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ABSTRACT

The Short Message Service (SMS) is one of the most
ubiquitous wireless technologies on Earth. Each year
hundreds of billions of messages are sent, demand con-
tinues to grow, and competition between cellular providers
is driving prices down. These trends create practical
opportunities for the use of SMS in mobile systems.
In this paper we present the design and implementa-
tion of an SMS-based data channel, or SMS-NIC, that
is lightweight and runs on multiple mobile platforms.
Through integration with an existing mobile platform,
we show that the SMS-NIC has little operational over-
head and provides efficient, reliable transport for large
messages send over the cellular network, where message
losses frequently occur.

We motivate the design of the SMS-NIC through a
characterization of SMS using workloads consisting of
bursts of messages between sender and receiver. This
analysis differs from previous SMS studies by focus-
ing on transmission patterns that differ from normal
cell phone use. Through this characterization we show
that message delay and message loss are affected by the
transmission order, the time of day has minimal effect
on transmission rate, delay, and loss, and that losses and
high delays significantly outweigh the rate or message
reordering.

1. INTRODUCTION

Since its conception in 1991 [8], GSM has evolved to
one of the most ubiquitous technologies on the planet.
One of the services provided by GSM is the Short Mes-
sage Service (SMS). SMS allows cell phones to exchange
short messages with each other or various services such
as Internet search, calendar notification, e-voting, etc.
In 2005, over a trillion Short Message Service (SMS)
messages were sent and received by cell phones all over
the planet [10]. This number is predicted to increase to
a staggering 3.7 trillion messages by 2012 [11]. In many
countries, competition between GSM service providers,
coupled with the growing demand for Multimedia Mes-
saging Service (MMS), has driven the cost of sending
SMS messages (a.k.a wireless text messages), to frac-
tions of a penny or free. Today in the United States,
unlimited SMS packages cost as low as $5/month [4].
As use of the cell phones continues to climb, we expect
the prices for basic SMS service to continue to fall.

The low-cost of SMS and the ubiquity of today’s cel-
lular networks presents interesting opportunities for its
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use in mobile systems. Today there are many mobile
systems that could benefit from using SMS as a data
channel. In particular, DakNet [9], KioskNet [13], Hag-
gle [12], and DieselNet [1], could exploit SMS to im-
prove and coordinate routing, provide end-to-end mes-
sage delivery notification, track vehicles, establish cryp-
tographic session keys, etc.

As a data channel, SMS is greatly inferior to EVDO
and GPRS/EDGE cellular data services. SMS has sig-
nificantly lower data rates, high latency, a small fixed
message size of 140 bytes, and messages are frequently
lost during transport. However, data services are very
expensive, sparsely deployed in developing regions, and
while they can send megabytes of data effortlessly, ex-
changing kilobytes of data is sufficient for many applica-
tions. In 1999, the Enhanced Message Service (EMS) [2]
was defined as an application level extension to SMS.
Using EMS, devices may send messages as large as 918
bytes. This is an improvement; however, for SMS to be
used as a general purpose data channel, we require a
means to reliably transfer much larger messages.

In this paper we present the design and implemen-
tation of an SMS-NIC, which provides a reliable data
channel built on top of SMS. We have designed the
SMS-NIC to run efficiently and reliably on a variety of
resource constrained mobile devices. The SMS-NIC is
implemented in Java Micro Edition and complies with
the CLDC profile. Therefore the core of the SMS-NIC
can run on both personal computer environments and
CLDC enabled cell phones and smart phones. Envi-
ronment specific functionality such as logging, sending
and receiving messages, and Ul feedback are achieved
through abstract interfaces that are passed into the SMS-
NIC at startup. The current release of the SMS-NIC has
full support for both BlackBerry! and Linux; however,
support for other devices can be added with minimal
effort.

To motivate the design of an SMS-NIC, we present a
preliminary characterization of SMS that builds upon
previous work by Zerfos et al. [16, 7]. In these pa-
pers Zerfos examines SMS traces collected by a cellular
carrier in India over a three week period. The traces
consist of over 59 million SMS messages exchanged by
more than 10 million users (approximately 10% of In-
dia’s total mobile subscribers). These traces are used to
classify the current uses of SMS and measure how con-
versation threads progress across a series of messages.
One of the key contributions of this paper was as a pre-
liminary classification of the behaviour of SMS messages
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are they traverse the cellular network. In particular, the
authors observe that nearly 5.1% of messages are lost
during transit due to expiration or denial of delivery.
They measure message delay and found that 73.2% of
messages reach their recipient within a 10 second delay,
17% require more than one minute, and the remainder
take over an hour and a half. A data set this size is prob-
ably an accurate macro representation of SMS; however,
we believe that an aggregate characterization does not
provide the details needed to design a data service built
on top of the SMS.

