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in
t Data Stru
tures,Adaptive (analysis of) Algorithms:Overview, Combination, and Perspe
tiveJérémy BarbayTe
hni
al Report CS-2007-33, Cheriton S
hool of Computer S
ien
e, University of Waterloo, Canada.Abstra
t. Su

in
t data stru
tures repla
e stati
 instan
es of pointer based data stru
tures,improving performan
e in both time and spa
e in the word RAM model (a restri
tion of the RAMmodel where the size of a word is restri
ted). The adaptive analysis of algorithms 
onsider the
omplexity in a �ner way than merely grouping the instan
es by size, yielding more pre
ise lowerand upper bound on the 
omplexity of a problem. We give a qui
k overview of those two te
hniques,some brief examples of how they 
an be 
ombined on various sear
h problems to obtain near optimalsolutions, and some general perspe
tive on the appli
ation and development of those te
hniques to otherproblems and models. The slides 
orresponding to this abstra
t are available at the following address:http://www.
s.uwaterloo.
a/∼jbarbay/Re
her
he/Publishing/Le
tures/su

in
tAdaptive_handout.pdf.1 Introdu
tionA su

in
t data stru
ture for a given data type is a representation of the underlying 
ombinatorial obje
tthat uses an amount of spa
e �
lose� to the information theoreti
 lower bound together with algorithmsthat supports operations of the data type �qui
kly�. A natural example is the representation of a binarytree [20℄: an arbitrary binary tree on n nodes 
an be represented in 2n+ o(n) bits while supporting a varietyof operations on any node, whi
h in
lude �nding its parent, its left or right 
hild, and returning the size of itssubtree, ea
h in O(1) time. As there are (

2n
n

)

/(n+1) binary trees on n nodes and the logarithm of this term1is 2n−o(n), the spa
e used by this representation is optimal to within a lower order term. Prepro
essing su
hdata-stru
tures so as to be able to perform sear
hes is a 
omplex pro
ess requiring a variety of subordinatestru
tures, whi
h we review here.Adaptive algorithms are algorithms that take advantage of �easy� instan
es of the problem at hand, i.e.their run-time depends on some measure of di�
ulty, whi
h 
ould, for example, be a fun
tion of instan
e sizeand other parameters. For example, Kirkpatri
k and Seidel [22℄ proposed an algorithm for 
omputing the
onvex hull that has running time O(n lg h), where n is the number of input verti
es, and h is the number ofoutput verti
es in the resulting 
onvex hull. As previously known algorithms guarantee only a running timeof O(n lg n) in the worst 
ase, 
learly, the adaptive algorithm performs better when the size of the 
onvexhull size is small (e.g. a triangle). Another example is adaptive algorithms for sorting, whi
h have beenstudied under various measures of di�
ulty. Estivill-Castro and Wood summarized many of these results ina survey [14℄.We des
ribe the fundamental prin
iples of those two te
hniques and we illustrate them by a sele
tionresults, respe
tively in Se
tion 2 and 3. We des
ribe in Se
tion 4 how they 
an be 
ombined on varioussear
h problems to obtain solutions near from non-deterministi
 optimality, and some perspe
tive of resear
h
on
erning those te
hniques.2 Su

in
t Data Stru
tures2.1 Bit Ve
torsJa
obson introdu
ed the 
on
ept of su

in
t data stru
tures en
oding bit ve
tors [20℄ and supportinge�
iently some basi
 operators on it, as a 
onstru
ting blo
k for other data-stru
tures, su
h as tree stru
tures1 All logarithms are taken to the base 2. By 
onvention, lg lg x is noted llg x and lg lg lg x is noted lllg x.



