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Abstract—The rise of distributed services and user-driven net-
working concepts in recent years poses the critical question of
stability. Can a system operating under non-cooperation and
self-interest converge to a stable state? and how fast? The
answers to these questions readily lend themselves to game theory
analysis, and to the study of congestion games in particular.
In the past, much work have been done on establishing the
existence of pure Nash equilibria in congestion games, and has
shown that finding a pure Nash equilibrium is PLS-complete
[1] and hence convergence to a pure Nash equilibrium is very
difficult (exponential time in worst case). Furthermore, much
of the convergence analysis have been carried out on simple
single-commodity game models. In this paper, we attempt to
construct a more realistic multi-commodity congestion game
model suited for distributed service and user-driven networking
scenarios. We introduce the desirability of equilibrium concept
that is helpful in determining whether a system state meets the
quality requirements of the users and services. Desirability is
an alternative concept to price of anarchy. In fact we show the
desirability ratio is a special case of price of anarchy. We then
define the a-threshold congestion game whose minimum potential
state corresponds to a desirable equilibrium (if the system permits
one) and we bound its convergence to polynomial time through
game transformation. Finally, we present a mechanism for partial
simultaneous moves. To the best of our knowledge, there has
been no prior establishment of the desirability concept and no
bound given on the convergence of asymmetric multi-commodity
congestion games with exponential cost function.

Index Terms—Game theory, stability, convergence

I. INTRODUCTION

In recent years, there has been an emergence of distributed
services (e.g. distributed applications and service oriented
architecture), user-driven networking concepts (e.g. overlays,
peer-to-peer networks, etc.), and self-stabilizing system
designs'. In general, they operate under an environment of
non-cooperation: a finite distributed population of selfish
users sharing a common collection of resources and playing
for the maximization of their own utility. This raises the
question of stability: are there global stable states of operation
in such systems? and if so, how quickly can the system
converge to such a stable state from an arbitrary initial state?
The question readily lends itself to game theory analysis,
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in particular to the study of congestion games [2]. In the
past, much analysis have been conducted to establish the
existence of pure Nash equilibria in congestion games and
to determine their complexity (e.g. [1][2][3][4]). In general,
there is no guarantee that a pure Nash equilibrium exists in
all congestion games [2], and when it does, the number of
steps it takes for the system to converge is exponential in
worst case [1]. Furthermore, the models used in studying
convergence are often over simplified. For instance, the
popular K-P model [5] is a single commodity model that
assumes all players have a common source and destination,
choose a single resource from a shared resource collection,
and the resources are independent (e.g. parallel links).

In this paper, we consider the application scenarios
in distributed services and user-driven networking by
constructing a more realistic congestion game model. In
particular, we address the issue of multi-commodity, players
with splittable and varying load, and the condition for
resource independency. We show our game model is an
exact potential game and hence there exists at least one pure
Nash equilibrium. Furthermore, we introduce the desirability
of equilibrium concept based on a threshold metric that
evaluates whether a system state could accommodate the
requirements of the services and applications. The intuition
is that sometimes it is more important to ensure the players’
service requirements are satisfied and to achieve system-
wide load balancing than trying to bound the distance to
optimality. This is an alternative concept to the traditional
price of anarchy [6] and provides an alternative target of
convergence. In fact we show that the desirability ratio is
a special case of price of anarchy. Since the equilibrium
obtained from the minimization of a potential function is not
necessarily a desirable equilibrium, we define a a-threshold
congestion game in which the minimization of the potential
function corresponds to a desirable equilibrium if the system
permits one. Finally, we show that convergence to such an
equilibrium could be achieved in O(L*Cn) time based on
a game transformation that is isomorphic in desirability.
We further show that assuming the size of each player’s
strategy set is a small subset of the resource collection, the
player population could be partitioned into groups where all



players in a group could move simultaneously. We show that
problem of finding the minimum number of groups needed
to partition the entire population is equivalent to the classic
graph coloring problem. The main contribution of our work
are: the construction of a more realistic multi-commodity
congestion game model; the concept of desirability as an
alternative evaluation of the system states; the definition of
a a-threshold congestion game that converges to a desirable
equilibrium; a convergence bound of at most O(L*Cn) steps;
and a mechanism for partial simultaneous moves. To the best
of our knowledge, there has been no prior establishment of the
desirability concept and no bound given on the convergence
of asymmetric multi-commodity congestion games with
exponential cost function.

