
Securing KioskNet: A Systems Approach

Sumair Ur Rahman, Urs Hengartner, Usman Ismail and S. Keshav
David R. Cheriton School of Computer Science,

University of Waterloo, Waterloo ON N2L 3G1, Canada

{surrahman, uhengart, uismail, keshav}@cs.uwaterloo.ca

Technical Report No. CS-2007-43

ABSTRACT
Internet kiosks typically provide weak security guarantees
and therefore cannot support secure web access or transaction-
oriented applications such as banking and bill payment. We
present the design and implementation of a practical, unob-
trusive and easy-to-use security architecture for KioskNet,
a system for low-cost rural Internet kiosks. Our system uses
a combination of physical and cryptographic mechanisms
to protect user data and infrastructure nodes despite fre-
quent disconnections, untrusted administrators, and large
end-to-end delays. Our contributions include (a) a detailed
threat analysis of rural kiosks, (b) the first comprehensive
security architecture for rural kiosk security, (c) a simple
and easy to use API for securely sending and receiving files
over KioskNet (d) protection for user data both on the file
system and in transit, and (e) a usable public key infras-
tructure (PKI). Performance measurements show that our
system imposes 100ms of delay during user login at kiosks
and an additional 560ms and 750ms per megabyte of data
sent and received by a kiosk user, respectively, suggesting
that the system is both efficient and usable.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection; C.2.1 [Network
Architecture and Design]: Store and forward networks,
Wire-less communication

General Terms
Design, Measurement, Security

Keywords
Delay tolerant networks, kiosk security, public key infras-
tructures, system design

1. INTRODUCTION
Envisioned as a means of providing low-cost Internet con-

nectivity to under-served rural communities, KioskNet is a
delay-tolerant network of purpose-built servers, lightweight
embedded systems and recycled PCs that cooperate to pro-
vide end users with transaction-oriented offline WWW ac-
cess through rural kiosks [5].

The potential deployment of KioskNet over a large geo-
graphic region, with the majority of the system components

Copyright is held by the author/owner(s).
WWW2008, April 21–25, 2008, Beijing, China.
.

operating in remote rural areas and largely unsupervised,
creates an interesting set of security challenges. In this pa-
per, we address these challenges by considering the interests
of all stake holders. We propose a practical, unobtrusive
and easy-to-use security architecture that uses a combina-
tion of physical and cryptographic mechanisms to protect
KioskNet, its users and its operators.

The key contributions of this work include (a) a detailed
analysis of the threats faced by KioskNet, (b) the first com-
prehensive security architecture for rural kiosk security and
an implementation of this architecture, (c) a simple and
easy to use API for securely sending and receiving files over
KioskNet, (d) protection for user data both on the file sys-
tem and in transit, and (e) a usable public key infrastructure
(PKI) based on off-the-shelf building blocks. An evaluation
of our system’s impact on KioskNet’s performance reveals
an additional 100ms delay during user login at kiosks and
an additional 560ms and 750ms per megabyte of data sent
and received by kiosk users, respectively.

The rest of this paper is organized as follows. In section
2, we present our system model, followed by a comprehen-
sive threat analysis in section 3. We continue in section 4
by presenting our security architecture. Section 5 analyses
our security architecture and its effectiveness in preventing
or mitigating the attacks presented in section 3. Before re-
viewing related work in section 8, we discuss implementation
issues in section 6 and evaluate the performance of our im-
plementation in section 7. We then conclude and briefly
discuss potential directions for future work in section 9.

2. SYSTEM MODEL
In this section, we introduce KioskNet, describe the en-

tities that operate, support or use the system, and then
outline two typical usage scenarios.

2.1 Overview
Each KioskNet deployment provides service to users in

a specific geographic region and is independently adminis-
tered by a Franchiser (see section 2.2). We illustrate a typ-
ical deployment scenario in figure 1. KioskNet components
include:

• Kiosk Controllers – servers deployed at rural kiosks
that have wired connections to terminals (see below),
providing them with network boot, a network file sys-
tem, user management, and network connectivity by
means of WiFi, GPRS, SMS, VSAT, or dial-up.

Kiosk 1 Kiosk 2 Kiosk 3

KioskNet Proxy Server

KioskNet Gateway 1 KioskNet Gateway 2

Kiosk Controller 1 Kiosk Controller 2 Kiosk Controller 3

Franchiser Workstation
(Sophie)

Terminal A
(Paul)

Terminal B Terminal C Terminal D
(Dube)

Terminal E Terminal F

Internet

Laptop
(Marie)

Mobile Router 1
(carried by Bus)

Mobile Router 2
(carried by Jeep)

Odette

Figure 1: Typical KioskNet deployment scenario

• Kiosk Terminals – inexpensive recycled PCs that are
capable of running Linux and that allow users to con-
nect to the regional KioskNet based on a wired con-
nection to a single kiosk controller.

• KioskNet Gateways – servers with a WiFi network in-
terface, persistent storage, and live Internet connectiv-
ity. Deployed at urban locations with broadband In-
ternet access, gateways collect data opportunistically
from mobile routers and stage it in local storage before
uploading it to the Internet through a proxy.

• Mobile Routers – lightweight embedded devices with
a WiFi network interface and persistent storage de-
ployed on vehicles that regularly travel between loca-
tions with KioskNet gateways and rural kiosks. Mobile
routers opportunistically communicate with gateways
and kiosk controllers to transport data between them.

