
Optimal Speedup on a Low-Degree Multi-Core Parallel

Architecture (LoPRAM)

Reza Dorrigiv, Alejandro López-Ortiz and Alejandro Salinger∗

Technical Report CS-2007-48

Cheriton School of Computer Science

University of Waterloo

Abstract

Modern microprocessor architectures have gradually incorporated support for parallelism.
In the past the degree of parallelism was rather small and as such it could be best modeled as
a constant speedup over the traditional RAM model, however, as a consequence of continued
growth this assumption might no longer hold. For example, with the introduction of 32- and
64-bit architectures, bit-level parallelism became significant. This led to the introduction of
the transdichotomous RAM model, for which many algorithms which are faster in theory and
practice have been developed. Similarly, over the last five years, major microprocessor manu-
facturers have released road maps for the next decade predicting a rapidly increasing number
of cores, with upwards of 64 cores per microprocessor by 2015. In such a setting a sequential
RAM computer no longer accurately reflects the architecture on which algorithms are being
executed. In this paper we propose a model of low degree parallelism (LoPRAM) which builds
upon the RAM and PRAM models yet better reflects recent advances in parallel (multi-core)
architectures. The model has as a goal a combination of fidelity of the underlying hardware
and ease of programming and analysis. When necessary we make tradeoffs between what is
achievable in hardware and what is understandable and programmable by humans/compilers.
The proposed model supports a high level abstraction that simplifies the design and analysis
of parallel programs. Then we show that in many instances this model, though in many ways
similar to the classic PRAM, it naturally leads to work-optimal parallel algorithms via simple
modifications to sequential algorithms. This is in contrast to the PRAM model, in which the
design and analysis and implementation of work-optimal algorithms proved to be one of the
biggest challenges in practice for their adoption.

1 Introduction

Modern microprocessor architectures have gradually incorporated support for a certain degree of
parallelism. Over the last two decades we have witnessed the introduction of the graphics processor,
the multi-pipeline architecture, and vector architectures. More recently major hardware vendors
such as Intel, Sun, AMD and IBM have announced multicore architectures in their main line of
processors. Currently two, four and eight core processors are generally available. Until recently the
degree of parallelism provided by any of these solutions was rather small and as such it was best
studied as a constant speedup over the traditional and/or transdichotomous RAM model. However,

∗School of Computer Science, University of Waterloo, 200 University Ave. W., N2L 3G1, Waterloo, Ontario,

Canada, e-mail: {rdorrigiv,alopez-o,ajsalinger}@uwaterloo.ca.

1



recent road maps released by major microprocessor manufacturers predict a rapidly increasing
number of cores. In particular Intel’s road map released in early 2005 predicted quad core by 2007
(with nearly all microprocessors being multi-core by the end of that year) and more importantly 64
to 128 cores per microprocessor by 2015. A newly revised version of “Moore’s Law” now states that
the number of cores per chip is expected to double every two years. In this scenario, a constant
speedup would no longer accurately reflect the amount of resources available.

We propose a new model of low degree parallelism which better reflects recent multicore archi-
tectural advances. We argue that in current architectures the number of processors p available can
effectively be assumed to be O(logn). This parallels the development of the transdichotomous-RAM
in which the the presence of bit level parallelism went from being subsumed as a small constant
speed-up to the w = O(logn)-bit word model in which the speedup is a function of w.

As with the classical RAM model, the LoPRAM supports different degrees of abstraction.
Depending on the intended application and the performance parameters required the design and
analysis of an algorithm can consider issues such as the memory hierarchy, interprocess commu-
nication, low level parallelism, or high level thread based parallelism. Our main focus is on the
higher level, thread based parallelism. Naturally the more abstract the model the easier it is to
reason on it at the expense of fidelity in the analysis. As we shall see the design and analysis of
algorithms at this higher level is often sufficient to achieve optimal speedup. This, of course, does
not preclude the use of low level optimizations when necessary. This parallels the classical RAM
model in which issues such as caching, secondary storage and other such hardware characteristics
can be incorporated or ignored as it may be deemed most appropriate.

