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Abstract. List update algorithms have been widely used as subroutines
in compression schemas, specially after the introduction of the Burrows-
Wheeler transform. The Burrows-Wheeler transform (BWT), which is
the basis of most state-of-the-art general purpose compressors, defines
a permutation of the text with increased apparent regularity. Then it
applies a compression algorithm on the permuted version of the original
text. List update algorithms are a common choice for this second stage
of BWT-based compression. As well, list update algorithms have been
shown to be a reasonable alternative to simple compression schemes such
as Huffman coding [1]. In this paper we perform an experimental com-
parison of various list update algorithms both as stand alone compression
mechanisms and as a second stage of the BWT-based compression. Our
experiments show that for straightforward compression competitive list
update algorithms such as MTF while simpler, are an inferior choice to
Huffman based compression on, in contrast they are a good choice as a
second stage in BWT. Then we address the question of which list update
algorithm is best for this second stage. We show that MTF outperforms
other list update algorithms in practice after BWT. This is consistent
with the intuition that BWT increases locality of reference and the pre-
dicted result from the locality of reference model of Angelopoulos et
al. [2]. Lastly, we show theoretically that due to an often neglected dif-
ference in the cost models, good list update algorithms may be far from
optimal for BWT compression.

1 Introduction

It has long been observed that list update algorithms can be used for com-
pression. In 1986, Bentley et al. [1] proposed a compression scheme that



uses Move-To-Front as a subroutine. They proved that their compression
scheme, based on move-to-front (MTF) is guaranteed to be within twice
the compression ratio of the best static Huffman code. Furthermore, they
implemented the scheme and showed that their algorithm achieves com-
pression ratios that are comparable or better than Huffman encoding on
some text and Pascal files. Observe that Move-To-Front can be replaced
with any other on-line list update algorithm, which may or may not im-
prove the compression rate. Albers and Mitzenmacher [3] studied the
use of Timestamp and showed theoretical and experimental evidence for
its efficiency in data compression. Several on-line list update algorithms
were compared according to their efficiency in compression by Bachrach et
al. [4]. In general, their results surprisingly show that usually algorithms
with bad competitive ratios outperform those that are optimal according
to competitive analysis in terms of compression ratio. Therefore there is
an inconsistency between theory and practice.

Additionally, Burrows and Wheeler [5] combined their transform with
list update algorithms to obtain a compression scheme. The Burrows-
Wheeler Transform (BWT) rearranges a string of symbols to one of its
permutations. Then they used Move-To-Front algorithm in a similar way
to the scheme proposed by Bentley et al. [1]. The resulting scheme is
shown to be very effective in theory and practice and many improvements
and variants have been proposed for it [5–12]. The well known compression
program bzip2 [13] is based on the BWT.

Our study was motivated by recent theoretical results on the impact
of locality of reference assumptions for online algorithms [2]. Compression
via list update hinges on an implicit assumption that the text (raw or after
the BWT transform) exhibits locality of reference which can then be used
advantageously by list update algorithms. BWT based compression uses
first the BWT transform and then applies a compression step. A common
choice is to use a list update algorithm followed by run length encoding
or some other basic compressor. In this paper we systematically study
different sensible choices for the list update algorithm as well as for the
basic compressor.

Our Results In this paper we perform an experimental evaluation of the
various list update algorithms for compression. We compare their perfor-
mance both in stand alone form and as part of BWT based compression.
We show that in most cases MTF is the best choice. For the basic com-
pressor a Huffman variant which incorporates run length encoding into
the alphabet gives the best compression possible. Additionally as a con-



sequence of this study we observed that list update algorithms optimize
for a similar but different objective than a compressor and give an ex-
ample of an algorithm which is a good choice for list update but not for
compression.

2 Preliminaries

2.1 List Update Algorithms

Three standard deterministic on-line algorithms are Move-To-Front (MTF),
Transpose (TR), and Frequency-Count (FC). MTF moves the requested
item to the front of the list whereas Transpose exchanges the requested
item with the item that immediately precedes it. FC maintains a fre-
quency count for each item, updates this count after each access, and
updates the list so that it always contains items in non-increasing order
of frequency count. Sleator and Tarjan showed that MTF is 2-competitive,
while TR and FC do not have constant competitive ratios [14]. Since then,
several other deterministic and randomized on-line algorithms have been
studied using competitive analysis. We only consider deterministic algo-
rithms because randomized list update algorithms cannot be used in the
compression scheme in a straightforward way. Albers introduced the al-
gorithm Timestamp (TS) and showed that it is 2-competitive [15]. After
accessing an item a, TS inserts a in front of the first item b that appears
before a in the list and was requested at most once since the last request
for a. If there is no such item b, or if this is the first access to a, TS does
not reorganize the list.