This paper builds on the work by Zerfos by exam-
ining the behaviour of SMS from a micro perspective.
We examine a system of two cell phones connected to
commodity PCs and measure the characteristics of SMS
while sending messages between the two. As our study
is biased towards a design of an SMS data channel, we
focuses on traffic patterns that differ significantly from
normal [7] human generated SMS traffic. To maximize
throughput, the SMS-NIC must send messages as fast
as possible - much faster than a human cell phone user
could manually send messages. While previous work
observes the presence of mass message senders, it does
not examine them as an isolated group.

This paper makes the following contributions:

e We examine the characteristics of SMS for traffic
patterns not considered in previous studies.

e We present the design and implementation of an
SMS data channel for mobile system.

e We detail the integration of our SMS-NIC with an
existing mobile system.

This paper is organized as follows. Section 2 charac-
terizes the behaviour of SMS when sending many mes-
sages between cellular clients. Section 3 describes the
design, architecture, and implementation of the SMS-
NIC. In Section 4 we detail the integration of the SMS-
NIC with an existing mobile system. We conclude in
Section 5.

2. SMSCHARACTERIZATION

When designing a network protocol, it is important
to understand the characteristics of the underlying net-
work. Previous studies [16, 7] characterizing SMS have
examined the service from an aggregate macro perspec-
tive. These studies do not consider the characteristics
of SMS for single users sending bursts of messages and
do not provide enough insight to design an SMS data
channel. We seek to better understand the following
properties of SMS:

e Transmission rate: The time required to trans-
mit an SMS message from the phone is affected by
phone’s signal strength, medium contention, and
communication latency with the phone circuitry.

e Delay: Once an SMS message has been accepted
for delivery it is subject to several sources of de-
lay: propagation delay as the message traverses
the cellular network, queuing delays throughout
the network, and transmission delay as the mes-
sage waits for the recipient to be available. The
network may also impose delays on a per client
basis to prevent from flooding the network with
messages.
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Figure 1: High level test overview.

e Loss rate: SMS messages can be lost due to
transmission failure, congestion in the cellular net-
work(s), or be rejected in transit by data corrup-
tion. If a receiver is not available, a message may
also expire in the network while waiting for deliv-
ery.

e Message reordering: Depending on the design
of the cellular network, messages may arrive in a
different order than they were sent.

These properties may be affected by the time of day,
the day of the week, and the number of messages sent at
a particular time. In the following sections we examine
these criteria and present our results.

2.1 Test Bed

Our test bed consists of a low-power, low-cost com-
puter from Soekris Engineering (net4801) and a Pen-
tium 4 desktop PC. The Soekris computer has the same
configuration currently used in [13] to provide low-cost
Internet to rural regions. The Soekris has a single USB
port, which is used to attach a recycled Nokia 3390
phone. The Pentium PC was equipped with a PCM-
CIA PCI card that housed a Sony Ericsson GC82 EDGE
card. The cell phone and EDGE card were on the same
cellular network (Rogers) and located in the same room.
Sending and receiving SMS messages was performed us-
ing an application called Gammu?. There are several
open source packages for interacting with cell phones.
Gammu was chosen because of its active support for the
Nokia FBUS protocol and the Hayes AT instruction set.
Both machines were accessible over the University LAN,
which was used as a test data channel. Both computers
were synchronized to the University’s NTP server. Ac-
curate time synchronization is essential for tracking an
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SMS message as it is transferred across the test bed.

The cellular signal strength on the Nokia was approx-
imately 60% throughout the tests. Unfortunately, the
phone did not support querying the signal strength di-
rectly; the signal strength was observed manually by pe-
riodically checking the indicator on the phone’s display.
The EDGE card did support signal strength monitor-
ing, and it had a 90% to 100% signal throughout the
experiments.

Linux support for USB attached cell phones and PCM-
CIA cellular cards is marginal. In the event of a trans-
mission failure (message loss), it was necessary to man-
ually verify through the Gammu logs a loss was not due
to a communication failure between the computer and
cellular device. Both computers were equipped with
sendmail and configured to send warning emails to the
experimenter when a failure was suspected.

Figure 1 illustrates the test bed setup and provides
a high level overview of the test procedure that we will
now describe.

