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Abstract. Succinct data structures replace static instances of pointer based data structures,
improving performance in both time and space in the word RAM model (a restriction of the RAM
model where the size of a word is restricted). The adaptive analysis of algorithms consider the
complexity in a finer way than merely grouping the instances by size, yielding more precise lower
and upper bound on the complexity of a problem. We give a quick overview of those two techniques,
some brief examples of how they can be combined on various search problems to obtain near optimal
solutions, and some general perspective on the application and development of those techniques to other
problems and models. The slides corresponding to this abstract are available at the following address:
http://www.cs.uwaterloo.ca/~jbarbay /Recherche /Publishing/Lectures/succinct Adaptive handout.pdf.

1 Introduction

A succinct data structure for a given data type is a representation of the underlying combinatorial object
that uses an amount of space “close” to the information theoretic lower bound together with algorithms
that supports operations of the data type “quickly”. A natural example is the representation of a binary
tree [20]: an arbitrary binary tree on n nodes can be represented in 2n + o(n) bits while supporting a variety
of operations on any node, which include finding its parent, its left or right child, and returning the size of its
subtree, each in O(1) time. As there are (?)/(n—i— 1) binary trees on n nodes and the logarithm of this term!
is 2n—o(n), the space used by this representation is optimal to within a lower order term. Preprocessing such
data-structures so as to be able to perform searches is a complex process requiring a variety of subordinate
structures, which we review here.

Adaptive algorithms are algorithms that take advantage of “easy” instances of the problem at hand, i.e.
their run-time depends on some measure of difficulty, which could, for example, be a function of instance size
and other parameters. For example, Kirkpatrick and Seidel [22] proposed an algorithm for computing the
convex hull that has running time O(nlg h), where n is the number of input vertices, and h is the number of
output vertices in the resulting convex hull. As previously known algorithms guarantee only a running time
of O(nlgn) in the worst case, clearly, the adaptive algorithm performs better when the size of the convex
hull size is small (e.g. a triangle). Another example is adaptive algorithms for sorting, which have been
studied under various measures of difficulty. Estivill-Castro and Wood summarized many of these results in
a survey [14].

We describe the fundamental principles of those two techniques and we illustrate them by a selection
results, respectively in Section 2 and 3. We describe in Section 4 how they can be combined on various
search problems to obtain solutions near from non-deterministic optimality, and some perspective of research
concerning those techniques.

2 Succinct Data Structures

2.1 Bit Vectors

Jacobson introduced the concept of succinct data structures encoding bit vectors [20] and supporting
efficiently some basic operators on it, as a constructing block for other data-structures, such as tree structures

1 All logarithms are taken to the base 2. By convention, lglg z is noted llg z and lglglg = is noted lllg z.



and planar graphs. Given a bit vector B[0,...,n — 1], a bit a € {0,1}, an object = € [n] and an integer
r € {1,...,n}, the operator bin rankg(a,z) returns the number of occurrences of « in BJ0, ..., z], and the
operator bin_selectg(a, ) returns the position of the r-th label o in B. We omit the subscript B when
it is clear from the context. To illustrate these operators, consider the bit vector “0001000100” on
the binary alphabet. Counting the number of 1-bits among the six first bits corresponds to the operation
bin rank(1,6) = 1, while searching for the second 1-bit corresponds to the operation bin select(1,2) = 8.

Those operators can be supported in constant time?> on a bit vector of length n using an index of
% +O(5;%;) additional bits [16], which is asymptotically negligible (o(n)) compared to the space required
to encode the bit vector itself. As the index is separated from the encoding of the binary string, the results
holds even if the binary string is compressed to lg (Z) bits, as long as the encoding supports in constant time
the access to a machine word of the string [28]. The space used by the resulting data-structures is optimal up
to asymptotically negligible terms among the data-structures keeping the index separated from the encoding
of the binary string [16]. Obtaining the same lower bound or a better encoding in the general case is still

open.