Schulz [16] introduced an infinite (uncountable) family of list up-
date algorithms called Sort-By-Rank (SBR). All algorithms in this family
achieve the optimal competitive ratio 2 and they mediate between MTF
and TS. Consider a sequence σ = σ1σ2 · · · σm of length m. For an item
a and a time 1 ≤ t ≤ m, denote by w1(a, t) and w2(a, t) the time of the
last and the second last access to a in σ1σ2 · · · σt, respectively. If a has
not been accessed so far, set w1(a, t) = 0 and if a has been accessed at
most once, set w2(a, t) = 0. Then we define s1(a, t) = t − w1(a, t) and
s2(a, t) = t − w2(a, t). Note that after each access, MTF and TS reorga-
nize their lists so that the items are in increasing order of their s1 and
s2, respectively1. For a parameter 0 ≤ α ≤ 1, SBR(α) reorganizes its
list after the tth access so that items are sorted by their α-rank function

1 For TS, strictly speaking, this applies only to items that have been accessed at list
twice.



defined as rα(a, t) = (1−α)× s1(a, t)+α× s2(a, t)2. More formally, upon
a request for an item a in time t, SBR(α) inserts a just after the last
item b in front of a with rα(b, t) < rα(a, t). Also if there is no such item
b or this is the first access to a, SBR(α) inserts a in front of the list.
Therefore SBR(0) is equivalent to MTF and SBR(1) is equivalent to TS
except modulo the handling of the first accesses, i.e., they were equivalent
if TS moves an item that has been accessed only once so far to the front
of the list. Intuitively, for values of 0 < α < 1, SBR(α) is supposed to
have behaviour between MTF and TS. We will check this in the case of
compression efficiency in Subsection 4.2.

2.2 Compression Schemas

Bentley et al. [1] proposed using list update algorithms as subroutines in
compression. The idea of this compression scheme is simple. Both encoder
and decoder maintain a list L of all symbols in the file and agree on
some on-line list update algorithm A as well as an initial arrangement
for L. The encoder encodes every symbol by its current position in L and
then rearranges L according to A. It uses some variable length prefix-
free binary code to transmit these integers (positions). Since the decoder
knows the initial arrangement of the list and the list update algorithm,
it can maintain the same list as the encoder and recover all the symbols.
Several variable length prefix-free binary codes can be used in this scheme,
e.g., Elias encoding, δ-encoding, ω-encoding, and ω′-encoding. Here we
only describe Elias encoding that we use in this paper; see [4], Appendix
E for a description of other encodings. Elias encoding of an integer i
contains 2�log i� + 1 bits. It starts with �log i� bits of 0, followed by the
binary representation of i.

2.3 Burrows-Wheeler Transform

Burrows and Wheeler [5] introduced the novel idea of a preprocessing
phase called the Burrows-Wheeler Transform (BWT) combined with a
compression scheme on the resulting text. Informally, the BWT rear-
ranges a string of symbols to one of its permutations in a reversible way
so that the resulting string is “more compressible” or has more “locality
of reference”. A string has high locality of reference if when a symbol oc-
curs in some position of the string, it is more likely to occur in the nearby
positions. For a detailed explanation of the BWT transform we refer the
reader to [5, 6].
2 Schulz [16] denoted this by rt(a, α).



3 Competitiveness of List Update Algorithms for
Compression

A list update algorithm A incurs cost i to access the ith item of the list.
However, when we use A as a subroutine for compression we need Θ(log i)
bits to represent that the symbol is at the ith position of the list. We show
that this difference in the cost model can lead to different competitiveness
results for list update algorithms. Other papers that have studied the use
of list update algorithms in compression have generally not considered
this phenomenon and assumed that competitive list update algorithms
are also competitive for compression.

