A Fast Unified Optimal Route Query Evaluation Algorithm*

Edward P.F. Chan & Jie Zhang
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
epfchan@uwaterloo.ca & janezhangj@hotmail.com

Abstract

We investigate the problem of how to evaluate, fast and
efficiently, classes of optimal route queries on a massive
graph in a unified framework. To evaluate a route query
effectively, a large network is partitioned into a collection
of fragments, and distances of some optimal routes in the
network are pre-computed. Under such a setting, we find
a unified algorithm that can evaluate classes of optimal
route queries. The classes that can be processed efficiently
are called constraint preserving (CP) which include, among
others, shortest path, forbidden edges/nodes, a-autonomy,
and some of hypothetical weight changes optimal route
query classes. We prove the correctness of the unified algo-
rithm. We then turn our attention to the optimization of
the proposed algorithm. Several pruning and optimization
techniques are derived that minimize the search time and
I/0 accesses. We show empirically that these techniques
are effective. The proposed optimal route query evaluation
algorithm, with all these techniques incorporated, is com-
pared with a main-memory and a disk-based brute-force
CP algorithms. We show experimentally that the proposed
unified algorithm outperforms the brute-force algorithms,
both in term of CPU time and I/O cost, by a wide margin.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems - Query processing. General
Terms: Algorithms, Performance, Experimentation.
Additional Key Words and Phrases: Optimal Route
Queries, Distance Materialization, Route Query Evalua-
tion.

1 Introduction

Consider a web-based road information system, like Ya-
hoo!Maps or a moving object database [13], in which com-
muters issue queries to find optimal routes from current lo-
cations to their destinations. For such a system to be valu-
able, it is imperative that the route queries are answered
fast, preferably in real-time.

*An Extended Abstract appears in the Proceedings of ACM 16th
International Conference on Information and Knowledge Manage-
ment, Lisbon, Nov. 2007.

Some of the most frequently asked route queries, such as
shortest path queries, as well as Travelling Salesman and
Hamiltonian Path queries, are examples of optimal route
queries. Among all route queries, shortest path (SP) queries
are the most fundamental, and have been studied exten-
sively in the literature. There are many mature SP al-
gorithms. However, when a graph is huge, and the main
memory is not large enough to load the whole graph, these
algorithms do not work properly. Even if the main mem-
ory is large enough to accommodate the graph, the running
time could be long, and the system resources may not be
utilized effectively. It is well-known that the SP problem
can be solved in polynomial time, while some optimal route
problems are NP-complete. Although many papers, such
as [6, 9, 4], deal with the optimal route problems, most of
them only solve a specific case. Moreover, it is difficult to
extend their solutions to a disk-based environment.

In this paper, we focus on the problem of how to evaluate
classes of optimal route queries under a disk-based frame-
work. In particular, we are interested in finding, with the
help of distance materialization, a general and fast algo-
rithm that can evaluate classes of optimal route queries.
Such an algorithm is found, and is derived from an ex-
isting SP query evaluation algorithm [2, 3]. We call the
classes of optimal route queries that can be evaluated by
the proposed algorithm constraint preserving (CP). CP op-
timal route queries include real-life queries such as “find a
route from a to b with the minimal cost,” “find an optimal
path from a to b that does not go through the center core of
the city,” “find the best trip from a to b that does not pass a
set of towns and cities, and avoid Highways 9, 10 and 20,”,
“find an optimal route from a to b such that the distance
of between successive nodes (which could denote intersec-
tions, hotels, gas stations) is not greater than ¢,” and “find
an optimal route from a to b, assuming that Highway 401
traveling time is increased by 15% while the traveling time
on Highway 400 is decreased by 10%.”

In this work, we first prove that the generalized algorithm
correctly evaluates a CP optimal route query. To minimize
the search space, algorithms have been proposed in [2] to
prune the network when evaluating an SP query. We show
that these pruning algorithms can be generalized to CP op-
timal route queries. Furthermore, improvements are made
on these pruning algorithms that optimize their execution

times. After that, we turn our attention to finding tech-
niques for route query evaluation. Several techniques are
found that could speed up the execution time or reduce the
I/0O cost. We show empirically that the proposed modified
pruning algorithms, and the proposed route query evalua-
tion techniques contribute to the improvement of the evalu-
ation process. To evaluate the performance of the proposed
route query evaluation algorithm, two real-life data sets and
three CP optimal route query classes are used in our ex-
periments. We show experimentally that the proposed CP
route query evaluation algorithm, with all techniques in-
corporated, outperforms significantly, both in term of the
execution time and I/O cost, a main-memory and a disk-
based brute-force CP query evaluation algorithms.