2.2 Evaluation

We evaluate the characteristics of SMS using two forms
of tests. Our primary evaluation of the characteristics
of SMS consists of sending 10 messages per hour from
the Soekris (client) and the desktop PC (server). We
chose to send 10 messages because we believe it rep-
resents a typical message size (approx. 1400 bytes) for
our application (as discussed in Section 4). In each test,
the client first connects to the server over a LAN con-
nection and backups up previously received messages.
This was done purely as a precaution; in the event of
a failure, we can reconstruct our results from the re-
ceived files. While connected to the server, a process
is invoked in the background that periodically checks
for newly received SMS messages and records their ar-
rival time. The scanning period of this process is 50 ms,
which introduces on average a 25 ms margin of error on
our evaluation of delay.

Once the environment is correctly configured, the client
begins sending SMS messages to the server. The client
sends an SMS using a synchronous call to the Gammu
application. Gammu sends SMS messages over the serial
connection with the Nokia cell phone using Nokia’s pro-
prietary FBUS protocol [15]. We measure transmission
time by sampling the timestamp with millisecond reso-
lution before and after the call to Gammu. Therefore
transmission time consists of both the wireless trans-
mission time and the time to communicate with the cell
phone. Each SMS message sent to the server consists
of the following data: an integer representing the cur-
rent hourly test, an index for the current message, and
additional random characters to pad the message to a
full 140 bytes (160 7-bit characters [3]). In preliminary
experiments we found that a message being full or par-
tially full had no effect on its transmission time or delay;
however, we chose to pad messages to 140 bytes because
in practice, it would make sense to maximize the data
payload.

On the server side, SMS messages are received using
the SMS daemon, smsd, service provided by Gammu.
smsd communicates with the EDGE card using the Hayes
AT instruction set. Unfortunately, this requires that
smsd poll the card for new messages. We configured
smsd to poll the card in 1 second intervals. By polling

we introduce, on average, an addition 0.5 seconds of de-
lay. This was the most aggressive polling interval possi-
ble. Messages retrieved from the phone are each written
to file on the server and their arrival time is recorded by
the previously mentioned scanning process. The time to
write the file has negligible effect on delay.

When the client has finished sending, it connects to
the server to wait for all messages to be received. A
failure to delivery all of the messages triggered an email
to the authors. Periodic anomalies (such as excessively
long delay) were then verified manually.

2.3 Analysis

Over a period of seven days, we successfully transmit-
ted a total 1644 messages from the client to the server.
Our transmission success rate was 97.85% with 15 mes-
sages rejected by the network, and 21 messages that
failed to send due to software failure on the client side.
Contrary to our expectation, we found that the day and
time had no effect on the transmission rate and loss rate
of SMS messages, and had only a small effect on delay.
However, the number of messages sent at a single time
had a significant effect. The following sections detail
our characterization of the transmission and loss rate,
and delay of SMS. Aggregate results over the seven day
period are summarized in Table 1.

2.3.1 Transmission Rate

The transmission rate was the most consistent vari-
able in our study. This value was calculated for each
message successfully sent by the client. Our average

transmission data rate was approximately 25.052 bytes/second

(0.18 SMS messages/second). Figure 2 illustrates the
transmission rates over the course of the experiment.
The gap on Wednesday night corresponds to a failure
at the client side. No messages were sent for two hours.
This period of software failure was not included in the
results of this study.

2.3.2 Delay

SMS delay was a highly variable quantity in our study.
Average delay over all successfully received messages
was 289.31 seconds. The minimum and maximum de-
lay was 3.19 and 14534.32 seconds respectively and the
standard deviation was a staggering 1247.83 seconds.
These values were inflated by a series of highly delayed
tests during Thursday as illustrated in Figure 3. Al-
though this period of high delay is based on true SMS

SMS data rate (bytes / seconds)
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Figure 2: SMS transmission rate over seven day
period.



Mean | Minimum | Maximum | Median | Standard deviation
Time (sec) 5.59 4.19 29.23 5.63 0.76
Rate (bytes/sec) | 28.63 5.47 38.19 28.42 209.75
Delay (sec) 289.31 3.19 14534.32 14.00 1247.83

Table 1: Aggregate SMS transmission time, data rate, and delay over seven day period.
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Figure 4: SMS delay (seconds) over seven day
period with respect to the transmission order-
ing.

traffic, it is unlikely that Thursday regularly exhibits
high SMS delay. We re-ran our experiment on a subse-
quent Thursday and Friday to reassess SMS traffic on
those days. We found that delay on the subsequent
Thursday was consistent with the other days of the
week, and ruled out a correlation between delay and
the day of the week. The most useful aggregate result
of our experiment was the median delay. This value was
found to be 14 seconds and can be observed in the delay
CDF in Figure 5.