• KioskNet Proxies – servers deployed at data centers
that serve as a proxy between KioskNet gateways and
disconnection-unaware legacy servers on the Internet.

We define a Kiosk as a set of one or more Terminals
and a single Kiosk Controller. The servers and lightweight
embedded systems that form the backbone of a KioskNet,
namely kiosk controllers (but not terminals), gateways, mo-
bile routers and proxies, are termed Infrastructure Compo-
nents. Infrastructure components are owned and operated
by the single franchiser responsible for a particular region.
For a more detailed discussion, we refer to Guo et al. [5].

2.2 Entities
The following entities have an interest in the correct and

reliable operation of a KioskNet deployment:

• Franchisers – franchisers are public or private orga-
nizations that own, operate and administer KioskNet

infrastructure components deployed in a particular ge-
ographic area.

• Franchisees – franchisees are private organizations or
individuals licensed by a KioskNet franchiser to oper-
ate terminals connected to a kiosk controller provided
by the franchiser.

• Transport Providers – transport providers are pub-
lic or private organizations that provide road or rail
transportation within geographic areas serviced by a
KioskNet deployment. Transport providers are con-
tracted by franchisers to carry mobile routers on their
vehicles to enable mechanical backhaul between gate-
ways and kiosk controllers.

• Application Service Providers (ASPs) – application ser-
vice providers are public or private organizations that
are licensed by franchisers to deploy their applications
on a KioskNet. For example, a bank might be an ASP
using KioskNet to provide micro finance and banking
services to farmers.

• Users – users subscribe to KioskNet services with a
franchiser, usually through a franchisee, to access ser-
vices, such as applications provided by ASPs, and the
Internet using terminals owned and operated by local
franchisees.

Franchisers control all infrastructure components. This ef-
fectively creates a “closed universe” where franchisers have
control over all franchisees and registered users in their re-
gion, as well as user data and the software running on ter-
minals. We exploit this organizational structure in section 4
when proposing the use of a public key infrastructure (PKI)
in our security architecture.

2.3 Usage Scenario A: Email
In this usage scenario, we describe how Paul, a KioskNet

user, sends an email to two recipients, Dube, a user regis-
tered in the same KioskNet region, and Marie, who is not a
KioskNet user and must be reached via the Internet.

1. Paul logs into a terminal at his local kiosk and uses
an email client to prepare an email addressed to Dube
(dube@region.kiosknet.org) and Marie (marie@someisp.
net). When the message is ready to be sent, Paul’s
email client transfers the email to an IMAP server on
the same terminal, which in turn sends it to a KioskNet
email server running on the kiosk controller connected
to the terminal.

2. The email server generates two sets of bundles from the
email, the first set addressed to Dube and the second
set to Marie.

3. Mobile routers carried by vehicles passing by Paul’s
kiosk destined for a nearby city opportunistically pick
up the bundles and deliver them to a KioskNet gate-
way in the city.

4. The gateway schedules the set of bundles destined for
Dube to be forwarded back into the KioskNet via the
next available mobile router and forwards the set of
bundles destined for Marie to the KioskNet proxy server
over the Internet.

5. The proxy server receives the set of bundles destined
for Marie, unpacks it, and forwards the email to Marie’s
POP server over the Internet. Meanwhile, a vehicle
carrying a mobile router destined for the rural kiosk
servicing Dube picks up his set of bundles.

6. The set of bundles containing Paul’s email to Dube is
delivered to the kiosk controller serving Dube’s rural
kiosk, unpacked, and stored in his account’s mailbox
to be read when he next logs into a terminal.

2.4 Usage Scenario B: Remote Maintenance
In this usage scenario, we describe how an authorized fran-

chiser administrator, Sophie, and a field technician employed
by the franchiser, Odette, generate and apply a set of soft-
ware upgrades, termed a maintenance package for the pur-
pose of this example, to kiosk controllers both remotely over
KioskNet and physically by means of a USB memory stick
inserted into the devices.

1. As part of regular maintenance activities, Sophie pre-
pares a maintenance package to be applied to all kiosk
controllers operated by her employer using a purpose-
built KioskNet maintenance application. The main-
tenance package is flooded into the KioskNet via the
franchiser’s proxy server and a copy is given to Odette
on a USB memory stick.

2. A maintenance server running on the franchiser’s proxy
server receives the maintenance package, breaks it up
into bundles, and forwards these to all gateways in the
franchiser’s KioskNet.

3. Vehicles carrying mobile routers destined for rural kiosks
in the franchiser’s region that pass by its gateways op-
portunistically pick up the maintenance package bun-
dles for subsequent delivery to its kiosk controllers.

4. Kiosk controllers receive the maintenance package bun-
dles, unpack and assemble them to obtain the mainte-
nance package, and then trigger a maintenance client,
which verifies the package before applying it.

5. During routine maintenance checks at rural kiosks served
by her employer, Odette discovers a kiosk controller
that has yet to receive Sophie’s maintenance pack-
age. She inserts the USB memory stick containing the
maintenance package into the kiosk controller, whose
maintenance client then detects the package and veri-
fies it before applying it.

3. THREAT ANALYSIS
In this section, we identify potential attackers, describe

their capabilities, and list key attacks against KioskNet.

3.1 Potential Attackers
In addition to outsiders, defined as being none of the con-

cerned entities introduced in section 2.2, we assume attack-
ers to be any of the following three entities: franchisees,
transport providers or users. KioskNet franchisers do not
appear in our list of attackers because as operators of the
system, its correct and reliable functioning is in their best
interest. We exclude ASPs under the premise that any soft-
ware, data and configuration changes by these entities will
be inspected and approved by the appropriate franchiser be-
fore being introduced into the franchiser’s KioskNet.

