete object o in Bind with its abstract counterpart βo(o). Proposition 2
would guarantee that an object bound by the tracematch would be correctly propagated if we reused JsKo] within the
tracematch abstraction. We experimented with this abstraction but it did not scale. When an object is referenced
from the heap, the focus operation splits it into two abstract objects. When the abstract object is part of an abstract
tracematch state, focusing the object requires the abstract tracematch state to be split. Doing this many times resulted
in excessive numbers of abstract tracematch states. In fact, there is little benefit to maintaining the precision provided
by the focus operation once the object has been bound in a tracematch state. The benefit of the focus operation is that
it singles out one object, so that if a sequence of operations is performed, we can be sure that they are performed on
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the same concrete object. Thus, focus is needed for precise must-alias information at the transition statement where an
object is bound. However, once an object is bound, focusing it simply causes both resulting objects to appear in two
separate tracematch states, and does not improve precision of the tracematch abstraction.

Therefore, to abstract the binding lattice, we replace the precise set of exactly the variables pointing to the object
with an under- and over-approximation:

Bind] , {⊥} ]
{〈
o!, o?

〉
∈ P(Var)2 : o! ⊆ o?

}
] P(Var)

As a result, when we do not know whether a variable points to some object, instead of requiring two precise abstract
objects, we need only one in which the variable appears in the may set o? but not the must set o!. Informally, a positive
binding

〈
o!, o?

〉
represents an object o for which o! ⊆ βo(o) ⊆ o?. A negative binding V ] represents a set O of

negatively bound objects for which V ] ⊆
⋃
o∈O βo(o). The function βd is defined as the most precise abstraction of

an element of the concrete binding lattice:

βd[ρ](d) ,


⊥ if d = ⊥

〈βo[ρ](o), βo[ρ](o)〉 if d is a positive binding o ∈ Obj⋃
o∈O βo[ρ](o) if d is a negative binding O ⊆ Obj

We extend βd pointwise to maps F → Bind] and to the overall tracematch state State] , P
(
Q×

(
F → Bind]

))
as follows:

βm[ρ](m) ,λf.βd[ρ](m(f))

βσ[ρ](σ) ,{〈q, βm[ρ](m)〉 : 〈q,m〉 ∈ σ}

A partial order on Bind], coinciding with the partial order on Bind, is defined as the reflexive transitive closure of
the following rules: ⊥ v x for any x; V ]1 v V ]2 if V ]1 ⊇ V ]2 ;

〈
o!, o?

〉
v V ] if o! ∩ V ] = ∅; and

〈
o!1, o

?
1

〉
v
〈
o!2, o

?
2

〉
if

o!1 ⊇ o!2 and o?1 ⊆ o?2.
The following propositions ensure that Bind] is a lattice and that the abstraction function βd preserves the partial

order from Bind in Bind].

Proposition 3.
〈

Bind],v
〉

is a finite lattice with meet operator defined as:

⊥ u x = x u ⊥ ,⊥ for any x〈
o!1, o

?
2

〉
u
〈
o!2, o

?
2

〉
,pos(o!1 ∪ o!2, o?1 ∩ o?2)〈

o!, o?
〉
u V ] = V ] u

〈
o!, o?

〉
,pos(o!, o? \ V ])

V ]1 u V
]
2 ,V ]1 ∪ V

]
2

where pos
(
o!, o?

)
,

{ 〈
o!, o?

〉
if o! ⊆ o?

⊥ otherwise

Proof. Bind] is finite by construction because Var is finite.
The bottom element ⊥ is a lower bound of every element, and is the only lower bound of itself. Therefore, it is the

glb of any pair containing ⊥.
A lower bound of two positive bindings d]1, d

]
2 can be either ⊥ or a positive binding whose must set is a superset

of their must sets and whose may set is a subset of their may sets. Of the positive bindings, the one whose must set is
the union of the must sets of d]1 and d]2 and whose may set is the intersection is greater than all others. It is also greater
than ⊥, so it is the glb. However, every positive binding must respect the restriction o! ⊆ o?. When this restriction
cannot be respected the only and therefore greatest lower bound is ⊥.
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The case of a meet of a positive binding and a negative binding is similar. Any lower bound must be either ⊥ or
a positive binding whose must set is a superset of the original must set, and whose may set is a subset of the original
may set but disjoint from the negative binding. The positive binding

〈
o!, o? \ V ]

〉
satisfies these restrictions and is

greater than all other positive bindings that do. It is also greater than ⊥. Thus it is the glb. However, when it does not
respect the subset restriction on positive bindings, only ⊥ is a lower bound and is therefore the glb.

The meet of two negative bindings, if it is a negative binding, must be a superset of both. Their union is greater
than any other such negative binding, and it is greater than any positive binding and ⊥, so it is the glb.

Since Bind] is finite, it is a complete meet semi-lattice. Therefore it is a complete, finite lattice.

Proposition 4. The abstraction function βd[ρ] is monotone. That is, d1 v d2 =⇒ βd[ρ](d1) v βd[ρ](d2).

Proof. For conciseness, define d]1 , βd[ρ](d1) and d]2 , βd[ρ](d2).
When d1 = ⊥, d]1 is also ⊥, so the conclusion holds.
When d1 is a positive binding o1, d2 is either also o1 or a negative binding O2 with o1 6∈ O2. In the former case,

the conclusion holds trivially. In the latter case, since o1 6∈ O2, none of the variables pointing to o1 point to any object
in O2. Thus βo(o1) is disjoint from every βo(o) for any o ∈ O2. Thus βd[ρ](O2) is disjoint from the must set of
βd[ρ](o1). Therefore βd[ρ](d1) v βd[ρ](d2).

When d1 is a negative binding O1, d2 can only be a negative binding O2 with O1 ⊇ O2. Therefore d]1 =⋃
o∈O1

βo(o) ⊇
⋃
o∈O2

βo(o) = d]2, so d]1 v d
]
2.

A correctness relation relating concrete and abstract binding lattice elements is defined in terms of the partial order,
and is extended pointwise to maps F → Bind] and the overall abstract tracematch state State]:

d Rd[ρ] d] if βd[ρ](d) v d]

〈q,m〉 Rm[ρ]
〈
q,m]

〉
if ∀f ∈ F.m(f) Rd[ρ] m](f)

σ Rσ[ρ] σ] if ∀ 〈q,m〉 ∈ σ.∃
〈
q,m]

〉
∈ σ]. 〈q,m〉 Rm[ρ]

〈
q,m]

〉
Recall that a body statement completes a match only if the concrete state contains a pair 〈q,m〉 such that q is a final
state and m(f) is not ⊥ for any f . The correctness relation ensures that if this happens, the abstract state σ] must also
contain a pair

〈
q,m]

〉
satisfying the same conditions. In the absence of such a pair in the abstract state, the analysis

concludes that the body statement cannot complete a match.
The transfer function for the tracematch state abstraction for all statements except transition statements is defined

in Figure 3. The helper function JsKd] is similar to JsKo] from the object abstraction, but it updates both the must and
may sets of each abstract binding. On a heap load instruction, it introduces uncertainty into the binding instead of
focusing it. The transfer function is extended pointwise to maps of bindings and to State] by JsKm] and JsKσ] . Since
JsKd] is so similar to JsKo] , we can prove an analogue of Proposition 2 for it:

Proposition 5. If 〈s, ρ〉 → 〈ρ′〉 then d Rd[ρ] d] =⇒ d Rd[ρ′] JsKd](d]).

We use the following lemmas to prove the proposition.

Lemma 8. If o Rd[ρ] d], then d] is either a negative binding, or d] =
〈
o!, o?

〉
and o! ⊆ βo[ρ](o) ⊆ o?.

Proof. Since o Rd[ρ] d], βd[ρ](o) = 〈βo[ρ](o), βo[ρ](o)〉 v d]. Therefore d] cannot be ⊥, so it must be a negative
or positive binding. If it is a positive binding, it must be greater than 〈βo[ρ](o), βo[ρ](o)〉, which is defined to mean
o! ⊆ βo[ρ](o) ⊆ o?.

Lemma 9. If O Rd[ρ] d], then d] is a negative binding d] = V ] ⊆
⋃
o∈O βo[ρ](o).