and planar graphs. Given a bit ve
tor B[0, . . . , n − 1], a bit α ∈ {0, 1}, an obje
t x ∈ [n] and an integer
r ∈ {1, . . . , n}, the operator bin_rankB(α, x) returns the number of o

urren
es of α in B[0, ..., x], and theoperator bin_selectB(α, r) returns the position of the r-th label α in B. We omit the subs
ript B whenit is 
lear from the 
ontext. To illustrate these operators, 
onsider the bit ve
tor � 0 0 0 1 0 0 0 1 0 0 � onthe binary alphabet. Counting the number of 1-bits among the six �rst bits 
orresponds to the operation
bin_rank(1, 6) = 1, while sear
hing for the se
ond 1-bit 
orresponds to the operation bin_select(1, 2) = 8.Those operators 
an be supported in 
onstant time2 on a bit ve
tor of length n using an index of
n llg n
lg n +O( n

lg n ) additional bits [16℄, whi
h is asymptoti
ally negligible (o(n)) 
ompared to the spa
e requiredto en
ode the bit ve
tor itself. As the index is separated from the en
oding of the binary string, the resultsholds even if the binary string is 
ompressed to lg
(

n
v

) bits, as long as the en
oding supports in 
onstant timethe a

ess to a ma
hine word of the string [28℄. The spa
e used by the resulting data-stru
tures is optimal upto asymptoti
ally negligible terms among the data-stru
tures keeping the index separated from the en
odingof the binary string [16℄. Obtaining the same lower bound or a better en
oding in the general 
ase is stillopen.2.2 Ordinal Trees and Planar GraphsAn ordinal tree is a rooted tree in whi
h the 
hildren of a node are ordered and spe
i�ed by theirrank. The basi
 operators on ordinal trees are leveled_ancestor(x, i), the i-th an
estor of node x (xis its own 0-th an
estor); tree_rankpre/post/dfuds(x), the position of node x in the given tree-traversal;
tree_selectpre/post/dfuds(r), the r-th node in the given tree-traversal; child(x, i), the i-th 
hild of node xfor i ≥ 1; childrank(x), the number of siblings to the left of node x; depth(x), the number of edges in therooted path to x; nbdesc(x), the number of des
endants of x; and degree(x), the number of 
hildren of x.Several te
hniques permits to en
ode ordinal trees while supporting in 
onstant time various sets of basi
operators, using the fa
t that ordinal trees are in bije
tion with strings of well balan
ed parenthesis [25℄;using a sequen
e of node degrees [7℄; or using a re
ursive de
omposition of the tree [15℄.The most general en
oding [15℄ supports all those operators in 
onstant time while en
oding an ordinaltree of n and its index using a total of 2n + o(n) bits, whi
h is asymptoti
ally tight with the lower boundsuggested by information theory, and rather better than traditional solutions using 2n lgn bits and supportinga subset of the navigation operators in 
onstant time through pointers. On
e again, the spa
e used by theresulting data-stru
tures is optimal up to asymptoti
ally negligible terms among the data-stru
tures keepingthe index separated from the en
oding of the binary string. It is possible to obtain a better en
oding in thegeneral 
ase: obtaining a lower bound for the general 
ase is an open problem.Sin
e planar graphs 
an be de
omposed in a �nite number of ordinal trees, through a book embedding [8℄or through realizers [11, 12℄; or de
omposed re
ursively in a similar ways to trees [10℄; the design of su

in
ten
odings for planar graphs supporting navigation operators is similar.2.3 Permutations and Fun
tionsA basi
 building blo
k for the stru
tures des
ribed below is the representation of a permutation of the integers
{0, . . . , n−1}, denoted by [n]. The basi
 operators on a permutation are the image of a number i through thepermutation, through its inverse or through the k-th power of it (i.e. π iteratively applied k times startingat i, where k 
an be any integer so that π−1 is the inverse of π).A permutation π 
an be en
oded in a straightforward array of n words (whi
h supports π1 in 
onstanttime), and trivially indexed by n/t short
uts 
utting the largest 
y
les of π to support the inverse permutationin at most t a

esses to the permutation, modulo an additional bit ve
tor of n bits supporting the bin_rankand bin_select operators. Using su
h a permutation to map a permutation to its 
y
li
 representation,one 
an also support πk(i) in at most t a

esses to the permutation, with the same spa
e 
onstraints [24℄.Combining those results with the tree en
odings des
ribed above, one 
an extend those results to fun
tionson �nite sets [26℄. The spa
e used by the resulting data-stru
tures is optimal up to asymptoti
ally negligibleterms [17℄.2 Unless stated otherwise, all the results expressed here are in the word RAM model with word size Θ(lg n).2