The rest of the paper is organized as follows. Section II
gives background and related work in congestion games and
their convergence. Section III defines the game model we are
interested in and its applications. Section IV establishes the
desirability of equilibrium concept and details the construction
of the a-threshold congestion game. Section V bounds the
convergence of a-threshold congestion game to polynomial
time with a game transformation that is isomorphic in
desirability. Section VI concludes the paper with summary
and open problems.

II. BACKGROUND AND RELATED WORK

Congestion games were first introduced by Rosenthal [7] and
later formalized by Monderer and Shapley [3]. It’s a class of
games in which the cost of a resource is a non-decreasing
function depending on the number of players sharing the
resource. A game is called a potential game when there exists
a potential function such that the increase in utility of a player
(or drop in cost) causes a decrease in potential. All potential
games has at least one pure Nash equilibrium. Monderer
and Shapley showed that potential games are isomorphic to
congestion games. However, Milchtaich [2] showed that this
is only the case for unweighed congestion games. A weighed
congestion game in which players may have different impacts
on the cost function (i.e. varied load among players) may not
possess any pure Nash equilibrium. Fabrikant, Papadimitriou
and Talwar [1] have shown that the complexity of finding a
pure Nash equilibrium in asymmetric congestion games is
PLS-complete, and thus under the best-reply dynamic, there
exist convergence paths of exponential length.

On the topic of convergence to Nash equilibria in congestion
games, the single-commodity K-P model [5] is often used.
Milchtaich [2] has shown polynomial time convergence
exists for players with varied payoff functions. Goldberg
[8] bounded the convergence in such games to polynomial
time, and Even-Dar and Mansour [9] considered the case
in which all players can move simultaneously according to
a Nash rerouting policy and have found a polynomial time
convergence bound. In multi-commodity congestion games

with simultaneous moves, whether convergenece to a pure
Nash equilibrium could be bounded is still an open question
and examples could be found in which convergence doesn’t
occur. Because of its complexity, the study on convergence
in general congestion games has been mainly focused
on finding convergence bound to approximate solutions.
Christodoulou, Mirrokni and Sidiropoulos [10] bounded the
solution after one round of best-response walk by all players
to ©(n)-approximate in general case. Chien and Sinclair [11]
showed that when the increase in cost of adding a player is
bounded (“bounded jump” condition), convergence to e-Nash
occurs in polynomial time. In the game model we establish
in this paper, the cost jump by adding a player is unbounded,
and hence it is difficult to provide a bounded approximation
because of the possibility of a player with low payoff gain
is unwilling to move and thus “locks out” another player’s
chance of obtaining a high payoff gain. Goemans, Mirrokni
and Vetta [12] studied convergence of Nash dynamics to
“sink equilibrium”, which is not an approximate of a pure
Nash equilibrium. In fact, a sink equilibrium could be formed
by a group of cyclic states in some cases.

In bounding the optimality of an equilibrium, price of anarchy
(PoA) is frequently used [6]. It defines the ratio between the
social cost of an equilibrium and the social optimal. Some
research (e.g. [13][14]) have been conducted on bounding
the PoA ratio in congestion games and in some cases tight
bounds are found. In this paper, we introduce the desirability
of equilibrium as an alternative concept. It evaluates whether
a system state could accommodate the requirements of the
services and applications rather than attempts to bound its
social cost distance to the optimal. Under this concept, we
are able to obtain polynomial time convergence to desirable
equilibria in multi-commodity congestion games.

Some research work have looked into Bayesian congestion
games [15][16] for games with incomplete information.
Facchini et. al. [15] have shown Bayesian congestion games
with uniform player loads exhibit a potential function and
hence has pure Bayesian Nash equilibria under the assumption
of common prior. Gairing, Monien and Tiemann [16] gave a
polynomial time algorithm to compute a pure Bayesian Nash
equilibrium for the model of identical links and independent
type distribution. In this paper, we do not model the scenarios
as Bayesian games for a number of reasons. First, the
complexity of Bayesian congestion games are typically higher
than congestion games due to the need of each player to
know the other players’ types and their strategies, and the
distribution among player types must be a consistent and
common knowledge among players. Second, the required
knowledge of each player with regard to other players’
strategies, type distribution, and the common prior is difficult
to obtain for a player in distributed environment. Third,
few work on convergence in asymmetric multi-commodity
Bayesian congestion games have been conducted thus far and
it’s complexity class is an open question.