Attackers may possess one or more of the following:

• Wireless Communication Channel – the ability to eaves-
drop on, inject messages into or jam the wireless com-
munication channel between infrastructure components,
given sufficient physical proximity to these systems.

• Physical Access – unfettered physical access to infras-
tructure components in the absence of authorized fran-
chiser personnel, without knowledge of administrator
passwords for these systems.

• Technical Expertise – the experience and technical ex-
pertise required to modify the software or configura-
tion of a Linux-based system, given sufficient network-
based or physical access.

• Knowledge of KioskNet – an understanding of the ar-
chitecture and operational characteristics of KioskNet
as an open-source software system.

3.2 Recognized Threats
Threats against KioskNet can be categorized as attacks

against the confidentiality, integrity or availability of the
system. In terms of confidentiality, we are concerned with
the privacy of user data and any secret keys stored in their
accounts (see section 4.2 for details). In terms of integrity,
we are concerned with the integrity of this data plus the
integrity of infrastructure components, terminals and the
impersonation of franchiser personnel and kiosk users. For
availability, we consider the jamming of wireless links be-
tween infrastructure components. (A terminal is connected
to a controller by a wired link.) When combined with poten-
tial attackers, these threats give us the grid in figure 2 below.
We also classify each attack according to its likelihood.

The classification of likely and unlikely threat-attacker
combinations in figure 2 is based on the capabilities of a

01. User impersonation at kiosk terminals
Attacker impersonates user identity at terminal to use an application, view private data or escape liability of malicious terminal use

K
io

sk
N

et
 F

ra
n

ch
is

ee
s

Tr
an

sp
o

rt
 P

ro
vi

d
er

s

K
io

sk
N

et
 U

se
rs

O
u

ts
id

er
s

02. User impersonation at kiosk controller
Attacker uses Linux PC with root access to connect to kiosk controller, mount NFS-exported /home and view/fabricate users’ data

03. Viewing/fabrication/modification of user data at kiosk controller
Attacker logs into kiosk controller as root or removes hard disk and boots with Live CD to view/fabricate users’ data

04. Viewing/fabrication/modification of user data at mobile router
Attacker logs into mobile router as root or removes hard disk and boots with Live CD to view/fabricate users’ data

05. Eavesdropping on wireless channel between KioskNet infrastructure components
Attacker sniffs packets on wireless channel between infrastructure components to view private data

06. Message injection on wireless channel between KioskNet infrastructure components
Attacker injects packets on wireless channel between infrastructure components to generate/corrupt data

07. Modification of kiosk terminal software stack
Attacker replaces terminal application with malicious application to enable attack (e.g., login daemon stores passwords)

10. Impersonation of KioskNet infrastructure components
Attacker sets up device to impersonate infrastructure components (e.g., mobile routers) to obtain users’ data

11. Modification of software stack on KioskNet infrastructure components
Attacker replaces application on infrastructure components with malicious application to enable attack

13. Modification/fabrication of KioskNet operational logs
Attacker removes/fabricates operational log entries to avoid detection during an attack

14. Modification/fabrication of KioskNet remote shell commands
Attacker modifies/fabricates remote shell commands sent to infrastructure components to enable attack

09. Viewing/fabrication/modification of user data transferred between terminal and kiosk controller
Attacker sniffs/injects packets on wired channel between terminal and kiosk controller to view/fabricate users’ data

12. Modification of software configuration on KioskNet infrastructure components
Attacker changes infrastructure component software configuration to enable attack (e.g., disable logging)

08. Modification of kiosk terminal software configuration
Attacker changes terminal software configuration to enable attack (e.g., disable logging)

15. Modification/fabrication of KioskNet remote software updates
Attacker modifies/fabricates remote software updates to install malicious applications and enable attack

Possible, likely attack Possible, unlikely attack Ignored, no benefit to attacker or easier attack exists

16. Jamming of wireless channel between KioskNet infrastructure components
Attacker jams wireless channel between infrastructure components to prevent the transfer of data

Figure 2: Recognized Threats against KioskNet vs. Potential Attackers

particular attacker, the cost of mounting a particular at-
tack, and the potential benefits. For example, a franchiser
would be more likely to attempt to modify the configuration
of a kiosk controller in order to disable its wireless interface
than set up a jamming signal to achieve the same result,
given the cost of setting up the jamming signal and the sim-
plicity of disabling the device’s wireless interface. Similarly,
although an outsider may have the motivation and ability to
view, fabricate, or modify data carried by a mobile router, a
transport provider carrying the device would be more likely
to launch such an attack given easier physical access.

Threat-attacker combinations that are marked as ignored
appear as such because either the cost of mounting the at-
tack exceeds the benefit to the attacker or because a lower-
cost attack that achieves the same result is available.

4. SECURITY ARCHITECTURE
In this section, we highlight our security goals with re-

spect to the concerned entities introduced in section 2.2 and
then go on to describe how our security scheme protects
users, the terminals they use, and all KioskNet infrastruc-
ture components.

4.1 Security Goals
Because it is impossible to completely secure a complex

distributed system such as KioskNet, our overall security
goals are to provide the best possible security for users, op-
erators, and infrastructure components given the need to
minimize costs, the limited processing capabilities of infras-
tructure components, and the recycled PCs used as termi-
nals, as well as the absence of specialized hardware, such
as TPMs (Trusted Platform Modules) [15] or a modifiable
BIOS.