In Section 2, we define some basic notation. In Section
3, we survey related work. In Section 4, we define the CP
optimal route query classes, and show how they can be eval-
uated efficiently with a query evaluation algorithm. We
also introduce techniques that can speed up the evaluation
process. In Section 5, experimental results are presented.
Finally, a summary is given in Section 6.

2 Definition and Notation

2.1 Basic Notation

A network such as a road system is denoted as a directed
graph G = (V, E,w), where V and E are the sets of nodes
(vertices) and directed edges, respectively, and w: E—R>Y,
that is, w is a length function from the set of edges to a set
of non-negative real numbers. Let p be a path in a graph
G. Then I(p) is the sum of the lengths of edges in path
p. Since we are interested only in paths without any loop,
unless otherwise stated, a path is a simple path. If a path
p starts from node s and ends at node ¢, then p is an s-t
path.

2.2 Optimal Route Queries

An optimal route query returns an SP in a graph G that
satisfies certain constraint. Let # be a constraint imposed
on paths in a graph G. If 6 is null (A), then any path in G is
satisfying wrt 6. The constraint 6 could be dependent on G,
or could be a general condition on paths in G. Examples of
general path constraints include the following: the number
of nodes/edges in a path, or the length of a path must be
less than certain constant c. Instances of constraints that
are dependent on a graph G include: a path cannot pass
through a set of specific edges/nodes in G, or a path must
visit certain edges/nodes in G in a specific order.

An optimal route query, denoted as Q(G,0,s,d), where
G is a graph, s and d are two distinct nodes in G, and
0 is a constraint imposed on paths in G. The answer to
an optimal route query Q(G,0,s,d) is a satisfying s-d path
in G, wrt 6, and no other satisfying s-d path in G with a
shorter length. An empty path is returned if no path in G
satisfies the constraint §. The answer to an optimal route

query is called an optimal route. If 6 is A, then Q(G,0,s,d)
is an SP from s to d in G. Unless confusion arises, we
shall use Q(G,0,s,d) to denote an optimal route query as
well as the answer to the query. The length of an optimal
u-v route in G, denoted as SD(G, 6, u, v), is defined as
I(Q(G,0,u,v)), if an optimal path exists, and co otherwise.
An optimal route query class Q(G,0) is the set of optimal
route queries {Q(G,0,s,d) | s and d are distinct nodes in G}.
The following are examples of optimal route query classes:

e Shortest Path: 6: A.

e Forbidden Nodes/Edges: 6: Nodes(Edges) in a
path cannot be in a specific set S of nodes (edges, re-
spectively) in a graph G.

e c-autonomy: #: An edge in a path cannot have a
length greater than a.

e k-stops: 0: There are exactly k-1 edges in a path.

e Travelling Salesman: 6: A path passes each node
in N exactly once, where N is a subset of nodes in a
graph G.

e n-consecutive Nodes: #: Any n consecutive nodes
in a path must be of the different colors, where n > 2,
assuming that nodes in G are colored.

e Hypothetical Weight Changes: 0 is defined with
respect to a graph G’, where G’ is obtained by applying
a set of edge weight changes to G.

The a-autonomy and k-stops optimal route query classes
are proposed and studied in [11], while a generalization of
Travelling Salesman which is called Trip Planning Query
(TPQ) is discussed in [5].

3 Related Work

We survey some existing related work in Section 3.1. Since
this work is based on a disk-based SP algorithm, we briefly
discuss it in Section 3.2.