We then apply this model to the design and analysis of algorithms for multicore architectures
for a sizeable subset of problems and show that we can readily obtain optimal speedups. This is
in contrast to the PRAM model, in which even a work-optimal sorting algorithm proved to be a
difficult research question [8]. More explicitly, we show that a large class of dynamic programming
and divide and conquer algorithms can be parallelized using the high level LoPRAM thread model
while achieving optimal speedup. Interestingly, the assumption that there is a logarithmic bound
on the degree of parallelism is key in the analysis of the techniques given. As well, communication
cost remains modest under the assumption of low-degree parallelism. Indeed with this bound in
place a full processor network based on the complete graph is realizable. Paradoxically the main
contribution of this paper is not in the difficulty of the proofs or techniques but rather in their
simplicity. We believe this will be a key factor in the adoption of new parallel computation models.

2 Previous Work

The dominant model for previous theoretical research on parallel computations is the PRAM model
[13], which generally assumed Θ(n) processors working synchronously with zero communication
delay and often with infinite bandwidth among them. If the number of processors available in
practice was smaller, the Θ(n) processor solution could be emulated using Brent’s Lemma [6]. The
PRAM model, while fruitful from a theoretical perspective, proved unrealistic and various attempts
were made to refine it in a way that would better align to what could effectively be achieved in
practice. Among the alternatives introduced were, to name a few examples, the LogP model
[10, 18], the LogGP model [3], the bulk-synchronous parallel model [24], and the Asynchronous
PRAM [16], among others [20, 23, 1, 2, 7]. In practice there were various important drawbacks of
the PRAM model, such as the cost of synchronization, the cost of interprocessor communication,
the cost-effectiveness of a massively parallel machine and more importantly the enormous difficulty
in developing and implementing work-optimal algorithms (i.e. linear speedup) for a computer with

2



Θ(n) processors. Even relatively simple tasks such as sorting required considerable thought before
a work-optimal PRAM algorithm could be developed [8]. The state of parallel algorithm research
consequently entered into a dormant state in the second half of the 1990s. Recent developments in
multicore architectures have brought back the possibility of parallel architectures in practice which
has revived the study of parallel algorithms.

However, to the best of our knowledge the assumption of a logarithmic level of parallelism as
well as its theoretical implications had yet to be noted in the literature. Our informal discussions
with classic PRAM algorithmicists as well as modern multicore researchers only confirmed this per-
ception. We note that while PRAM algorithms were by far and large developed with an assumption
of as many as Θ(n) processors being available, there is previous work in the literature considering
smaller number of processors for certain specific cases. For example, Munro and Robertson [22]
proved in 1979 that a priority queue algorithm with optimal speedup exists so long as p = O(logn).

Structure of the paper. In Section 3 we introduce the LoPRAM, a formal model for multicore
computing. In Section 4 we show that under this model a large class of divide and conquer and
dynamic programming algorithms can be made to run optimally in this model. Lastly in Section 5
we present concluding remarks and future directions of research.

3 Model

The core of a LoPRAM is a PRAM with p = O(logn) processors running in multiple-instruction
multiple-data (MIMD) mode. The read and write model, while architecture dependent, can gener-
ally be assumed to be Concurrent-Read Exclusive-Write (CREW) [15, 17]. To support this model,
semaphores and automatic serialization on shared variables are available—either hardware or soft-
ware based—in a transparent form to the programmer. If an unserialized variable is concurrently
written this has undefined arbitrary behaviour—including suspension of execution.

The model naturally supports a high level abstraction that simplifies the design and analysis
of parallel programs. The application benefits from parallelism through the use of threads. We
show that in many instances this leads to work-optimal parallel algorithms derived from simple
modifications of sequential algorithms.

3.1 Thread Model

Two main types of threads are provided: standard threads and pal-threads (Parallel ALgorithmic
threads). Standard threads are executed simultaneously and independently of the number of cores
available; they are executed in parallel if enough cores are available or by using multitasking if
the thread count exceeds the degree of parallelism, just as in a regular RAM. Pal-threads on
the other hand are executed at a rate determined by the scheduler. If there are any pal-threads
pending, at least one of them must be actively executing, while all others remain at the discretion
of the scheduler. They could be assigned resources, if they are available, or they could be made
to wait inactive until resources free over. Once a thread has been activated though, it remains
active just like a standard thread (this is important to avoid potential deadlock). Pending pal-
threads are activated in a manner consistent with order of creation as resources become available.
While primitives are provided for ad-hoc ordering of pal-threads activation, by default threads are
inserted into an ordered tree. The root of the tree is the main thread with new threads attached to
the node corresponding to the activating parent-thread. The scheduler activates the nodes in the
tree in parent-child order, i.e. first the parent thread is activated, which issues pal-threads calls

3



for its children. The parent thread is now in a wait state and the processor is assigned sequentially
to the children, in order of creation. If no further children remain pending then control is returned
to the parent thread. If no such thread is present then nodes are activated in the order given by
the preorder traversal of the tree.