We consider a family of deterministic list update algorithms called
Move-Fraction (MF). Upon a request to an item in the ith position,
MF(k) moves that item �i/k�-1 positions towards the front. Note that
MF(1) is equivalent to MTF. This family of algorithms was proposed by
Sleator and Tarjan [14], who also showed that MF(k) is 2k-competitive.
Therefore algorithm MF(2) is 4-competitive for list update. We show that
under the Θ(log i) cost model, MF(2) is not competitive, i.e., does not
have constant competitive ratio. Let the cost of compressing for an item
in the ith position in the list be c�log i� + b for some constants c and b.
For simplicity assume that we have l = 2p symbols for some integer p.
Suppose that symbols are initially ordered as a1a2 · · · al in the list. Now
consider the sequence σ1 = ap

l . On the ith request to al, MF(2) incurs
cost at least c�log 2p

2i−1 � + b = c(p − i + 1) + b and moves al to a position
of index at least 2p

2i . Therefore the cost of MF(2) on σ1 is at least

p∑

i=1

(c(p − i + 1) + b) =
cp(p + 1)

2
+bp =

c log l(log l + 1)
2

+b log l = Θ(log2 l).

On the other hand, MTF moves al to the front of the list and incurs cost
c�log l� + b + (p − 1)b = (b + c) log l on σ1. Thus the cost of OPT on this
sequence is at most (b+c) log l = Θ(log l). We can request the item that is
now in the ith position of MF(2)’s list p times. Therefore the competitive
ratio of MF(2) is at least

c × log l(log l + 1)/2 + b log l

(b + c) log l
=

c(log l + 1)
2(b + c)

+
b

b + c
= Θ(log l),

which is not a constant. We can prove the same non-competitiveness for
MF(k) for k ≥ 3. The poor performance of these algorithms for compres-
sion was empirically observed by Bachrach et al. [4].



4 Experimental Results

We consider two experimental setups. The first one consists of a straight-
forward compression scheme similar to that of Bentley et al. [1] or Albers
et al. [3]. While in practice these compression techniques are unlikely
to be of use, the study of their behaviour allows us to understand their
differences and comparative advantages.

The second setup consists of the realistic setting of BWT based com-
pression. To be more precise, given a text we compute its BWT and then
compare the role of various list update algorithms for compressing the
transformed string.

4.1 Experimental Settings

We compare the compression ratios achieved by different list update algo-
rithms on files in the Calgary Corpus [17] and the Canterbury Corpus [18].
These are the standard benchmark files used for comparing data compres-
sion schemas. We considered the following list update algorithms: MTF,
MTF2, SBR, FC, FC′, TS, and TR. MTF, SBR, FC, TS and TR are
described in Subsection 2.1. MTF2 is a variant of MTF that on the ith
access to an item a, moves a to the front of the list if i is even and does
not change a’s position if i is odd. We considered two implementations
for FC depending on the order of items with the same frequency count.
In FC, an item that is less recently used precedes an item that is more re-
cently used and has equal frequency count. FC′ adopts the reverse of this
ordering. We consider different parameters for SBR since a compressor
can, at time of compression, select the parameter α which achieves the
most compression and then prepend the compressed file with the choice
of α. If not explicitly mentioned otherwise, we use the standard prefix
integer encoding of Elias [19] that encodes an integer i using 1 + 2�log i�
bits. We propose and evaluate some alternative ways for encoding the
integers.

4.2 SBR Parameters

Recall that SBR(0) is equivalent to MTF and SBR(1) is equivalent to TS
modulo handling the first accesses. Additionally intuitively for 0 < α < 1,
SBR(α) mediates between the behaviour of MTF and TS. We test this
intuition in the case of compression. Figure 1 shows the percentage of the
size of the file obtained using the compression algorithm that is based on
SBR(α) to the original file size for different values of parameter α and
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Fig. 1. The percentage of compressed file size achieved by using SBR(α) to the original
file size for four different files in the Calgary Corpus in terms of parameter α

four files of the Calgary Corpus. Figure 2 shows the same values after
applying BWT.

From these graphs it is clear that as α goes from 0 to 1, the behaviour
of SBR(α) goes from MTF to TS. This change in behaviour is faster for
small values of α. Although SBR(α) usually achieves best compression
for the extremal values of α (α = 0 or α = 1), there are a few cases in
which the optimal value of α is different. For example for file book1 after
BWT, the best compression is 32.34 % and it is achieved by SBR(0.32).
Therefore the compressor can find the best parameter α and attach it to
the compressed file. The decompresser then uses SBR(α) in its decoding
process.