3.1 Previous Work

A framework is presented in [10] to address the issue of how
to evaluate various types of spatial queries in the presence
of a road network. The query classes investigated include
k-N N, range, distance-join, and closest-pairs queries. To
efficiently access nodes and edges in a network, the adja-
cency lists of the nodes closed in space are placed in the
same disk page. To support queries that explore the spa-
tial properties of a road network, an R-tree is constructed
for the minimal bounding rectangles of the polylines in the
network. With this framework, algorithms are proposed to
answer the above-mentioned query classes. However, this
work does not focus on route queries nor their evaluation.

Given a large set of points, and assuming that the dis-
tance between a pair of points is their Euclidean distance,

the authors in [11] formulate and solve the a-autonomy
and k-stops shortest path queries in spatial databases. To
solve these problems, algorithms with pruning are intro-
duced which optimize the search space. However, it is not
clear how their techniques can be extended effectively to
network environment in which the distance is given as the
path length.

A class of optimal route queries known as Trip Planning
Query (TPQ) is introduced and investigated in [5]. Given a
set of points P, where each point belongs to a specific cate-
gory, a source and a destination, T'P(Q retrieves the best trip
that passes through at least one point from each category.
This problem is known to be N P-hard. In this work, the
authors propose several fast approximation algorithms for
TPQ. A number of approximation algorithms with various
approximation ratios are proposed and investigated. For
different instances of the problem, one can choose the algo-
rithms with the best approximation ratio. Since all these
are approximation algorithms, an optimal trip is, however,
not guaranteed.

Work has been done on efficient evaluation of SP queries
on massive graphs. Several methods have been proposed to
solve the SP problem under the disk-based framework. See
for instance [1, 7, 3, 8, 2]. To solve the scalability problem,
all of them use the graph partitioning technique, and con-
sist of a pre-processing and a query evaluation phases. A
distinct feature of all these approaches is to use data mate-
rialization to speed up the query evaluation process. Dur-
ing the pre-processing, a graph is first divided into a set of
“fragments” which are stored on a disk. Each fragment is
small enough to be loaded into the main memory, and is a
unit of transfer from the disk to the main memory. Because
a graph is massive, some pre-computations are performed
on these fragments, and the resulting information is mate-
rialized, commonly on some disk-based structures. Having
pre-processed the network, the system is ready to evaluate
SP queries. During the query evaluation phase, these meth-
ods make full use of the pre-computed data to reduce the
execution time and I/O accesses.

3.2 An SP Query Evaluation Algorithm

Since our proposed optimal route query evaluation algo-
rithm is derived from an algorithm called DiskSP in [2, 3],
we briefly outline the framework and the algorithm here.

3.2.1 Graph Partitioning, Fragments,
Graphs and Sketch Graphs

Super

A graph G is assumed to be too large to be main-memory
resident. It is first partitioned into a collection of fragments
before queries are posted to the database. A fragment is
a connected sub-graph such that an edge connecting two
nodes in a fragment precisely when the two nodes are con-
nected by the same edge in the original graph G. A partition
P(G) of a graph G = (V, E, w) is a collection of fragments
{FA =W, E1, w1), ..., Fy = (Vp, Ep, wy,)} such that U;

Vi=V,U; E; = E, and Vf Ve€Ey, wy(e) = w(e). The
resulting partition is stored in a disk-based structure, and
is called a fragment database.

Nodes in a fragment of a partition are divided into two
disjoint sets: the boundary nodes and the interior nodes.
A node is a boundary node if it belongs to more than one
fragment, otherwise it is an interior node. An important
property of an interior node in a fragment F' is that it is
adjacent only to nodes in F'. If two distinct fragments Fj
and F; are sharing at least one boundary node, then they
are said to be adjacent to each other, and the set of bound-
ary nodes shared by them is called a boundary set, denoted
by BS[F;, F;]. Figure 1(a) shows a network is partitioned
into six fragments with sever boundary sets. For instance,
the subgraph containing nodes 0 to 10 forms a fragment Fy.
Likewise, the subgraph for nodes 10 to 20 constitutes an-
other fragment Fy. The boundary set BS[Fp, F1] consists
of nodes 8 and 9.

