
The Cooperative Ratio of On-line Algorithms

Reza Dorrigiv ∗ Alejandro López-Ortiz∗

Technical Report CS-2007-39
Cheriton School of Computer Science

University of Waterloo
October 2007

Abstract

On-line algorithms are usually analyzed using competitive analy-
sis, in which the performance of an on-line algorithm on a sequence
is normalized by the performance of the optimal off-line algorithm on
that sequence. In this paper we introduce cooperative analysis as an
alternative general framework for the analysis of on-line algorithms.
The idea is to normalize the performance of an on-line algorithm by
a measure other than the performance of the off-line optimal algo-
rithm OPT. We show that in many instances the perform of OPT on
a sequence is a coarse approximation of the difficulty or complexity of
a given input. Using a finer, more natural measure we can separate
paging and list update algorithms which were otherwise indistinguish-
able under the classical model. This creates a performance hierarchy
of algorithms which better reflects the intuitive relative strengths be-
tween them. Lastly, we show that, surprisingly, certain randomized
algorithms which are superior to MTF in the classical model are not
so in the cooperative case, which matches experimental results. This
confirms that the ability of the on-line cooperative algorithm to ignore
pathological worst cases can lead to algorithms that are more efficient
in practice.

∗Cheriton School of Computer Science, University of Waterloo, Waterloo, Ont., N2L
3G1, Canada. {rdorrigiv, alopez-o}@uwaterloo.ca.

1

1 Introduction

There has been extensive research on the analysis of on-line algorithms. The
competitive ratio, first introduced formally by Sleator and Tarjan [ST85],
has served as a practical measure for the study and classification of on-
line algorithms. An algorithm (assuming a min problem) is said to be α-
competitive if the cost of serving any specific request sequence never exceeds
α times the optimal cost of an optimal off-line algorithm which knows the
entire sequence. The competitive ratio is a relatively simple measure to
apply yet powerful enough to quantify, to a large extent, the performance
of many an on-line algorithm. Notwithstanding the wide applicability of
competitive analysis, it has been observed by numerous researchers [BDB94,
BIRS95b, KP00, You94, BF03, PS06] that in certain settings the competitive
ratio produces results that are too pessimistic or otherwise found wanting.

A well known example for the shortcomings of competitive analysis is
the paging problem. A paging algorithm mediates between a slower and
a faster memory. Assuming a cache of size k, it decides which k memory
pages to keep in the cache without the benefit of knowing in advance the
sequence of upcoming page requests. After receiving the ith page request the
on-line algorithm must decide which page to evict, in the event the request
results in a fault and the cache is full. The objective is to design efficient
on-line algorithms in the sense that on a given request sequence the total
cost, namely the total number of faults, is kept low. Three well known pag-
ing algorithms are Least-Recently-Used (LRU), First-In-First-Out (FIFO),
and Flush-When-Full (FWF). On a fault, if the cache is full, LRU evicts
the page that is least recently requested, FIFO evicts the page that is first
brought to the cache, and FWF empties the cache. All these paging algo-
rithms have competitive ratio k, which is the best among all deterministic
on-line paging algorithms [BEY98]. On the other hand, experimental stud-
ies show that LRU has a performance ratio at most four times the optimal
off-line [You94, SA88], as opposed to the competitive ratio k. Furthermore,
it has been empirically well established that LRU (and/or variants thereof)
are, in practice, preferable paging strategies to all other known paging al-
gorithms [SGG02]. This is in contrast to competitive analysis in which the
competitive ratio of LRU is the same as FWF and worse than some ran-
domized algorithms.

A careful study of the competitive ratio reveals the nature of the short-
comings. Chiefly among them are its focus on worst case behaviour and
indirect comparison of online algorithms via an off-line optimal algorithm.
In the former case, this might lead, as observed above, to the competitive

2

ratio declaring two wildly differing algorithms “equal” if they happen to err
in the same way in the worst possible input, even though in most other
inputs one is superior to the other (e.g. LRU versus FWF). In the latter
case, the indirect comparison to an off-line optimal can introduce spurious
artifacts due to the comparison of two objects of different types, namely an
online and an off-line algorithm.1

Such anomalies have lead to the introduction of many alternatives to
competitive analysis of on-line algorithms (see [DLO05] for a comprehensive
survey). Here we briefly describe some of these alternatives. Loose compet-
itiveness, which was first proposed by Young in [You94] and later refined
in [You02], considers an off-line adversary that is oblivious to the parameter
k (the cache size). The adversary must produce a sequence that is bad for
most values of k rather than for just a specific value. It also ignores the
sequences on which the on-line algorithm incurs a cost less than a certain
threshold. This results in a weaker adversary and hence in paging algorithms
with constant performance ratios. The diffuse adversary model by Koutsou-
pias and Papadimitriou [KP00] as well as Young [You98, You00] refines the
competitive ratio by restricting the set of legal request sequences to those
derived from a class (family) of probability distributions. This restriction fol-
lows from the observation that although a good performance measure could
in fact use the actual distribution over the request sequences, determining
the exact distribution of real-life phenomena is a difficult task (e.g. depend-
ing on the intended application different distributions might arise). The
Max/Max ratio, introduced by Borodin and Ben-David [BDB94] compares
on-line algorithms based on their amortized worst-case behaviour (here the
amortization arises by dividing the cost of the algorithm over the length of
the request sequence). The relative worst order ratio [BF03, BFL05, BM04]
combines some of the desirable properties of the Max/Max ratio and the ran-
dom order ratio (introduced in [Ken96] in the context of on-line bin packing).
As with the Max/Max ratio, it allows for direct comparison of two on-line
algorithms. Informally, for a given request sequence the measure consid-
ers the worst-case ordering (permutation) of the sequence, for each of the
two algorithms, and compares their behaviour on these orderings. It then
finds among all possible sequences the one that maximizes this worst-case

1To illustrate, consider a consumer wishing to purchase a mountain bike. There are
two choices which the user evaluates indirectly by comparing them to an “optimal” racing
bike. While in general good racing bikes and mountain bikes have common characteristics,
such a comparison would award no points for shock absorbers. Similarly, lightness, which
is essential in a racing bike is secondary to sturdiness in the case of the mountain bike,
and so on and so forth.