4.3 Comparing List Update Algorithms

In order to compare the effect of BWT on the behaviour of compression
algorithms, we have computed the result of using different list update al-
gorithms on text files of the Calgary Corpus and the Canterbury Corpus
before and after BWT. Table 1 shows the performance of the described
algorithms on text files of these corpora and Table 2 shows the corre-
sponding values if we first apply BWT to the files. For each list update
algorithm A and each file f , the table shows the percentage of the size of
the compressed file obtained by using A on f to the original size of f .

From Table 1 we can see that TR and FC usually outperform MTF
and TS. This is in contrast with competitive analysis in which MTF



 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  0.2  0.4  0.6  0.8  1

C
om

pr
es

si
on

 P
er

ce
nt

ag
e 

ac
he

iv
ed

 b
y 

S
B

R
(α

)

α

bib
book1

paper1
progl

TS-bib
TS-book1

TS-paper1
TS-progl

Fig. 2. The percentage of compressed file size achieved by using SBR(α) to the original
file size for four different files in the Calgary Corpus after BWT in terms of parameter
α

and TS are superior to TS and FC. MTF has the worst performance
on all the files and TR is the best algorithm in most cases. MTF2 and
FC′ always have performance close to their variants, i.e., MTF and FC,
respectively. Note that the results for MTF and TS were also reported by
Albers and Mitzenmacher [3], who observed that TS outperforms MTF.
SBR(0.5) always mediated between the performance of MTF and TS.
Thus our experimental results are not consistent with theory. This has
been observed by other researches as well [4].

However, for the BWT of the files, the situation is different. Table 2
shows that in this case MTF has the best performance for most of the
files. In general, MTF and TS (and thus MTF2 and SBR(0.5)) have close
performance and always outperform FC and TR. Also the compression
ratio that they achieve is much better than the case without BWT. These
results are consistent with other experimental results that show the effect
of BWT on the performance of compression schemas. This might due to
the fact that the BWT is designed to increase the amount of locality in the
string, i.e., in the BWT of a string most equal characters occur close to
each other. Superiority of MTF to other algorithms is consistent with our
recent result that proves MTF outperforms all other on-line list update
algorithm on sequences with high locality of reference [2]. Hence, this
provides evidence that the locality of reference model proposed accurately
reflects reality. We emphasize that our focus here is comparing different
list update algorithms and therefore we have not applied any optimization



File Size (bytes) MTF SBR(0.5) TS FC TR MTF2 FC′

bib 111261 95.69 89.55 89.08 81.42 81.64 94.16 81.42

book1 768771 83.82 76.64 75.67 81.34 69.62 81.27 81.34

book2 610856 84.35 78.36 77.55 75.74 72.44 82.35 75.74

news 377109 88.50 82.68 82.20 88.10 77.87 87.08 87.99

paper1 53161 86.79 80.96 80.35 79.48 74.87 85.19 79.45

paper2 82199 84.47 78.34 77.43 79.27 71.02 82.26 80.45

progc 39611 88.74 84.02 83.62 81.59 77.67 88.16 81.54

progl 71646 77.01 73.62 73.25 82.61 69.02 76.50 82.40

progp 49379 81.09 76.15 75.45 82.41 71.64 80.00 81.68

trans 93695 87.58 84.96 84.59 91.21 83.02 87.36 91.18

alice29.txt 152089 83.69 76.49 75.62 74.74 69.24 81.48 74.85

asyoulik.txt 125179 88.54 81.71 80.67 79.36 73.92 86.44 79.36

cp.html 24603 92.45 91.47 91.90 87.12 85.53 93.01 88.31

fields.c 11150 84.05 80.05 79.81 74.41 73.52 83.73 74.25

grammar.lsp 3721 79.82 75.30 73.45 77.88 68.56 78.63 77.69

lcet10.txt 426754 82.50 76.07 75.23 79.14 69.91 80.42 85.39

plrabn12.txt 481861 86.16 77.67 76.29 88.48 69.98 82.85 88.48

Table 1. Percentage of the size of the compressed files to the size of the original files
for different algorithms on text files of the Calgary and Canterbury Corpus without
BWT

to the compression scheme, in the presumption that these optimizations
would generally affect all schemes equally. It is interesting that such a
simple scheme can lead to such good compression ratios.