Conceptually, once a graph is partitioned, one can ap-
ply a route query evaluation algorithm to it, by reading
in fragments and their auxiliary data structures from the
disk whenever they are needed, and swapping them out
when their usefulness expires. However, this brute-force
method may not be effective, especially if the search space
is huge. For some classes of route queries, query evalu-
ation can be speeded up by pre-computing some optimal
distances. Given a route query class Q(G,0), and for each
fragment F' in a partition, a distance matriz is created to
record the distance of a local optimal path from one bound-
ary node to the other. That is, for each pair of distinct
boundary nodes u and v, the values SD(F, 6, u, v) and
SD(F, 6, v, u) are recorded in a distance matrix. All these
matrices collectively are called a distance (matrixz) database
for the query class Q(G,0). The distance database for a
query class Q(G, 0) of a graph partition P(Q) is denoted as
DMDB(P(Q),Q(G, 9)), or DMDB(Q(G, 0)), if the partition
is understood from the context.

Given a partition P(G) (of a graph G) and a query class
Q(G,0), boundary nodes and their pre-computed optimal
distances in fragments give rise to a super graph for Q(G,0).
A super graph for a partition is a graph with boundary
nodes as its nodes and two nodes are connected by an edge
precisely when they are in the same fragment. Nodes and
edges in a super graph are called super nodes and super
edges, respectively. The length of a super edge (u, v) in
a fragment F' is SD(F, 0, u, v). The super graph for the
partition in Figure 1(a) is shown in Figure 1(b). However,
the lengths of super edges are not given explicitly. Super
graphs capture the connectivity of boundary nodes, and
can be used to find an SP between two boundary nodes in
a partition.

(d) A Sketch Graph

Figure 1: An Example

Formally, a super graph for a query class Q(G,0), de-
noted as SG(P(G), Q(G,0)) = (Vs, Es, ws), of a graph par-
tition P(G) = {Fy = (W1, E1,Wh), Fs, ..., F,} is a directed
graph and has the following properties: Vi = {vp|3F;, vp
is a boundary node in F;}, E; = {(vi,vj)r,|3Fk,vi #
v; and they are boundary nodes in F}, and V e;;€F;,
wg(ej)=ws((vi, vj) 7,)=SD(Fi,0,v;,v;). If the partition is
understood from the context, from now on, a super graph
for an optimal query class is denoted as SG(Q(G, 6)).

Another useful concept is called sketch graphs. Sketch
graphs are used to prune the search space. The connectiv-
ity of boundary sets in a partition can be captured with a
sketch graph. Boundary nodes in a partition can be grouped
into boundary sets. For instance, the set of boundary nodes
shared by (distinct) fragments Fyy and F; in Figure 1(a), de-
noted as BS[Fp, F1], is the set of boundary nodes 8 and 9.
The sketch graph consists of boundary sets as its nodes, and
an edge from a node to another node if both nodes are in
the same fragment. The edge lengths in a sketch graph are
optionally specified. The sketch graph, with no edge lengths
specified, for the partition in Figure 1(a) is shown in Fig-
ure 1(d). Formally, a sketch graph K = (Vi, Ei, wy) of a
graph partition P(G) ={F1, F» ,..., F,,} is a directed graph
and has the following properties: Vi = {v, | vq corresponds
to some boundary set BS[F;, Fj}, Ex = {(vi,vj)r,| v; and
v; correspond to some distinct boundary sets in some frag-
ment F,, p € [1,n]}, and wy, is defined whenever is needed
and is undefined otherwise.

Example 3.1 Suppose we have a road system, abstractly
represented as a graph and is partitioned as shown in Fig-
ure 1(a). Edges denote street blocks and are bi-directional.
To facilitate the evaluation of route queries, materialization
of data is required. A way to speed up the search process
is to store the shortest distance between pairs of boundary
nodes in a fragment. The shortest distances are material-
ized and stored in a DMDB(Q(G,A)). To evaluate an SP
query, an augmented super graph is constructed. An aug-
mented super graph for an SP query Q(G,A,s,d), denoted
as ASG(Q(G,A,s,d)), is a super graph augmented with the
source and destination fragments. Figure 1(c) is an aug-
mented super graph for source node 0 and destination node
28.