III. MODEL APPLICATION AND DEFINITION

In this section, we define a particular congestion game
suitable for distributed services and user-driven networking
applications. We will show that such a congestion game has
an exact potential and hence there exist pure Nash equilibria.
Consider the following scenarios:

Scenario 1: an overlay network consists of a finite number of
users (i.e. players). Each user has a set of overlay network
paths she may switch to depending on the end-to-end network
quality over each path. The end-to-end network quality (e.g.
delay) can be represented as the sum of the quality over
each overlay link, which is an increasing function depending
on the number of user on the link. Each user wants to
avoid congestive links in the network and is interested in
maximizing her network quality (e.g. minimizing end-to-end
delay).

Scenario 2: a service environment hosts a finite number
of web service composites (i.e. players). Each web service
composite has a set of candidate compositions, where each
composition uses a set of service components. The response
time of each service component is an increasing function
depending on the number of users, and the total response
time of a web service composition is the sum of response time
of its service components. In choosing one of its candidate
compositions, each web service composite wants to ensure
each of the selected service component meets some minimum
service quality level, while minimizing the total response
time.

With the presence of a central controller, the solutions to
the above scenarios could be obtained readily. However,
when each of the players are allowed to make their own
decisions under the assumption of non-cooperation and
without knowledge of the global state, there is no guarantee
that the overall system have any stable states, and if so,
whether convergence to a stable state is possible, and how
long it would take. In providing answers to these questions
through game theory, we require the description of a game
model. Consider the following game model specification:

LetT'p = (N, {Y:}ien, {u; }ien) be a game in strategic form.
N is the finite set of players {1,...,n}, Y; is the finite set
of strategies available to player ¢ and u; : Y — R, where
Y =Y1 xY5...xY, is the payoff function of player ¢. Given
a finite set of resources T = {t1,...,tm}, define ¥; C 2T,
Let A; € Y; be a strategy of player i, A € Y be a strategy
profile, c¢; be the cost function of resource ;, and [; be the
normalized serving capacity of ¢, then

ui(A) = Ljea, ¢(4)
(4) = =2
xj(A)=#{ie N :t; € A;}

I'p is a multi-commodity game that models the Scenarios
described. Unlike single-commodity models, a multi-
commodity game does not limit the players from choosing
more than one resource in a single strategy. We observe that
the cost function c; of resource t; is a strictly increasing
function solely depending on the number of players using #;.
Two assumptions must stand for this cost function to hold
in practice: 1) each user of a resource ¢; adds equal amount
of load to t; (i.e. unweighed game); 2) the resources are
independent (i.e. load condition on one resource does not
affect load condition on another resource). We now address
these two assumptions.

Let N be the finite set of players each with varied load
di,...,d,, we define a load constant ) and a mapping
function SPLIT : N — N’ such that

SPLIT(N) =
ie N, d, =9 1d; <9
{il,...,ik}CN/,]{J:[%-l cd; >0
dgl,dgz,...,d;k =1
forallie N

In effect, for players with load less than ¢, we tax the load
to be ¥ and for players with load greater than 1J, the load is
split into multiple loads of value 1, each of which is played
independently. the tail of the split i; is also taxed to be
load 9. the new game I', = (N', {Yi}ien, {wi, }ien) could
then be played as an unweighed game where the serving
capacity of each resource is normalized with respect to . We
observe that any state of I/, has a corresponding state in I'p
with lower cost, and the maximum amount of tax a player
might pay is bounded by 9. In Scenario 1, network flows are
typically splittable. In Scenario 2, we restrict ourself to look
at cases where each service request needs the same amount
of processing at a service component. Or for the case of
variable workload, the load is splittable. We say I, is game
I'p in its taxed form.