We also observe that FC and FC′ perform badly compared to other
algorithms. One explanation for this is the fact that FC considers the
global rather than local environment. For example if an item is accessed
a lot at the beginning and then it is not accessed at all, FC will maintain
it close to the front of the list.

4.4 Static and Adaptive Huffman Encoding

Table 3 shows the performance ratios achieved by the static Huffman
algorithm, as well as an implementation of the Vitter’s algorithm on files
of the Calgary Corpus before and after BWT. Vitter’s algorithm [20,
21] is an adaptive or dynamic Huffman algorithm that adapts to the
changes in data. Comparing the ratios before BWT to the ratios of Table
1, we conclude that Vitter’s algorithm performs better than plain list
update based strategies before BWT. However Vitter’s algorithm does
not achieve any improvement by applying BWT; the performance remains
the same or is worse on BWT of files. Comparing this table to Table 2 we



File Size (bytes) MTF SBR(0.5) TS FC TR MTF2 FC′

bib 111261 30.49 31.66 32.32 93.42 39.81 31.99 93.33

book1 768771 35.74 34.42 34.71 76.63 36.31 36.04 76.50

book2 610856 31.14 31.03 31.48 80.44 35.31 31.96 80.11

news 377109 36.21 37.75 38.67 85.27 44.90 38.26 85.53

paper1 53161 34.70 36.62 37.70 83.42 47.73 36.87 83.34

paper2 82199 34.86 35.35 36.04 79.00 41.28 36.17 76.46

progc 39611 35.04 37.32 38.54 79.03 51.09 37.54 78.91

progl 71646 26.31 28.52 29.43 81.23 36.18 28.33 79.77

progp 49379 26.00 29.08 30.22 89.11 41.13 28.57 86.08

trans 93695 24.12 27.64 28.71 96.08 41.52 26.76 90.22

alice29.txt 152089 33.15 32.97 33.45 81.34 37.43 33.99 81.37

asyoulik.txt 125179 36.96 36.53 37.08 83.08 41.50 37.79 80.96

cp.html 24603 36.10 38.22 39.37 91.54 49.62 38.58 89.03

fields.c 11150 29.96 33.24 35.03 80.73 51.75 32.84 78.74

grammar.lsp 3721 34.64 38.48 40.85 74.36 52.06 39.26 70.63

lcet10.txt 426754 30.76 30.55 31.01 76.49 34.21 31.51 76.64

plrabn12.txt 481861 36.30 35.23 35.57 78.88 37.13 36.65 78.88

Table 2. Percentage of the size of the compressed files to the size of the original files
for different algorithms on text files of the Calgary and Canterbury Corpus after BWT

conclude that after BWT, list update based strategies beat the Vitter’s
algorithm. Static Huffman has very close performance to the Vitter’s
algorithm on these files.

4.5 Alternative Techniques for Encoding of Integers

In this subsection we consider other possibilities for the last step of list
update based compression schemes, i.e., the prefix-free binary code for
integers. These algorithms try to use the following intuition: there is con-
siderable locality of reference in the BWTs of text files and therefore
applying a competitive list update algorithm to them leads to a sequence
with many small integers. These algorithms assign smaller codes to small
integers. In particular, there are many “1”s in the sequence. Therefore
almost all these algorithms use a run length on “1”s.

RL(1)+Elias This algorithm combine Elias encoding with a run length
encoding for values of 1. More specifically, when the encoded integer is 1,
the following Elias-encoded integer shows the number of consecutive 1’s
starting from that 1. Otherwise, that is the next integer encoded in Elias
encoding. Table 4 shows the result of applying this algorithm to text files
of the Calgary Corpus after BWT.