Given an augmented super graph ASG for an SP query
@, we can search for an SP p for @) by searching on ASG
with an algorithm like Dijkstra’s. Once p is found, the ac-
tual SP from source to destination can be found by replac-
ing each super edge in p with the corresponding SP in the
fragment involved. A super graph can be implicitly rep-
resented by the source and destination fragments, and the
DMDB(Q(G,A)). Since path-finding algorithms, like Dijk-
stra’s, process nodes locally, a matrix can be read into main
memory whenever is needed. Clearly, each processed node
still has some auxiliary data associated with it. This data
must be stored in some disk-based data structure. Thus,
the above method of finding an SP, which is called DiskSP
in [2, 3], is scalable to a very large graph. |

In this method, there are two phases: pre-processing

phase in which a graph is partitioned and distances of some
SP’s are computed, and query processing phase in which
queries can be posted to the system, and answers are com-
puted and returned to the user. We now describe the two
phases in more detail, assuming that we are given an SP
query class Q(G,A).

3.2.2 Pre-Processing

With the help of an R-Tree, an arbitrary large graph G
can be partitioned into a set of fragments. Fragments are
stored on disks, and each is accessed as a unit during query
processing. During the pre-processing phase and after the
fragment database is created, the distance database DMDB
and the sketch graph for the query class Q(G,A) are con-
structed.

3.2.3 Query Processing

An SP query is evaluated by an algorithm called DiskSP. We
describe conceptually how an SP query is evaluated here.
Given an SP query Q(G,A,s,d) and the distance database
DMDB(Q(G,A)), DiskSP evaluates a query in two steps:
skeleton path finding and skeleton edge filling.

In the skeleton path finding phase, a disk-based variant of
Dijkstra’s algorithm is invoked to compute an SP p from s
to d in an augmented super graph ASG(Q(G,A,s,d)). Con-
ceptually, an augmented super graph is obtained by merging
the source fragment S and the destination fragment D into
the super graph. Because of the size of ASG(Q(G,A,s,d)),
it is not physically constructed. Instead, the source and
destination fragments are main-memory resident, and the
corresponding boundary nodes and their distance matrices
are read into main memory, whenever a part of the aug-
mented super graph is processed. The s-d path p found in
the first step is called a skeleton path. A skeleton path may
contain edges from the super graph, and they are called
skeleton edges. Each skeleton edge in fact represents an SP
in some fragment for the two boundary nodes.

In the skeleton edge filling phase, for each skeleton edge of
p, the actual SP in the corresponding fragment is computed,
and then merge these paths into a complete path from s to
d, which is the SP to query Q(G,A,s,d).

3.3 Optimization and Search Space Prun-
ing

Algorithm DiskSP, like Dijkstra’s, suffers from the prob-
lem that many nodes are needlessly searched, in finding a
skeleton path. This results in higher I/O cost and execu-
tion time. Pruning techniques are introduced to reduce the
search space during the skeleton path finding phase. Two
sketch graph pruning algorithms were introduced; one is
based on the boundary set distance matriz (BSDM) and the
other is based on x-hop graphs (XHOP) which results in two
SP evaluation algorithms DiskSPpspy and DiskSPxpop.

With these pruning techniques, a BSDM and z-hops graphs
are pre-computed in the pre-processing phase.

With the introduction of pruning, an SP query evalua-
tion algorithm consists of three phases: sketch graph prun-
ing, skeleton path finding, and skeleton edge filling. In
DiskSPgspy and DiskSPx gop, the first phase is handled
by a sketch graph pruning algorithm, while the last two
phases are implemented by invoking DiskSP.

4 QOur Contribution

In this work, we first show that DiskSP can be general-
ized to evaluate other optimal route queries. More specifi-
cally, we prove that certain classes of optimal route queries,
which we call constraint preserving (CP), can be evaluated
very fast with a unified route query evaluation algorithm.
CP optimal route queries include many real-life optimal
route queries. The CP optimal route query classes will
be defined in Section 4.1. The generalized DiskSP, which
we call DiskCP, will be discussed in Section 4.2. In Sec-
tion 4.3, we show that two sketch graph pruning algorithms
[2] mentioned in Section 3.3 can be improved and extended
to prune sketch graphs for CP optimal route queries. In
Section 4.4, we discuss several techniques that reduce the
execution time and I/O cost for finding skeleton paths in
DiskCP. The new algorithms, with improved sketch graph
pruning and with all optimization techniques incorporated,
are called DiskCPgspar and DiskCPxgop.