Specific security goals, in terms of the four entities that
use or operate KioskNet, are as follows: Franchisers are con-
cerned with the security of their infrastructure and want
to detect, if not prevent, the misuse of their infrastructure
components by any of the concerned entities. Franchisees
are concerned with the security of their kiosk and want pro-
tection against the spread of viruses over and any attacks
launched through KioskNet. Depending on the type of ser-
vice they provide, ASPs may want franchisers to guarantee
the integrity of their software when deployed on a KioskNet.
Examples of such software might include tax payment and
land registry systems operated by the government. Finally,
users are only concerned with the confidentiality and in-
tegrity of their data. We detail the mechanisms used to
achieve these goals in the following subsections.

4.2 User and Operator Security
KioskNet entities that use or operate the system each pos-

sess a unique set of Entity Credentials. Entity Credentials
consist of an RSA key pair and a corresponding X.509 cer-
tificate that binds the holder’s identity to the public part of
its key pair.

KioskNet users and operators obtain and use their Entity
Credentials as described below:

• KioskNet Franchisers – franchisers self-generate an RSA
key pair and then use the public part of this key pair
to obtain a certificate signed by the KioskNet root CA
based in our lab at the University of Waterloo in On-
tario, Canada. This key pair is then used to sign cer-

tificates issued to franchiser administrative personnel,
licensed franchisees, and ASPs. Franchiser personnel
may in turn use their credentials to authenticate se-
cure updates and remote shell commands as described
in section 4.3.1.

• KioskNet Franchisees – franchisees obtain certificates
in a similar fashion to franchisers, with the only differ-
ence being their certificates are signed by their fran-
chiser. Franchisees use their key pairs to sign certifi-
cates issued to users registered at their kiosks.

• ASPs – ASPs obtain certificates from the local fran-
chiser in an identical fashion to franchisees. They use
their Entity Credentials to authenticate software de-
ployed at kiosks on their behalf by franchisers and any
subsequent updates to this software and to secure the
transfer of data between ASPs and users, if necessary.

• KioskNet Users – users obtain their credentials when
they register at a rural kiosk. Their certificates are
signed by the local franchisee. The usage of certificates
and key pairs is transparent to users, which is impor-
tant since previous research has shown that users can-
not be expected to manually deal with certificates [6].
Namely, a key pair and a certificate are automatically
created upon registration and stored in the user’s en-
crypted home directory (see section 4.4.1). Further-
more, usage of the keys is simplified through the Se-
cure Directory API (described in section 4.4.2), where
incoming data is transparently decrypted and veri-
fied, and outgoing data is transparently encrypted and
signed without user intervention.

Certificates for users are made available to other KioskNet
users, franchisers, ASPs, and other franchisees by means
of a KioskNet user database termed the White Pages.
This database is maintained by each region’s franchiser
and updates to it are periodically sent out to all fran-
chisees (more specifically, the kiosk controllers servic-
ing them) and all licensed ASPs. The database is the
only place that is consulted by a kiosk upon receipt
of a signed message. Any certificate that no longer
shows up in the database is considered revoked, which
eliminates the need for a separate certificate revoca-
tion mechanism. For a user base of 10,000 with each
certificate requiring about 2KB of storage, the entire
White Pages database would be around 20MB in size.

All certificates described above are chained to the KioskNet
root CA’s certificate such that trusting this certificate alone
is sufficient to verify the above entities’ certificates. This
way, an ASP can, but does not have to, delegate identity
verification to a franchisee or even a franchiser, which can
be important in rural environments.

4.3 KioskNet Infrastructure Security
Infrastructure components are protected against attacks

through the use of a combination of cryptographic and phys-
ical security mechanisms.

In terms of physical security, we assume that infrastruc-
ture components, specifically kiosk controllers, mobile routers
and KioskNet gateways, are equipped with sealed, tamper-
evident enclosures. These enclosures would most likely uti-
lize proprietary screws and locks, in addition to sticker seals

over removable enclosure panels, similar to those used by
vendors of commercial electronics to detect attempts to open
the devices. The other physical security mechanism we rely
on is the regular inspection of deployed infrastructure com-
ponents by franchiser field technicians to check for tamper-
ing or damage.

In terms of cryptographic security, all infrastructure com-
ponents are issued unique credentials called Infrastructure
Credentials by the franchisers that operate them. Similar
to Entity Credentials, Infrastructure Credentials consist of
a key pair generated by the device and a certificate signed
by the franchiser that binds the infrastructure component’s
identity to its public key. These credentials are installed
in each device’s /root directory by its operating franchiser
when it is first deployed. A device uses its credentials to sign
its operational logs, to authenticate to other infrastructure
components, and to secure communication between infras-
tructure components.

Administrator privileges on infrastructure components are
limited to authorized franchiser personnel. Namely, only the
franchiser knows the administrator passwords for its infras-
tructure components, but not franchisees or operators of
mobile routers.

4.3.1 Secure Software Updates
Secure software updates are produced by authorized fran-

chiser administrative personnel and applied as outlined ear-
lier in section 2.4. To authenticate these updates, adminis-
trative personnel sign them with a designated private key,
part of an Entity Credential. Infrastructure components
hold the corresponding public key, which is installed when a
component is first set up, and use this key to verify updates
before applying them. If necessary, a secure software update
can be used to update this key itself.