2.4 StringsAnother basi
 abstra
t data type is the string, 
omposed of n 
hara
ters taken from an alphabet of arbitrarysize σ (as opposed to binary for the bit ve
tor). The basi
 operations on a string are to a

ess it, and to sear
hand 
ount the o

urren
es of a pattern, su
h as a simple 
hara
ter from [σ] in the simplest 
ase [19℄. Formally,it 
orresponds to the operators string_access(x), the x-th 
hara
ter of the string; string_rank(α, x), thenumber of α-o

urren
es before position x; and string_select(α, r), the position of the r-th α-o

urren
e.Golynski et al. [18℄ redu
ed the problem of en
oding strings in order to support those operators to theen
oding of permutations. Choosing a value of t = lg n in the en
oding of the permutation yields an en
odingusing n
(

lg σ + o(lg σ)
) bits in order to support the operators in at most O(llg σ) word a

esses. Observingthat the en
oding of permutations already separates the data from the index, Barbay et al. [4℄ properlyseparated the data and the index of strings, yielding a su

in
t index using the same spa
e supporting theoperators in slightly more word a

esses, with the advantage of removing any restri
tions on the en
odingof the data of the string (hen
e allowing 
ompression). The spa
e used by the resulting data-stru
tures isoptimal up to asymptoti
ally negligible terms [17℄.2.5 Binary RelationsGiven two ordered sets of sizes σ and n, denoted by [σ] and [n], a binary relation R between these setsis a subset of their Cartesian produ
t, i.e. R ⊂ [σ]×[n]. It is used, for instan
e, to represent the relationbetween a set of labels [σ] (e.g. keywords entered by users in 
onjun
tive queries) and a set of obje
ts [n](e.g. webpages indexed by a sear
h engine).Although a string 
an be seen as a parti
ular 
ase of a binary relation, where the obje
ts are positions andexa
tly one label is asso
iated to ea
h position, the sear
h operations on binary relations are more diverse,in
luding operators on both the labels and the obje
ts. For any literal α, obje
t x, and integer r, the basi
operators on binary relations are label_rankR(α, x): the number of obje
ts labelled α pre
eding or equal to

x; label_selectR(α, r): the position of the r-th obje
t labelled α if any, or ∞ otherwise; label_nbR(α),the number of obje
ts with label α; object_rankR(x, α): the number of labels asso
iated with obje
t xpre
eding or equal to label α; object_selectR(x, r): the r-th label asso
iated with obje
t x, if any, or ∞otherwise; object_nbR(x): the number of labels asso
iated with obje
t x; and table_accessR(x, α): 
he
kswhether obje
t x is asso
iated with label α.Su
h a binary relation, 
onsisting of t pairs from [n]×[σ], 
an be en
oded as a text string S listing the
t labels, and a bit ve
tor B indi
ating how many labels are asso
iated with ea
h obje
t [3℄, so that sear
hoperations on the obje
ts asso
iated with a �xed label are redu
ed to a 
ombination of operators on text andbinary strings: su
h a representation uses t(lg min(n, σ)+o(lg min(n, σ))) bits. Using a more dire
t redu
tionto the en
oding of permutations, the index of the binary relation 
an be separated from its en
oding, andeven more operators 
an be supported, taking literals (negation of 
hara
ters) as parameters [4℄. The spa
eused by the resulting data-stru
tures is optimal up to asymptoti
ally negligible terms [17℄.2.6 Labelled Trees and Planar GraphsA labelled tree T with any number of labels per node 
an be represented by an ordinal tree 
oding itsstru
ture [21℄ and a binary relation R asso
iating to ea
h node its labels [3℄. If the nodes are 
onsideredin preorder (resp. in DFUDS order) the sear
h operators enumerate all the des
endants (resp. 
hildren) ofa node mat
hing some literal α. Using su

in
t indexes, a single en
oding of the labels and the support ofa permutation between orders is su�
ient to implement both enumerations, and other sear
h operators onthe labels [4℄. Sin
e a binary relation 
an be seen as a very �at labelled tree, the lower bounds on binaryrelations obviously also hold for labelled trees.Similarly to the unlabelled version, the su

in
t en
odings for labelled planar graphs take advantage ofthe results on labelled trees [2℄, whether the labels are asso
iated to the nodes or to the edges.3