4.1 CP Optimal Route Queries

It has been shown that SP query evaluation benefits signif-
icantly from distance materialization [2]. We now define a
set of optimal route query classes that can be evaluated very
fast with this method. To our best knowledge, the proposed
algorithm is the first disk-based algorithm that can be used
to evaluate classes of optimal route queries. Moreover, this
set of optimal route query classes is the largest that can
be evaluated very fast with distance materialization by a
unified algorithm.

Consider the n-consecutive nodes query class. If a path
p in G has fewer than n nodes, then p is not considered to
be well-defined, and we said p is not in the domain of the
constraints. A path p is satisfying wrt 8 if p is in domain of
f and is evaluated to true wrt 6. 6 is said to be constraint
preserving (CP) wrt G, if (i) given any satisfying path p
wrt 6 in G, any sub-path g of p is also satisfying wrt €, and
(ii) given any sequence of connected paths p1, pa,. .., p, in
G, where n > 0, such that each path p; satisfies 6, then the
path p=p1¢ p2o...0 p, also satisfies 0, where ¢ is the path
concatenation operator. Two consecutive paths are said to
be connected if the end point of first is the start point of the
second. A sequence of paths are connected if each consec-
utive pair is. The definition of CP captures the essence of
when a query class can be evaluated fast under the graph
partitioning framework with distance materialization. It re-

mains to be seen if a fast algorithm can be found for classes
of non-CP queries.

An optimal route query class Q(G,0) is said to be con-
straint preserving (CP) if 8 is CP wrt G. Clearly, CP opti-
mal route query classes are a subset of optimal route query
classes. Not every optimal route query class is CP. For
instance, k-stops [11], trip-planning [5], and n-consecutive
nodes query classes, where k and n > 3, are not CP, and
thus cannot be evaluated with the proposed algorithm. On
the other hand, SP, forbidden edges/nodes, a-autonomy
[11], 2-consecutive nodes, and some of hypothetical weight
changes query classes are CP. The reason that CP route
query classes can be evaluated effectively is due to the fol-
lowing properties.

Corollary 4.1 Let Q(G,0) be a CP optimal query class,
and p be a path in G. The path p is satisfying wrt 0 iff
every edge in p is satisfying wrt 6.

Proof Follows from the definition of CP optimal route
query classes. |

Let Gy be a graph obtained from G by removing all edges
not satisfying wrt 8. We call Gy, G’s transformed graph (wrt
0). Let P(G) be G’s partition. Let the partition obtained
by removing all unsatisfying edges from P(G), denoted as
P'(Gy), be the transformed partition (wrt 8) of P(G). By
construction, there is a 1-1 correspondence between frag-
ments in P(G) and P'(Gy). Let F and F’ be a correspond-
ing pair of fragments from P(G) and P’(Gy), respectively.
Then F’ is obtained from F by removing all unsatisfying
edges. To simplify the discussion, we assume from now on,
whenever we talk about G and its transformed G’, their
partitions are P(G) and P’(Gy), respectively.

Corollary 4.2 Let Q(G,0) be a CP optimal query class, p
be a path in G, and Gy be G’s transformed. The path p is
satisfying wrt 0 in G iff p is a path in Gy.

Proof Follows from Corollary 4.1 and from the definition
of G’s transformed. |J

By Corollary 4.2, finding an optimal route in G is the
same as finding an SP in the transformed graph Gy. This
implies the problem of finding optimal routes for CP query
classes can be reduced to the problem of finding shortest
paths with distance materialization.

Corollary 4.3 Let G be a graph, Q(G,0) be a CP opti-
mal route query class, and Gy be G’s transformed. Then
(i) DMDB(Q(G,0)) and DM DB (Q (Gy,A)) are identical,
and (it) SG(Q(G,0)) and SG(Q(Gg,A\)) are the same.