We now examine the conditions for resource independency.
Consider a pipeline model of two consecutive resources A
and B respectively (e.g. a network path). When the aggregate
load in A is too high, it is expected that resource B will not
be subjected to the same amount of load. Take the network
path example, excess load at A would be dropped and thus B
is subjected to a lower load than A. w.l.o.g., we say that the
assumption of resource independency in a system only hold if
the system is in a state with the following condition:



z;(A)

th eT, Cj(A) = ol
J

<1, where 0 <a <1 (1)
The parameter « is used to control the load threshold of
resources. For sake of analysis, let the threshold be ar ~ 1.
In Section IV, we will show how « is used to define a
threshold level for desirability. With respect to the modified
cost function of eq.1, we establish the following theorem:

THEOREM 3.1: A congestion game in its taxed form
T'p = (N, {Yi}ien, {wi, }ien) has an exact potential.

Define ¢ = Z i1 ZIJ(A) ak Given player ¢ changes strat-
egy from A; to A}, the change in potential is:

SRR SR SE T o o
JjE(A;UAL) k=0 €(AJUA;) k=0
"k z;(A)
- X Y e
] al; _ al;
JE(Ai—A]) k=0 7 je(a—Ay T
z;(A) k z;(A) k
D DD Dl 2D DR o
je(A—A;) k=0 7 je(A,—A;) k=0 7
x;(A)
z;(A") 8 k
- 2 - > >
je—Ay) JE(Ai—AY) k=0
-y z;(A) 3 z;(A')
. OZZj . ozlj
JE(A;—A)) JE(A]—As)
= uz(A)_uz(A/)
a

Thus, ¢ is an exact potential function of I'p. Since a solution
always exist when minimizing the value of ¢ over Y, there
must exist a pure Nash equilibrium in I'p.

IV. DESIRABILITY OF EQUILIBRIUM
A. Definition of desirability

A congestion game with an exact potential function not only
is guaranteed to have a pure Nash equilibrium, but also has the
finite improvement property (FIP). Hence from an arbitrary
state, following the best-reply path, the game is guaranteed
to converge to the pure Nash equilibrium over time, albeit
exponential in worst case. Figure 1 shows a running example
of the congestion game model we have defined in Section III.
In this example, there are 8 players with an identical strategy
set, 6 of the players are in equilibrium with respect to each
other as depicted in the graph. The table shows the payoffs
of the two remaining players under different strategy profiles.
The bold numbers are computed potential of the system under
the specific profile. A “*’ symbol besides a payoff indicates
it is the player’s best-response to the other player’s particular

strategy. We see that indeed the state with the lowest potential
is an equilibrium between the two players. And in fact, this
strategy profile is a pure Nash equilibrium for this 8-player
game.

2/4 2/4
8 players with identical
strategy set:
{ti. 1), {t. b}, {ts}
2/4 2/4
Player 2
{t1 )t2} {t3:t4} {tS}
2,2 15,15 1.5,1*
{ts.ta (7.5) ( 7 ) ( 6.5 )
o (1.5,1.5) (2,2) (1.5,1%)
7 bl 7 75 6.5
o
{ts} (1*,1.5) (1*,1.5) (1.3%,1.3%)
5 6.5 6.5 6.3

Fig. 1. A Running Example of I'p

Under this equilibrium state, we observe resource t5 is in an
overloaded condition, yet no player is willing to play another
strategy. We argue such a state is a bad configuration for
the overall system especially in regard to the scenarios the
game is modeled for (e.g. excessive delay and response time,
high packet dropping rate and dropped service requests, etc.).
Hence, we define the following:

DEFINITION 4.1: Let T' = (N,{Y:}ien,{tui}ien) be a
finite player game in strategic form over a finite collection
of resource T={t1,...,tn}, where l; is the capacity of t;.
Let A be a strategy profile and A; be the strategy of player i
in A. A is a desirable equilibrium iff. the following conditions
are true:

ui(Ai, Ay) <wui(A], Ay),Vie N(VA] € Yy, A} # Ay)
and
FUENLEAD < vt e T,0<a <1

This is a more strict form of the pure Nash equilibrium
definition and therefore all desirable equilibria are pure Nash
equilibria. As a weaker argument, we define desirable state as:

