Circular Arcs as Primitives for
Vector Textures

Zheng Qin, Craig Kaplan, and Michael McCool

University of Waterloo

Abstract. Because of the resolution independent nature of vector graphics images,
it is useful to consider using them directly as textures in 3D rendering. Spline curves
are used to represent boundaries in standard vector graphics representations. An-
tialiased rendering of such content can be obtained by soft thresholding an implicit
representation of these boundary features. The distance function is an especially
useful implicit representation, and an accurate distance can also be used for special
effects such as embossing and stroke texturing. Unfortunately, computation of the
true distance to a spline curve is expensive. Therefore, normally either the distance
is approximated or the spline curves are approximated with simpler primitives for
which an accurate distance can be computed. Approximation with line segments
gives only C° continuity. We approximate spline curves using circular arcs instead.
This approximation has C'* continuity, and computing the distance to a circular arc
is nearly equivalent in expense to computing the distance to a line segment.

1. Introduction

Vector graphics uses an explicit representation of region boundaries and strokes
to represent images. Because of their resolution-independent nature and the
advent of more programmable GPUs, the use of vector graphics image rep-
resentations as a replacement for raster images in texture maps has become
possible [Sen 04, Qin et al. 06, Nehab and Hoppe 07]. Vector graphics images
have several advantages, particularly for image content where sharp bound-
aries are desired no matter how much textures are magnified.

In order to exploit standard tools for content creation, it is useful to design
efficient mechanisms for rendering content expressed in a standard vector
graphics format, such as SVG or PDF files. In order to support texture
mapping the representation must also support efficient random access and
antialiasing. Special effects such as drop shadows, embossing, and stroke
textures would also be useful.

The distance to the closest boundary features can be used for antialiasing
[Frisken et al. 00]. For anisotropic antialiasing, the gradient of this function
is also needed [Qin et al. 06]. Close to curves, the distance function can be
approximated by taking any other implicit representation and dividing by the
magnitude of its gradient [Loop and Blinn 05, Nehab and Hoppe 07], but for
many applications, such as embossing and stroke textures, the true distance
function is required and is generally more robust.

The boundaries in standard vector graphics file formats may include points,
line segments, elliptical arcs, and spline curves. Of these, spline curves are
the most general. Computing the exact distance to a higher-order parametric
spline directly is expensive. Even computing the distance to a quadratic spline
requires finding the zeros of a cubic polynomial and a case analysis. To sim-
plify this problem, we can approximate the curve with more primitive features
for which it is possible to calculate a distance field easily and exactly. For
example, line segments can be used to approximate spline curves, since is easy
to compute the distance to a line segment [Qin et al. 06]. The disadvantage
of line segment approximation is that it only has C? continuity. If a static
approximation is used when the textures are magnified visible creases will be
observed, reducing the resolution-independent advantage of vector textures.

In this paper, we present the use of circular arcs as an approximation prim-
itive for vector texture representations. Computing the distance to a circular
arc is nearly as inexpensive as computing the distance to a line segment,
the storage increase is small (20% at most per primitive), and the resulting
approximations have C'! continuity.

2. Arc Splines

A curve represented with a sequence of arcs is called an arc spline. A simple
procedure makes it possible to approximate any polynomial spline with an arc
spline to any desired accuracy [Yang 02]. Start by sampling the polynomial
spline finely using an adaptive parameter step. Then use two arcs joined with
tangent continuity (a biarc) to approximate each segment. Note that as with
a cubic spline segment, in a biarc the tangents of the endpoints can be chosen
independently. If any segment cannot be approximated within a given error
threshold, subdivide it. Once the whole spline is approximated with biarcs,
apply a merging step to combine three arcs into two arcs whenever it the

height h

(x1,y1) C (x2,y2)

Figure 1. An arc feature can be parameterized by its endpoints and midpoint
height relative to its chord.

result would satisfy the error bound.

This algorithm guarantees that the tangents at the end points of the approx-
imation are exactly the same as those in the original segment. The tangents
at the joints between segment will be consistent so the entire resulting curve
has C! continuity if the original curve was at least C'' continuous. Elliptical
arcs (and, in fact, any kind of C'* curve) can be approximated with arc splines
similarly.

3. Feature Representations

Five parameters are required to represent circular arcs. We use four param-
eters to represent the coordinates of the two end points: b = (z1,y1) and
e = (x2,y2). By representing endpoints explicitly, our representation is ro-
bust under quantization of these endpoints, since endpoints of different arcs
will be quantized in exactly the same way. A fifth parameter is used to record
h, the distance from the highest point on the arc to the chord formed by the
two end points (we call it the height). See Figure 1.

Based on these five parameters, we can compute the center point (origin)
of the circle containing the arc, and use this to compute the closest distance
from any query point to the arc. Let ¢ be the distance from the origin to the
chord. Then by the Pythagorean Theorem and using the radius r = h + ¢ we
have

(h+¢)? = AE+12 (1)
h% 4+ 2hc+c? = A +12 (2)
2he = t* —h% (3)

where t is half the length of the chord, or half the distance between b and e.