File Size (bytes) Vitter Before BWT Vitter After BWT Static Huffman

bib 111261 65.50 65.51 65.40

book1 768771 57.04 57.04 57.02

book2 610856 60.32 60.32 60.29

news 377109 65.38 65.38 65.34

paper1 53161 62.95 62.96 62.71

paper2 82199 58.08 58.08 57.93

progc 39611 65.73 65.75 65.42

progl 71646 60.15 60.16 60.14

progp 49379 61.44 61.44 61.19

trans 93695 69.76 69.76 66.54

Table 3. Percentage of the size of the compressed files to the size of the original files
for Vitter’s adaptive Huffman encoding and static Huffman encoding on the text files
of the Calgary Corpus before and after BWT

File Size (bytes) MTF SBR(0.5) TS FC TR MTF2 FC′

bib 111261 27.87 28.92 29.55 93.42 37.06 29.28 93.42

book1 768771 35.78 34.50 34.77 76.78 36.46 36.02 78.68

book2 610856 29.72 29.56 30.00 80.52 33.98 30.48 80.53

news 377109 35.51 36.82 37.71 85.33 43.96 37.37 85.50

paper1 53161 34.60 36.32 37.38 83.36 47.56 36.64 84.96

paper2 82199 34.59 35.01 35.66 79.00 41.02 35.80 78.96

progc 39611 34.83 36.89 38.07 79.15 50.83 37.15 82.32

progl 71646 24.15 26.17 27.07 81.25 33.96 26.07 84.32

progp 49379 23.87 26.68 27.80 89.14 38.92 26.29 91.77

trans 93695 20.92 24.26 25.31 95.58 38.32 23.46 102.71

Table 4. Percentage of the size of the compressed files to the size of the original files
for different algorithms on text files of the Calgary Corpus for RL(1)+Elias after BWT



As these results show, this small change improves the compression
factor for most list update algorithms. This can be explained by the fact
that BWTs of text files have many repetitions. Each such repetition leads
to a 1 in the sequence of integers. Therefore we will have many 1’s.

1-5-6-17+RL(1): This algorithm uses the following scheme instead of
Elias encoding: 1 is encoded by “0”, 2 to 9 are encoded by “10000”,
“10001”, . . . , “10111”, 10 to 17 are encoded by “110000”, “110001”, . . . ,
“110111”, and integers greater than 17 are encoded by their binary rep-
resentation prepended by “111”. Note that there are l−17 such numbers,
and so we can use a fixed code of length �log2 (l − 17)� for their binary
representations. It also uses run length on “1”s, i.e., when it encodes a
“1” the following integer, encoded using the same scheme, denotes the
number of consecutive ones started from that “1”. Table 5 shows the
performance of this algorithm on text files of the Calgary Corpus after
BWT.

File Size (bytes) MTF SBR(0.5) TS FC TR MTF2 FC′

bib 111261 29.54 30.61 31.10 82.72 37.22 30.53 82.25

book1 768771 40.43 39.41 39.50 74.74 40.77 40.41 73.34

book2 610856 33.50 33.49 33.76 77.62 36.98 33.98 77.64

news 377109 38.36 39.68 40.44 82.37 45.62 39.69 82.68

paper1 53161 37.80 39.51 40.33 76.96 48.98 39.20 78.38

paper2 82199 38.10 38.54 39.04 77.75 43.43 38.92 77.72

progc 39611 37.90 39.92 40.94 75.69 51.50 39.53 84.28

progl 71646 26.93 29.02 29.89 80.58 35.73 28.37 83.62

progp 49379 26.73 29.40 30.52 85.70 40.28 28.29 86.80

trans 93695 22.53 26.10 27.01 90.77 38.38 24.03 96.63

Table 5. Percentage of the size of the compressed files to the size of the original files
for different algorithms on text files of the Calgary Corpus for 1-5-6-17+RL(1) after
BWT

1-2+RL(1) This algorithm uses the following scheme instead of Elias
encoding. Encode 1 with a single bit 0, and encode all other numbers
with their binary representations prepended by 1. We need �log2 l� bits
for this binary representation. For most of the cases, this gives a code of
length 8 for each integer greater than 1, as 64 ≤ l < 128. Also it uses run
length on “1”s.