Proof. Since O Rd[ρ] d], βd[ρ](O) =
⋃
o∈O βo[ρ](o) v d]. Only negative bindings are greater than a negative

binding, so d] must be a negative binding. Also, to be greater, d] must be a subset of
⋃
o∈O βo[ρ](o).
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JsKd](⊥) ,⊥ for all statements s

JsKd]

(〈
o!, o?

〉)
,



〈
o! ∪ {v1}, o? ∪ {v1}

〉
if s = v1 ← v2 ∧ v2 ∈ o!〈

o! \ {v1}, o? ∪ {v1}
〉

if s = v1 ← v2 ∧ v2 6∈ o! ∧ v2 ∈ o?〈
o! \ {v1}, o? \ {v1}

〉
if s = v1 ← v2 ∧ v2 6∈ o! ∧ v2 6∈ o?〈

o! \ {v}, o? \ {v}
〉

if s ∈ {v ← null, v ← new}〈
o! \ {v}, o? ∪ {v}

〉
if s = v ← e〈

o!, o?
〉

if s ∈ {e← v,body}

JsKd]

(
V ]
)

,


V ] ∪ {v1} if s = v1 ← v2 ∧ v2 ∈ V ]
V ] \ {v1} if s = v1 ← v2 ∧ v2 6∈ V ]
V ] \ {v} if s ∈ {v ← null, v ← new, v ← e}
V ] if s ∈ {e← v,body}

JsKm](q,m]) ,
{〈
q, λf.JsKd](m](f))

〉}
JsKσ](σ]) ,

⋃
〈q,m]〉∈σ]∪{〈q0,λf.>〉}

JsKm](q,m])

Figure 3: Transfer functions for the tracematch state abstraction for s 6= tr(T )

Proof of Proposition 5. Case d = ⊥: Then βd[ρ](d) = ⊥ v JsKd](d]), so Rd[ρ′] JsKd](d]).

Case d is a positive binding o: By Lemma 8, d] is either a negative binding or
〈
o!, o?

〉
. If d] is a negative binding,

then so is JsKd](d]), so since βd[ρ](d) is less than any negative binding, d Rd[ρ′] JsKd](d]). Thus, the remaining
case is when d] =

〈
o!, o?

〉
. By Lemma 8, o! ⊆ βo[ρ](o])o?.

Subcase s = v1 ← v2 ∧ v2 ∈ o! :

Since v2 ∈ o! this means v2 ∈ βo[ρ](o) and v2 ∈ o?.

o Rd[ρ]
〈
o!, o?

〉
=⇒ o! ⊆ βo[ρ](o) ⊆ o?

=⇒ o! ∪ {v1} ⊆ βo[ρ](o) ∪ {v1} ⊆ o? ∪ {v1}
=⇒ o! ∪ {v1} ⊆ JsKo](βo[ρ](o)) ⊆ o? ∪ {v1} definition of JsKo] when v2 ∈ βo[ρ](o)

=⇒ o! ∪ {v1} ⊆ βo[ρ′](o) ⊆ o? ∪ {v1} Proposition 2

=⇒ o Rd[ρ′]
〈
o! ∪ {v}, o? ∪ {v}

〉
definition of Rd[ρ]

=⇒ o Rd[ρ′] JsKd](
〈
o!, o?

〉
) definition of JsKd]

Subcase s = v1 ← v2 ∧ v2 6∈ o! ∧ v2 ∈ o? :

o Rd[ρ]
〈
o!, o?

〉
=⇒ o! ⊆ βo[ρ](o) ⊆ o?

=⇒ o! \ {v1} ⊆ βo[ρ](o) \ {v1} ⊆ βo[ρ](o) ∪ {v1} ⊆ o? ∪ {v1}
=⇒ o! ∪ {v1} ⊆ JsKo](βo[ρ](o)) ⊆ o? ∪ {v1} definition of JsKo]

=⇒ o! ∪ {v1} ⊆ βo[ρ′](o) ⊆ o? ∪ {v1} Proposition 2

=⇒ o Rd[ρ′]
〈
o! ∪ {v}, o? ∪ {v}

〉
definition of Rd[ρ]

=⇒ o Rd[ρ′] JsKd](
〈
o!, o?

〉
) definition of JsKd]
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Subcase s = v1 ← v2 ∧ v2 6∈ o! ∧ v2 6∈ o? :

Since v2 6∈ o? this means v2 6∈ βo[ρ](o).

o Rd[ρ]
〈
o!, o?

〉
=⇒ o! ⊆ βo[ρ](o) ⊆ o?

=⇒ o! \ {v1} ⊆ βo[ρ](o) \ {v1} ⊆ o? \ {v1}
=⇒ o! \ {v1} ⊆ JsKo](βo[ρ](o)) ⊆ o? \ {v1} definition of JsKo] when v2 6∈ βo[ρ](o)

=⇒ o! \ {v1} ⊆ βo[ρ′](o) ⊆ o? \ {v1} Proposition 2

=⇒ o Rd[ρ′]
〈
o! \ {v}, o? \ {v}

〉
definition of Rd[ρ]

=⇒ o Rd[ρ′] JsKd](
〈
o!, o?

〉
) definition of JsKd]

Subcase s = v ← e :

Let the object loaded from the heap be o′. Then ρ′ = ρ[v 7→ o′].

If o′ = o, then ρ′(v) = o, so

βo[ρ′](o) = {v′ : ρ′(v′) = o}
= {v′ : ρ(v′) = o} ∪ {v}
= βo[ρ](o) ∪ {v}

If o′ 6= o, then ρ′(v) 6= o, so

βo[ρ′](o) = {v′ : ρ′(v′) = o}
= {v′ : ρ(v′) = o} \ {v}
= βo[ρ](o) \ {v}

In either case,

o Rd[ρ]
〈
o!, o?

〉
=⇒ o! ⊆ βo[ρ](o) ⊆ o?

=⇒ o! \ {v} ⊆ βo[ρ](o) \ {v} ⊆ βo[ρ](o) ∪ {v} ⊆ o? ∪ {v}
=⇒ o! \ {v} ⊆ βo[ρ′](o) ⊆ o? ∪ {v}
=⇒ o Rd[ρ′]

〈
o! \ {v}, o? ∪ {v}

〉
definition of Rd[ρ]

=⇒ o Rd[ρ′] JsKd](
〈
o!, o?

〉
) definition of JsKd]

Subcase s ∈ {v ← null, v ← new} :

o Rd[ρ]
〈
o!, o?

〉
=⇒ o! ⊆ βo[ρ](o) ⊆ o?

=⇒ o! \ {v} ⊆ βo[ρ](o) \ {v} ⊆ o? \ {v}
=⇒ o! \ {v} ⊆ JsKo](βo[ρ](o)) ⊆ o? \ {v} definition of JsKo]

=⇒ o! \ {v} ⊆ βo[ρ′](o) ⊆ o? \ {v} from Proposition 2

=⇒ o Rd[ρ′]
〈
o! \ {v}, o? \ {v}

〉
definition of Rd[ρ]

=⇒ o Rd[ρ′] JsKd](
〈
o!, o?

〉
) definition of JsKd]
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Subcase s ∈ {e← v,body} :

o Rd[ρ]
〈
o!, o?

〉
=⇒ o! ⊆ βo[ρ](o) ⊆ o?

=⇒ o! ⊆ JsKo](βo[ρ](o)) ⊆ o? definition of JsKo]

=⇒ o! ⊆ βo[ρ′](o) ⊆ o? from Proposition 2

=⇒ o Rd[ρ′]
〈
o!, o?

〉
definition of Rd[ρ]

=⇒ o Rd[ρ′] JsKd](
〈
o!, o?

〉
) definition of JsKd]

Case d is a negative binding O: Then by Lemma 9, d] is a negative binding d] = V ] ⊆
⋃
o∈O βo[ρ](o).

Subcase s = v1 ← v2 ∧ v2 ∈ V ] :

O Rd[ρ] V ] =⇒ V ] ⊆
⋃
o∈O

βo[ρ](o)

Therefore, there is some o′ ∈ O for which v2 ∈ βo[ρ](o′). So βo[ρ′](o′) = JsKo](βo[ρ](o′)) = βo[ρ](o′)∪{v1}.