4.3.2 Secure Remote Shell
Secure remote shell commands are produced and distributed

in an identical fashion to the secure software updates de-
scribed above. As with software updates, infrastructure
components verify the signatures on remote shell commands
before running them.

4.3.3 Secure Operational Logs
Operational logs produced by infrastructure components

contain debugging information, error reports, notifications
of software updates, records of shell commands executed by
the administrator, and fingerprints of all executables present
on the devices. These logs are periodically flooded over the
KioskNet for eventual delivery to franchiser personnel, al-
lowing them to monitor deployed infrastructure components.

Logs are secured using a combination of hash chains, MACs
(Message Authentication Codes), and a unique, randomly-
generated symmetric key, KLog0 , which is installed in the
/root directory of an infrastructure component when it is
set up. KLog’s are used to produce a MAC for 24 hours of
log entries at the end of each day before these log entries are
rotated and combined with previous logs. In cryptographic
terms, this is

MAC(Logi) = HMAC(KLogi , Logi || i),

where i ≥ 1, Logi is today’s log entries, KLogi = H(KLogi−1)
H is a cryptographic hash function, and KLog0 is the initial
KLog. Logs can be verified by validating the correspond-

ing MACs. With this scheme, any attempt by an attacker
to remove or modify a day’s log can be detected. For non-
repudiation purposes, each set of logs is signed with the
source device’s private key and the corresponding certificate
is attached.

4.4 Terminal Security
Terminals are PCs, typically recycled, that network boot

from a read-only image stored in a kiosk controller. These
images contain the terminal’s kernel, configuration files and
applications. Because terminals may be disk-less, user data
is stored in the kiosk controller. All applications launched
by the user are run on the terminal for better performance.
To prevent an attacker from impersonating a user, every
user is assigned a password during registration and has to
enter this password into the terminal when logging in. This
password is also used for protecting a user’s data, which we
describe in the following two subsections.

4.4.1 Encrypted User Home Directories
All user data, such as a user’s pictures and emails, is

stored in kiosk controllers and exported over NFS for access
via terminals connected to a kiosk controller. As highlighted
in section 3.2, this setup makes it possible for an attacker
to connect to the kiosk controller using a Linux PC with
administrator access to override filesystem permissions and
access the NFS-exported user data or, in a more extreme
scenario, to break into the kiosk controller, remove its hard
disk, and boot it in a PC with a Live CD to achieve the
same.

To protect user data stored in kiosk controllers, users’
home directories are created in encrypted virtual volumes.
A user’s virtual volumes are exported in their encrypted
form to terminals over NFS for automatic mounting and
decryption when the user logs in. The process is reversed
when the user logs out. The use of an on-demand block
device encryption scheme ensures that a user’s entire virtual
volume does not need to be decrypted when a user logs in,
and vice-versa when the user logs out. Blocks in the virtual
volume are decrypted and encrypted only when they are
read or modified, minimizing the impact of these operations
on the performance of terminals.

Virtual volumes are encrypted using the AES-256 sym-
metric cipher on a randomly-generated key, KUserHomeDir.
This key is then replicated, one copy is encrypted with the
franchiser’s public key to produce KUserHomeDirBackup and
stored in the kiosk controller’s /root directory and another
copy is encrypted with a key derived from the user’s login
password to produce KUser or

KUser = EPassword [KUserHomeDir].

The key KUser is stored alongside the user’s virtual volume
in /home. When a user logs in, the terminal first automat-
ically decrypts KUser using the user’s password to obtain
KUserHomeDir and then uses this key to decrypt the user’s
virtual volume.

In the event users forget their passwords, they can con-
tact the local franchiser and ask to have their passwords
reset. The franchiser, using the Secure Remote Shell, can
then reset the user’s password and create a new KUser by
using the franchiser’s private key to decrypt the appropri-
ate KUserHomeDirBackup key retrieved from the controller’s
/root directory.

When a user runs out of space in his/her home directory,
we simply create a new, larger volume keyed with the same
KUserHomeDir and sync the two volumes.

In the future, with the increasing availability of finger-
print readers, in particular on laptops, biometrics-based lo-
gin could give more security than password-based login. How-
ever, stealing fingerprint information will remain a possibil-
ity, though likely more difficult, and the usage of biometrics
raises privacy concerns.

4.4.2 Secure Directory API
The Secure Directory API allows developers to easily pro-

duce applications that communicate securely over KioskNet.
Applications can simply write outgoing data to a user’s
/home/user/application/supload directory and read in-
coming data from the /home/user/application/sdownload

directory, where /home/user corresponds to the mount point
on the terminal for the user’s encrypted home directory (de-
scribed above in section 4.4.1).

A daemon running on the terminal automatically decrypts
and verifies signatures on incoming data using the user’s
private key (stored in his/her encrypted home directory)
and other users’ public keys available in the White Pages
database (introduced in section 4.2) and places it in the
sdownload directory. Similarly, this daemon automatically
encrypts and signs all outgoing data placed in supload after
looking up the recipient’s public key in the White Pages
database. We note that data destined for a server reachable
over the Internet is either encrypted on a specific ASP’s
public key or on the proxy’s public key and then sent in
plaintext over the Internet.

5. SECURITY ANALYSIS
In this section we present a brief analysis of the security

mechanisms used to protect KioskNet. Figure 3 summarizes
the security mechanisms employed by KioskNet and shows
how these are combined to guard against the attacks pre-
sented earlier in section 3. Let us describe next how we
defend against attacks on a kiosk by its users, its franchisee,
and outsiders.