We found that the order that a message was sent had
an effect on the delay. Mean delay for the first and
second message sent was 218.9 and 170.4 seconds re-
spectively and increased to 425.8 seconds for the tenth
message sent. Median delay was also lower for both the
first and second messages; however, median delay was
roughly bounded to 14-15 seconds for the subsequent
messages. The mean and median delays with respect
to transmission order are illustrated in Figures 6 and
7. This trend is also visible in Figure 4, which depicts
delay with respect to order for each day of the week.
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Figure 5: Cumulative distribution function for
SMS delay using one second sample intervals.
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Note that the high delay times illustrated on Thursday
night (up to 14534.32 seconds) have been omitted from
this diagram because these results dwarf all other re-
sults. This diagram does not illustrate delays over 4000
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Figure 6: Mean delay with respect to the order
sent.

Because our mean delay is heavily included by a few
high delay cases, in the rest of this paper will consider
the median delay as a good approximation for delay in
the SMS network.

2.3.3 Loss

The loss rate was also a consistent variable in our
study. Over the week of our test, the SMS loss rate
was 3.89%. We observed peaks in losses during busi-
ness hours on both Thursday and Friday. Re-running
the experiment on a subsequent Thursday and Friday
found no evidence that SMS traffic was consistently in-
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Figure 7: Median delay with respect to the order
sent.

creased on these days. We found that the spike of losses
on Monday morning was also an anomaly. These re-
sults are illustrated in Figure 9. We examined loss rate
with respect to the order that messages were transmit-
ted. We found no correlation between the loss rate and
transmission order. These results are illustrated in Fig-
ure 8.

We also observed that SMS messages were duplicated
at a rate of 3.1%. Duplicate messages are often a side ef-
fect of poor communication between the phone and the
service provider. By manually examining the Gammu
smsd server logs, it was verified that the messages were
not received twice from the cellular network. The du-
plications were caused by a bug/feature of Gammu re-
lated to resetting its connection with the phone. While
the duplication rate is not a measured characteristic of
SMS, we include this observation because because it is
relevant to the design of the SMS-NIC.

3. DESIGN AND IMPLEMENTATION

We begin the design of the SMS-NIC with a summary
of the key points from our characterization:

e Transmission failures occur: Transmission er-
rors due to both software errors and a busy net-
work occur approximately 2.2% of the time. The
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Figure 8: SMS loss rate over seven day period
with respect to the transmission ordering.

sending component of the SMS-NIC should adapt
to local failures.

e Transmission rate is consistent: The SMS-
NIC does not need to adapt to transmission vari-
ability. Delay is the only variable duration.

e Transmission order affects delay: When send-
ing a burst of messages, the first messages sent
have lower delay than subsequent quantity.

e Loss rate is low: The SMS standard has a built-
in delivery receipt mechanism where the delivery
of each message is acknowledged. A delivery re-
ceipt effectively doubles the number of messages
exchanged. With a loss rate as low as 3.89% the
SMS-NIC should use a less aggressive acknowl-
edgement (ack) strategy.

e Day and time have little effect: Contrary to
our expectations, the day of the week and time of
day have little effect on the rate, delay and loss of
SMS.

e Messages are reordered: Messages arrive out
of order 2.53% of the time; however, when a mes-
sage does not arrive as expected, is far more likely
to be delayed or lost than reordered.

e Messages remain intact: Although it is not
part of our characterization, it is worth mention-
ing that SMS guarantees message integrity [2].

Throughout this section we will refer to data passed
by applications into the SMS-NIC as data. Data is frag-
mented and transmitted over the cellular network as
SMS messages.

3.1 Protocol

The communication protocol between two SMS-NICs
is designed to handled a wide variety of applications
and user defined settings while maximizing the payload
of a single message. Each SMS message transmitted
contains a small fixed size header and message payload.
Our current design consists of short messages, standard
messages, and control messages. Short messages consist
of data that is small enough to fit into a single SMS mes-
sage. We predict that short messages will be the bulk
of the traffic over the SMS-NIC, so we have included
this special case to reduce the header size by two bytes.
Standard messages consist of two or more SMS messages
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Figure 9: SMS loss rate over a seven day period.



up to 32 KB in size (243 messages in the best case). We
believe that 32 KB is a practical and reasonable upper
bound for an SMS based data channel. Systems that
require larger messages should switch to a cellular data
service such as GPRS/EDGE. We will discuss control
messages later in this section.

Figure 10 illustrates the composition of short, stan-
dard, and control messages. The first byte consists of
a two bit protocol version, a three bit message type,
and three flag bits. The first flag bit indicate that win-
dow size value has been specified, which we will discuss
later in this section. The second bit indicates that the
length of the data is present. The final bit signals that
the payload is compressed. The window size and length
flags were introduced as an optimization. The sender
initially sends all messages containing the window size
and length of the overall data. Once the receiver has
sent its first ack, subsequent messages sent from the
sender do not contain the length. This saves an addi-
tional two bytes in the message payload. Similarly, the
receiver also acks the RTT as measured by the sender
and the sender’s chosen window size.