3

performance.
There are several measures that model paging with locality of reference.

Borodin, Raghavan, Irani, and Schieber [BIRS95a] proposed the access graph
model in which the universe of possible request sequences is reduced to re-
flect that the actual sequences that can arise depend heavily on the structure
of the program being executed. The space of request sequences can then be
modeled by a graph in which paths between vertices correspond to actual
sequences. In a generalization of the access graph model, Karlin, Phillips,
and Raghavan [KPR00] proposed a model in which the request sequences are
distributed according to a Markov chain process. Becchetti [Bec04] refined
the diffuse adversary model of Koutsoupias and Papadimitriou by consider-
ing only probabilistic distributions in which temporal locality of reference
is present. Albers, Favrholdt, and Giel [AFG05] introduced a model in
which input sequences are classified according to a measure of locality of
reference. The measure is based on Denning’s working set [Den68] which
is supported by extensive experimental results. The technique they used,
which we term concave analysis, reflects the fact that efficient algorithms
must perform competitively in each class of inputs of similar locality of refer-
ence, as opposed to the worst case alone. Panagiotou and Souza proposed a
model that explains the good performance of LRU in practice [PS06]. They
classify input sequences according to some parameters and prove an upper
bound on the competitive ratio of LRU as a function of these parameters.
Then they argue that sequences in practice have parameters that lead to
constant competitive ratio for LRU. Unfortunately, their model is rather
complicated and hence unlikely to be extended to paging algorithms other
than LRU. Recently, Angelopoulos et al. introduced Bijective Analysis and
Average Analysis [ADLO07] which combined with the locality model of Al-
bers et al. [AFG05], shows that LRU is the sole optimal paging algorithm
on sequences with locality of reference. This resolved an important dispar-
ity between theory and practice of on-line paging algorithms, namely the
superiority in practice of LRU. A remaining question however, is how to
characterize the full spectrum of performance of the various known paging
algorithms. We address this question in this paper.

In general most the alternative models for the competitive ratio build
upon each other either directly by extending a certain approach or implicitly
by applying the lessons learned from other approaches which did not seem
to succeed. For example, there is now substantial evidence that locality of
reference must be built into the model and most if not all of the proposals
now routinely incorporate this. Similarly the approaches of Young; Albers
et al.; Panagiotou and Souza; and Angelopoulos et al. seem to be converg-

4

ing towards a common idea. Each successive paper has generally provided
stronger and finer separation between the various competing algorithms.
This long scientific journey reflects both the difficulty of the challenge and
its centrality to both on-line algorithm analysis and systems research.

In this paper we introduce a new model, cooperative analysis, by apply-
ing adaptive analysis ideas to on-line algorithms. The model incorporates
locality of reference assumptions while mediating between the competitive
ratio which compares an on-line algorithm versus an off-line algorithm and
direct on-line versus on-line algorithm comparisons of the various models
described above. We show that this new model produces the finest sepa-
ration yet of list-update algorithms while also being applicable to paging
and other online algorithms. Paging and list update are the best testbeds
for developing alternative measures, given our extensive understanding of
these problems. We know why competitive analysis fails, what are typical
sequences in practice and we can better evaluate whether a new technique
indeed overcomes known shortcomings. It is important to note that even
though well studied, most models for this problems are only partially suc-
cessful in resolving the issues posed by them and as such they are still
challenging case studies. Note that cooperative ratio is readily generaliz-
able to other settings, since the difficulty of an instance can be defined for
any problem. As such it improves over other list-update and paging specific
models, while building upon the lessons learned. Indeed we have obtained
results for geometric searching using this model (to appear elsewhere).

In the list update or the list accessing problem, we have an unsorted list
of m items. The input is a sequence of n requests that should be served
in an on-line manner. Let A be an arbitrary on-line list update algorithm.
To serve a request to an item x, A should linearly search the list until it
finds x. If x is ith item in the list, A incurs cost i to access x. Immediately
after accessing x, A can move x to any position closer to the front of the
list at no extra cost. This is called a free exchange. Also A can exchange
any two consecutive items at a cost of 1. These are called paid exchanges.
The idea is to use free and paid exchanges to minimize the overall cost
of serving a sequence. Three well known deterministic on-line algorithms
are Move-To-Front (MTF), Transpose, and Frequency-Count (FC). MTF
moves the requested item to the front of the list and Transpose exchanges
the requested item with the item that immediately precedes it. FC main-
tains a frequency count for each item, updates this count after each access,
and makes necessary moves so that the list always contains items in non-
increasing order of frequency count. Sleator and Tarjan showed that MTF
is 2-competitive, while Transpose and FC do not have constant competitive

5

ratios [ST85]. Competitive analysis of list update algorithms has similar
drawbacks. While algorithms can generally be more easily distinguished
than in the paging case, the experimental study of list update algorithms
by Bachrach and El-Yaniv suggests that the relative performance hierarchy
as computed by the competitive ratio does not correspond to the observed
relative performance of the algorithms in practice [BEY97].