5.1 Users
To prevent users from impersonating other users, each

user is assigned a password. The operating system running
on the terminal ensures that a user enters this password
before granting him/her access. For additional security, a
terminal is rebooted when a user logs out. The reboot kills
any processes that the user might have left behind and that
could use up CPU or memory resources.

5.2 Franchisee
By entering his/her password into a terminal during the

login process, a user gets access to his/her data and his/her
private key, both of them encrypted with a key derived from
the password. Therefore, a franchisee might be tempted to
steal a user’s password. For example, the franchisee could
set up a fake login environment and fool a user into reveal-
ing his/her password. The only way to avoid this attack
with very high guarantee is for the user to query the state
and configuration of the terminal in front of which he/she is
sitting, which would allow him/her to detect that the login
environment is fake. However, existing mechanisms for giv-
ing such a guarantee [4] require the user to have a trusted

computing device, which is not the case in KioskNet. There-
fore, we cannot completely avoid this attack, we can only
make it (overly) expensive to execute for a franchisee. Let
us discuss our defenses in more detail.

A PC serving as a terminal could include a hard disk,
which a franchisee (legitimately) uses for booting non-KioskNet
environments. This enables a malicious franchisee to create
an application that displays a fake login screen to KioskNet
users. There are two ways to get around this attack: First,
we can train users to enter a non-overridable keyboard com-
bination, such as Ctrl-Alt-Delete, before entering their pass-
words, which will reveal the fake login screen. Second, if a
user still enters his/her password, the application then has
three options to proceed, all of them are likely going to cause
suspicion with the user: It can display an error message, say-
ing that there is a problem and that the user should come
back later, it can repeatedly ask the user to re-enter his/her
password, till the user just gives up, or it could have the
PC boot into KioskNet, where the user enters her password
one more time. Our protection is user education, by means
of a poster that warns users never to enter a password mul-
tiple times and to notify the franchiser of any suspicious
behaviour.

It is much more difficult for the franchisee to set up a
fake login application directly in the KioskNet environment
running on a terminal, since the franchisee does not have
the administrator password for the environment and cannot
install applications (see section 4.3).

A determined franchisee could download the open-source
KioskNet software package from our website, insert a key-
logger, and have a terminal run the modified package. This
attack also involves setting up a fake controller that provides
the modified software or changing the terminal to store and
boot the modified software directly from its hard drive. In
short, this attack is very involved.

Both the fake login attack and the keylogger attack could
be avoided with the help of a device that is trusted by a user.
For example, we could exploit Surie et al.’s approach [13] and
have a user boot a terminal from a trusted USB memory
stick before logging in. A minimal trusted OS on the stick
then downloads the KioskNet image from the controller, ver-
ifies its integrity, and, if successful, boots KioskNet. There
are two problems with this approach: First, expecting users
to carry a USB memory stick with them might not be realis-
tic in rural environments. One way to address this problem
is to have the franchiser deposit a read-only USB memory
stick that is difficult to clone without detection with the
franchisee. Second, terminals need to be able to boot from
a USB memory stick, and it must not be possible to turn
this off in the BIOS. Both requirements might not hold for
(current) recycled PCS. However, we are looking into this
option for the next version of KioskNet.

Digital fingerprints of user passwords are stored in the
root partition of the controller and downloaded by a ter-
minal when it boots. Passwords are salted, so that a fran-
chisee needs to execute an expensive brute-force search for
password recovery. The root partition is not encrypted. If
it were encrypted, a franchisee would have to enter the de-
cryption key into a controller at boot time, which is diffi-
cult, considering the controller has neither a keyboard nor a
display. Physical security mechanisms, as described in sec-
tion 4.3, make it difficult for a franchisee to extract the hard
drive from a controller and to tamper with the software and

13 14 15 1609 10 11 1205 06 07 0801 02 03 04

Password-protected user accounts

Encrypted user home directories

Root priviledges limited to franchisers

In-flight user data signed & encrypted

Secure software updates

Secure remote shell commands

Secure operational logs

Read-only terminal boot images

Unique infrastructure credentials

Unqiue entity credentials

Sealed infrastructure component enclosures

Security mechanism mitigates/prevents attack Security mechanism does not mitigate/prevent attack

Figure 3: KioskNet Security Mechanisms vs. Recognized Threats

data stored on it (e.g., adding malicious software, replacing
the certificate identifying the franchiser, or extracting the
controller’s private key).

Note that it is not possible to use authentication of a
terminal by the controller as a security mechanism. Au-
thentication requires the terminal to have some secret infor-
mation. However, the terminal cannot store this informa-
tion in a way that is not accessible to the franchisee. (As
mentioned in section 4.1, we cannot assume the existence
of TPM-based or BIOS-based mechanisms supporting safe
storage of secrets.) Therefore, a franchisee could steal the
secret information and use it to authenticate a fake terminal.
Without authentication, the franchisee could access a user’s
data stored on the controller. However, the data is stored
in encrypted form, which makes it useless to the franchisee.

5.3 Outsiders
We also need to defend against attacks on a kiosk by out-

siders. A terminal is connected to its controller by a wired
connection, which makes interception or man-in-the-middle
attacks by an outsider difficult. If these attacks are a con-
cern, the boot process could be extended such that a ter-
minal authenticates the controller and downloads the kernel
image over a secure connection. However, current off-the-
shelf network boot software does not support this feature.