3 Adaptive Analysis3.1 Convex HullThe 
onvex hull of a �nite set of n points S is the smallest 
onvex polygon 
ontaining the set. By 
onvention,the size of this polygon is noted h. In two dimensions, sorting the verti
es by their relative slope to a pivotyields an algorithm 
omputing the 
onvex hull in O(n lg n) operations. This 
omplexity is optimal in theworst 
ase over instan
es of �xed size n, but una

eptable in pra
ti
e, where n is very large.Rather, using a divide-and-
onquer te
hnique, one 
an 
ompute the 
onvex-hull in O(n lg h)operations [22℄. This algorithm is output-sensitive (i.e. adaptive to the size of the output) in the sensethat it performs better on instan
es of both small input and output size, and better on instan
es of smalloutput size among all instan
es of �xed input size. This bound is tight among all instan
es of �xed inputand output size.3.2 SortingSorting an array A of numbers is a basi
 problem, where the size of the output of an instan
e is alwaysequal to its input size. Still, some instan
es are easier than others to sort (e.g. a sorted array, whi
h 
anbe 
he
ked/sorted in linear time). Instead of the output size, one 
an 
onsider the disorder in an array as ameasure of the di�
ulty of a sorting instan
e [9, 23℄.There are many ways to measure this disorder: among others one 
an 
onsider the number of ex
hangesrequired to sort an array; the number of adja
ent ex
hanges required; the number of pairs (i, j) su
h that
A[i] > A[j], but there are many others [27℄. For ea
h disorder measure, the logarithm of the number ofinstan
es with a �xed size and disorder forms a natural lower bound to the 
omplexity of any sortingalgorithm in the 
omparison model, as a 
orre
t algorithm must at least be able to distinguish all instan
es.As a 
onsequen
e, there 
ould be as many optimal algorithms as there are di�
ulty measures. Instead, one
an redu
e di�
ulty measures between themselves, whi
h yields a hierar
hy of disorder measures [14℄.3.3 Union of Sorted SetsA problem where the output size 
an vary but is not a good measure of di�
ulty, is the des
ription of thesorted union of sorted sets: given k sorted sets, des
ribe their union. On the one hand, the sorted union of
A = {0, 1, 2, 3, 4} and B = {5, 6, 7, 8, 9} is easier to des
ribe (all from A followed by all from B) than theunion of C = {0, 2, 4, 6, 8} and D = {1, 3, 5, 7, 9}, whi
h is an output sensitive example. On the other hand,a deterministi
 algorithm must �nd this des
ription, whi
h 
an take mu
h more time than to output it forlarge k.Possible measures of di�
ulty are then the minimal en
oding size C of a 
erti�
ate [13℄, a set of
omparisons required to 
he
k the 
orre
tion of the output of the algorithm (yielding 
omplexity Θ(C));or the non-deterministi
 
omplexity [6℄, the number of steps δ performed by a non deterministi
 algorithmto solve the instan
e, or equivalently the minimal number of 
omparisons of a 
erti�
ate (yielding 
omplexity
Θ(δk lg(n/δk))). For both measures, there is an algorithm proved to be optimal whi
h is not optimal for theother measure. Finding a more general measure of di�
ulty is an open problem.3.4 Interse
tion and Threshold Set of Sorted ArraysA related problem, with appli
ations to 
onjun
tive queries in indexed sear
h engines, is the interse
tion ofsorted arrays: as an indexed sear
h engine maintains for ea
h keyword a sorted list of the related obje
ts,answering a 
onjun
tive queries 
omposed of k keywords 
orrespond to interse
t the k sets asso
iated to thosekeywords. Reusing the arrays from the previous example, while both interse
tions are empty, the interse
tionof A = {0, 1, 2, 3, 4} and B = {5, 6, 7, 8, 9} is easier to prove (the larger element from A is smaller than thesmallest element from B) than the interse
tion of C = {0, 2, 4, 6, 8} and D = {1, 3, 5, 7, 9} [13℄.4