Adaptive analysis Standard algorithm analysis expresses performance
in terms of the input size. Adaptive analysis takes into account the diffi-
culty of input instances as well. This means that an algorithm has good
performance according to adaptive analysis if it performs well on “easy”
instances and not too poorly on “difficult” ones. We define adaptive per-
formance of an algorithm by normalizing its traditional performance by the
difficulty of input. The two main challenges of adaptive analysis are to find
a realistic difficulty measure for input instances and to propose algorithms
that perform well under such a measure. Observe that the competitive ratio
can be seen as a special case of adaptive analysis, namely the case where
the measure of difficulty is the performance of the off-line OPT. Adaptive
analysis brings to on-line algorithms the ability to use a finer measure of
difficulty. For each problem, we can choose the measure that best reflects
the difficulty of the input. As in the case of parameterized complexity and
previous adaptive analysis results, choosing the right measure of difficulty
is a non-trivial task which can require several iterations. For example see
the survey by Estivill-Castro and Wood [ECW92] for several difficulty dif-
ferent measures for the sorting problem. In the case of on-line problems, it
is unlikely that the off-line OPT is the best measure for all cases.

Cooperative Analysis The idea behind cooperative analysis is to give
more weight to “well-behaved” input sequences. Informally, an on-line algo-
rithm has good cooperative ratio if it performs well on good sequences and
not too poorly on bad sequences. For example, input sequences for the pag-
ing problem have locality of reference in practice, therefore one possibility is
to relate goodness of sequences to their amount of locality. Assuming there
is a “badness” value for each input sequence, then an algorithm for a min
problem is said to have cooperative ratio α if the cost of serving any spe-
cific request sequence never exceeds α times the badness of that sequence.
Note that if we consider the difficulty of the input as a particular form of
badness, then adaptive analysis is a particular type of cooperative analysis.
Another feature of the cooperative ratio is that in certain online problems,
the competitive ratio measure might force the algorithm to make a move

6

that is suboptimal in most cases except for a pathological worst case sce-
nario. If the application is such that these pathological cases are agreed
to be of lesser importance, then the online strategy can perform somewhat
more poorly in these and make the choice that is best for the common case.
Observe that the input is no longer assumed to be adversarially constructed.
This better reflects the case of paging, in which programmers, compilers and
optimized virtual machines (such as JVMs) go to great lengths to maintain
and increase locality of reference in the code. The same observation has
been made in scenarios such as online robot exploration and network packet
switching, in which a robot vacuuming a room or a router serving a packet
sequence need only concentrate in well behaved cases. A vacuuming robot
need not efficiently vacuum a maze, neither does the router have to keep
up with denial-of-service floods. Indeed in the latter case the router might
actively choose to drop packets from a DoS stream [DLO06].

Our results We propose cooperative analysis as a new framework for the
analysis of on-line algorithms and apply it to paging and list update prob-
lems. For paging, we suggest the locality-cooperative ratio and show that it
leads to better separation than competitive ratio. We obtain tight bounds
on the locality-cooperative ratio of several well known paging algorithms
and show that LRU is the unique optimum among them. Then we propose
a cooperative measure for the list update problem that is based on the lo-
cality of reference. We obtain bounds on the performance of well known
on-line algorithms and prove the superiority of MTF. We also apply our
measures to randomized paging and list update algorithms and show that,
surprisingly, certain randomized algorithms which are superior to LRU and
MTF in the classical model are not so in the adaptive case.

2 Cooperative Analysis of Paging Algorithms

In this section we apply cooperative analysis to the paging problem. First
we define the standard paging algorithms. On a fault, Last-In-First-Out
(LIFO) evicts the page that is most recently brought to the cache, and Least-
Frequently-Used (LFU) evicts the page that has been requested the least
since entering the cache. LFU and LIFO do not have a constant competitive
ratio [BEY98]. A paging algorithm is called conservative if it incurs at most
k faults on any sequence that contains at most k distinct pages. A marking
algorithm A works in phases: all the pages in the cache are unmarked at the
beginning of each phase. We mark any page just after the first request to
it. When an eviction is necessary, A should evict an unmarked page. LRU

7

and FIFO are conservative algorithms, while LRU and FWF are marking
algorithms.

The fault rate of a paging algorithm on a sequence is the number of
faults that it incurs on that sequence divided by the length of the sequence.
Therefore we can think of the fault rate as a cooperative ratio that con-
siders length of a sequence as its badness. However, observe that we can
have sequences of different badness among sequences of the same length and
therefore the fault rate is not an ideal measure. Next we describe a more
elaborate measure of badness. We remark that most of our proofs are similar
to the proofs of the results for the standard competitive analysis of paging
(e.g., those in [BEY98]).

Locality-cooperative ratio

It has been long well established that input sequences for paging show lo-
cality of reference in practice. This means that when a page is requested
it is more likely to be requested in the near future. One apparent reason
for the shortcomings of competitive analysis of paging algorithms is that
it does not incorporate locality of references assumptions. Several models
have been suggested for paging with locality of reference (e.g. [BIRS95a,
IKP96, Tor98, AFG05, PS06, ADLO07]). In our case we need to relate
badness of input sequences to their amount of locality. Therefore we need
a measure that gives a number as the amount of locality of each sequence.
Unfortunately, none of the above models provides this.