There are three types of messages not included in Fig-
ure 10. As of GSM 3.40 [2], SMS messages can be trans-
mitted on one of 65536 ports. Unfortunately, many de-
vices do not support transmitting messages on a specific
port. To support these devices, we have included addi-
tional types that include an additional two byte port
field. These messages are received on the default port
(zero), and processed as if they were received on differ-
ent ports.

Two retransmission strategies were considered when
designing the SMS-NIC: Simple Method to Aid ReTrans-

mission (SMART) [6] and selective retransmission (SR) [5].

SMART has several favourable characteristics. First,
the protocol is aggressive about retransmission. When
an expected message does not arrive, the message is
assumed to be lost and retransmits it. Through our
characterization we see that message losses are more
frequent than reorderings; SMART’s assumptions hold
for SMS. Second, the protocol avoids the use of timers
to determine which messages have been correctly re-
ceived and to recover from message losses. Timers are
only used to recover from a loss of all messages and all
acks. The transmission rate of SMS is low enough that
frequently setting and resetting timers is not a costly
operation; however, on many mobile platforms, timers
are implemented as independent threads. These threads

Header Control Message
‘ ‘ ‘ ‘ ‘ ‘ Message type ‘ Control message payload ... ‘
0 2 516 |7
Byte 0 Byte 1 [2,139]
Short Message
Work ID ‘ Length ‘ Payload ... ‘
Byte 1 2 [3,139]
Standard Message
Work ID ‘ Fragment ID ‘ Length Payload ... ‘
Byte 1 2 [3.4] [5,139]
Payload ... ‘
[3,139]

Figure 10: The format of SMS messages ex-
changed between SMS-NICs.

increase the memory and CPU footprint of the applica-
tion and should be avoided.

In SR schemes, each ack contains a bit-mask for the
messages that have been received. This way, the sender
knows exactly which messages must be retransmitted,
again, without the use of timers. Normally in SR, if
the window size is large, the bit-mask can become a sig-
nificant overhead. However, because we have chosen to
limit the application data size to 32 KB, all 243 mes-
sages can be comfortably acked using only 31 bytes of
an SMS message. We have therefore chosen to use an
SR scheme to handle retransmissions.

Through our characterization, it is clear that we re-
quire a windowing mechanism to limit the number of
messages sent. In this protocol, we provide flow con-
trol implicitly by limiting the window size to the num-
ber of messages that can be transmitted in two RTT
for each transaction. The SMS-NIC calculates the win-
dow size for each transaction at the sender. Once the
sender has determined the window size, the value is sent
to the receiver and remains fixed for the remainder of
the transaction. The window size is calculated by first
determining the RTT for the current transaction. The
RTT is calculated by recording the timestamp when the
first message is sent to the receiver. When receiving the
initial message, the receiver always sends an ack mes-
sage back to the sender. The sender then subtracts the
initial transmission time from the time the first ack was
received to produce the RTT.

The transmission time is used to determine how many
messages can be sent in an RTT window. Message
transmission time was highly consistent in our charac-
terization. The SMS-NIC therefore calculate this value
by taking the exponential moving average of the trans-
mission times of each message. Averaging the transmis-
sion rate globally simplified the design of the SMS-NIC,
and allowed us to decouple the application level data
from the process of queueing fragments (messages) for
transmission.

Once the RTT and transmission time are known, the
sender calculates windows size as follows:

2 (RTTtransaction)
transmission_timegiobal

WiINdoWtransaction =

Because an initial high delay can result in an unrea-
sonably large window size, the SMS-NIC places an up-
per bound on window size to two times the window size
obtained using the mean values from our characteriza-
tion. The maximum window size is 28 messages. Once
the window size is known, the value is transmitted at
the head of all messages until the receiver acks that it
has received the new window size. The window size ack
is included as a field in a standard data message ack.

Although we have not evaluated this technique for
optimality, our current design is conservative in its use
of space and we have found that it works reliably in
practice. We now present the software architecture of
our implementation this protocol.