V ] ⊆
⋃
o∈O

βo[ρ](o)

=⇒ V ] ⊆

⋃
o∈O

βo[ρ](o)

 ∪ βo[ρ](o′)

=⇒ V ] ∪ {v1} ⊆

⋃
o∈O

βo[ρ](o)

 ∪ βo[ρ](o′) ∪ {v1}

=⇒ V ] ∪ {v1} ⊆

⋃
o∈O

βo[ρ](o) \ {v1}

 ∪ βo[ρ](o′) ∪ {v1}

=⇒ V ] ∪ {v1} ⊆

⋃
o∈O

JsKo](βo[ρ](o))

 ∪ JsKo](βo[ρ](o′))

=⇒ V ] ∪ {v1} ⊆
⋃
o∈O

JsKo](βo[ρ](o))

=⇒ V ] ∪ {v1} ⊆
⋃
o∈O

βo[ρ′](o)

=⇒ O Rd[ρ′] V ] ∪ {v1} definition of Rd[ρ]

=⇒ O Rd[ρ′] JsKd](V ]) definition of JsKd]

Subcase s = v1 ← v2 ∧ v2 6∈ V ] : From the definition of JsKo] , it follows that Jv1 ← v2Ko](o]) ⊇ o] \ {v1}.
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O Rd[ρ] V ] =⇒ V ] ⊆
⋃
o∈O

βo[ρ](o)

=⇒ V ] \ {v1} ⊆
⋃
o∈O

βo[ρ](o) \ {v1}

=⇒ V ] \ {v1} ⊆
⋃
o∈O

JsKo](o])

=⇒ V ] \ {v1} ⊆
⋃
o∈O

βo[ρ′](o)

=⇒ O Rd[ρ′] V ] \ {v1} definition of Rd[ρ]

=⇒ O Rd[ρ′] JsKd](V ]) definition of JsKd]

Subcase s ∈ {v ← null, v ← new} :

O Rd[ρ] V ] =⇒ V ] ⊆
⋃
o∈O

βo[ρ](o)

=⇒ V ] \ {v} ⊆
⋃
o∈O

(βo[ρ](o) \ {v})

=⇒ V ] \ {v} ⊆
⋃
o∈O

JsKo](βo[ρ](o)) definition of JsKo]

=⇒ V ] \ {v} ⊆
⋃
o∈O

βo[ρ′](o) Proposition 2

=⇒ O Rd[ρ′] V ] \ {v} definition of Rd[ρ]

=⇒ O Rd[ρ′] JsKd](V ]) definition of JsKd]

Subcase s = v ← e :

As in the case for positive bindings, JsKo](βo[ρ](o)) is either βo[ρ](o′) ∪ {v} or βo[ρ](o) \ {v}. Either way,
JsKo](βo[ρ](o)) ⊇ βo[ρ](o) \ {v}. Thus, the same reasoning as in the preceding subcase applies.

Subcase s ∈ {e← v,body} :

O Rd[ρ] V ] =⇒ V ] ⊆
⋃
o∈O

βo[ρ](o)

=⇒ V ] ⊆
⋃
o∈O

JsKo](βo[ρ](o)) definition of JsKo]

=⇒ V ] ⊆
⋃
o∈O

βo[ρ′](o) Proposition 2

=⇒ O Rd[ρ′] V ] definition of Rd[ρ]

=⇒ O Rd[ρ′] JsKd](V ]) definition of JsKd]



3 STATIC ABSTRACTION 24

same(
〈
o!1, o

?
1

〉
,
〈
o!2, o

?
2

〉
) ,o!1 ⊆ o?2 ∧ o!2 ⊆ o?1

diff(
〈
o!1, o

?
1

〉
,
〈
o!2, o

?
2

〉
) ,o!1 ∩ o!2 = ∅

compatible(o!?1 , o
!?
2 ) ,same(o!?1 , o

!?
2 ) ∨ diff(o!?1 , o

!?
2 )

setcompat(O!?) ,∀o!?1 , o!?2 ∈ O!?.compatible(o!?1 , o
!?
2 )

relevant(O], V ) ,V ⊆ ∪o]∈O]o] ∧ ∀o] ∈ O].o] ∩ V 6= ∅
envs(ρ], O!?, V ) ,

{
O] ⊆ ρ] : relevant(O], V ) ∧ setcompat

({〈
o], o]

〉
: o] ∈ O]

}
∪O!?

)}
objs

(
m]
)

,{
〈
o!, o?

〉
∈ range(m])}

n(O], v) ,o] ∈ O] : v ∈ o]

e+]0 (b,O]) ,λf.

{ 〈
n(O], b(f)), (O], b(f))

〉
if f ∈ dom(b)

> otherwise

e+][a, b,O]](q,m]) ,
{〈
q′,m] u e+]0 (b,O])

〉
: δ(q, a, q′)

}
e−]0 (b,O], f) ,λf ′.

{
n(O], b(f)) if f , f ′

> otherwise

e−][b,O]](q,m]) ,
{〈
q,m] u e−]0 (b,O], f)

〉
: f ∈ dom(b)

}
e][{〈a, b〉}, O]](q,m]) ,e+][a, b,O]](q,m]) ∪ e−][b,O]](q,m])

e][{〈a1, b1〉 · · · 〈an, bn〉}, O]](q,m]) ,

 ⋃
1≤i≤n

e]+[ai, bi, O]](q,m])

 ∪ e]−[b1, O]](· · · e]−[bn, O]](q,m]) · · · )


Jtr(T )Km] [ρ]](q,m]) ,

⋃
O]∈envs(ρ],objs(m]),

S
〈a,b〉∈T range(b))

e][T,O]](q,m])

JsKσ] [ρ]](σ]) ,
⋃

〈q,m]〉∈σ]∪{〈q0,λf.>〉}

JsKm] [ρ]](q,m])

Figure 4: Transfer function for the tracematch state abstraction for s = tr(T )
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The transfer function for transition statements is defined in Figure 4. At a high level, it mirrors the semantics of
tr(T ) presented in Section 2, but several helper functions are needed to abstract the semantics.

The main complication is variable lookup in the abstract environment. In the concrete semantics, a transition
element identifies the objects pointed to by specified variables, and binds them in the tracematch state. Thus, the
abstract transfer function must identify the abstract objects pointed to by the specified variables. However, the abstract
object state ρ] may contain multiple abstract objects pointed to by the same variable. For example, ρ] may contain
both {x} and {x, y} if the object pointed to by x is also pointed to by y in some but not all executions. However, these
two abstract objects are not compatible: at any instant at run time, it is not possible for two concrete objects with these
two abstractions to coexist, since x cannot possibly point to both of them simultaneously (unless they are the same
object, in which case y cannot both point and not point to it). The notion of compatibility is treated in detail by Sagiv
et al. [26]. Every compatible subset of O] ⊆ ρ] is guaranteed to contain no more than one abstract object pointed to
by any variable. In addition, we would like O] to be compatible with objects already bound in the tracematch, which
are represented not precisely but as bindings with must and may sets. Thus, our definition of compatible extends Sagiv
et al.’s definition to abstract objects represented by must and may sets. Furthermore, we want O] to contain all the
variables being bound by the transition statements, but we do not require it to contain irrelevant abstract objects not
pointed to by these variables. The predicate relevant enforces this requirement. The set envs contains all compatible
and relevant subsets of ρ]. Given such a subset O], the helper function n(O], v) finds the unique abstract object
pointed to by v.

Having defined abstract variable lookup, the abstract tracematch transition functions e+]0 , e−]0 , e+], e−], e] are
exactly like their concrete counterparts, but with abstract lookup n(O], v) substituted for concrete lookup in ρ. The
overall transfer function Jtr(T )Km] joins the results of e] for all compatible and relevant abstract environments O] ⊆
ρ]. Finally, JsKσ] extends JsKm] to sets of abstract tracematch state pairs; it is the same as in Figure 3.

At control flow merge points, the join operator used on State] is set union.
We have proven that the transfer function JsKσ] preserves the correctness relation:

Theorem 3. If 〈s, ρ, h, σ〉 → 〈ρ′, h′, σ′〉 and σ Rσ[ρ] σ], then σ′ Rσ[ρ′] JsKσ] [ρ]](σ]).

We divide the proof of the theorem into the following five lemmas. The theorem is the combination of Lemmas 10
and 15.

Lemma 10. For all statements except tr(T ), if 〈s, ρ, h, σ〉 → 〈ρ′, h′, σ′〉 and σ Rσ[ρ] σ], then σ′ Rσ[ρ′] JsKσ] [ρ]](σ]).