Using ideas from the characteristic vector introduced by Panagiotou and
Souza [PS06], we define a quantitative measure for non-locality of paging
instances. Consider an input sequence σ. We call a request “non-local”
if it is the first request to a page or at least k distinct pages have been
requested since the previous request to this page in σ. The non-locality of
σ, `(σ), is defined as the number of non-local requests in it. If a sequence
has high locality of reference, there are not many distinct pages between
two consecutive requests to a page. Therefore there are not many non-local
requests and the sequence has small non-locality.

Definition 1 We say that an on-line paging algorithm A has locality-cooperative
ratio α if there is a constant β so that for every sequence σ: A(σ) ≤
α × `(σ) + β. We define locality-cooperative ratio of A, LCR(A), as the
smallest number α so that A has locality-cooperative ratio α.

First we show that LRU is an optimal algorithm according to locality-
cooperative ratio. The following observation follows from the fact that a

8

page is a fault for LRU if and only if it is a non-local request.

Observation 1 LCR(LRU)=1.

Lemma 1 For any on-line paging algorithm A, LCR(A) ≥ 1.

Proof: Consider a sequence σ of length n obtained by requesting an item
that is not A’s cache at each time. We have A(σ) = n. On the other
hand, each sequence of length n has non-locality at most n. Therefore
A(σ)/`(σ) ≥ n/n = 1. 2

The following lemma shows that marking algorithms are a reasonable choice
in general, even if not always optimal.

Lemma 2 Let A be a conservative or marking algorithm. We have LCR(A) ≤
k.

Proof: Let σ be an arbitrary sequence and let ϕ be an arbitrary phase
of the decomposition of σ. We know that A incurs at most k faults on ϕ.
We claim that the first request of ϕ is always non-local. If this is the first
phase, then this is the first request to a page and is non-local by definition.
Otherwise, it should be different from k distinct pages that are requested in
the previous phase. Therefore it is not requested in the previous phase and
at least k distinct pages are requested since the last request to this page.
Thus we have at most k faults and at least one non-local request in each
phase and this proves the desired upper bound. 2

Other well known algorithms are not optimal under the locality-cooperative
ratio.

Lemma 3 LCR(FIFO) = k.

Proof: LCR(FIFO) ≤ k follows from Lemma 2. For LCR(FIFO) ≥
k consider an arbitrary long sequence σ that consists of k + 1 pages. σ
starts with σ0 = p1p2 . . . pkp1p2 . . . pk−1pk+1p1p2 . . . pk−1. After this initial
subsequence, σ consists of several blocks. Each block starts right after the
previous block and contains 2k − 1 requests to k distinct pages. Let p be
the page that is not in the cache at the beginning of a block B, q be the
page that is requested just before B, and P be the set of k − 1 pages that
are requested in the previous block and are different from q. B starts by an
arbitrary permutation π of P , then has a request to page p, and finally ends
by another copy of π. It is easy to verify that FIFO incurs a fault on the
last k requests of each block while only the middle request of every block is

9

non-local. Therefore LCR(FIFO) ≥ k. 2

We can obtain a similar lower bound for FWF by considering the sequence
obtained by sufficient repetition of pattern p1p2 . . . pkpk+1pkpk−1 . . . p2.

Lemma 4 LCR(FWF) = k.

Lemma 5 LFU and LIFO do not have constant LCR.

Proof: Consider the sequence σ = pn1p
n
2 . . . p

n
k−1{pkpk+1}n for some arbi-

trary integer n. LFU incurs a fault on the last 2n requests of σ. Only the
first request to a page is non-local in σ and we have `(σ) = k+1. Since n can
be selected arbitrary larger than k, LFU does not have constant LCR. For
LIFO, consider the sequence p1p2 . . . pkpk+1{pkpk+1}n for some arbitrary in-
teger n. LIFO incurs a fault on all requests of σ, while we have `(σ) = k+1.
n can be arbitrary large and therefore LIFO does not have constant LCR.
2

LRU-2 is another paging algorithm proposed by O’Neil et al. for database
disk buffering [OOW93]. On a fault, LRU-2 evicts the page whose second to
the last request is least recent. If there are pages in the cache that have been
requested only once so far, LRU-2 evicts the least recently used among them.
O’Neil et al. provided experimental results supporting that LRU-2 performs
better than LRU in database systems. Recently, Boyar et al. theoretically
analyzed LRU-2 using the competitive ratio and the relative worst order
ratio [BEL06]. Boyar et al. proved that LRU-2 has competitive ratio 2k,
which is worse than FWF. Using the relative worst order ratio, they showed
that LRU-2 and LRU are asymptotically comparable in LRU-2’s favor. In
contrast, Angelopoulos et al. proved that LRU is the unique optimal paging
algorithm under the locality of reference assumptions [ADLO07]. Therefore
when we have locality of reference, their results suggest that LRU performs
better than LRU-2.

In what follows, we show that LRU-2 has locality-cooperative ratio k.
Therefore although LRU-2 is worse than LRU, it is not worse than FWF.
This refinement of the competitive ratio using the cooperative ratio is con-
sistent with the results of [ADLO07] which incorporates locality of reference,
but inconsistent with the results of [BEL06] which do not consider locality
of reference.

Theorem 1 LCR(LRU-2) = k.