Execution concludes when there are no further threads to activate and the main thread exits.
Consider for example the code for a parallel implementation of the classical sequential mergesort
written using suitable C extensions for the LoPRAM:

void mergeSort(int numbers[], int temp[], int array_size)

{ m_sort(numbers, temp, 0, array_size - 1); }

void m_sort(int numbers[], int temp[], int left, int right) {

int mid = (right + left) / 2;

if (right > left) {

palthreads {

m_sort(numbers, temp, left, mid);

m_sort(numbers, temp, mid+1, right);

}

merge(numbers, temp, left, mid+1, right);

}

}

The semantics of the primitive palthreads are to create a pal-threads call for each of the
function calls within its scope. These threads are created as children of the current thread in
the specific order given. Observe that there is an implicit wait at the end of the palthreads

statement which can be deactivated using a “palthreads { ... } nowait;” construct with an
explicit thread join later on if so needed. Note that we introduce this syntax only for the purposes
of the example and that it is not inherent to the LoPRAM model. An example of the execution of
mergeSort with an input of size 16 and 4 processors is shown in Figure 1.

1

2 2

3 3 3 3

4 7 4 7 4 7 4 7

5 6 8 9 5 6 8 9 5 6 8 9 5 6 8 9

Figure 1: Example of an execution tree for Mergesort with an input of length n = 16 and p = 4 processors.
Black nodes represent active pal-requests, gray nodes represent calls that have been pal-requested but that
are not active yet, while white nodes are calls that have not been pal-requested. The number by each node
indicates the time step in which the call corresponding to that node is pal-requested. The picture shows the
execution at t = 6.

3.2 Multiprocessing model

In actuality, the number of cores made available by the operating system may vary as the level
of multiprogramming in the system changes. Hence, in the analysis of the algorithm the number
of processors available is denoted as p, with the assumption that this number is bounded from

4



above by O(logn), i.e., p is O(logn) but p is not necessarily Θ(log n). The algorithm must execute
properly for any value of p. The running time is, of course, a function of n and p.

4 Work-Optimal Parallelization

In this section we present two classes of problems which allow for ready parallelization under the
LoPRAM model. Note that these same classes were not, in general, readily parallelizable under
the classic PRAM model.

4.1 Divide and Conquer

Consider the class of divide-and-conquer algorithms whose time complexity is described by a re-
currence which can be resolved using the Master theorem. We show that when these algorithms
are executed in a straightforward parallelization on a LoPRAM, their execution time is given by a
parallel version of the Master theorem which reports optimal speedup.

Consider a recursive divide-and-conquer sequential algorithm whose time complexity T (n) is a
recurrence of the form:

T (n) = aT (n/b) + f(n), (1)

where a ≥ 1 and b > 1 are constants, and f(n) is a nonnegative function. By the Master theorem,
T (n) is such that [9]:

T (n) =











Θ(nlogb a), if f(n) = O(nlogb(a)−ε) (Case 1)
Θ(nlogb a logn), if f(n) = Θ(nlogb a) (Case 2)

Θ(f(n)), if f(n) = Ω(nlogb(a)+ε) and af(n/b) ≤ cf(n), for some c < 1 (Case 3)
(2)

We are interested in the time complexity of such algorithms when p processors are available. We
assume that recursive calls can be assigned to different processors, which can execute their instances
independently of those of others. All of the processors finish their computation before the results
are merged. First, we consider problems for which the merging phase of the algorithm can only be
done sequentially in each instance. Multiple processors can still be used to merge subproblems of
different instances, but only one processor deals with a particular instance. We denote by Tp(n) the
wall-clock time of a parallel algorithm that uses recursion with p processors, and by T (n) = T1(n)
its sequential version.