6. IMPLEMENTATION ISSUES
The initial security architecture for KioskNet took advan-

tage of Hierarchical Identity-Based Encryption (HIBE) [11],
an extension to Identity-Based Encryption (IBE). This al-
lows a kiosk user to send encrypted messages to another

user without the need to know this user’s public key [1].
Although academically interesting, using IBE turned out
to be problematic in practice. The only IBE implementa-
tion ready for practical use is controlled by a single entity
(Voltage Security, Inc.), which does not release source code
and has stringent licensing conditions for commercial use.
We therefore decided to replace IBE with our own PKI
based on the libcrypto and Bouncy Castle open-source
cryptographic libraries. With the help of the White Pages
database, as explained in section 4.4.2, we ensure that recip-
ients’ public keys are always available to the sending kiosk.

The implementation of our security architecture relied on
a number of security add-ons for Linux including openssl,
cryptsetup, dmsetup and pam-mount Debian packages, as
well as the aes and dm-crypt kernel modules. All of these
software components are free, open-source, and widely avail-
able over the Internet and through the apt package manage-
ment systems bundled with both Debian and Ubuntu Linux.

7. PERFORMANCE EVALUATION
We now present an analysis of the impact of our security

architecture on KioskNet’s performance. Our experimental
setup consists of a 1.2GHz x86-based system with 1GB of
RAM and a 5400rpm 40GB hard disk as a kiosk controller,
connected via 100Mbps Ethernet to a 1.8Ghz Pentium IV-
based system with 1GB of RAM as a terminal.

7.1 Creating New User Accounts
As described earlier in section 4.4.1, user accounts are cre-

ated on kiosk controllers, with users’ home directories placed
in encrypted virtual volumes. These virtual volumes are cre-

 1

 10

 100

 1000

 10000

 0 256 512 768 1024

Pr
oc

es
sin

g
Ti

m
e

(s
, l

og
 s

ca
le

)

Size (MB)

Initialized from /dev/zero
Initialized from /dev/urandom

(a) Creating Virtual Volumes (note: log time scale)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000

Pr
oc

es
sin

g
Ti

m
e

(m
s)

File Size (KB)

Decrypting and Verifying Signed Data
Signing and Encrypting Data

(b) Secure Directory API

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000

Da
ta

 R
ea

d
Ra

te
 (M

B/
s,

 lo
g

sc
al

e)

File Size (MB)

With Encryption
Without Encryption

(c) Reading User Data (note: log rate scale)

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000

Da
ta

 W
rit

e
Ra

te
 (M

B/
s)

File Size (MB)

With Encryption
Without Encryption

(d) Writing User Data

Figure 4: Performance Evaluation

ated as disk images that must be initialized from one of ei-
ther /dev/zero or /dev/urandom, with the latter providing
more security as encrypted users’ files written to their virtual
volumes are harder to distinguish from pseudo-random data
than from simple zeros. The performance cost of these two
alternatives is shown in figure 4(a) below, with the creation
of a new user account of size 1GB taking a little over 20mins
with pseudo-random data and approximately 45s with zeros.
Note that using /dev/urandom helps against some cryptana-
lytic attacks on a hard drive, where the attacker has physical
access to the hard drive. In our threat model, this is not the
case, so using /dev/zero is sufficient.

7.2 Logging In/Out of Terminals
Typical login times without encrypted home directories

were in the range of 0.4s, with corresponding logout times
of around 1.4s. Enabling encrypted home directories added
approximately 100ms to both these times, an additional la-
tency which we believe would likely go unnoticed.

7.3 Sending/Receiving Secure User Data
Figure 4(b) below reveals the performance of the Secure

Directory API, which as outlined earlier in section 4.4.2 is
used by users’ applications to securely send and receive data
over KioskNet. Secure outgoing data is first signed and then
encrypted using the RSA-2048 and AES-256-CBC ciphers.
Secure incoming data is decrypted, the sender’s public key
certificate chain verified, and the corresponding signature
on the data verified. We note that processing times increase
linearly with file sizes and that a user would have to wait
560ms for a 1MB message to be signed and encrypted and
750ms for the same message to be decrypted and authenti-
cated, where incoming data takes longer to process because
of the additional time required to validate the sender’s pub-
lic key certificate chain.

7.4 Reading/Writing to Home Directories
Figures 4(c) and 4(d) above show data rates for reading

and writing to users’ home directories over NFS both with

and without encryption. Experimental data reveals a drop
in performance for files over 800MB. We believe this oc-
curs when the terminal’s cache maintained in its RAM disk
fills and the system begins paging out to its NFS-mounted
swap on the kiosk controller. As expected, average data
read/write rates with encryption are lower than without
encryption for files of this size, with users seeing drops in
average read and write rates of approximately 1MB/s and
3MB/s, respectively, with typical read/write rates over NFS
without encryption averaging around 9MB/s in our setup.

8. RELATED WORK
Previous research has studied how users can access remote

services via an untrusted proxy without revealing sensitive
information, such as private keys or passwords, to the proxy.
In some approaches [4, 10, 13], a user queries the proxy
about its state and verifies that this state is trustworthy.
These approaches require that the user has a trusted device
to execute a query. Other approaches [2, 9, 12] offload the
processing of sensitive information from the untrusted proxy
to a user’s trusted device. None of these approaches are
applicable to our scenario, since we do not expect users to
have a trusted device.