2.2 Ordinal Trees and Planar Graphs

An ordinal tree is a rooted tree in which the children of a node are ordered and specified by their
rank. The basic operators on ordinal trees are leveled ancestor(zx,i), the i-th ancestor of node z (z
is its own O-th ancestor); treeirankpre/post/dfuds(a:), the position of node x in the given tree-traversal;
tree_select,, . .o dfuas(7), the r-th node in the given tree-traversal; child(z, ), the i-th child of node x
for ¢ > 1; childrank(z), the number of siblings to the left of node x; depth(x), the number of edges in the
rooted path to x; nbdesc(x), the number of descendants of z; and degree(x), the number of children of z.

Several techniques permits to encode ordinal trees while supporting in constant time various sets of basic
operators, using the fact that ordinal trees are in bijection with strings of well balanced parenthesis [25];
using a sequence of node degrees [7]; or using a recursive decomposition of the tree [15].

The most general encoding [15] supports all those operators in constant time while encoding an ordinal
tree of n and its index using a total of 2n + o(n) bits, which is asymptotically tight with the lower bound
suggested by information theory, and rather better than traditional solutions using 2n lgn bits and supporting
a subset of the navigation operators in constant time through pointers. Once again, the space used by the
resulting data-structures is optimal up to asymptotically negligible terms among the data-structures keeping
the index separated from the encoding of the binary string. It is possible to obtain a better encoding in the
general case: obtaining a lower bound for the general case is an open problem.

Since planar graphs can be decomposed in a finite number of ordinal trees, through a book embedding [§]
or through realizers [11, 12]; or decomposed recursively in a similar ways to trees [10]; the design of succinct
encodings for planar graphs supporting navigation operators is similar.

2.3 Permutations and Functions

A basic building block for the structures described below is the representation of a permutation of the integers
{0,...,n—1}, denoted by [n]. The basic operators on a permutation are the image of a number ¢ through the
permutation, through its inverse or through the k-th power of it (i.e. 7 iteratively applied k times starting
at i, where k can be any integer so that 7—! is the inverse of 7).

A permutation 7 can be encoded in a straightforward array of n words (which supports 7! in constant
time), and trivially indexed by n/t shortcuts cutting the largest cycles of 7 to support the inverse permutation
in at most ¢t accesses to the permutation, modulo an additional bit vector of n bits supporting the bin rank
and bin select operators. Using such a permutation to map a permutation to its cyclic representation,
one can also support Wk(l) in at most ¢ accesses to the permutation, with the same space constraints [24].
Combining those results with the tree encodings described above, one can extend those results to functions
on finite sets [26]. The space used by the resulting data-structures is optimal up to asymptotically negligible
terms [17].

% Unless stated otherwise, all the results expressed here are in the word RAM model with word size O(lgn).



2.4 Strings

Another basic abstract data type is the string, composed of n characters taken from an alphabet of arbitrary
size o (as opposed to binary for the bit vector). The basic operations on a string are to access it, and to search
and count the occurrences of a pattern, such as a simple character from [o] in the simplest case [19]. Formally,
it corresponds to the operators string access(z), the z-th character of the string; string rank(a, ), the
number of a-occurrences before position z; and string select(a,r), the position of the r-th a-occurrence.

Golynski et al. [18] reduced the problem of encoding strings in order to support those operators to the
encoding of permutations. Choosing a value of t = Ign in the encoding of the permutation yields an encoding
using n(lgo + o(lg o)) bits in order to support the operators in at most O(llg o) word accesses. Observing
that the encoding of permutations already separates the data from the index, Barbay et al. [4] properly
separated the data and the index of strings, yielding a succinct index using the same space supporting the
operators in slightly more word accesses, with the advantage of removing any restrictions on the encoding
of the data of the string (hence allowing compression). The space used by the resulting data-structures is
optimal up to asymptotically negligible terms [17].

2.5 Binary Relations

Given two ordered sets of sizes o and n, denoted by [o] and [n], a binary relation R between these sets
is a subset of their Cartesian product, i.e. R C [o]x[n]. Tt is used, for instance, to represent the relation
between a set of labels [o] (e.g. keywords entered by users in conjunctive queries) and a set of objects [n]
(e.g. webpages indexed by a search engine).