Sequential Merging We first consider the case when we merge subresults sequentially. The
following theorem states the bounds for the wall-clock time of an algorithm whose time is defined
by equation (1) when using p processors.

Theorem 1 Let Tp(n) be the time taken by a recursive algorithm that uses p = O(logn) processors
whose sequential version has time complexity given by T (n) = aT (n/b) + f(n), where a > 1 and
b > 1 are constants, and f(n) is a nonnegative function. Then, the time Tp(n) is a recurrence of
the form:

Tp(n) = T

(

n

blogap

)

+

loga(p)−1
∑

i=0

f

(

n

bi

)

. (3)

5



The bounds for Tp(n) are given by:

Tp(n) =











O(T (n)/p), if f(n) = O(nlogb(a)−ε) (Case 1)
O(T (n)/p), if f(n) = Θ(nlogb a) (Case 2)

Θ(f(n)), if f(n) = Ω(nlogb(a)+ε) and af(n/b) ≤ cf(n), for some c < 1 (Case 3)
(4)

Proof: Since there are p processors available, some recursive steps of the algorithm can be per-
formed in parallel. However when the number of simultaneous calls exceeds p, we need to solve the
rest sequentially. Since the algorithms divides the problem into a subproblems, at the k-th level of
the recursion tree we will have ak subproblems. Thus, when k = loga p we will have p subproblems
and no more processors are available for the subsequent recursive calls. Then, at this point, as
there are no more free cores available, the sequential version of the algorithm is used, with an input
of size n/bloga p (See Figure 2). Observe that this condition is never explicitly tested for by the
scheduling algorithm, rather it is a natural consequence of the proposed order of execution of the
parent child threads. Note that it cannot be the case that all the recursive calls are performed in
parallel and that there is no sequential component to be executed as it is not hard to see that this
would only happen if bloga p ≥ n, which would mean that p ≥ nlogb a = ω(log n), but we assume
p = O(logn).

. . .
a

...
. . .

...
a2

...
ak = p

. . .

. . . n/bk

Figure 2: Execution tree of a divide-and-conquer algorithm with p processors: a thread is created for each
recursive call until ak = p calls have been made. Thereafter each thread executes the algorithm sequentially

The cost of merging the solutions of the subproblems using p processors is given by the sum of

the cost at each level of the recursion tree, namely:
∑loga(p)−1

i=0 f
(

n/bi
)

. Hence, we can write the
time of the parallel algorithm as in Equation (3). Now as with the standard version of the master
theorem we prove each case separately.

Case 1 Since f(n) = O(nlogb(a)−ε), by the master theorem, we have that T (n) = Θ(nlogb a).
Substituting in Equation (3) we have

Tp(n) = O





(

n

bloga p

)logb a

+

loga(p)−1
∑

i=0

(

n

bi

)logb(a)−ε


 = O

(

nlogb a

p
+

nlogb(a)−εa

a− bε

)

Since T (n) = Θ(nlogb a), the first term of the sum above is O(T (n)/p) while the second term is
clearly strictly smaller and hence Tp(n) = O(T (n)/p).

6



Case 2 Since f(n) = Θ(nlogb a), we have that T (n) = Θ(nlogb a log n). Then,

Tp(n) = O





(

n

bloga p

)logb a

log

(

n

bloga p

)

+

loga(p)−1
∑

i=0

(

n

bi

)logba




= O

(

nlogb a

p
(log n− log bloga p) + nlogb a ·

a

a− 1

)

Clearly the first term dominates as logn/p = Ω(1). It follows then that Tp(n) = O(T (n)/p).

Case 3 In this case we prove that the total time is dominated by the time that it takes to merge
the solutions of the subproblems to produce the final solution in the second level of the recursion
tree. Recall that we assume that this process is done sequentially. Thus, no benefit is gained from
using p processors in this case. Starting with recurrence (1), we know that af(n/b) ≤ cf(n). By a
simple induction argument, it can be shown that f(n/bi) ≤ (c/a)if(n), 0 ≤ i ≤ logb n. In addition,
we have that T (n) = Θ(f(n)). Hence:

Tp(n) ≤ O

(

f

(

n

blogap

))

+

loga p−1
∑

i=0

(

c

a

)i

f(n) ≤ O

(

f(n)

(

c

a

)logap

+ f(n)

)

≤ O(f(n))

On the other hand, trivially T (n) ≥ f(n) and hence we have Tp(n) = Ω(f(n)).