10

Proof: [Lower bound] Let σ be the sequence obtained by n repetitions of
the block b = p1p2 . . . pk−1pkpkpk−1 . . . p1pk+1pk+1 for some arbitrary integer
n. The first block of σ contains k+1 non-local requests. In each subsequent
block, only two requests are non-local, namely the first request to pk and the
first request to pk+1. Consider a page pi for 1 ≤ i ≤ k− 1 and a block bj for
2 ≤ j ≤ n. There are at most k − 1 distinct pages between the first request
to pi in bj and the previous request to pi (which is in the previous block),
since pk is not requested in this period. Thus the first request to pi in bj is
not non-local. Also pk+1 is not requested between the two requests to pi in
bj . Therefore the second request to pi in bj is not non-local either. The first
request to pk and the first request to pk+1 in bj are non-local. Thus we have
`(σ) = k + 1 + 2(n − 1). LRU-2 incurs k + 1 faults in the first block and
evicts p1 on the first access to pk+1. At the beginning of each subsequent
block, p1 is missing from the cache. Then for 1 ≤ i ≤ k− 1, LRU-2 incurs a
fault on pi and evicts pi+1. On the first request to pk, LRU-2 incurs a fault
and evicts pk−1. It has a hit on the second request to pk. Then it faults on
pk−1 and evicts pk−2, faults on pk−2 and evicts pk−3,. . . , faults on p2 and
evicts p1, faults on p1 and evicts pk+1, faults on pk+1 and evicts p1. Finally
it has a hit on the last request to pk+1. Thus it incurs 2k faults in each
block other than the first one and we have LRU-2(σ) = k + 1 + 2k(n − 1).
Therefore

LRU-2(σ)
`(σ)

=
k + 1 + 2k(n− 1)
k + 1 + 2(n− 1)

As n grows, this ratio becomes arbitrary close to k and we have LCR(LRU-2) ≥
k.

[Upper bound] Let σ be an arbitrary sequence of page requests. Partition
σ into a set of consecutive blocks so that each block consists of a maxi-
mal sequence that contains exactly one non-local request. Note that each
block starts with a non-local request and all other requests of the block
are local. We prove that LRU-2 incurs at most k faults in each block.
Let B1, B2, . . . , Bm be the blocks of σ. B1 contains requests to one page
and LRU-2 incurs one fault on it. Consider an arbitrary block Bi for
i > 1, let p be the first request of Bi, and let p1, p2, . . . , pk−1 be the
k − 1 most recently used pages before the block Bi in this order. We have
p 6∈ P = {p1, p2, . . . , pk−1}, because p is a non-local request. We claim that
each request of Bi is either to p or to a page of P . Assume for the sake of
contradiction that Bi contains a request to a page q 6∈ {p} ∪P and consider
the first request to q in Bi. All pages p, p1, p2, . . . , pk−1 are requested since
the previous request to q. Therefore at least k distinct pages are requested

11

since the last request to q and q is non-local. This contradicts the definition
of a block. Therefore Bi contains at most k distinct pages.

We claim that LRU-2 incurs at most one fault on every page q in phase
Bi. Assume that this is not true and LRU-2 incurs two faults on a page q
in Bi. Therefore q is evicted after the first request to it in Bi. Assume that
this eviction happened on a fault on a page r and consider the pages that
are in LRU-2’s cache just before that request. Since r ∈ {p} ∪ P is not in
the cache and |{p} ∪ P | = k, there is a page s 6∈ {p} ∪ P in the cache. The
last request to s is before the last request to pq−1 before the block Bi, while
the second last request to q is after this request. Therefore LRU-2 does not
evict q on this fault, which is a contradiction. Thus, LRU-2 contains at most
k distinct pages in each block and incurs at most one fault on each page.
Hence, LRU-2(σ) ≤ km, and LRU-2(σ) / `(σ) ≤ km/m = k. 2

We can extend the definition of locality-cooperative ratio to randomized
paging algorithms by considering their expected cost. A randomized paging
algorithm A has locality-cooperative ratio α if there is a constant β so
that the expected cost of A on each sequence σ, denoted by E(A(σ)), is
at most α × `(σ) + β. While no deterministic on-line paging algorithm
can have competitive ratio better than k, there are randomized algorithms
with better competitive ratio. The algorithm MARK, introduced by Fiat
et al. [FKL+91], is 2Hk-competitive, where Hk is the kth harmonic number.
MARK also relies on phases as defined above. On a fault, MARK evicts a
page chosen uniformly at random from among the unmarked pages. Let σ be
a sequence and ϕ1, ϕ2, . . . , ϕm be its phases. A page requested in phase ϕi is
called clean if it was not requested in phase ϕi−1 and stale otherwise. Let ci
be the number of clean pages requested in phase ϕi. Fiat et al. proved that
the expected number of faults MARK incurs on phase ϕi is ci(Hk−Hci +1).

Theorem 2 LCR(MARK) = Hk.

Proof: [Lower bound] Consider the sequence σ = {p1p2 . . . pkpk+1pkpk−1 . . . p2}n
for some integer n. σ has 2n phases, each odd phase has the form p1p2 . . . pk
and each even phase has the form pk+1pk . . . p2. Also each phase has only
one clean page, namely its first request. Therefore we have ci = 1 for
1 ≤ i ≤ 2n and the expected number of faults MARK incurs on each
phase is 1 × (Hk − H1 + 1) = Hk. Thus E(MARK(σ)) = 2nHk. Only
the first request of each phase is non-local and we have `(σ) = 2n. Hence
E(MARK(σ)) / `(σ) = 2nHk / 2n = Hk.