DEFINITION 4.2: Let T' = (N, {Y; }ien, {us }ien) be a finite
player game in strategic form over a collection of resources
T={t1,...,tm}, where l; is the capacity of t;. Let A be a



strategy profile and A; be the strategy of player i in A. A is
a desirable state iff. the following condition is true:

#{ie N :t; € A;}

Oélj

<1,Vt,0<a<1 )

We call Eq. 2 the desirability condition. 1t is apparent that
a desirable equilibrium is also a desirable state. We note
that Eq. 2 is in the same form as the resource independency
condition established in Eq. 1, hence the link independency
assumption holds for a system in desirable state. In general,
the parameter « is set to be a threshold level of the resource
capacity such that the minimum quality of service required
by the player is guaranteed when the number of users on the
resource does not exceed this threshold. This is of particular
interest to players that require each of their resources to
have certain service quality. For example, players in Scenario
1 may care about the degree of congestion at each link
while players in Scenario 2 may care about the minimum
number of processor cycles they may obtain at all the service
components they are using. In a congestion game, not all
Nash equilibria satisfy the desirability condition, because the
player’s objective is to minimize her total cost rather than
to meet the desirability condition. This is depicted in the
example of Figure 1 where the equilibrium is not a desirable
state.

In essence, our definition of desirability lends itself to study
the problem of distributed load balancing under which the
maximum load to capacity ratio on any resource in the system
is bounded. This is in effect a special case under price
of anarchy where the social cost being considered is the
maximum load to capacity ratio of the system. Thus, we can
define the desirability ratio as:

MAX(Ijl(JA) )jeT ;

SOChin )

Where x;(A) is the number of users using resource ¢; in a

state A and SOC,,,;,, is the optimal MINMAX (i.e. lowest

maximum load to capacity ratio of a resource) achievable in
the system given the players and their strategy sets.

B. a-threshold congestion game

We now focus on developing a form of congestion game
with desirable equilibria (if the system permits one). Our
intuition is to define the resource cost as a function of its
users such that when the threshold capacity is exceeded, the
resource cost becomes a dominating term in the total cost
of the players’ strategies. Formally, we define «-threshold
congestion game I',, as:

Let T, = (N,{Y;}ien, {ui}icn) be a game in strategic form.
N is the finite set of players {1,...,n}, Y; is the finite set
of strategies available to player ¢ and u; : ¥ — R, where

Y =Y1 xYs...xY, is the payoff function of player i. Given
a finite set of resources 7' = {t1,...,t,,}, define Y; C 27 Let
A; €Y, be a strategy of player i, A € Y be a strategy profile,
c; be the cost function of resource t;, [; be the normalized
serving capacity of ¢;, and « be the threshold parameter, then

ui(A) = ZjGAi cj(A)
cj(A) = (%‘;‘))A,A >1,0<a<l1
zj(A) =#{i € N :t; € A;}

T', is an asymmetric congestion game of finite unweighed
players. The cost function has the property that when A is
high, a resource with load level exceeding threshold has its
cost exponentially increased, while the cost of a resource
below threshold is exponentially reduced (Figure 2). Thus,
any resource exceeding the threshold is a dominating term in
the cost of a player’s strategy that includes it. Furthermore,
the value of o could be resource specific.

In practice, we can achieve similar effect using the following
cost function:

(A
(BN, a(A) <
zi(A
(S +€, ai(4) > 1
& is some integer constant (e.g. & ~ 100). Hence A can
be kept low (e.g. A = 3). For sake of analysis, we use the
function (%)A in the rest of the paper, we note that the
results obtained in this paper still follow when the above
equation is used.

Cost

Load/Capacity Ratio

Fig. 2. The Cost Function

LEMMA 4.1: The a-threshold congestion game I',, has an
exact potential.

Define ¢ = Z?Zl Zi;(g‘ )(ﬁ)k as the potential function.
J
The proof follows similar to that of Theorem 3.1.

O



THEOREM 4.2: A «-threshold congestion game I', has at
least one desirable equilibrium if there exist desirable states
in the system.