Parallel Merging We now consider the special case when we can merge the results of subprob-
lems in parallel with optimal speedup. Recall that the time complexity of the sequential algorithm
is given by Equation (1). Then we claim that the parallel master theorem for this setting is as
before with the exception of case 3 for which we have

Tp(n) = Θ(f(n)/p), if f(n) = Ω(nlogb(a)+ε) and af(n/b) ≤ cf(n), for some c < 1 (5)

For the merging phase, at the i-th level of the recursion tree we have to merge a total of ai solutions
of sub-problems of size n/bi. Each of them takes time f(n/bi), and since we assume they can be
done in parallel, the total time of the merging phase at that level is given by (ai/p)f

(

n/bi
)

. Thus
we obtain an analogous expression to Equation (3) but with a merging cost that is 1/p times what
it was before. For cases 1 and 2 the dominant term is the first summand of the right hand side of
Eq. (3) and hence we obtain the same expression as before. For Case 3, using the derivations as in
the previous sequential case but dividing by the speedup factor of p in the merge process we obtain

Tp(n) ≤ k1f(n)

(

c

a

)logap

+
f(n)

p

1

1− c/a
≤ o

(

f(n)

p

)

+ O

(

f(n)

p

)

and since trivially we have Tp(n) ≥ f(n)/p we conclude that Tp = Θ(f(n)/p).

4.2 Dynamic Programming

Dynamic programming is suitable for solving problems that have optimal substructure as well as
overlapping solutions to subproblems. The solutions to such subproblems are then combined into
the solution to a larger problem. In many cases these subproblems can be solved in parallel, up to
a degree that depends on the problem itself, and hence a certain degree of parallelism is achievable.

In the past parallel versions of certain dynamic programming algorithms have been proposed.
In a seminal paper, Apostolico et al. [4] studied parallel algorithms for the string editing problem

7



and other related problems by considering the Directed Acyclic Graph (DAG) corresponding to the
problem and computing this graph in parallel. Galil and Park [14] studied various dynamic pro-
gramming problems, presenting a unified framework for the parallel computation of these problems
using the closure methods and the matrix product methods as general tools for developing parallel
algorithms. Later, Bradford [5] developed a characterization that models dynamic programming
tables by graphs, leading to polylogarithmic time algorithms for optimal matrix chain ordering, the
optimal construction of binary trees and the optimal convex polygon triangulation. Bradford shows
how to transform these problems to a minimum cost parenthesizing on a weighted semigroup, which
is then transformed to a shortest path problem on a weighted directed graph. Most of these studies
consider a few dynamic programming problems and provide a parallel algorithm that is specific
to one or a few problems. In general they assume a classical PRAM model with Θ(n) processors,
meaning the algorithm is designed so that it can take advantage of that many processors, shall
they be available. In our case we restrict ourselves to p = O(log n) algorithms with the savings in
communication, synchronization and complexity of the code.

We show that dynamic programming algorithms can be parallelized by providing a general
procedure that, given the specification of the dynamic programing solution to a problem, generates
a scheduling strategy to solve it in parallel. The idea is similar to that in the previous work cited
above in that we also reduce the original problem to computing the DAG corresponding to the
dynamic programming specification of the solution.

A dynamic programming algorithm is an optimization problem whose solution is characterized
by (i) a recursive decomposition of the problem into subproblems (ii) a bottom-up computation of
the cost of said solution and (iii) recovery of the actual solution from the computed cost together
with other ancillary information. In most cases, the partial solutions are stored in a d dimensional
table for some integer d ≥ 0, however this is not an inherent property of dynamic programming
algorithms.

Our goal is to compute the solution to the dynamic programming problem with as much paral-
lelism as possible, with a general strategy that works for any problem whose specification is given
in an explicit dynamic programming expression of its solution. Hence we assume that we have a
solution of the form:

M [x] =

{

f(x) if g(x) = 0 (base case)
f({M [yi]}yi≺x, x) otherwise

(6)

For the dynamic programming solution to be effective we require that the object M which stores
partial solutions remains of reasonable size, that it can be efficiently indexed using a partial input
x as key and that the recursive order yi ≺ x be efficiently constructible in a bottom-up fashion.
Alternatively, if the solution cannot be computed efficiently in a bottom-up fashion we can use
memoization which stores the partial solutions as they are required in the top-down expansion of
the recursion. In most cases these two techniques are equivalent, though there are known cases in
which the use of one over the other (for either of them) is provably superior.