4

We can then solve for ¢, and use this value to find the origin point o:

c

v

w

o

t2 — K2

2h
e—Db
(Tv, Yo),
(ym _3711)/2tv
b+ V/2 4 cw.

4

(4)
()
(6)
(7)
(8)

Within the wedge formed by ob and oe, the distance to the arc from a query
point q is then d; = ||q — o| — r| for an arc of radius r.

height

Figure 2. Arcs with large heights can also be computed by the above equations.

Outside the wedge bounded by the endpoints of the arc and the origin, we
have to use the distance to the endpoints of the arc instead. We can test if
the query point is inside/outside of the wedge using plane equations generated
by the lines (o,b) and (o,e). The vector w is perpendicular to the line be
and when combined with the origin o generates the edge on which bisects
the shaded region in Figure 2. To determine if a query point q falls into the
shaded region and determine which end point is the closer one, we use the

following tests:

// test if q is in shaded area

bool a = (right(qg,on) && right(q,oe)

bool 3 = «a || (left(q,on) && left(q,ob))

// select the closer endpoint

d=a?e: b,

d, = distance(d,q)

// merge the inside/outside cases and compute the distance

d=874d,: d.

In Figure 2, when the height A is larger than the radius r. The value of ¢
will be negative. In this case the origin o will be on the side of the chord in
the opposite direction of w. Our equations above compute this case correctly.

Line segments can also be represented by the same parameters. As before,
the first four parameters record the coordinates of the two end points. By
checking if the height h equals zero, we can tell if a feature is a line segment
or not. If a feature is a line segment, we need to compute the distance to it
using an alternative code path, since the above computation would result in
a division by zero.

Alternatively, the parameter h can be expressed relative to the length ¢ so
only the ratio h/t is stored, assuming ¢ does not equal zero. This value can
then be quantized over a finite range. If we limit h/t to the range [—1, 1], then
only arcs that sweep out a maximum angle of 180° can be stored, although
they can be convex or concave. However, arcs that sweep out larger angles
can always be broken into shorter ones with no loss in fidelity.

4. Results

We incorporated the arc representation into a system that imports SVG files,
approximates them with arc splines, and creates a representation that allows
their use as texture maps in real-time 3D rendering. In the shader that inter-
prets the vector texture representation, we used control flow to separate the
computations for line segments and arc splines. If the feature is line segment,
the distance to a line segment is used, otherwise, the distance to an arc is
used.

Our test system used an NVIDIA 8800 GTX GPU. With this GPU we found
that for a vector image which contains both line segments and spline curves
the control flow significantly slows down the rendering speed. However, when
we approximated all line segments with shallow arcs, the speed was increased
by 4% to 22%.

Remember when we used the same representation for line segments and
arcs, the height was set to 0 for line segments. We cannot use the equations
for arcs directly for distances to line segments, because equation (4) will have a

E

~—~

§

ol

WY

Figure 3. The lion with all the line segments approximated with shallow arcs.

division by 0. To solve this problem, use shallow arcs instead of line segments,
setting the height to a small but non-zero number. In our experiments, if the
ratio between the height and the length of the chord is 1/1000, no bending can
be observed. In Figure 3, rendered by our system using this approximation,
the input image was composed of line segments only.

In order to determine how much slower the arc spline distance computation
was compared with the line segment distance computation, we applied both
approaches to a number of examples (see Figure 4), setting up the line segment
and biarc approximations to generate the same number of features. In general,
the speed of arc spline computation was 70% — 78% of the speed of a line
segment computation. However, it should be noted that often fewer arcs
than line segments are needed to approximate curves to the same accuracy,
although this depends on the input data.

References

[Frisken et al. 00] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and
Thouis R. Jones. “Adaptively sampled distance fields: a general repre-
sentation of shape for computer graphics.” SIGGRAPH, pp. 249-254.

7

[Loop and Blinn 05] Charles Loop and Jim Blinn. “Resolution Independent
Curve Rendering using Programmable Graphics Hardware.” In Proceed-
ings of ACM SIGGRAPH 2005, pp. 1000-1010, 2005.

[Nehab and Hoppe 07] Diego Nehab and Hugues Hoppe. “Texel Programs for
Random-Access Antialiased Vector Graphics.” In Microsoft Research
Technical Report MSR-TR-2007-95, July, pp. 1-9, 2007.

[Qin et al. 06] Z. Qin, M. D. McCool, and C. S. Kaplan. “Real-Time Texture-
Mapped Vector Glyphs.” In ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, edited by C. Séquin and M. Olano, pp. 125-132.
ACM SIGGRAPH, 2006.

[Sen 04] Pradeep Sen. “Silhouette Maps for Improved Texture Magnification.”
In Proc. Graphics Hardware, pp. 65-74,147, 2004.

[Yang 02] X. Yang. “Efficient Circular Arc Interpolation Based on Active
Tolerance Control.” Computer Aided Design 23 (2002), 1037-1046.

Figure 4. Several examples. The apple image uses a linear gradient in the back-
ground.