Although a string can be seen as a particular case of a binary relation, where the objects are positions and
exactly one label is associated to each position, the search operations on binary relations are more diverse,
including operators on both the labels and the objects. For any literal «, object x, and integer r, the basic
operators on binary relations are label rankp(a,x): the number of objects labelled a preceding or equal to
x; label selectp(a,7): the position of the r-th object labelled « if any, or co otherwise; label nbj(),
the number of objects with label «o; object rankj(x,«a): the number of labels associated with object x
preceding or equal to label a; object selecty(x,7): the r-th label associated with object z, if any, or co
otherwise; object nbp(x): the number of labels associated with object z; and table accessg(z,a): checks
whether object x is associated with label a.

Such a binary relation, consisting of ¢ pairs from [n]x[o], can be encoded as a text string S listing the
t labels, and a bit vector B indicating how many labels are associated with each object [3], so that search
operations on the objects associated with a fixed label are reduced to a combination of operators on text and
binary strings: such a representation uses t(lg min(n, o) 4+ o(lg min(n, 0))) bits. Using a more direct reduction
to the encoding of permutations, the index of the binary relation can be separated from its encoding, and
even more operators can be supported, taking literals (negation of characters) as parameters [4]. The space
used by the resulting data-structures is optimal up to asymptotically negligible terms [17].

2.6 Labelled Trees and Planar Graphs

A labelled tree T with any number of labels per node can be represented by an ordinal tree coding its
structure [21] and a binary relation R associating to each node its labels [3]. If the nodes are considered
in preorder (resp. in DFUDS order) the search operators enumerate all the descendants (resp. children) of
a node matching some literal «. Using succinct indexes, a single encoding of the labels and the support of
a permutation between orders is sufficient to implement both enumerations, and other search operators on
the labels [4]. Since a binary relation can be seen as a very flat labelled tree, the lower bounds on binary
relations obviously also hold for labelled trees.

Similarly to the unlabelled version, the succinct encodings for labelled planar graphs take advantage of
the results on labelled trees [2], whether the labels are associated to the nodes or to the edges.



3 Adaptive Analysis

3.1 Convex Hull

The convex hull of a finite set of n points S is the smallest convex polygon containing the set. By convention,
the size of this polygon is noted h. In two dimensions, sorting the vertices by their relative slope to a pivot
yields an algorithm computing the convex hull in O(nlgn) operations. This complexity is optimal in the
worst case over instances of fixed size n, but unacceptable in practice, where n is very large.

Rather, using a divide-and-conquer technique, one can compute the convex-hull in O(nlgh)
operations [22]. This algorithm is output-sensitive (i.e. adaptive to the size of the output) in the sense
that it performs better on instances of both small input and output size, and better on instances of small
output size among all instances of fixed input size. This bound is tight among all instances of fixed input
and output size.

3.2 Sorting

Sorting an array A of numbers is a basic problem, where the size of the output of an instance is always
equal to its input size. Still, some instances are easier than others to sort (e.g. a sorted array, which can
be checked/sorted in linear time). Instead of the output size, one can consider the disorder in an array as a
measure of the difficulty of a sorting instance [9, 23].

There are many ways to measure this disorder: among others one can consider the number of exchanges
required to sort an array; the number of adjacent exchanges required; the number of pairs (¢, j) such that
Ali] > Alj], but there are many others [27|. For each disorder measure, the logarithm of the number of
instances with a fixed size and disorder forms a natural lower bound to the complexity of any sorting
algorithm in the comparison model, as a correct algorithm must at least be able to distinguish all instances.
As a consequence, there could be as many optimal algorithms as there are difficulty measures. Instead, one
can reduce difficulty measures between themselves, which yields a hierarchy of disorder measures [14].

3.3 Union of Sorted Sets

A problem where the output size can vary but is not a good measure of difficulty, is the description of the
sorted union of sorted sets: given k sorted sets, describe their union. On the one hand, the sorted union of
A =1{0,1,2,3,4} and B = {5,6,7,8,9} is easier to describe (all from A followed by all from B) than the
union of C' = {0,2,4,6,8} and D = {1, 3,5,7,9}, which is an output sensitive example. On the other hand,
a deterministic algorithm must find this description, which can take much more time than to output it for
large k.