4.3 Dependency Graph

The recursion described in Equation (6) can be encoded in a graph form. For each partial result
M [x] we draw an edge pointing from the solution M [yi] of subproblems {yi} required in the recursion
to the node M [x]. This creates a DAG of dependencies, starting in the base cases and with M [I] as
the terminal node, where I is the original input. The speedup will be proportional to the amount
of parallelism embedded in the graph. To be more precise: we consider the dependencies graph
as a partially ordered set (poset) on the subproblems. Then the subproblems in an antichain of

8



this poset are independent and can be processed at the same time in parallel. We can partition
the corresponding dependencies DAG into antichains and then process the subproblems in every
antichain in parallel. At each time we find an antichain that does not have any dependencies on the
subproblems in the antichains that have not yet processed. Then we process subproblems in that
antichain in parallel, and then move on to the next antichain. A dual of Dilworth’s theorem states
that the size of the largest chain in a poset equals the smallest number of antichains into which the
poset may be partitioned [11, 21]. Suppose that c1c2 . . . cl is a largest chain in the poset. At step
i we process ci together with other elements in its antichain, i.e., elements that are incomparable
with ci.

These antichains capture the degree of parallelism that is readily apparent in the recursive
description of the problem. In certain cases, such as one dimensional dynamic programming the
DAG is a path and hence there is no speedup possible. In others such as most common examples
of two dimensional tables for dynamic programming, there is row, column or diagonal order which
allows for a high degree of parallelism.

4.4 Parallel Dynamic Programming

We consider dynamic programming algorithms for which we evaluate the DAG corresponding to
the algorithm in parallel. This strategy is divided in three steps: (i) determine the dependencies
graph for the cells of the table M , (ii) reverse this graph to obtain a DAG of the problem, and (iii)
schedule the computation of the DAG with parallel threads.

For the most common case where the object store is a d dimensional table and the input of the
problem has size n, the graph of dependencies will have nd vertices, where d is the dimension of M .
There is an edge from vertices u to v if the computation of the value of the cell corresponding to u
needs the value of the cell corresponding to v. Since no edges in the dependencies graph depend on
previously determined edges, the dependencies graph can be determined in parallel optimally by all
p processors in time O(mnd/p), where m is the maximum degree of any vertex, i.e. the maximum
number of cells that any computation of a cell depends on. The idea is to create an adjacency
matrix D to represent the dependencies graph. Each processor is assigned nd/p vertices for which
it has to determine the vertices that they depend on. According to a specification of the dynamic
programming solution of the form (6), a unique vertex id is assigned to each cell of table M . Then,
in order determine the dependencies of a given vertex v, a processor has to determine the id of the
vertex and update D according to the recursive expression given in the specification. The result is
a nd containing the dependency list for node i.

We consider the following scheduling strategy: each vertex v has a counter cv that indicates, at
any time, the number of vertices that v depends on directly and that have not been computed yet.
Initially, the counters of all vertices are equal to their in-degree. After a thread computes the value
corresponding to a vertex v, it decreases the values of the counters of all the neighbors of v. When
these neighbor vertices have their counter equal to 0, i.e. they are ready to be computed, the same
thread creates other pal-threads to compute these vertices and these get executed depending on
the availability of processors. Algorithm 1 describes this algorithm in pseudocode.

4.5 Parallel Memoization

Memoization is a strategy to solve problems that have a similar recursive decomposition as in
Equation (6), but in which the execution of the algorithm is carried out recursively in a top-down
fashion. It differs from usual divide-and-conquer recursive algorithms in that the first time each
sub-problem is solved, its result is stored in order to avoid further computations of the same result.