3.2 Architecture

Nearly every mobile environment, including cell phones,
smart phones, and embedded systems, exposes a dif-
ferent set of APIs to applications. In addition to the
characterization of SMS, the design of the SMS-NIC
was influenced by a need for portability. The design



SMS-NIC API |

M | sps SMS
UMMM sender
[N | thread | thread

| L
receiver | [

Send work Control message
table handler Peer table
SMS handler API
CLDC Gammu Android
SMS handler| SMS handler | SMS handler

Peer |

[

Figure 11: Architecture of the SMS-NIC includ-
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should be modular and The SMS-NIC should also have
a small memory footprint and minimize the allocation
and copying of memory. It should also minimize the use
of threads and timers, which are both limited resources
on a mobile device. Finally, for the NIC to provide the
most value to existing mobile systems, it should be easy
to integrate with minimal change to the mobile appli-
cation.

The architecture of the SMS-NIC, as illustrated in

Figure 11, consists of the following high level compo-
nents:

e SMS-NIC API: The SMS-NIC API is the single

interface into the SMS-NIC. This API mirrors tra-
ditional send and recv interfaces and includes flags
to indicate that the data should be compressed,
and a 16 bit port number to differentiate applica-
tions. The SMS-NIC API has five sub-interfaces:
the SMS Data, SMS Address, SMS Logger, SMS
View, and SMS Compression interfaces. Receive
buffers within the SMS-NIC implement the SMS
Data interface, which allows fully received data
to be passed directly to applications without allo-
cating new memory. The SMS Address interface
is designed to ease integration of the SMS-NIC
into existing applications. This interface is imple-
mented by objects in the host application that are
responsible for maintaining addresses and removes
the need for redundant copying of addresses (typi-
cally strings) into the SMS-NIC. The SMS Logger
is a simple interface that allows the host applica-
tion to specify how/where the SMS-NIC should log
its activities. The SMS View API provides a call
back mechanism for the host application to be no-
tified of changes to the SMS Model. This interface
is primarily intended to support a GUI in the host
application. Finally, each mobile platform pro-
vides a custom set of functions to compress and
decompress data. We abstract this functionality
from the SMS-NIC using the SMS Compression
interface.

SMS Handler API: Each mobile platform sends
and receives SMS messages differently, and has a
different representation of an “SMS connection”
to a remote host. The SMS Handler API is the
second major interface in this architecture, which

is designed to abstract the SMS APIs of the host
environment from the NIC. This interface pro-
vides only two functions: sendSMS and recvSMS.
Through these two abstract functions, the SMS-
NIC is able to send and receive SMS messages on
a variety of mobile platforms.

SMS Model: The SMS Model stores the current
state and statistics of the SMS-NIC. This class al-
lows objects in the host environment that imple-
ment the SMS View API to register their interest
in changes to the model. As in the model-view-
controller design pattern, when a change is made
to the model, all views are notified of the change.

SMS Send Work: The SMS Send Work compo-
nent is a wrapper for data sent from the applica-
tion layer. This component maintains the state
of a transaction, which includes the number of
transmission failures, the measured RTT, and the
fixed window size. This component also contains
a pointer to the original application data and is
responsible for providing SMS sized chunks to the
SMS Sender for transmission as SMS messages.
Chunks are retrieved from the work object by a
linear sequence number starting from the begin-
ning of the given data. Each chunk returned from
this component consists of a small header and a
data payload. The reciprocal of this component
is the SMS Receive Work, which reassembles mes-
sages into application data on the receiver’s side.

SMS Sender: The SMS sender is one of the two
threads in the SMS-NIC. The primary function of
this component is to dequeue data passed into the
SMS-NIC for transmission, compress it if neces-
sary, wrap the data in an SMS Send Work object,
and transmit pieces of the data as SMS messages.
The sender stores SMS work objects in a table,
which is keyed by a one byte integer work identi-
fier that is chosen in increasing order by the sender
to uniquely represent a transaction. With an iden-
tifier space so small, it is possible for collisions to
occur if more than 256 pieces of data are enqueued
for transmission. We believe this scenario is rare,
and is currently handled by an error returned to
the sender signalling it to retry later.

The SMS Sender maintains two sending queues:
a high priority queue for control messages and a
second queue for sending messages containing ap-
plication data. Messages are placed in both queues
by the sender thread and by the Control Mes-
sage Handler when processing received acks. The
use of a high priority queue is particularly impor-
tant when responding to an initial message from
a sender. If ack messages experience unusually
high queuing delays, the sender’s calculation of
RTT and window size will be inflated. The sender
transmits messages from the queues according to
the current calculated window size. The sender
is also responsible for recovering from transmis-
sion failures. In many cases, this involves simply
pushing the SMS message back onto the sending
queue; however, if transmission errors to a par-
ticular sender persist, the sender may drop the
message and flag the corresponding work object
for deletion.