Possible measures of difficulty are then the minimal encoding size C of a certificate [13], a set of
comparisons required to check the correction of the output of the algorithm (yielding complexity ©(C));
or the non-deterministic complexity [6], the number of steps 0 performed by a non deterministic algorithm
to solve the instance, or equivalently the minimal number of comparisons of a certificate (yielding complexity
O(dk1lg(n/dk))). For both measures, there is an algorithm proved to be optimal which is not optimal for the
other measure. Finding a more general measure of difficulty is an open problem.

3.4 Intersection and Threshold Set of Sorted Arrays

A related problem, with applications to conjunctive queries in indexed search engines, is the intersection of
sorted arrays: as an indexed search engine maintains for each keyword a sorted list of the related objects,
answering a conjunctive queries composed of k keywords correspond to intersect the k sets associated to those
keywords. Reusing the arrays from the previous example, while both intersections are empty, the intersection
of A=1{0,1,2,3,4} and B = {5,6,7,8,9} is easier to prove (the larger element from A is smaller than the
smallest element from B) than the intersection of C' = {0,2,4,6,8} and D = {1,3,5,7,9} [13].



The difficulty measures considered are the minimal encoding size G of a part of the certificate [13]
(yielding complexity ©(kG)) and the minimal number § of comparisons of a certificate [5] (yielding complexity
O(dklg(n/dk))) as for the union, and a measure p of the number of possible short certificates of the answer,
to take into account features making the instance easier for randomized algorithms [1] (yielding complexity
O(pk lg(n/pk))).-

As an empty intersection corresponds to the null answer to a conjunctive query, it is natural to consider
a relaxation of the intersection of sorted arrays, the threshold set composed of all the elements which are
contained in at least t arrays. For ¢t = k this is obviously the intersection, for t = 1 it is obviously the
union, and for ¢ = 2 the description of the threshold set corresponds exactly to the description of the union
discussed above. The same techniques yields very similar results, even when weights are associated to the
terms of the query (simulating the repetition of an array in the intersection), or with the pairs of the binary
relation (to distinguish different level of association between labels and objects).

3.5 Pattern Matching in Labelled Trees

Given a multi-labelled tree and k labels, the path subset pattern matching consists in finding each node z
such that its the path from the root to z matches the labels. Given a multi-labelled tree and k labels, each
node of the corresponding lowest common ancestor set is such that its descendants match all the keywords,
but none of them is a lowest common ancestor itself [29]. Supposing an encoding of the multi-labelled tree
allowing efficient search operators (such as the one described in Section 2.6 or an equivalent one based on
sorted arrays), the technique described to compute the intersection of sorted arrays generalizes easily to solve
those queries [3], and their generalization to the threshold set.

4 Combining Approaches and Perspective

Data structures and algorithms are complementary. Any choice of data-structure can be combined with any
algorithm, and the best performance is obtained only when they interact well.

For instance, a naive approach would be to replace sorted arrays by binary vectors, and the binary
or doubling searches in those arrays by a combination of bin_rank and bin_select operators, reducing
the time from lgn to constant. Among many other results, this yields an intersection algorithm solving
conjunctive queries in O(kd) operations in the word RAM model instead of ©(dk1g(n/dk)) in the comparison
model (Section 3.4, but at an excessive cost in space. A wiser approach is to take a larger perspective
and reconsider the abstract data types from the beginning. For instance, in the example above, the
complexity of the intersection algorithm can be improved to O(kdllgo) by encoding all the sorted arrays
in a single binary relation [3], replacing the binary or doubling searches by a combination of label rank
and label select operators, while potentially reducing the space taken by the index from t(lgn) + o to
t(lgmin(n, o) + o(lgmin(n, 0))). The same approach yields similar results for pattern matching queries in
labelled trees [3].

In those examples the complexity O(kdllgo) achieved by adaptive algorithms using succinct data
structures is getting very close to the theoretical non-deterministic lower bound of £2(8) for the instance:
in practice k is often quite small, and llgo grows so slowly with ¢ that it would require some unrealistic
data set (2 7 6 > 10'9) for it to be larger than 6: the worst case analysis cannot be refine further. The
next challenges are of course to apply those techniques to more problems, but also to extend the techniques
to other computational models, for instance to multicore systems and extended memory hierarchy, and to
study the values taken experimentally by the difficulty measures for each particular class of application, in
the hope to further adapt the encoding and algorithmic solutions.
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