Proof By assumption on the partitions for G and Gy, the
set of boundary nodes and boundary sets in both partitions
are identical. Consider any pair of boundary nodes s and ¢
in a pair of corresponding fragments F and F’. By the con-
struction of a transformed partition and by Corollary 4.2,
an (local) optimal route s-t in F is a (local) SP in F’. Thus,

SD(F, 0, s, t) and SD(F, A, s, t) are the same. Since
the sets of boundary nodes in the corresponding fragments
are identical, DM DB(Q(G, 0)) and DM DB(Q(Gy,\)) are
same. It follows that SG(Q(G,0)) and SG(Q(Gy,A)) are
identical. ||

4.2 DiskCP

As in DiskSP, DiskCP accepts seven parameters: s, d, S,
D, F, M, K. Nodes s and d are source and destination, re-
spectively, and S and D are their corresponding fragments.
F and M are the fragment database and distance database
for the query class Q(G,0), respectively. K is a (pruned)
sketch graph which is used to guide or limit the search of a
skeleton path in evaluating a query. K is produced in the
sketch graph pruning phase. DiskCP is a generalization of
DiskSP since M is more general in DiskCP. In DiskSP, M
is a distance database for the query class Q(G,A), while the
input M to DiskCP is a distance database for a CP optimal
route query class Q(G,0).

Given an SP query Q(G,A,s,d), DiskSP can be consid-
ered as a Dijkstra’s applied to the augmented super graph
ASG(Q(G,A,s,d)). DiskCP is a generalization of DiskSP,
and can be considered as a Dijkstra’s applied to an aug-
mented super graph ASG(Q(G, 0, s, d)), where Q(G,0) is a
CP optimal route query class. However, there is one more
change to DiskSP to obtain DiskCP: after a node in the
source or destination fragment is closed, DiskSP relaxes all
adjacent edges. However, in DiskCP, after a node in the
source or destination fragment is closed, instead of relaxing
all adjacent edges, only those satisfying adjacent edges (wrt
0) are relaxed. Adjacent edges considered include edges
in the source and destination fragments, and super edges
in the super graph. By construction, each super edge de-
notes an optimal path in some fragment, thus, each super
edge is satisfying (wrt 6). DiskCP is a generalization of
DiskSP, and is obtained with the above-mentioned modifi-
cation from DiskSP.

We are now ready to show that DiskCP correctly evalu-
ates CP optimal route queries. Conceptually, given a CP
optimal route query Q(G,0,s,d), DiskCP computes a skele-
ton path by applying Dijkstra’s, starting from s, to an aug-
mented super graph ASG(Q(G, 6, s, d)). Let p be a skeleton
path obtained from s to d in the augmented super graph
ASG(Q(G, 0, s, d)). We claim p is a skeleton path of the
answer Q(G,0,s,d).

Let G be a graph, and G’ it’s transformed. Consider
the augmented super graphs for queries Q(G,0,s,d) and
Q(Gg,A,s,d). By Corollary 4.3, the augmented super graphs
ASG(Q(Go, A, s, d)) and ASG(Q(G, 6, s, d)) differ only on
the unsatisfying edges (wrt) in the source and destination
fragments. That is, if we remove all unsatisfying edges in
the source and destination fragments from ASG(Q(G, 9, s,
d)), the two augmented super graphs are identical.

Consider now we apply DiskSP to ASG(Q(Gy, A, s, d)),
and invoke DiskCP to ASG(Q(G, 0, s, d)). Recall that
DiskCP is obtained from DiskSP by relaxing only satisfying

edges. This implies that the set of edges in source and des-
tination fragments that can be relaxed by both algorithms
are identical. Therefore, p is a skeleton path returned by
DiskSP on ASG(Q(Ge, A, s, d)) precisely when p is a skele-
ton path returned by DiskCP on ASG(Q(G, 6, s, d)).

Corollary 4.4 Let Q(G,0,s,d) be a CP optimal route
query. DiskCP correctly evaluates Q.