12

[Upper bound] Consider an arbitrary sequence σ and let ϕ1, ϕ2, . . . , ϕm be
its phases. Suppose that the ith phase has ci clean pages. Therefore the
expected cost of MARK on σ is

∑n
i=1 ci(Hk −Hci + 1) ≤

∑n
i=1 ciHk. The

first request to a clean page in a phase is non-local because it is not among
the k distinct pages that are requested in the previous phase. Therefore we
have `(σ) ≥

∑n
i=1 ci. We have

E(MARK(σ))
`(σ)

≤
∑n

i=1 ciHk∑n
i=1 ci

=
Hk

∑n
i=1 ci∑n

i=1 ci
= Hk.

Since this holds for every sequence σ, we have LCR(MARK) ≤ Hk. 2

3 Cooperative Analysis of List Update Algorithms

In this section we apply cooperative analysis to the list update problem. For
the sake of simplicity, in this paper we only consider the static list update
problem. This means that we only have accesses and do not have any insert
or delete operations. In particular, we have a set S = {a1, a2, . . . , am} of m
items which are initially organized as a list L0 = (a1, a2, . . . , am). Results
of this paper can be easily extended to the dynamic version of the problem.

We first propose a notion of badness for the list update problem. Several
authors have pointed out that input sequences of list update algorithms in
practice show locality of reference [HH85, Sch98, BEY98] and indeed on-line
list update algorithms try to take advantage of this property [HH85, RWS94].
Therefore we can consider locality as a possible definition of goodness. For
a sequence σ of length n, we define dσ[i] for 1 ≤ i ≤ n as either 0 if this
is the first request to item σ[i], or otherwise, the number of distinct items
that are requested since the last request to σ[i] (including σ[i]). Now we
define `(σ), the non-locality of a sequences σ, as `(σ) =

∑
1≤i≤n dσ[i]. We

also slightly modify the cost model: We do not charge algorithms for their
first access to an item. This causes only a constant change in the total cost.
Now we are ready to define locality-cooperative ratio.

Definition 2 We say that an on-line list update algorithm A has locality-
cooperative ratio α if there is a constant β so that for every sequence σ,
A(σ) ≤ α× `(σ) +β. We define locality-cooperative ratio of A, LCR(A), as
the smallest number α so that A has locality-cooperative ratio α.

Theorem 3 For any on-line list update algorithm A, 1 ≤ LCR(A) ≤ m.

13

Proof: [Upper bound] Consider an arbitrary sequence σ of length n. Since
the maximum cost that A incurs on a request is m, we have A(σ) ≤ n×m.
We have dσ[i] ≥ 1 for at least n −m values of i (at most m values can be
0). Thus `(σ) ≥ n−m. Therefore A(σ)

`(σ)
≤ n×m

n−m . The right hand side of this
inequality can become arbitrary close to m by selecting a large enough n.
Therefore we have LCR(A) ≤ m.

[Lower bound] Consider a sequence σ of length n obtained by requesting the
item that is in the last position of list maintained byA at each time. We have
A(σ) ≥ (n−m)×m. Also we have dσ[i] ≤ m for 1 ≤ i ≤ n, because we have
at most m distinct items. Therefore `(σ) ≤ n ×m, and A(σ)

`(σ)
≥ (n−m)×m

n×m .

Since n can be arbitrarily larger than m, we get LCR(A) ≥ 1. 2

The following lemma shows that MTF is an optimal algorithm according to
locality-cooperative ratio.

Lemma 6 LCR(MTF) = 1.

Proof: The cost of MTF on the ith request of σ is dσ[i]. Therefore
MTF (σ) =

∑
1≤i≤n dσ[i] = `(σ) and LCR(MTF) = 1. 2

The following lemmas show that other well known list update algorithms do
not have the optimal locality-cooperative ratio.

Lemma 7 LCR(Transpose) ≥ m/2.

Proof: Let L0 = (a1, a2, . . . , am) be the initial list. Consider a sequence
σ of length n obtained by several repetitions of pattern amam−1. We have
Transpose(σ) = (n − 2) × m. Also we have dσ[i] = 0 for 1 ≤ i ≤ 2
and dσ[i] = 2 for 2 < i ≤ n. Therefore `(σ) =

∑n
i=3 2 = (n − 2) × 2,

and Transpose(σ)

`(σ)
= (n−2)×m

(n−2)×2 = m/2. Since σ can be arbitrarily long, we get

LCR(Transpose) ≥ m/2. 2

Lemma 8 LCR(FC) ≥ m+1
2 ≈ m/2.

Proof: Let L0 = (a1, a2, . . . , am) be the initial list and n be an arbitrary
integer. Consider the following sequence: σ = an1a

n
2a

n
3 . . . a

n
m. On serving σ,

FC does not change the order of items in its list and incurs cost
∑l

i=1(n−
1) × i = (n−1)m(m+1)

2 . We have `(σ) = (n − 1) × 1 + (n − 1) × 1 + · · · +
(n− 1)× 1 = (n− 1)×m. Therefore FC(σ)

`(σ)
= (n−1)m(m+1)/2

(n−1)m = m+1
2 . Hence

14

LCR(FC) ≥ m+1
2 . 2

Albers introduced the algorithm Timestamp (TS) and showed that it has
competitive ratio 2 in the standard cost model [Alb98]. After accessing an
item a, TS inserts a in front of the first item b that is before a in the list
and was requested at most once since the last request for a. If there is no
such item b, or if this is the first access to a, TS does not reorganize the list.