Proof. Notice that all statements except tr(T ) leave the tracematch state abstraction unchanged. This means that
σ = σ′.

σ Rσ[ρ] σ] =⇒ ∀〈q,m〉 ∈ σ.∃
〈
q,m]

〉
∈ σ]. 〈q,m〉 Rm[ρ]

〈
q,m]

〉
=⇒ ∀〈q,m〉 ∈ σ.∃

〈
q,m]

〉
∈ σ].∀f ∈ F.m(f) Rd[ρ] m](f)

=⇒ ∀〈q,m〉 ∈ σ.∃
〈
q,m]

〉
∈ σ].∀f ∈ F.m(f) Rd[ρ′] JsKd](m](f)) Proposition 5

=⇒ ∀〈q,m〉 ∈ σ.∃
〈
q,m]

〉
∈ σ].m Rm[ρ′] λf.JsKd](m](f))

=⇒ ∀〈q,m〉 ∈ σ.∃
〈
q,m]

〉
∈ JsKσ] [ρ]](σ]).m Rm[ρ′] m]

=⇒ σ Rσ[ρ′] JsKσ] [ρ]](σ]) definition of JsKσ]

=⇒ σ′ Rσ[ρ′] JsKσ](σ]) since σ′ = σ

Lemma 11. If d1 Rd[ρ] d]1 and d2 Rd[ρ] d]2, then d1 u d2 Rd[ρ] d]1 u d
]
2.

Proof. Since d1 u d2 v d1, by Proposition 4, βd[ρ](d1 u d2) v βd[ρ](d1) v d]1. Similarly, βd[ρ](d1 u d2) v d]2.
Therefore, βd[ρ](d1 u d2) v d]1 u d

]
2. Thus, d1 u d2 Rd[ρ] d]1 u d

]
2.
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Lemma 12. Let o1, o2 be two concrete objects existing simultaneously at any state in the program execution with
environment ρ. If o1 Rd[ρ] o!?1 and o2 Rd[ρ] o!?2 , then

1. o1 = o2 =⇒ same(o!?1 , o
!?
2 )

2. o1 6= o2 =⇒ diff(o!?1 , o
!?
2 )

3. In either case, compatible(o!?1 , o
!?
2 ).

As a corollary, for any set {o1 · · · on} of concrete objects, if oi Rd[ρ] o!?i for all i, then setcompat({o!?i }).

Proof. 1. From the correctness relation, o!i ⊆ βo[ρ](oi) ⊆ o?i for i ∈ {1, 2}. Since o1 = o2, o!1 ⊆ βo[ρ](oi) ⊆ o?2.
Similarly, o!2 ⊆ βo[ρ](oi) ⊆ o?1. This is the definition of same(o!?1 , o

!?
2 ).

2. If o1 = ρ(v), then o2 6= ρ(v), and vice versa. Therefore, βo[ρ](o1) ∩ βo[ρ](o2) = ∅. Since o!i ⊆ βo[ρ](oi) for
i ∈ {1, 2}, o!1 ∩ o!2 ⊆ ∅.

3. Immediate from the above two cases and the definition of compatible.

Definition 4. Given ρ ∈ P(Var), V ⊆ Var such that ρ(v) 6= ⊥ for any v ∈ V , define O](ρ, V ) , {βo[ρ](ρ(v)) : v ∈
V }.

Lemma 13. Let ρ] w βρ(ρ, h) and V ⊆ Var. Then

1. O](ρ, V ) ⊆ ρ]

2. relevant(O](ρ, V ), V )

3. n(O](ρ, V ), v) = βo[ρ](ρ(v)) for all v ∈ V

Proof. 1.

O](ρ, V ) ={βo[ρ](o) : v ∈ V ∧ ρ(v) = o}
⊆{βo[ρ](o) : o ∈ range(ρ) ∪ h}
=βρ(ρ, h)

⊆ρ]

2. ⋃
o]∈O](ρ,V )

o] =
⋃
v∈V

βo[ρ](ρ(v))

⊇
⋃
v∈V
{v}

=V

Every o] ∈ O](ρ, V ) is βo[ρ](ρ(v)) for some v ∈ V . By definition of βo, v ∈ βo[ρ](ρ(v)). Therefore,
v ∈ βo[ρ](ρ(v)) ∩ V , so this intersection is not empty.

3. For all v ∈ V , O](ρ, V ) contains βo[ρ](ρ(v)). Also, v ∈ βo[ρ](ρ(v)). Therefore, βo[ρ](ρ(v)) satisfies the
definition of n(O](ρ, V ), v). Furthermore, βo[ρ](ρ(v)) is the only such element ofO](ρ, V ), since for any other
object o′ 6= ρ(v), v 6∈ βo[ρ](o′).
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Lemma 14. Let V be any set of variables such that range(b) ⊆ V . Then

1. e+(b, ρ) Rm[ρ] e]+(O](ρ, V ), b)

2. e−(b, ρ, f) Rm[ρ] e]−(O](ρ, V ), b, f)

Proof. 1. For f ∈ dom(b),

e]+(O](ρ, V ), b)(f) =
〈
n(O](ρ, V ), b(f)), n(O](ρ, V ), b(f))

〉
definition of e]+

= 〈βo[ρ](ρ(b(f))), βo[ρ](ρ(b(f)))〉 Lemma 13
=βd[ρ](ρ(b(f))) definition of βd

Therefore, e+(b, ρ) = ρ(b(f)) Rd[ρ] βd[ρ](ρ(b(f))) = e]+(O](ρ, V ), b)(f).

For f 6∈ dom(b), e+(b, ρ)(f) = > Rd[ρ] > = e]+(O](ρ, V ), b)(f).

2. For f ∈ dom(b),

e]−(O](ρ, V ), b, f) =n(O](ρ, V ), b(f)) definition of e]−
=βo[ρ](ρ(b(f))) Lemma 13

=βd[ρ]({ρ(b(f))}) definition of βd

Therefore, e−(b, ρ, f) = {ρ(b(f))} Rd[ρ] βd[ρ]({ρ(b(f))}) = e]−(O](ρ, V ), b, f).

For f 6∈ dom(b), e−(b, ρ, f) = > Rd[ρ] > = e]−(O](ρ, V ), b, f).

Lemma 15. If 〈tr(T ), ρ, h, σ〉 → 〈ρ′, h′, σ′〉 and σ Rσ[ρ] σ], then σ′ Rσ[ρ′] Jtr(T )K[ρ]](σ]) for any ρ] w βρ(ρ, h).

Proof. For any V ⊇ range(b), from Lemmas 11 and 14 and from the premise that σ Rσ[ρ] σ], it follows that for every
〈q,m〉 ∈ σ ∪ {〈q0, λf.>〉} there is a

〈
q,m]

〉
∈ σ] ∪ {〈q0, λf.>〉} such that:

e+[a, b, ρ](〈q,m〉) Rσ[ρ] e]+[a, b,O](ρ, V )]
(〈
q,m]

〉)
e−[b, ρ](〈q,m〉) Rσ[ρ] e]−[b,O](ρ, V )]

(〈
q,m]

〉)
By Lemma 12, setcompat(objs(m])∪{

〈
o], o]

〉
: o] ∈ O](ρ, V )}). By Lemma 13,O](ρ, V ) ⊆ ρ] and relevant(O](ρ, V ), V ).

Thus, O](ρ, V ) ∈ envs(ρ], objs(m]), V ).
Therefore, for each

〈q,m〉 ∈ σ′ = e+[a, b, ρ](σ ∪ {〈q0, λf.>〉}) ∪ e−[b, ρ](σ ∪ {〈q0, λf.>〉})

there exists〈
q,m]

〉
∈

⋃
O]∈envs(ρ],objs(m]),range(b))

e]+[a, b,O]](σ]∪{〈q0, λf.>〉})∪e]−[b,O]](σ]∪{〈q0, λf.>〉}) = Jtr({〈a, b〉})Kσ] [ρ]](σ])

such that m Rm[ρ] m]. The same correspondence holds for the case when T contains multiple transition elements.
This is the definition of σ′ Rσ[ρ] Jtr(T )K[ρ]](σ]). Since ρ′ = ρ, σ′ Rσ[ρ′] Jtr(T )K[ρ]](σ]).
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4 Context-Sensitive Interprocedural Analysis
We have implemented the analysis as an instance of the IFDS algorithm of Reps et al. [24] with small modifications
which we explain in this section. The IFDS algorithm implements a fully context-sensitive interprocedural dataflow
analysis provided that:

• the analysis domain is the powerset of a finite set Dom,

• the merge operator is set union, and

• the flow function is distributive.