The di�
ulty measures 
onsidered are the minimal en
oding size G of a part of the 
erti�
ate [13℄(yielding 
omplexity Θ(kG)) and the minimal number δ of 
omparisons of a 
erti�
ate [5℄ (yielding 
omplexity
Θ(δk lg(n/δk))) as for the union, and a measure ρ of the number of possible short 
erti�
ates of the answer,to take into a

ount features making the instan
e easier for randomized algorithms [1℄ (yielding 
omplexity
Θ(ρk lg(n/ρk))).As an empty interse
tion 
orresponds to the null answer to a 
onjun
tive query, it is natural to 
onsidera relaxation of the interse
tion of sorted arrays, the threshold set 
omposed of all the elements whi
h are
ontained in at least t arrays. For t = k this is obviously the interse
tion, for t = 1 it is obviously theunion, and for t = 2 the des
ription of the threshold set 
orresponds exa
tly to the des
ription of the uniondis
ussed above. The same te
hniques yields very similar results, even when weights are asso
iated to theterms of the query (simulating the repetition of an array in the interse
tion), or with the pairs of the binaryrelation (to distinguish di�erent level of asso
iation between labels and obje
ts).3.5 Pattern Mat
hing in Labelled TreesGiven a multi-labelled tree and k labels, the path subset pattern mat
hing 
onsists in �nding ea
h node xsu
h that its the path from the root to x mat
hes the labels. Given a multi-labelled tree and k labels, ea
hnode of the 
orresponding lowest 
ommon an
estor set is su
h that its des
endants mat
h all the keywords,but none of them is a lowest 
ommon an
estor itself [29℄. Supposing an en
oding of the multi-labelled treeallowing e�
ient sear
h operators (su
h as the one des
ribed in Se
tion 2.6 or an equivalent one based onsorted arrays), the te
hnique des
ribed to 
ompute the interse
tion of sorted arrays generalizes easily to solvethose queries [3℄, and their generalization to the threshold set.4 Combining Approa
hes and Perspe
tiveData stru
tures and algorithms are 
omplementary. Any 
hoi
e of data-stru
ture 
an be 
ombined with anyalgorithm, and the best performan
e is obtained only when they intera
t well.For instan
e, a naive approa
h would be to repla
e sorted arrays by binary ve
tors, and the binaryor doubling sear
hes in those arrays by a 
ombination of bin_rank and bin_select operators, redu
ingthe time from lg n to 
onstant. Among many other results, this yields an interse
tion algorithm solving
onjun
tive queries in O(kδ) operations in the word RAM model instead of Θ(δk lg(n/δk)) in the 
omparisonmodel (Se
tion 3.4, but at an ex
essive 
ost in spa
e. A wiser approa
h is to take a larger perspe
tiveand re
onsider the abstra
t data types from the beginning. For instan
e, in the example above, the
omplexity of the interse
tion algorithm 
an be improved to O(kδ llg σ) by en
oding all the sorted arraysin a single binary relation [3℄, repla
ing the binary or doubling sear
hes by a 
ombination of label_rankand label_select operators, while potentially redu
ing the spa
e taken by the index from t(lg n) + σ to
t(lg min(n, σ) + o(lg min(n, σ))). The same approa
h yields similar results for pattern mat
hing queries inlabelled trees [3℄.In those examples the 
omplexity O(kδ llg σ) a
hieved by adaptive algorithms using su

in
t datastru
tures is getting very 
lose to the theoreti
al non-deterministi
 lower bound of Ω(δ) for the instan
e:in pra
ti
e k is often quite small, and llg σ grows so slowly with σ that it would require some unrealisti
data set (2 ↑ 6 > 1019) for it to be larger than 6: the worst 
ase analysis 
annot be re�ne further. Thenext 
hallenges are of 
ourse to apply those te
hniques to more problems, but also to extend the te
hniquesto other 
omputational models, for instan
e to multi
ore systems and extended memory hierar
hy, and tostudy the values taken experimentally by the di�
ulty measures for ea
h parti
ular 
lass of appli
ation, inthe hope to further adapt the en
oding and algorithmi
 solutions.A
knowledgments: This extended abstra
t is based on 
ollaborations with too many 
oauthors to 
ite allthere, and on talks given at Carleton University and Universidad de Chile, always in front of a very patientand intera
tive audien
e. Many thanks to all the persons 
on
erned.5
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