Proof by contradiction. Assume this is not the case. Let
A — o0o. By Lemma 4.1, there exists an equilibrium state A*
induced by the minimization of the potential function, such
that p(A*) < ¢(A), VA €Y, A # A*. Let A’ be a desirable
state. Since A’ contains no resource with load over the
threshold, ¢(A’) < 1. Since A* is not a desirable equilibrium
and thus contains at least one resource with load exceeding the
threshold, ¢(A*) — oo. Therefore, p(A*) > ¢(A’), A* #£ A'.
We arrive at a contradiction.

O

Figure 3 shows the potential values of the 8-player game
depicted in Figure 1 in «-threshold congestion game form.
Compared with I'p, the a-threshold congestion game I, has
its lowest potential corresponding to a state of balanced load in
the system and avoids overloading any resources in the system.

Player 2

A=3
{ts.t} {t3,tu} {ts}
{tito) 3.74 2.58 2.74
St} | 258 3.74 2.74

o
{ta) 2.74 2.74 4.27
Fig. 3. The potentials of 8-player example with A = 3

V. CONVERGENCE TO DESIRABLE EQUILIBRIUM

In this section, we address the topic of convergence to
desirable equilibria in «-threshold congestion games. Two
issues are addressed in particular. First, we attempt to bound
the convergence time of the game to polynomial time. We
first transform the game T, into a binary factor form I'Z
and show there is a polynomial time convergence bound
of O(L*Cn). Furthermore, we establish the isomorphic in
desirability property between I', and ') and hence show
stability obtained through I'Z is a desirable state in T,.
Second, we find a mechanism to enable partial simultaneous
moves among players. Under the assumption that each player
has a strategy set that is a small subset of the resource
collection, we can construct a neighborhood graph of the
players and show players in different neighborhood can in
fact move simultaneously. Effectively, this finding reduces the
problem to the classic coloring problem, where all players
sharing the same color could move simultaneously and the
number of steps needed for all player to move once is equal
to the number of colors required to color the entire population.

A. Game transformation and convergence

We now define the transformed game I'Z as a congestion
game in strategic form identical to I', except for a
transformed resource collection and a transformed strategy
set. Let L = MAX{al;}cr, construct the binary factor

set B = {20,21, ... 2Uoe2L]} For each resource ¢; in

T, associate a resource set tJT C B in Fg:, such that

> et Ik = alj. Hence, the set of resources in I'} is a
J

binary factoring of the resources in I',. For each strategy
A; of player i € N, associate to YT the set of strategies
]_[tj€ A t;f Thus, each strategy A; of a player 1 in .]."a is
expanded into a set of strategies over the binary factoring of

the resources in A;.

THEOREM 5.1: convergence in the transformed game T'L is
bounded by O(L*Cn).

I'T is a a-threshold congestion game (o = 1) and hence it
has a pure Nash equilibrium. When a player makes a move to
a new state, it must be that the new state has a better payoff
(i.e. lower total cost) than the old state. Since I'Z has an exact
potential (Theorem 4.1), by definition of the exact potential
property, there must be a equal drop in potential. We claim
that in I'Z, the smallest drop in potential when a player makes
a move is 2182 L1 Suppose player i makes a move, let A
be the state before the move and A’ be the state after the move,
by Theorem 3.1, the drop in potential is:

A¢ ’U,l(A) - ui(A’)

_ Z (le(A) )A _

; J
JjE(Ai—AY)

Z (xk(A)"i'l))\

ke(A]—A;) Ik

Since all [; are factors of 2, there must exist a sequence of
constants ai,ds, . . ., a, such that for all ;, a;l; = 2l182 1,
It then follows,

Ag
- ¥ (a’jxj(A))/\ S a(zk(A) +1) P
. a;l; aklk
je(Ai—Ay) T kE(A]—A;)
- ¥ (ajz;(A)* 3 (ar(zk(4) + 1))}
9Allog, L] 9Allog, L]
Jje(Ai—AY) ke(Aj—A;)

Since all the terms in the above equation has a common
denominator, the result of the arithmetic is guaranteed to
be some multiples of 92-Alog> L] Therefore, the smallest
potential drop from a move in T'Z is bounded by 2-*llog2 L],
Let ¢ar and ¢, be the upper and lower bounds on the
potential values respectively, and C' be the upper bound on
the cost of any player, then the maximum number of steps to
convergence is bounded by:

¢mar - ¢min

2—Allog, L]

nC B
= 9—-Allog, L]

O(L*Cn)



THEOREM 5.4: A desirable equilibrium exists in Ty, iff. a
desirable equilibrium exists in T'L.