IFDS is an efficient dynamic programming algorithm that uses O(E|Dom|3) time in the worst case, where E is the
number of control-flow edges in the program. The algorithm tabulates two sets of dataflow functions for control-flow
paths of increasing length. The first table, PathEdge, tabulates a flow function from the start node of each procedure to
every other node in the same procedure. The second table, SummaryEdge, tabulates a flow function for each call site
in the program.

The overall flow function λρ], h], σ].
〈
JsKρh](ρ], h]), JsKσ] [ρ]](σ])

〉
is not distributive. However, it can be sepa-

rated into two analyses each satisfying the requirements of the IFDS algorithm. The first analysis computes the value
abstraction, and the second analysis computes the tracematch abstraction.

The IFDS algorithm requires the transfer function JsK : P(Dom) → P(Dom) to be decomposed pointwise
into a function acting separately on each element of Dom ∪ {0}, where 0 6∈ Dom is a special sentinel value.
The pointwise function JsK• : Dom ∪ {0} → P(Dom) uniquely defines the overall transfer function as follows:
JsK(D) ,

⋃
d∈D∪{0}JsK•(d). A transfer function can be decomposed in this form if and only if it is distributive [24].

To implement the tracematch analysis in the IFDS framework, we show how to express the transfer functions JsKρh]

and JsKσ] in this form.

4.1 Value Abstraction
For computing the value abstraction

〈
ρ], h]

〉
, we define the set Dom as two disjoint copies of Obj] = P(Var), one

copy for ρ] and the other for h]. To distinguish elements of the two sets, we use the notation ρ[o]] to mean o] from
the ρ] copy of Obj], and h[o]] to mean o] from the h] copy. Thus, a given pair

〈
ρ], h]

〉
is represented using the set

decomp(ρ], h]) , {ρ[o]] : o] ∈ ρ]} ∪ {h[o]] : o] ∈ h]}. The transfer function for individual elements of Dom ∪ {0}
is defined as follows:

JsKρh](ρ[o]]) ,


{ρ[o] \ {v}]} if s = v ← e
{ρ[o]], h[o]]} if s = e← v and v ∈ o]
{ρ[o]]} if s = e← v and v 6∈ o]

{ρ[JsKo](o])]} otherwise

JsKρh](h[o]]) ,

{
{ρ[o] \ {v}], ρ[o] ∪ {v}], h[o] \ {v}], h[o] ∪ {v}]} if s = v ← e

{h[JsKo](o])]} otherwise

JsKρh](0) ,

{
{ρ[{v}]} if s = v ← new
∅ otherwise

The following proposition guarantees that when these pointwise transfer functions are composed, the result is
isomorphic to the transfer function JsKρh] from Section 3.
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Proposition 6.

JsKρ](ρ], h]) =

o] : ρ[o]] ∈
⋃

d∈decomp(ρ],h])∪{0}

JsKρh](d)


JsKh](ρ], h]) =

o] : h[o]] ∈
⋃

d∈decomp(ρ],h])∪{0}

JsKρh](d)


Proof. Case s = v ← e: In this case,

JsKρh](ρ[o]]) ={ρ[o] \ {v}]}
JsKρh](h[o]]) ={ρ[o] \ {v}], ρ[o] ∪ {v}], h[o] \ {v}], h[o] ∪ {v}]}

JsKρh](0) =∅

Therefore, o] : ρ[o]] ∈
⋃

d∈decomp(ρ],h])∪{0}

JsKρh](d)


=
⋃
o]∈ρ]

{o] \ {v}} ∪
⋃
o]∈h]

{o] \ {v}, o] ∪ {v}}

=
⋃

o]∈ρ]∪h]

focus[h]](v, o])

=
⋃
o]∈ρ]

focus[h]](v, o])

=JsKρ](ρ], h])

Also, o] : h[o]] ∈
⋃

d∈decomp(ρ],h])∪{0}

JsKρh](d)


=
⋃
o]∈h]

{o] \ {v}, o] ∪ {v}}

=
⋃
o]∈h]

focus[h]](v, o])

=JsKh](ρ], h])

Case s = e← v: In this case,

JsKρh](ρ[o]]) =
{
{ρ[o]], h[o])]} if v ∈ o]
{ρ[o]]} if v 6∈ o]

JsKρh](h[o]]) ={h[JsKo](o])]}
JsKρh](0) =∅
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Therefore, o] : ρ[o]] ∈
⋃

d∈decomp(ρ],h])∪{0}

JsKρh](d)


=
⋃
o]∈ρ]

{o]}

=
⋃
o]∈ρ]

{JsKo](o])}

={JsKo](o]) : o] ∈ ρ]}
=JsKρ](ρ], h])

Also, o] : h[o]] ∈
⋃

d∈decomp(ρ],h])∪{0}

JsKρh](d)


=
⋃
o]∈h]

{JsKo](o])} ∪
⋃

o]∈ρ]:v∈o]

{o]}

=
⋃

o]∈h]∪{o]∈ρ]:v∈o]}

{JsKo](o])}

={JsKo](o]) : o] ∈ h] ∪ {o] ∈ ρ] : v ∈ o]}}
=JsKh](ρ], h])

Case s = v ← new: In this case,

JsKρh](ρ[o]]) ={ρ[JsKo](o])]}
JsKρh](h[o]]) ={h[JsKo](o])]}

JsKρh](0) ={ρ[{v}]}

Therefore, o] : ρ[o]] ∈
⋃

d∈decomp(ρ],h])∪{0}

JsKρh](d)


=
⋃
o]∈ρ]

{JsKo](o])} ∪ {{v}}

={JsKo](o]) : o] ∈ ρ]} ∪ {{v}}
=JsKρ](ρ], h])
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Also, o] : h[o]] ∈
⋃

d∈decomp(ρ],h])∪{0}

JsKρh](d)


=
⋃
o]∈h]

{JsKo](o])}

={JsKo](o]) : o] ∈ h]}
=JsKh](ρ], h])

Case s is any other statement: In this case,

JsKρh](ρ[o]]) ={ρ[JsKo](o])]}
JsKρh](h[o]]) ={h[JsKo](o])]}

JsKρh](0) =∅

Therefore, o] : ρ[o]] ∈
⋃

d∈decomp(ρ],h])∪{0}

JsKρh](d)


=
⋃
o]∈ρ]

{JsKo](o])}

={JsKo](o]) : o] ∈ ρ]}
=JsKρ](ρ], h])

Also, o] : h[o]] ∈
⋃

d∈decomp(ρ],h])∪{0}

JsKρh](d)


=
⋃
o]∈h]

{JsKo](o])}

={JsKo](o]) : o] ∈ h]}
=JsKh](ρ], h])

In addition, the IFDS algorithm requires functions describing the flow into and out of procedure calls. These flow
functions are also decomposed into functions acting on individual elements of Dom ∪ {0}. The call flow function is
straightforward to define. Within each variable set representing an abstract object, each argument is replaced with the
corresponding parameter, and all other variables are removed. Given a substitution r that maps each argument to its
corresponding parameter, the function is defined as:

updateo] [r](o]) ,
{
r(v) : v ∈ o] ∩ dom(r)

}
callρh] [r]

(
ρ[o]]

)
,{ρ[update[r](o])]}

callρh] [r]
(
h[o]]

)
,{h[update[r](o])]}

callρh] [r] (0) ,∅
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To define the flow out of procedure calls, a small modification to the IFDS algorithm is necessary. In the original
algorithm, the return flow function is defined only in terms of the flow facts computed for the end node of the callee.
The difficulty is that in the callee, each abstract object is represented by a set of variables local to the callee, and it
is unknown which caller variables point to the object. However, the only place where the algorithm uses the return
flow function is when computing a SummaryEdge flow function for a given call site by composing return ◦ JpK ◦ call,
where call is the call flow function, JpK is the summarized flow function of the callee, and return is the return flow
function. The original formulation of the algorithm assumes a fixed return flow function return for each call site. It is
straightforward to modify the algorithm to instead use a function that, given a call site and the computed flow function
JpK ◦ call, directly constructs the SummaryEdge flow function. A similar modification is also used in the typestate
analysis of Fink et al. [15]. Indeed, the general modification is likely to be useful in other instantiations of the IFDS
algorithm.