9



Algorithm 1 parallel dp(G, S, t)

for each u ∈ S do

pal-threads { computeVertex(u) } nowait;
end for

computeVertex(u)

compute u
for each v such that (u, v) ∈ E do

vc ← vc − 1
if vc = 0 then

pal-threads { computeVertex(v) } nowait;
end if

end for

Initially, all the sub-problems in the stored object contain a value that indicates that the solution
has not yet been computed. Before a sub-problem is solved, its entry is looked up in the structure.
If the entry has a previously computed value, this value is used and no further computation for
this sub-problem is carried out. Otherwise, the sub-problem is solved and the solution is stored in
the structure.

The parallelization of an algorithm that uses memoization is similar to the one introduced earlier
on for divide-and-conquer algorithms: each recursive call is assigned to a different PAL-thread, with
the difference that a thread is created only when the value to be computed has not been computed
or initiated before. Say that the value M [x] has not been computed so its computation is now
assigned to a thread t. Let M [y1], . . . , M [yr] be the values that M [x] depends on. For each of
these values M [yi], thread t checks if they are already available, using this value if this is the case.
In contrast to sequential memoization, if the value is not available there are two options: either
a new thread is launched to compute it and this is recorded in the object M as “in progress” or
if the value is not present but recorded as already in progress by another thread, then the thread
registers a notify condition on solution. The thread continues with all other subproblems yi until
all of the subproblems are active or solved. If not all the answers are available the thread enters a
wait state until they become available.

Observe that the testing of previous solutions introduces an overhead factor over the sequential
version of the same memoization program. If k subproblems require a specific value to proceed we
can have as many as k−1 probes for the value that do not result in launching a thread nor do they
return a value as it is labeled “in progress”. If these probes are simultaneous then this access can
cause delay depending on the model assumed. For CREW a serialization mechanism is needed to
update this value concurrently.This can be done with a log p overhead using standard techniques
for simulating a CRCW with an CREW PRAM [12].

The speedup factor in this case is, as noted by Apostolico et al. [4] heavily dependent on the
amount of parallelism imbued in the recursive structure of the solution, which we shall discuss in
the next subsection.

4.6 Speedup Factor for DAGs

If T (n) is the time that it takes to compute the solution of the problem, our goal is to compute the
solution optimally in time Tp(n) = O(T (n)/p). If the input of a problem has size n, the dynamic
programming store is a table of dimension d and the computation of a cell depends at most on m
other cells, the time of the sequential solution is O(mnd). In our parallelization, as argued before,
creating the dependencies graph takes time O(mnd/p) = O(T (n)/p), while reversing the graph

10



does not need any computation. The time for computing the DAG depends on the extent to which
we can parallelize its execution. Depending on each problem, the graph G can be be more or less
suitable for parallelization.

It is important to note that updating the counters of the neighbors of a vertex cannot always
be done in parallel in a CREW model. Hence we use a standard simulation technique to obtain
CRCW behaviour on a CREW PRAM with a log p slowdown factor.

In general the speedup factor will depend on the amount of parallelism implicit in the DAG
(using the antichains argument) as well as the slowdown from the simultaneous lookup of the value
associated to a node in the DAG.

Interestingly enough, the same argument can be applied to a general sequential program in
which the function call chain can be computed ahead of time. Lokhmotov et al. introduced the
concept of sieves which are blocks of code in which all side-effects within them are delayed until
the end of the scope and side-effects [19]. Such primitives naturally exploit the parallelism present
in the sequential program with minimum effort to the programmer.

5 Conclusions

We introduced a new model for parallel computation, LoPRAM, that is faithful to current architec-
tures, avoids many of the pitfalls of the previous PRAM model, namely difficulty of programming
and expensive processor communication infrastructure, and allows for significant classes of problems
to be parallelized with little effort. Our model supports a high level abstraction that simplifies the
design and analysis of parallel programs. We provided work-optimal LoPRAM parallel algorithms
for divide-and-conquer and dynamic programming problems by applying simple modifications of
the corresponding sequential algorithms. These serve as starting examples of algorithm design and
analysis in the LoPRAM model, and give an insight of the techniques for parallelization that we
seek to apply to a wider set of problems.

Future directions of research include refining the model and trying to find other families of
algorithms for which we can apply general parallelization techniques to obtain simple work-optimal
parallel algorithms.