Given a desirable equilibrium A* in T',, it must be the
case that for all t; € T, x;(A*) < al;. By the method
of transformation from ¢; to the factored set t;f, we know
the total capacity does not change. ie. >, ,rlx = ol;.
Therefore, x;(A*) could easily be distributed among the
factored resources in tJT such that none of the resources
exceed threshold. In fact, there’s an optimal distribution under
the best-reply dynamic. Therefore the transformed state A*”
is a desirable state in Fz. By Theorem 4.2, it is then clear
I'7 must have a desirable equilibrium.

Given a desirable equilibrium A*T in T'Z, it must be the case
that for all ¢t € T, xk(A*T) < li. With similar reasoning as
above, one can assign Zket]; 25, (A*T) to the corresponding
resource t; in I'y and it is guaranteed that the number of
users of resource t; will not exceed threshold. Hence the
transformed state A* is a desirable state in I',,. By Theorem
4.2, I',, then must have a desirable equilibrium.

O

PROPOSITION 5.5: For every desirable state in T, there is
a corresponding desirable state in 'L and vice versa.

This is a stronger claim that follows from the proof of
Theorem 5.4. Given a desirable state in I',, by applying the
transformation technique, we obtain a desirable state in Fg,
and vice versa.

O

To formalize our findings, we define the following property
concerning I',, and T'Z:

DEFINITION 5.6: given a congestion game I' and a conges-
tion game 1. We say T" and T" are isomorphic in desirability
if the following two conditions are true:

o There exist desirable equilibria in T' and T".

o There exist transformation functions ¢ and (', such that
Jor every desirable state A in T', ((A) is a desirable
state in T'; and for every desirable state A’ in T, '(A")
is a desirable state in I

It is clear that T',, and '} are isomorphic in desirability. This
implies that an equilibrium state reached in I'Z is a desirable
state in I',. In other words, a finite set of players participating
in a game I', could in fact obtain convergence to stability
by playing an isomorphic (hopefully simpler) game I, and
still arrive at a desirable state in I'. This is an interesting
finding under the concept of desirability, because our target
of convergence here is to ensure the system can stabilize in a
desirable state rather than converge to a state near optimality
which may be quite expensive. Many practical scenarios can

benefit from this approach under the desirability concept,
such as load balancing, congestion avoidance, quality assured
services, etc.

B. Simultaneous move among players

Throughout our analysis, we have considered a system where
only one player moves at a time. This property must hold
for the system to guarantee convergence under the finite
improvement property (FIP). Although there are special cases
in single-commodity congestion games [9] that allow for
simultaneous player moves and still converge in polynomial
time, bounding convergence in asymmetric multi-commodity
congestion game in which players move simultaneously is
still an open problem. Consider the game presented in Figure
1, if the last two players are allowed to move simultaneously
under the best-reply dynamic, they may both choose the
strategy set {¢1,t2} in round 1 and then both deterministically
switch to the strategy set {¢3,¢4} in round 2, and then back
to strategy set {t1,¢2} in round 3, and so forth. Hence even
with the existence of pure Nash equilibria, the system is not
guaranteed to converge to a equilibrium. Mixed strategies may
be applied to resolve this problem where a player chooses
each of her strategies with some fixed probability. However,
mixed strategy games introduce additional complexity in
analysis, as the finite improvement property no longer holds
in simultaneous moves and it is assumed that the mixed
strategy set of each player is common knowledge to the other
players in the system, or can be learned over time using some
mechanisms such as fictitious play.

Thus far, research in pure congestion games have used various
method of facilitating the sequential movement mechanism,
such as random selection, round-robin, or highest improve-
ment first. We now consider an approach to enable partial
simultaneous moves. Assuming each player’s strategy set is
a small subset of the common resource collection, let 7; be
the set of resource used by player i’s strategy set Y; (i.e.
T; = {t; : t; € A;}). Then, we define the neighborhood
of player ¢ as

NB; ={k:TxyNT, # T}ren

We claim that if a player £ is not in the neighborhood
of player 7 or vice versa, then players ¢ and k£ may move
simultaneously in the system and the resulting potential
change is as if they have moved in sequence, w.l.0.g. say i
moves then k£ moves.