This summary flow function is also specified pointwise. The pointwise function summ• takes two arguments
d, d′ ∈ Dom ∪ {0}. The overall summary function is defined as:

summ(D) ,
⋃

d∈D∪{0}

⋃
d′∈(JpK◦call)(d)∪{0}

summ•(d, d′)

Intuitively, d is the caller-side abstraction of an object existing before the call, d′ is one possible callee-side abstraction
of the same object at the return site, and summ•(d, d′) ought to yield the set of possible caller-side abstractions of the
object after the call. An object newly created within the callee is handled by the case d = 0.

The summary flow function for the value abstraction is defined as follows, where vs is the callee variable being
returned and vt is the caller variable to which the returned value is assigned. If the object that was represented by o]c
in the caller before the call is being returned from the callee (i.e. vs ∈ o]r), then vt is added to o]c. If some other object
is being returned, then vt is removed from o]c, since vt gets overwritten by the return value. In the case of an object
newly created within the callee, the empty set is substituted for o]c, since no variables of the caller pointed to the object
before the call.

rv(o]c, o
]
r) ,

 o]c if p does not return a value
o]c ∪ {vt} vs ∈ o]r
o]c \ {vt} vs 6∈ o]r

summρh]

(
cρh[o]c], r

ρ
h[o]r]

)
,
{
rρh[rv(o]c, o

]
r)]
}

where each of cρh, r
ρ
h is either ρ or h

summρh]

(
0, rρh[o]r]

)
,
{
rρh[rv(∅, o]r)]

}
4.2 Tracematch State Abstraction
The analysis for computing the tracematch abstraction operates on the set of possible tracematch state pairs Dom ,
Q × (F → Bind]). The analysis uses the value abstraction ρ] computed in an earlier pass. The tracematch transfer
function from Section 3 is already in the decomposed form required by the IFDS algorithm:

JsKσ] [ρ]](σ]) ,
⋃

〈q,m]〉∈σ]∪{0}

JsK[ρ]]m](q,m]) where JsK[ρ]]m](0) , JsK[ρ]]m](q0, λf.>)

The call flow function for tracematch state is straightforward. It applies the update[r] function that was defined
for the value abstraction to each must, may, and negative binding set. Arguments are replaced by parameters, and
non-arguments are removed.
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updated] [r]
(〈
o!, o?

〉)
,
〈
updateo] [r](o!), updateo] [r](o?)

〉
updated] [r]

(
V ]
)

,updateo] [r](V ])

callm] [r](q,m]) ,
{〈
q, λf.updated] [r](m](f))

〉}
callm] [r](0) ,∅

The summary flow function for the tracematch abstraction is defined as follows:

summm]

(
0,
〈
qr,m

]
r

〉)
,{
〈
qr, λf.rvd](>,m]

r(f))
〉
}

summm]

(〈
qc,m

]
c

〉
,
〈
qr,m

]
r

〉)
,{
〈
qr, λf.rvd](m]

c(f),m]
r(f))

〉
}

rvd]

(〈
o!c, o

?
c

〉
,
〈
o!r, o

?
r

〉)
,


〈
o!c, o

?
c

〉
if p does not return a value〈

o!c ∪ {vt}, o?c ∪ {vt}
〉

if vs ∈ o!r〈
o!c \ {vt}, o?c ∪ {vt}

〉
if vs 6∈ o!r ∧ vs ∈ o?r〈

o!c \ {vt}, o?c \ {vt}
〉

if vs 6∈ o!r ∧ vs 6∈ 1o?r

rvd]

(
V ]c , V

]
r

)
,rv(V ]c , V ]r )

rvd]

(
V ]c ,

〈
o!r, o

?
r

〉)
,
〈
rv(∅, o!r), rv(Varcaller \ V ]c , o?r)

〉
4.3 Collecting Useful Update Shadows
The analysis presented thus far can prove that the tracematch will never be in an accepting state at a given body
statement. If this can be proved for all body statements in the program, the property expressed by the tracematch
has been fully verified statically. When the analysis is used to optimize a dynamic tracematch implementation, all
instrumentation can be removed in this case. However, the analysis may not be successful in ruling out all body
statements. In this case, it is useful to compile a list of all transition statements that may contribute to a match at each
body statement. Such a list is useful both for static verification and for optimizing a dynamic implementation. In static
verification, this list helps the user identify the source of the bug, or to decide that the error report is a false positive.
For example, if a collection is updated during iteration, the body statement is the failing next call on the iterator;
more useful to the programmer would be the location of the collection update. In optimizing the dynamic tracematch
implementation, all transition statements not leading to a potentially matching body statement can be removed, thereby
reducing the runtime overhead of matching.

The analysis can be extended to keep track of relevant transition statements by replacing the IFDS algorithm with
the IDE algorithm [25]. The IDE algorithm is an extension of the IFDS algorithm to analysis domains of the form
Dom → L, where Dom satisfies the same conditions as for the IFDS algorithm and L is a lattice of finite height.
Indeed, the IFDS algorithm is a special case of the IDE algorithm with L chosen as the two-point lattice ⊥ v >. The
IFDS version of the tracematch analysis presented thus far determines only whether a given pair

〈
q,m]

〉
is (>) or is

not (⊥) present at each program point. To keep track of transition statements leading to a match, we keep the same
set Dom = Q × (F → Bind]), and define L , {⊥} ] P(Tr), where Tr is the set of all transition statements in
the program. For each pair

〈
q,m]

〉
present at a program point, the IDE version of the analysis maintains the set of

transition statements that may have contributed to its presence. The partial order onL is l1 v l2 ⇐⇒ l1 = ⊥∨l1 ⊆ l2.
Like the IFDS algorithm, the IDE algorithm uses a decomposed transfer function. In the IDE algorithm, the

pointwise transfer function has the form JsK• : (Dom ∪ {0}) → Dom → L → L. Given a pair of elements d, d′

from Dom, the pointwise transfer function yields a transformer from L to L to be used to transform the lattice value
associated with d to a lattice value to be associated with d′. The pointwise transfer function uniquely defines the
overall transfer function JsK : (Dom→ L)→ (Dom→ L) as JsK(f) , λd′.

⊔
d∈Dom∪{0}JsK•(d)(d′)(f(d)).
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The pointwise transfer function JsKm] from Section 3 can be re-used to implement the tracematch state analysis
within the IDE framework. Statements other than tr(T ) do not change the set of transition statements relevant to a
match, so the transfer function yields the identity when d′ ∈ JsKm](d) and the bottom function λl.⊥ otherwise:

JsKσ]{} [ρ]](q,m])(q′,m′]) ,

{
λl.l if

〈
q′,m′]

〉
∈ JsKm] [ρ]](q,m])

λl.⊥ otherwise

The call and return flow functions are generalized in the same way from those used in the IFDS version of the algo-
rithm.

The transfer function for a transition statement is similar, but in addition, its label ` is added to the set of relevant
transition statements associated with each generated pair

〈
q′,m′]

〉
.

J` : tr(T )Kσ]{} [ρ]](q,m])(q′,m′]) , λl.l t {`} if
〈
q′,m′]

〉
∈ Jtr(T )Km] [ρ]](q,m]) ∧

〈
q,m]

〉
6=
〈
q′,m′]

〉
λl.l if

〈
q′,m′]

〉
∈ Jtr(T )Km] [ρ]](q,m]) ∧

〈
q,m]

〉
=
〈
q′,m′]

〉
λl.⊥ otherwise

In the second case above, when
〈
q,m]

〉
=
〈
q′,m′]

〉
, the label is not added. A transition statement that does not

change the concrete tracematch state is not considered relevant because removing it would not change the program
behaviour. Such a statement occurs when the tracematch regular expression contains a subexpression of the form a∗

which causes a self-loop in the finite automaton. To soundly exclude such a transition statement, we must ensure that
it does not change the concrete state. The following proposition assures us that this is the case when the transition
statement does not change the abstract state.