To minimize the use of threads and timers in the
SMS-NIC, the sending thread is not always block-
ing waiting for messages to send. Each blocking
operations times out to allow the sending thread
to discard received data that is incomplete (i.e.
the sender stopped sending), expire data that was
unsuccessfully sent, and retransmit data when a
receiving acknowledgement has been lost.

e SMS Receive Work: On the receiving side of
the SMS-NIC, data is reassembled within an SMS
Receive Work object. This class maintains a re-
ceive buffer for the full data size and a bitmap of
all received messages. The bitmap is stored with
a pre-formatted control message. When sending
an ack, this special message is retrieved from the
work object and forwarded to the sender. As men-
tioned above, this component implements the SMS
Data interface, which allows completed data to be
passed to the application layer unmodified. Al-
though reducing a Receive Work object to an SMS
Data objects leaks SMS-NIC control information,
it is more efficient than reallocating and copying
a fully received array of data.

e SMS Peer: The SMS Peer is a simple component
that serves as a mapping from SMS source address
(phone number) to a set of receive work objects.
This component is motivated by the fact that the
space of work identifiers, while large enough for
our application, is small enough to cause collisions
at the receiver. When an SMS peer contains no
work objects it is considered empty and is deleted.

e SMS Receiver: The SMS Receiver is the second
thread in the SMS-NIC. The primary roll of this
component is to block on the arrival of an SMS
message. Once a message is received it takes two
paths: control messages are passed to the Control
Message Handler and data messages are passed
to an SMS Peer corresponding to the message’s
source address. If a received messages completes
an work object, then the work object is removed
form its peer container and placed in an applica-
tion receive queue.

A secondary roll of the Receiver is to enforce upper
bounds on both the data size and the number of
concurrent work objects that can be handled by
a receiver. Messages for data that are either too
larger than a user specified limit or exceed the 32
KB are discarded. The Receiver drops messages
for new receive work to prevent SMS based denial
of service attacks.

e Control Message Handler: The Control Mes-
sage Handler implements the communication pro-
tocol between two or more SMS-NICs. Architec-
turally, this component has access to both the
sending and receiving data structures and is re-
sponsible for handling and dispatching all inter-
NIC control messages.

The architecture of the SMS-NIC can be implemented
on a variety of platforms and languages. In the next sec-
tion we present the decisions made when implementing
this architecture. We also detail the integration with an
existing mobile system.

4. MOBILE SYSTEM INTEGRATION

When implementing the SMS-NIC, we considered both
C++ and Java Micro Edition (JME). C++ is an effi-
cient language for implementing low-level functionality
and is supported on a range of mobile and embedded
platforms; however, we found that OS support for send-
ing and receiving SMS messages using C++ libraries
was poor. Alternatively, Java runs on most mobile de-
vices as an always-on JVM (ex. BlackBerry, Symbian,
and Android), or as a third party application such as
IBM’s J9 JVM that runs on top of Windows Mobile.
JME also supports sending and receiving SMS messages
as part of the Connective Limited Device Configuration
(CLDC)?, which makes it an ideal platform for the SMS-
NIC.

Ease of integration with an existing mobile system
was a key design decision. We considered two open
source systems implemented in Java that we believed
could immediately benefit from an SMS based data chan-
nel: the Haggle Project [12] and the Opportunistic Con-
nection Management Protocol (OCMP) [14]. Haggle is
a network architecture designed to enable communica-
tion in the presence of intermittent network connections.
Haggle assumes a lack of end-to-end infrastructure and
relies on opportunistic connections between mobile de-
vices to disseminate data. OCMP is a disconnection-
tolerant, policy-driven session layer that allows applica-
tions to fragment data for transmission across multiple
NICs opportunistically. In contrast to Haggle, OCMP
is heavily dependent on infrastructure. Data is trans-
mitted over different network interfaces to an Internet
resident prozy. The proxy then resembles data and for-
wards it to another OCMP user (again opportunisti-
cally), or over the Internet to a legacy server. Internally,
OCMP abstracts NICs through a common Connection
API. We chose to integrate the SMS-NIC into OCMP
because of this clean separation of NICs from the rest
of the system.

The integration with OCMP had a minimal effect on
the OCMP code base. Integration took less than three
hours to perform. When finished, OCMP was able to
send and receive messages on both Linux and CDLC
enabled devices.

Our integration with OCMP consisted of the following
steps:

1. To communicate across multiple NICs, OCMP users
have multiple addresses. For example, they may
have an IP address on both a WLAN and WWAN,
a Bluetooth address, or a DTN end-point ID [13].
These addresses are stored in a common Address
class. We modified this class to implement the
SMS Address API and added a string telephone
number as a new address type.