Acknowledgments We thank Ming-Yang Kao, Phil Gibbons, David Patterson, Prabhakar Ragde
and Andrej Brodnik for fruitful discussions in this subject. Key ideas of this paper were first pro-
posed during the 2006 Dagstuhl Workshop on Data Structures, whose participants’ comments are
gratefully acknowledged.

References

[1] A. Aggarwal, A. K. Chandra, and M. Snir. On communication latency in pram computations.
In SPAA ’89: Proceedings of the first annual ACM symposium on Parallel algorithms and
architectures, pages 11–21, New York, NY, USA, 1989. ACM.

[2] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Communication complexity of prams.
Theor. Comput. Sci., 71(1):3–28, 1990.

[3] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman. Loggp: in-
corporating long messages into the logp model one step closer towards a realistic model for
parallel computation. In SPAA ’95: Proceedings of the seventh annual ACM symposium on
Parallel algorithms and architectures, pages 95–105, New York, NY, USA, 1995. ACM.

11



[4] Alberto Apostolico, Mikhail J. Atallah, Lawrence L. Larmore, and Scott McFaddin. Efficient
parallel algorithms for string editing and related problems. SIAM J. Comput., 19(5):968–988,
1990.

[5] Phillip Gnassi Bradford. Parallel dynamic programming. Technical Report #352, 1994.

[6] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201–
206, 1974.

[7] T. Cheatham, A. Fahmy, D. Stefanescu, and L. Valiant. Bulk Synchronous Parallel Comput-
ing — A Paradigm for Transportable Software. In Proceedings of the 28th Annual Hawaii
Conference on System Sciences, volume II. IEEE Computer Society Press, January 1995.

[8] Richard Cole. Parallel merge sort. SIAM J. Comput., 17(4):770–785, 1988.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 2nd edition, 2001.

[10] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice
Santos, Ramesh Subramonian, and Thorsten von Eicken. Logp: towards a realistic model of
parallel computation. In PPOPP ’93: Proceedings of the fourth ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 1–12, New York, NY, USA, 1993.
ACM Press.

[11] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,
51:161–166, 1950.

[12] Faith E. Fich, Prabhakar Ragde, and Avi Wigderson. Relations between concurrent-write
models of parallel computation. SIAM J. Comput., 17(3):606–627, 1988.

[13] Steven Fortune and James Wyllie. Parallelism in random access machines. In STOC ’78:
Proceedings of the tenth annual ACM symposium on Theory of computing, pages 114–118,
New York, NY, USA, 1978. ACM.

[14] Z. Galil and K. Park. Parallel dynamic programming. Technical Report CUCS-040-91, 1991.

[15] Alan Gibbons and Wojciech Rytter. Efficient parallel algorithms. Cambridge University Press,
New York, NY, USA, 1988.

[16] P. B. Gibbons. A more practical pram model. In SPAA ’89: Proceedings of the first annual
ACM symposium on Parallel algorithms and architectures, pages 158–168, New York, NY,
USA, 1989. ACM Press.

[17] Joseph JáJá. An introduction to parallel algorithms. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 1992.

[18] Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der Heide. Efficient PRAM simu-
lation on a distributed memory machine. pages 318–326, 1992.

[19] Anton Lokhmotov, Alan Mycroft, and Andrew Richards. Delayed side-effects ease multi-core
programming. In Anne-Marie Kermarrec, Luc Bougé, and Thierry Priol, editors, Euro-Par,
volume 4641 of Lecture Notes in Computer Science, pages 641–650. Springer, 2007.

12



[20] Kurt Mehlhorn and Uzi Vishkin. Randomized and deterministic simulations of prams by
parallel machines with restricted granularity of parallel memories. Acta Informatica, 21:339–
374, 1984.

[21] L. Mirsky. A dual of dilworth’s decomposition theorem. The American Mathematical Monthly,
78(8):876–877, 1971.

[22] J. Ian Munro and Edward L. Robertson. Parallel algorithms and serial data structures. In Pro-
ceedings of the 17th Annual Allerton Conference con Communication, Control and Computing,
pages 21–26, 1979.

[23] Christos Papadimitriou and Mihalis Yannakakis. Towards an architecture-independent analysis
of parallel algorithms. In STOC ’88: Proceedings of the twentieth annual ACM symposium on
Theory of computing, pages 510–513, New York, NY, USA, 1988. ACM.

[24] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111,
1990.

13