Proposition 7. If 〈q2,m2〉 ∈ e][T, ρ](q1,m1); 〈q1,m1〉 6= 〈q2,m2〉; ρ] overapproximates ρ; and 〈q1,m1〉 Rm[ρ]
〈
q]1,m

]
1

〉
;

then there exists
〈
q]2,m

]
2

〉
∈ Jtr(T )Km] [ρ]](q]1,m

]
1) such that

〈
q]1,m

]
1

〉
6=
〈
q]2,m

]
2

〉
and 〈q2,m2〉 Rm[ρ]

〈
q]2,m

]
2

〉
.

Proof. From the definition of the correctness relation Rm[ρ] , q1 = q]1 and q2 = q]2. If q1 6= q2, the conclusion is
immediate. Suppose instead that all the qi, q

]
i are equal, and call this common state q. Then m1 6= m2. From the

definition of e], 〈q,m2〉 is in either e+[a, b, ρ](q,m1) or in e−[b, ρ](q,m1) for some 〈a, b〉 ∈ T . Thus there exists an
f ∈ F such that m1(f) 6= m2(f) and either m2(f) = m1(f) u ρ(b(f)) or m2(f) = m1(f) u {ρ(b(f))}. Also,
m1(f) 6= ⊥, since then m2(f) would also have to be ⊥.

Case m2(f) = m1(f) u ρ(b(f)) and m]
1(f) is a positive binding containing ρ(b(f)) in its must set: In this case, since

m1(f) Rd[ρ] m]
1(f), m1(f) = ρ(b(f)), so m2(f) = m1(f), a contradiction. Therefore this case cannot occur.

Case m2(f) = m1(f) u ρ(b(f)) and m]
1(f) is a positive binding not containing ρ(b(f)) in its must set: In this case,

m]
1(f)u e+]0 (b,O](ρ, range(b))) = m]

1(f)u
〈
n(O](ρ, range(b)), b(f)), n(O](ρ, range(b)), b(f))

〉
, which con-

tains ρ(b(f)) in its must set and is therefore distinct from m]
1(f). Therefore m]

1 u e
+]
0 (b,O](ρ, range(b))) is a

correct abstraction of m2, is distinct from m]
1, and is contained in Jtr(T )Km] [ρ]](q]1,m

]
1).

Case m2(f) = m1(f) u ρ(b(f)) and m]
1(f) is a negative binding containing b(f): In this case,

m]
1(f)u e+]0 (b,O](ρ, range(b))) = m]

1(f)u
〈
n(O](ρ, range(b)), b(f)), n(O](ρ, range(b)), b(f))

〉
= ⊥, which

is distinct from m]
1(f). Therefore m]

1 u e
+]
0 (b,O](ρ, range(b))) is a correct abstraction of m2, is distinct from

m]
1, and is contained in Jtr(T )Km] [ρ]](q]1,m

]
1).

Case m2(f) = m1(f) u ρ(b(f)) and m]
1(f) is a negative binding not containing b(f): In this case,

m]
1(f) u e+]0 (b,O](ρ, range(b))) = m]

1(f) u
〈
n(O](ρ, range(b)), b(f)), n(O](ρ, range(b)), b(f))

〉
, which is

a positive binding and is therefore distinct from m]
1(f). Therefore m]

1 u e
+]
0 (b,O](ρ, range(b))) is a correct

abstraction of m2, is distinct from m]
1, and is contained in Jtr(T )Km] [ρ]](q]1,m

]
1).
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Case m2(f) = m1(f) u {ρ(b(f))} and m]
1(f) is a positive binding containing b(f) in its may set: In this case,

m]
1(f)ue+]0 (b,O](ρ, range(b))) = m]

1(f)un(O](ρ, range(b)), b(f)), which is either⊥ or a positive binding not
containing ρ(b(f)) in its may set. Either way, it is distinct from m]

1(f). Therefore m]
1u e

+]
0 (b,O](ρ, range(b)))

is a correct abstraction of m2, is distinct from m]
1, and is contained in Jtr(T )Km] [ρ]](q]1,m

]
1).

Case m2(f) = m1(f) u {ρ(b(f))} and m]
1(f) is a positive binding not containing b(f) in its may set: In this case,

since m1(f) Rd[ρ] m]
1(f), m1(f) is a positive binding other than ρ(b(f)), so m2(f) = m1(f), a contradiction.

Therefore this case cannot occur.

Case m2(f) = m1(f) u {ρ(b(f))} and m]
1(f) is a negative binding containing b(f): In this case, since

m1(f) Rd[ρ] m]
1(f), m1(f) is either a positive binding other than ρ(b(f)) or a negative binding containing

ρ(b(f)). Either way, m2(f) = m1(f), a contradiction. Therefore this case cannot occur.

Case m2(f) = m1(f) u {ρ(b(f))} and m]
1(f) is a negative binding not containing b(f): In this case,

m]
1(f) u e+]0 (b,O](ρ, range(b))) = m]

1(f) u n(O](ρ, range(b)), b(f)), which is a negative binding containing
b(f) and is therefore distinct from m]

1(f). Therefore m]
1 u e

+]
0 (b,O](ρ, range(b))) is a correct abstraction of

m2, is distinct from m]
1, and is contained in Jtr(T )Km] [ρ]](q]1,m

]
1).

It may happen that a transition statement in a loop changes the tracematch state in the first iteration but not in
any subsequent iteration. When optimizing the dynamic tracematch implementation, it is desirable to avoid executing
the redundant transitions. This can be achieved by peeling one iteration of every loop containing a transition state-
ment prior to performing the analysis. The analysis will mark the transition as relevant in the peeled iteration and
unnecessary in the remaining loop.

5 Empirical Evaluation
We evaluated the precision of the analysis on the tracematches from Bodden et al. [8], plus one new one (Fail-
SafeEnumHashtable), summarized below:

ASyncIteration: A synchronized collection should not be iterated over without owning its lock.

FailSafeEnum: A vector should not be updated while enumerating it.

FailSafeEnumHashtable: A hashtable should not be updated while enumerating its keys or values.

FailSafeIter: A collection should not be updated while iterating over it.

HasNext: The hasNext method should be called prior to every call to next on an iterator.

HasNextElem: The hasNextElem method should be called prior to every call to nextElement on an enumeration.

LeakingSync: A synchronized collection should only be accessed through its synchronized wrapper.

Reader: A Reader should not be used after its InputStream has been closed.

Writer: A Writer should not be used after its OutputStream has been closed.
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We applied the above tracematches to the benchmarks antlr, bloat, hsqldb, luindex, jython, and pmd, all from
the DaCapo benchmark suite, version 2006-10-MR2 [7]. Most of the benchmarks and the Java standard library use
reflection. We instrumented the above benchmarks using ProBe [22] and *J [14] to record actual uses of reflection at
run time, and provided the resulting reflection summary to the static analysis. The jython benchmark generates code
at run time which it then executes; for this benchmark, we made the unsound assumption that the generated code has
no effect on aliasing or tracematch state.

The 54 tracematch/benchmark pairs contained a total of 5409 final transition statements, where final is defined as
the transition symbol being the last symbol of some word in the language specified by the tracematch pattern. We
count only transition statements in the reachable part of the call graph. Of these, the analysis proved that 4796 (89 %)
will never complete a match. Thus, a programmer wishing to check the tracematch properties need only examine 11
% of the uses of the features checked by the tracematches.

36 of the 54 tracematch/benchmark pairs actually used the features described by the tracematch. These are rep-
resented by the 36 circles in Table 1. We define using the feature as containing enough tracematch symbols (i.e.
operations) that it is possible to construct a word in the tracematch pattern P . Let A′ ⊆ A contain every tracematch
symbol (i.e. operations) present in at least one transition statement in the benchmark; the feature is used if the language
A′∗ ∩ P is non-empty. This is the same as passing the quickcheck stage of Bodden et al. [8].

Of the 36 remaining pairs, the analysis proved that the tracematch cannot match at all in 15. These are represented
by the white circles in Table 1. For the remaining 21 pairs, the white part of the circle is the fraction of final transition
statements that were proved not to complete a match; the black part represents those that could complete a match.

4 of the 21 remaining pairs involve the HasNext and HasNextElem tracematches. In 1 pair (HasNext/pmd), all
detected matches are actual violations of the tracematch pattern. The code uses isEmpty to ensure that a collection
is not empty, then calls next on an iterator without calling hasNext first. Similar violations occur in the other three
pairs (in jython and in HasNext/bloat). In addition, the other pairs contain false positives due to iterators being stored
only in fields and not local variables.