Lemma 9 LCR(TS) ≥ 2m
m+1 ≈ 2.

Proof: Let L0 = (a1, a2, . . . , am) be the initial list and n be an arbitrary
integer. Consider the sequence σ obtained by the repetition of the block
a2
ma

2
m−1 . . . a

2
1 n times. Let B be an arbitrary block of σ. Each item a

is accessed twice in B. TS does not move a after its first access in B,
because each item has been accessed twice since the last access to a. After
the second access, TS moves the item to the front of the list. Therefore
each access is to the last item of the list and TS incurs a cost of m on
each access. Considering the zero cost of first access to an item, we have
TS(σ) = m×m+ (n− 1)× 2m×m = m2 + 2(n− 1)m2. Next we compute
`(σ). The first and second access to a in block B contributes m and 1 to
`(σ), respectively. Considering the special case of the first block, we have
`(σ) = m+ (n− 1)×m(m+ 1). Therefore TS(σ)

`(σ)
= m2+2(n−1)m2

m+(n−1)×m(m+1) , which

becomes arbitrarily close to 2m
m+1 as n grows. 2

Observe that the adaptive measure by virtue of its finer partition of the
input space resulted in the separation of several of these strategies which
are not separable under the classical model. This introduces a hierarchy of
algorithms better reflecting the relative strengths of the strategies considered
above. We can also extend the definition of the locality-cooperative ratio
to randomized list update algorithms by considering their expected cost. A
randomized list update algorithm A has locality-cooperative ratio α if there
is a constant β so that the expected cost of A on each sequence σ, denoted
by E(A(σ)), is at most α× `(σ) + β.

In the next theorem we show that, surprisingly and quite remarkably,
certain randomized algorithms which are superior to MTF in the standard
model are not so in the adaptive case. Observe that in the competitive ratio
model a deterministic algorithm must serve a pathological, rare worst case
even if at the expense of a more common but not critical case, while a ran-
domized algorithm can hedge between the two cases, hence in the classical
model the randomized algorithm is superior to the deterministic one. In
contrast, in the adaptive model the rare worst case has a larger badness

15

measure if it is pathological, leading to a larger denominator. Hence such a
cases can safely be ignored, with a resulting overall increase in the measured
quality of the algorithm. The algorithm Bit, introduced by Reingold and
Westbrook [RW90], is a simple randomized algorithm that achieves compet-
itive ratio 1.75 in the standard cost model, thus beating any deterministic
algorithm. Bit considers a bit b(a) for each item a and initializes these bits
uniformly and independently at random. Upon an access to a, it first com-
plement b(a), then if b(a) = 0 it moves a to the front, otherwise it does
nothing.

Theorem 4 LCR(Bit) ≥ 3m+1
2m+2 ≈ 3/2.

Proof: Let L0 = (a1, a2, . . . , am) be the initial list and n be an arbitrary
integer. Consider the sequence σ = {a2

ma
2
m−1 . . . a

2
1}n. Let σi and σi+1 be

two consecutive accesses to a. After two consecutive accesses to each item,
it will be moved to the front of the list with probability 1. Therefore a
is in the last position of the list maintained by Bit at the time of request
σi and Bit incurs cost m on this request. After this request, Bit moves a
to the front of the list if and only if b(a) is initialized to 1. Since b(a) is
initialized uniformly and independently at random, this will happen with
probability 1/2. Therefore the expected cost of Bit on σi+1 is 1

2(m+ 1) and
the expected cost of Bit on σ is m(m+1

2) + (n− 1)×m(m+ m+1
2). We have

`(σ) = m+(n−1)×m(m+1). Therefore Bit(σ)

`(σ)
= m(m+1

2
)+(n−1)×m(m+m+1

2
)

m+(n−1)×m(m+1) ,

which becomes arbitrary close to 3m+1
2m+2 as n grows. 2

4 Conclusions

We proposed cooperative analysis as a new framework for the analysis of
on-line algorithms and showed that this model gives promising results when
applied to two well known on-line problems, paging and list update. The
plurality of results shows that the new model is effective in that we can read-
ily analyze well known strategies. Using a finer, more natural measure we
separated paging and list update algorithms which were otherwise indistin-
guishable under the classical model. We showed that, surprisingly, certain
randomized algorithms which are superior to MTF in the classical model
are not so in the adaptive case. This confirms that the ability of the on-line
adaptive algorithm to ignore pathological worst cases can lead to algorithms
that are more efficient in practice. We obtained a hierarchy of strategies.

16

References

[ADLO07] S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz. On the sep-
aration and equivalence of paging strategies. In Proceedings of
the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA
’07), pages 229–237, 2007.

[AFG05] S. Albers, L. M. Favrholdt, and O. Giel. On paging with lo-
cality of reference. Journal of Computer and System Sciences,
70(2):145–175, 2005.

[Alb98] S. Albers. Improved randomized on-line algorithms for the list
update problem. SIAM Journal on Computing, 27(3):682–693,
June 1998.

[BDB94] S. Ben-David and A. Borodin. A new measure for the study of
on-line algorithms. Algorithmica, 11:73–91, 1994.

[Bec04] L. Becchetti. Modeling locality: A probabilistic analysis of LRU
and FWF. In Proceedings of the 12th Annual European Sym-
posium on Algorithms (ESA ’04), volume 3221 of LNCS, pages
98–109, 2004.