Bitfrost [8] is the security model of the “One Laptop per
Child” project, whose goal is to distribute low-cost, net-
worked laptops to children in the developing world. This
way, the children will gather computer experience and can
communicate with other children around the world. The
project’s goal is different from the goal in KioskNet, where
people use shared kiosks, instead of individual laptops, to
(potentially) perform secure transactions, such as online bank-
ing. The difference in the goals is also visible in the different
security models. In Bitfrost, a user has full control over her
laptop, and the security model makes it difficult, but not
impossible, for the user (and software) to execute danger-
ous actions. In our model, users (and franchisees) have only
limited control over a kiosk, and we need to defend against
attacks trying to get additional control. The designers of
Bitfrost have the advantage of being in control of the un-
derlying hardware. For example, they can use the BIOS for
boot time integrity checking, which we cannot. In Bitfrost,
users create self-signed certificates that bind their name to
a public key. In our security model, user certificates are
signed by a third party. This way, a service, such as online
banking, can, but does not have to, delegate identity verifi-
cation to the third party, which can be important in rural
environments. In both Bitfrost and KioskNet, the usage of
certificates is transparent to users, and the infrastructure
generates and processes certificates on their behalf.

There are several security architectures for delay-tolerant
networks. Some architectures [1, 7, 11], two of them de-
veloped by co-authors of this paper, are based on identity-
based cryptography. In section 6, we explain why we choose
a PKI-based approach for KioskNet. The DTN research
group also favors a PKI-based approach [3, 14]. The group
explicitly considers key management an open issue, whereas
we present a solution. Furthermore, the group concentrates
on the secure exchange of messages between DTN nodes
and the required format specifications, whereas our main
concern is at the application and usability level, that is,
how can DTN users create and receive secure messages in a
usable way.

9. CONCLUSION AND FUTURE WORK
In this paper we have presented a comprehensive threat

analysis for KioskNet, identified security goals for the system
given the needs of a diverse group of stake holders, and
proposed a practical, unobtrusive security architecture that
meets these requirements. We have also provided a detailed
security and performance analysis for an implementation of
our proposed scheme.

Potential directions for future work include the use of
smartcards and biometric authentication systems to provide
end users with simplified, password-free access to kiosk ter-
minals and support for the secure mobility of users and their
data between kiosks.

10. REFERENCES
[1] N. Asokan, K. Kostianinen, P. Ginzboorg, J. Ott, and C. Luo.

Towards Securing Disruption-Tolerant Networking. Technical
Report NRC-TR-2007-007, Nokia Research Center, March 2007.

[2] D. Clarke, B. Gassend, T. Kotwal, M. Burnside, M. van Dijk,
S. Devadas, and R. Rivest. The Untrusted Computer Problem
and Camera-Based Authentication. In Proc. of Int’l
Conference on Pervasive Computing (Pervasive 2002), pages
114–124, August 2002.

[3] S. Farrell, S. Symington, H. Weiss, and P. Lovell.
Delay-Tolerant Networking Security Overview -
draft-irtf-dtnrg-sec-overview-03. Internet Draft, July 2007.

[4] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and
Z. Zhang. Towards Trustworthy Kiosk Computing. In Proc. of
8th IEEE Workshop on Mobile Computing Systems and
Applications (HotMobile’07), February 2007.

[5] S. Guo, M. H. Falaki, U. Ismail, E. A. Oliver, S. Ur Rahman,
A. Seth, M. A. Zaharia, and S. Keshav. KioskNet: A System
for Low-Cost Internet Access For Developing Regions. To
appear in Proc. of ICTD, December 2007.

[6] P. Gutmann. Plug-and-Play PKI: A PKI your Mother can Use.
In Proc. of 12th USENIX Security Symposium, pages 45–58,
August 2003.

[7] A. Kate, G. Zaverucha, and U. Hengartner. Anonymity and
Security in Delay Tolerant Networks. In Proc. of 3rd Int’l
Conference on Security and Privacy in Communication
Networks (SecureComm 2007), September 2007.

[8] I. Krst́ıc and S. L. Garfinkel. Bitfrost: the One Laptop per
Child Security Model. In Proc. of 3rd Symposium on Usable
Privacy and Security (SOUPS 2007), pages 132–142, July
2007.

[9] A. Oprea, D. Balfanz, G. Durfee, and D. K. Smetters. Securing
a Remote Terminal Application with a Mobile Trusted Device.
In Proc. of 20th Annual Computer Security Applications
Conference (ACSAC 2004), pages 438–447, December 2004.

[10] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: Verifying Code Integrity and Enforcing
Untampered Code Execution on Legacy Systems. In Proc. of
20th ACM Symposium on Operating Systems Principles
(SOSP 2005), pages 1–15, October 2005.

[11] A. Seth and S. Keshav. Practical Security for Disconnected
Nodes. In Proc. of 1st Workshop on Secure Network Protocols
(NPSec 2005), pages 31–36, 2005.

[12] R. Sharp, J. Scott, and A. R. Beresford. Secure Mobile
Computing via Public Terminals. In Proc. of 4th Int’l
Conference on Pervasive Computing (Pervasive 2006), pages
238–253, May 2006.

[13] A. Surie, A. Perrig, M. Satyanarayanan, and D. Farber. Rapid
Trust Establishment for Transient Use of Unmanaged
Hardware. Technical Report CMU-CS-06-176, School of
Computer Science, Carnegie Mellon University, December 2006.

[14] S. Symington, S. Farrell, H. Weiss, and P. Lovell. Bundle
Security Protocol Specification -
draft-irtf-dtnrg-bundle-security-04. Internet Draft, September
2007.

[15] Trusted Computing Group.
https://www.trustedcomputinggroup.org. Accessed October
2007.