2. We extended OCMP’s logging mechanism to al-
low the SMS-NIC to log its operations into the
standard OCMP log.

3. The utility gained by compressing data is variable
based on the content. OCMP leaves it to the ap-
plication to compress data. We followed this trend
and did not implement the SMS Compression in-
terface.

Shttp://java.sun.com/products/cldc/



GPS position (1 msg)

2 KB RSA public key (13 msgs)

4 KB BLOB (27 msgs)

Calculated average (sec) 39.18

103.64 193.47 (1 loss)

SMS-NIC (sec) 37.32

97.23 212.11 (3 losses)

Table 2: Performance of the SMS-NIC compared to an average measurements.

4. We modified OCMP’s configuration sub-system with
several new parameters. These parameters included
the maximum number of concurrent work items,
the maximum data size supported, and the num-
ber of concurrent peers to support. At startup,
OCMP initializes an instance of the SMS Model
with these configuration parameters.

5. To support sending and receiving SMS messages

on Linux, we developed a simple wrapper for Gammu

that implements the SMS Handler interface. This
component consists of a single thread that invokes
Gammu’s smsd server, and polls for new messages.
When a new message is received, it is placed in
a queue, until the SMS-NIC performs a recvSMS
call on the handler. To send messages we used
the same technique used in the experiments. Mes-
sages are sent from the handler synchronously by
invoking Gammu in client mode and sending the
message.

To support sending messages on CLDC enabled
devices, we developed a second SMS Handler that
utilized CLDC’s Connector class. Unlike the Linux
handler, using CLDC allowed the receiving thread
to block when calling recvSMS - a far more elegant
solution. Sending messages was also simplified by
making a single function call instead of invoking
an external application.

6. The core of OCMP currently has no GUI com-
ponent so we extended OCMP’s logging mecha-
nism to view changes to the SMS Model. When
a change to the model is made (i.e. a message is
transmitted or received), the OCMP logger records
an entry with the current statistics from the SMS
Model.

7. Finally, we introduced a new class, the SMS Con-
nection class, which implements OCMP’s Connec-
tion API. Like the SMS-NIC API, the Connection
API provides a simple set of operations for send-
ing and receiving data on the NIC that is con-
tains. The SMS Connection class was therefore a
simple wrapper of the SMS-NIC that consisted of
less than 30 lines of code. Like the TCP/IP and
DTN Connection objects included with OCMP,
the SMS Connection object is instantiated upon
OCMP startup on both the client and proxy com-
ponents of the system. During startup we initial-
ize the SMS-NIC by passing it the OCMP logger, a
Linux/Gammu SMS Handler, and the SMS Model
containing its configuration parameters.

We performed a simple trial to evaluate the perfor-
mance of the SMS-NIC while integrated with OCMP.
We placed three files on an OCMP client, and trans-
ferred them through the SMS-NIC, over the cellular net-
work to the SMS-NIC on the OCMP proxy. This trial

was performed on the same Linux test bed as our char-
acterization experiments. Table 2 illustrates the per-
formance of the SMS-NIC against a calculated scenario
with an average transmission rate, median delay, and
an average loss rate. We found that the overhead of the
OCMP and SMS-NIC, and the presence of real losses in-
troduced only a small difference over the average case.

We note one limitation to our SMS integration with
OCMP: it does not scale. By design, the proxy is a
centralized component. With a single cell phone for
sending and receiving messages, the SMS data channel
will rapidly fail. The solution to this problem is to in-
crease the proxy’s SMS capacity. In future work we plan
to add support for sending and receiving messages from
an SMS gateway on the Internet. This functionality can
be easily added using a new class that implements the
SMS Handler interface.

5. CONCLUSIONS

In this paper we have characterized the behaviour of
SMS when exchanging many messages in series between
two clients. We have observed that the SMS transmis-
sion rate is a consistent value and transmission errors
occur at a rate as low as 2.2%. We have found that
transmission order affects delay and that the first mes-
sages transmitted has a lower delay than subsequent
messages. We found that the loss rate of SMS is ap-
prox. 3.89% and that messages arrive out of order ap-
prox. 2.53% of the time. Finally, contrary to conven-
tional wisdom, the day of the week and time of the day
have little effect on the transmission rate, loss rate, or
delay of SMS messages.

We have used our characterization to shape the de-
sign and implementation of an SMS data channel for
mobile systems. We have integrated this data channel,
or SMS-NIC, into an existing mobile systems platform
(OCMP) and have developed a simple application for
sending and receiving files over SMS. The compact de-
sign and lightweight implementation of the SMS-NIC
made integration with OCMP effortless. We strongly
believe that many mobile systems could benefit from
the use of an SMS data channel, and anticipate more
sophisticated applications using this work to emerge in
time.
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