[BEL06] J. Boyar, M. R. Ehmsen, and K. S. Larsen. Theoretical evidence
for the superiority of LRU-2 over LRU for the paging problem. In
Proceedings of the 4th Workshop on Approximation and Online
Algorithms (WAOA ’06), 2006. to appear.

[BEY97] R. Bachrach and R. El-Yaniv. Online list accessing algorithms
and their applications: Recent empirical evidence. In Proceed-
ings of the 8th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA ’97), pages 53–62, 1997.

[BEY98] A. Borodin and R. El-Yaniv. Online Computation and Compet-
itive Analysis. Cambridge University Press, 1998.

[BF03] J. Boyar and L. M. Favrholdt. The relative worst order ratio for
on-line algorithms. In Proceedings of the 5th Italian Conference
on Algorithms and Complexity, 2003.

[BFL05] J. Boyar, L. M. Favrholdt, and K. S. Larsen. The relative worst
order ratio applied to paging. In Proceedings of the 16th ACM-
SIAM Symposium on Discrete Algorithms (SODA ’05), pages
718–727, 2005.

17

[BIRS95a] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competi-
tive paging with locality of reference. Journal of Computer and
System Sciences, 50:244–258, 1995.

[BIRS95b] A. Borodin, S. Irani, P. Raghavan, and Baruch Schieber. Com-
petitive paging with locality of reference. Journal of Computer
and System Sciences, 50:244–258, 1995.

[BM04] J. Boyar and P. Medvedev. The relative worst order ratio applied
to seat reservation. In Proceedings of the 9th Scandinavian Work-
shop on Algorithm Theory (SWAT ’04), pages 90–101, 2004.

[Den68] P. J. Denning. The working set model for program behaviour.
Communications of the ACM, 11(5), 1968.

[DLO05] R. Dorrigiv and A. López-Ortiz. A survey of performance mea-
sures for on-line algorithms. SIGACT News (ACM Special Inter-
est Group on Automata and Computability Theory), 36(3):67–81,
September 2005.

[DLO06] R. Dorrigiv and A. López-Ortiz. Cooperative ratio for online
packet switching, 2006. manuscript.

[ECW92] V. Estivill-Castro and D. Wood. A survey of adaptive sorting
algorithms. ACM Computing Surveys, 24(4):441–476, 1992.

[FKL+91] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator,
and N. E. Young. Competitive paging algorithms. Journal of
Algorithms, 12:685–699, 1991.

[HH85] J. H. Hester and D. S. Hirschberg. Self-organizing linear search.
ACM Computing Surveys, 17(3):295, September 1985.

[IKP96] S. Irani, A. R. Karlin, and S. Phillips. Strongly competitive
algorithms for paging with locality of reference. SIAM Journal
on Computing, 25:477–497, 1996.

[Ken96] C. Kenyon. Best-fit bin-packing with random order. In Proceed-
ings of the 7th ACM-SIAM Symposium on Discrete Algorithms
(SODA ’96), pages 359–364, 1996.

[KP00] E. Koutsoupias and C. Papadimitriou. Beyond competitive anal-
ysis. SIAM Journal on Computing, 30:300–317, 2000.

18

[KPR00] Anna R. Karlin, Steven J. Phillips, and Prabhakar Raghavan.
Markov paging. SIAM Journal on Computing, 30(3):906–922,
2000.

[OOW93] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page
replacement algorithm for database disk buffering. In Proceed-
ings of the 1993 ACM SIGMOD International Conference on
Management of Data, pages 297–306, 1993.

[PS06] K. Panagiotou and A. Souza. On adequate performance measures
for paging. In Proceedings of the 38th Annual ACM Symposium
on Theory of Computing (STOC ’06), pages 487–496, 2006.

[RW90] N. Reingold and J. Westbrook. Randomized algorithms for the
list update problem. Technical Report YALEU/DCS/TR-804,
Department of Computer Science, Yale University, June 1990.

[RWS94] N. Reingold, J. Westbrook, and D. D. Sleator. Randomized com-
petitive algorithms for the list update problem. Algorithmica,
11:15–32, 1994.

[SA88] R. L. Sites and A. Agarwal. Multiprocessor cache analysis us-
ing ATUM. In Proceedings of the fifteenth Annual International
Symposium on Computer Architecture (ISCA ’88), pages 186–
195, 1988.

[Sch98] F. Schulz. Two new families of list update algorithms. In Pro-
ceedings of the 9th International Symposium on Algorithms and
Computation (ISAAC ’98), volume 1533 of Lecture Notes in
Computer Science, pages 99–108. Springer, 1998.

[SGG02] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System
Concepts. John Wiley & Sons, 2002.

[ST85] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list
update and paging rules. Communications of the ACM, 28:202–
208, 1985.

[Tor98] E. Torng. A unified analysis of paging and caching. Algorithmica,
20(2):175–200, 1998.

[You94] N. E. Young. The k-server dual and loose competitiveness for
paging. Algorithmica, 11(6):525–541, June 1994.

19

[You98] N. E. Young. Bounding the diffuse adversary. In Proceedings of
the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA
’98), pages 420–425, 1998.

[You00] N. E. Young. On-line paging against adversarially biased random
inputs. Journal of Algorithms, 37(1):218–235, 2000.

[You02] N. E. Young. On-line file caching. Algorithmica, 33(3):371–383,
2002.

20