File Size (bytes) MTF SBR(0.5) TS FC TR MTF2 FC′

bib 111261 36.36 37.77 38.18 87.44 43.09 37.44 87.44

book1 768771 59.33 57.89 57.92 98.47 59.05 59.25 96.34

book2 610856 47.94 47.89 48.10 97.96 50.78 48.47 97.96

news 377109 51.60 53.52 54.16 97.87 58.28 53.09 97.87

paper1 53161 52.15 54.29 54.93 88.66 62.02 53.56 88.66

paper2 82199 54.25 54.92 55.35 99.97 59.67 55.24 99.97

progc 39611 50.31 53.00 53.93 85.96 61.76 52.06 99.40

progl 71646 36.93 40.08 41.04 99.76 47.21 38.94 99.76

progp 49379 36.20 39.70 40.80 99.72 48.68 37.97 99.72

trans 93695 30.01 34.98 35.70 90.49 45.81 31.78 99.99

Table 6. Percentage of the size of the compressed files to the size of the original files
for different algorithms on text files of the Calgary Corpus for 1-2+RL(1) after BWT

Algorithm 2-2-3+RL(1) This algorithm uses the following scheme instead
of Elias encoding. Encode 1 and 2 with “00” and “01”, respectively. En-
code all other numbers with their binary representations prepended by 1.
It also uses run length on “1”s.

File Size (bytes) MTF SBR(0.5) TS FC TR MTF2 FC′

bib 111261 31.74 32.83 33.32 86.54 38.76 32.78 86.54

book1 768771 48.54 47.29 47.51 93.96 48.94 48.67 94.98

book2 610856 39.16 39.05 39.47 97.93 42.77 39.75 97.93

news 377109 44.63 45.94 46.66 97.89 51.72 45.98 97.89

paper1 53161 44.31 46.15 47.03 88.68 55.53 45.97 88.68

paper2 82199 45.67 46.42 47.02 88.92 52.06 46.78 88.92

progc 39611 42.64 44.85 45.73 83.80 55.28 44.27 86.35

progl 71646 31.09 33.16 33.94 86.96 41.10 32.55 86.96

progp 49379 29.87 32.87 33.80 97.04 43.30 31.53 99.70

trans 93695 26.40 29.71 30.64 88.14 41.64 27.90 92.06

Table 7. Percentage of the size of the compressed files to the size of the original files
for different algorithms on text files of the Calgary Corpus for Algorithm 2-2-3+RL(1)
after BWT

Modified Huffman Inspired by the fact that there are many blocks of “1”s
in our integer sequence we treat them as symbols of our alphabet. Thus
our alphabet is {1, 2, · · · , l, 11, 111, · · · , 1n} ,where 1n means n consecutive
“1”s. Then we run Huffman encoding on elements of this alphabet with
non-zero frequency. The results are shown in Table 8. Note that we should



also encode the dictionary or Huffman tree in this method. We do not
consider this in our computations as it becomes negligible for large files,
specially if one considers innovative representation of Huffman code.

File Size (bytes) MTF SBR(0.5) TS FC TR MTF2 FC′

bib 111261 25.95 26.70 27.22 65.62 32.99 27.04 65.62

book1 768771 32.48 31.60 31.83 56.88 33.42 32.65 56.84

book2 610856 27.60 27.51 27.90 59.90 31.49 28.21 59.91

news 377109 33.32 34.12 34.79 64.50 39.51 34.63 64.58

paper1 53161 32.52 33.74 34.63 59.13 42.40 34.10 59.15

paper2 82199 32.06 32.42 32.98 58.59 37.34 33.00 58.54

progc 39611 32.70 34.24 35.12 61.99 44.46 34.47 64.47

progl 71646 23.03 24.44 25.15 60.24 30.84 24.51 61.68

progp 49379 22.73 24.92 25.78 62.29 34.25 24.74 62.35

trans 93695 20.07 22.63 23.47 65.35 33.11 22.15 71.08

Table 8. Percentage of the size of the compressed files to the size of the original files
for different algorithms on text files of the Calgary Corpus for the Modified Huffman
algorithm after BWT

According to these results, this schema outperforms all other algo-
rithms in our study. Figure 3 compares other compression algorithms to
the modified Huffman algorithm.

5 Conclusions

We have considered a variety of list update algorithms in the context of
data compression with and without the Burrows-Wheeler transform. We
observed that list update algorithms optimize for a similar but different
objective than a compressor and give an example of an algorithm which
is a good choice for list update but not for compression. Our experi-
ments showed that competitive list update algorithms are not effective as
compressors without BWT, while they perform well after BWT. We also
considered several schemas for encoding a sequence of integers that is ob-
tained after applying the list update algorithms. In our study, a Huffman
variant which incorporates run length encoding into the alphabet led to
the best compression.
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