In 11 pairs involving the FailSafe* tracematches, the analysis found both violations and likely false positives due to
aliasing. Some collections, such as java.util.Hashtable, keep a singleton enumeration and iterator which are
reused every time the collection is empty. This violates the tracematch because an iterator is being used even though
a collection with which it was previously associated has since been updated. This accounts for many but not all of the
detected matches. In many cases, the body of a loop iterating over a collection contains calls leading to very deep call

antlr bloat hsqldb jython luindex pmd

ASyncIteration

FailSafeEnum

FailSafeEnumHashtable

FailSafeIter

HasNext

HasNextElem

LeakingSync

Reader

Writer

Table 1: Fraction of transition statements that may complete a match



6 RELATED WORK 37

chains comprising many methods, some of which update collections. The analysis is not able to prove that all these
collections are distinct from the collection being iterated. May-point-to information may help rule out some of these
cases. Also, since so many methods are transitively called from the loop, it is difficult to examine them all by hand to
determine whether any of the updated collections may in fact alias the iterated collection. One of our future goals is to
create a convenient user interface to help the programmer visualize the potential update locations and the call chains
connecting them to the original loop.

The analysis found some false positives in 6 pairs involving the Reader and Writer tracematches. In every such
case, the benchmark contained a loop repeatedly calling a helper method that used the reader or writer. Both the loop
and the helper method contained a try block. An exception during the input/output operation would be caught in the
helper, which would close the stream and re-throw the exception. The try block protecting the loop would catch the
exception, thereby terminating the loop. Because the analysis does not distinguish between normal and exceptional
returns, it conservatively assumed that the loop could continue iterating and therefore use the reader or writer after the
stream was closed.

6 Related Work
When tracematches were introduced, space and time overhead of their dynamic implementation was a concern [1]. In
general, the overhead varied widely depending on the tracematch and the number of dynamic updates to the tracematch
state that must be performed; in many cases, the overhead was prohibitive.

One approach to reduce the overhead has been to improve the dynamic tracematch implementation [4]. In this
approach, the tracematch automaton (but not the base code to which it is applied) is analyzed statically to generate
more efficient matching code. Specific attention has been paid to freeing bindings as soon as possible to reduce
memory requirements and to detect statically when a tracematch may lead to unbounded space overhead. Freeing
bindings early has the additional benefit of reducing the time required to find the binding requiring update when a
transition statement is encountered. This time can be reduced further by maintaining suitable indexes on the binding
set. On some realistic tracematches, these techniques yield speed improvements of multiple orders of magnitude.
Thus, these techniques are necessary for a practical dynamic implementation of tracematches. A similar indexing
technique is also applied in JavaMOP [9].

A second approach, of which our work is an example, is to use static analysis to reduce the number of transition
statements that must be instrumented. Earlier, Bodden et al. [8] implemented a static analysis based on flow-insensitive
may-point-to information. The analysis comprises three stages. In the first stage (called quickcheck), only the set of
tracematch symbols (i.e. operations) occurring in the program is examined; if it is impossible to make any word in the
language specified by the tracematch pattern with only those symbols, the tracematch cannot match. The second stage
considers the may-point-to sets of the variables bound at each transition statement. If a set of transitions is to lead to
a match, they must have consistent bindings, and this is only possible if their points-to sets overlap. This stage was
observed to reduce the number of instrumentation points (but not eliminate all of them) on five tracematch/benchmark
pairs. The third stage attempts to track the tracematch state flow-sensitively. However, because it does not use must-
aliasing information and does not track the flow of individual objects, it did not lead to any improvement over the
second stage. In particular, it is ineffective for a tracematch requiring flow sensitivity such as HasNext, because it
cannot be sure that the object on which a hasNext call occurs is the same object on which next will later be
called. Our analysis is complementary to the use of may-point-to information in Bodden et al.’s second stage: while
our analysis is very precise when local variable references to the bound objects are involved and when flow-sensitive
information is required, it is less effective when the objects escape to the heap and local references are lost, such as in
some cases of the FailSafe* tracematches. For these cases, it would help to extend our analysis to use may-point-to
information.

Another similar analysis is Guyer and Lin’s [18, 19] client-driven pointer analysis. Their analysis is based on an
subset-based may-point-to analysis followed by flow-sensitive propagation of states on the abstract object represented
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by each allocation site. However, when a property cannot be proven, the analysis iteratively refines the context-
sensitivity of the points-to analysis in order to improve precision and hopefully verify the property.

The static analysis most closely related to our analysis is Fink et al.’s typestate analysis [15]. Their analysis also
uses an object abstraction in which an abstract object represents at most one concrete object, and it uses the focus
operation to achieve this. Their object abstraction is more precise but more costly than ours because it tracks access
paths through fields, rather than only references from local variables. In addition, the object abstraction contains the
allocation site of each object, which provides the same information as a subset-based may-point-to analysis. It would
be possible to replace the object abstraction in our tracematch analysis with that of Fink et al. to improve precision.
Unlike tracematches, typestate applies only to a single object. Therefore, rather than requiring a separate tracematch
abstraction, Fink et al. simply augment the abstraction of each object with its typestate.

Another object abstraction similar to ours is used by Cherem and Rugina [10] to statically insert free instructions to
deallocate some objects earlier than the garbage collector can get to them. This application makes use of the property
that the abstract object corresponding to a given concrete object can be traced through the control flow graph. The
object abstraction is also more precise than ours, but less so than Fink at al.’s; it maintains reference counts from
individual fields rather than full access paths. This object abstraction could also be substituted in the tracematch
analysis.

The Metal system [21] is an unsound state-based bug finder for C. The core system does not worry about aliasing;
instead an automaton is maintained for each variable, regardless of the object to which it may be pointing. It uses
heuristics such as synonyms (an unsound variation of must-alias analysis) to recover some of this unsoundness. Despite
being unsound, Metal was successful in finding many locking bugs in the Linux kernel.

An alternative to analyzing code with arbitrary aliasing is to require the code to conform to a specialized type
system that restricts aliasing in ways that make it easier to prove correct. An advantage of this approach is modularity:
a violation of the type system is local, as are violations of the typestate property when the aliasing restrictions are
obeyed. A disadvantage is that it is difficult to apply to existing, unannotated code, although sometimes if may be
possible to infer annotations automatically. The Vault system [12] system uses keys, unique pointers to objects. The
type system prevents duplication of keys, and each typestate change is correlated with a set of keys held at the point
of the change. The same authors propose a system for specifying typestates of object-oriented programs, focusing
especially on object-oriented features such as subtyping [13]. To handle aliasing, they allow objects to be either
unaliased and updateable, or possibly aliased and non-updateable. CQual [16] is another system similar to but simpler
than Vault. Bierhoff and Aldrich [5, 6] present a type system in which both aliasing and typestate information are
specified using types. A key innovation of their system are access permissions, which specify whether a pointer is
unique or whether it is aliased but with fine-grained restrictions on which aliases may read or write to the object.
Access permissions can be split for multiple aliases and later recombined, making them more flexible than earlier
aliasing control mechanisms.

7 Conclusions and Future Work
The analysis we have presented extends static typestate checking to checking temporal specifications of multiple
interacting objects expressed using tracematches. The analysis has been proven sound with respect to the tracematch
semantics. A fully context-sensitive version of the analysis has been implemented as two instances of IFDS [24] and
IDE [25] algorithms. The analysis was evaluated on the tracematches of Bodden et al. [8] and found to be very precise.

Remaining imprecisions are mainly due to two factors. First, the analysis loses precision when all local variable
references to an object are lost. This can be remedied either by making use of may-point-to information, or by adding
more precise information about heap references to the object abstraction. Even type information may help in some
cases. Second, the analysis fails to verify some tracematches due to imprecise handling of interprocedural exceptional
control flow. The precision of exceptional control flow can be improved with suitable modifications to the IFDS and
IDE algorithms. We plan to experiment with these improvements in the future.
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To make the analysis useful to programmers, as well as to ease our work of interpreting the analysis results, we
plan to complement the analysis with a suitable user interface for presenting the analysis results and navigating the
program and its call graph and control flow graph.
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