THEOREM 5.7: In a a-threshold congestion game, if player
i is not a neighbor of player k, then the potential change of
players i and k moving simultaneously is equal to the total
potential change of player i and player k moving in sequence.

By Theorem 4.1, it is suffice to study the change in player
payoffs. Let A be the state before players 7 and k& move, A’



5 players A,B,C,D,E:
Ta={t, b, tg}

T ={ty, o}

Te ={t 1, t5, t}
Tp={ts5, 4}

Te = {ts}

Fig. 4. An Example of Neighborhood Graph and Its Coloring

be the state after player ¢ moves but before k& moves, and A”
be the state after both ¢ and £ moves, we can construct the
total change in potential in state A" as:

t;€EA; al‘] tj €A
(A (A"
+ Z ( Jal, ))\ _ Z ( J l >/\
t; €A} J t; €AY

It is apparent that A, = A}, and A} = AY. Since T;NT}, = @,
then A? —Ag = A? and Ag —A? = Ag for all A° € Y. And
a move made by ¢ would not have any impact on the load level
of the resources used by k&, vice versa. The following equalities
hold,

G (ADNA 5 (A7) \ A
thGA;(lJOElj ) - Zt]‘GA;/(ZJOzlj ))

zi (A xi(A
Sjea (BEN =55, (4, (B
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We observe this is indeed the potential change for players ¢
and k& moving simultaneously.

O

We construct a neighborhood graph G = (N, E). G is
undirected and an edge exists between two players iff. they
are in the neighborhood of each other. The nodes (i.e. players)
in G can be partitioned into a number of sets, where in each
set, there does not exist an edge connecting any two nodes
in the set. It follows from Theorem 5.7 that all nodes in a
set could move simultaneously. Thus the minimum number
of rounds it takes for all players to have a chance to move
is equal to the minimum number of color needed to color
the graph. Therefore, this is a reduction to the classic graph
coloring problem which is NP-complete. Any distributed
heuristic in graph coloring could be applied here. Figure
4 shows an example of the neighborhood graph and the
coloring of its nodes.

VI. CONCLUSION

In this paper, we have established a «-threshold multi-
commodity congestion game for distributed services and
user-driven networks under the desirability of equilibrium
concept. In general, convergence to pure Nash equilibria in
asymmetric multi-commodity congestion games are hard,
as shown by its PLS-completeness. Existing approximation
approaches attempt to converge the game to an approximate
state of the equilibria. We observe that in many practical
cases, especially in the scenarios we are considering, it
is sufficient and often important to assure the system is
in a stable state and the requirements of the services
and users are met. Hence, we establish desirability as a
threshold evaluation of the system state. We have shown
in this paper that the existence of a pure Nash equilibrium
as ensured by a potential function does not guarantee
the desirability of said equilibrium. This motivated our
construction of the a-threshold multi-commodity congestion



game which has its minimum potential state corresponds to
a desirable equilibrium (if the system permits one). Through
a transformed game that is isomorphic in desirability, we
have provided a polynomial time convergence bound of
O(L*Cn). Interestingly, we find games that are isomorphic
in desirability could be used “in place” of each other such
that a equilibrium reach in one game is a desirable state in
another. Hence, players participating in a difficult game, may
in effect play an isomorphic but simpler game, whose stable
state outcome remains applicable in the difficult game they
participate in. Finally, we establish a mechanism to allow
simultaneous player moves under the weak assumption that
the strategy set of each player is a small subset of the resource
collection. Because of the similarities between the game
scenarios we explore and the application of self-stabilizing
systems, we think the results we obtain in this context could
also be useful in designing self-stabilizing systems.

Quite a number of open problems extend from this work. For
example, the game model we have used in this paper replies
on a taxation mechanism for splitting players with varied load
into multiple independent unweighed players. It is interesting
to consider the case of weighed atomic players which is
more difficult. Furthermore, as we having established in the
paper, the desirability ratio is in fact a special case of price
of anarchy. Hence a correlation could be made to determine
the bound on desirability between the stable state achieved in
a game and the system minimal.
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