Proof Follows from the above argument, and from the cor-
rectness of DiskSP. |}

4.3 Sketch Graph Pruning

It is necessary to prune a graph in order to minimize the
search space. Two techniques were proposed in [2] to prune
a sketch graph before a skeleton path is found. These
techniques can be extended naturally to CP optimal route
queries. Both techniques require some distance materializa-
tion: Boundary Set Distance Matriz (BSDM) and z-hop
sketch (X HOP) graphs, respectively. These data are com-
puted in the pre-processing phase. Given a pair of bound-
ary sets in a sketch graph, BSDM contains an upper and a
lower bounds on the shortest distances between nodes in the
pair. Likewise, an x-hop sketch graph can be used to derive
an upper bound and a lower bound on the shortest distances
between nodes in any pair of boundary sets. Given a CP
query class, instead of finding SPs in the pre-computation,
optimal routes are computed. With this modification, it
can be proven that BSDM and z-hop sketch graphs prun-
ing can be generalized to any CP query class. During the
sketch graph pruning, both algorithms in [2] prune bound-
ary sets by searching the whole sketch graph. Instead of us-
ing an exhaustive search, we propose algorithms that based
on the BFS which optimizes the pruning process. We illus-
trate the BFS on BSDM with the following example.

Example 4.1 Figure 2 provides an example of the im-
proved sketch graph pruning based on BSDM. Given a
query @ and a boundary set BS, the table (which can be
derived from the fragments and BSDM) gives the lower
bounds from s to (any vertex in) BS and from (any vertex
in) BS to d. Likewise, an upper bound U(Q) from s to d
can be computed and assumed to be 13.

First, check the adjacent boundary sets of s, BS[Fy, F]
and BS[Fy, Fi] in source fragment Fy, where L(Q, BS|[Fp,
FQ]) = L(S, BS[FQ, FQ])+L(BS[F0, FQ], d)=17> U(Q)=13
and L(Q, BS[FQ, Fl]) = L(S7 BS[F{), Fl])+L(BS[F0, Fl],
d)=11<U(Q)=13. Hence, prune BS[Fy, F:]. Then,
check the adjacent unvisited boundary set of BS[Fy, Fi],
which is BS[Fy, F3|, and L(Q, BS[F1, F3]) = L(s, BS[F},
F5])+L(BS[F1, F3], d)=15>U(Q)=13. Thus, BS[F}, F5] is
pruned. After BS[Fy, F3] and BS[Fy, Fz] are removed, no
shortest path is available from s to other unvisited bound-
ary sets. Consequently, we can prune them without com-
puting any lower bounds. After pruning, BS[F,, F}] is the
only boundary set in the sketch graph. With the pruning
approach in DiskSPpspa [2], we need to compute 7 lower

bounds, whereas with the new BFS method, and in this
example, only 3 lower bounds are calculated. ||

——————— B s B | LESd)
Fa

| FalFe 7 7 3
| BSFa 3 5 12
| BSUF 12 3
| B, 7 1 B
: & BSUF5 Fd 14 15
EZLEZ B5Fs 7 16 12
| ES[Fa 73 B 13
| Uigy=13
|
| 5
|

as
| Eur. 4.
I Fo
|
[
| =)
|
L BS[Fy,

BFS tree

Figure 2: Sketch Graph Pruning With BSDM

Given a query Q(G,0,s,d), the z-hop sketch graph prun-
ing algorithm in [2] computes an upper bound on the length
of Q(G,0,s,d). After that, for each boundary set Y in the
sketch graph, compute a lower bound L(Q(G, 0, s, d), Y),
and see if the lower bound is greater than the upper bound.
If it does, Y is pruned from the sketch graph. These lower
bounds are derived from two shortest path trees (SPT’s)
which are in turn computed from a source-augmented z-
hop a-sketch graph SASG and a destination-augmented
z-hop a-sketch graph DASG. The two SPT’s contains all
nodes in the sketch graph. The x-hop sketch graph prun-
ing can be optimized, without exhaustively computing all
lower bounds. Once an upper bound U(Q(G, 6, s, d)) on
the length of Q(G,0,s,d) is known, the computation of the
two SPT’s for the lower bounds can be optimized by com-
puting two partial SPT’s as follows:

1. Given a SASG and starting from the source, compute a
partial outgoing SPT until the first closed node whose
distance is just greater than U(Q(G, 0, s, d)). Let us
mark the set of closed nodes in this partially computed
SPT as candidates.

2. Given a DASG and starting from the destination, com-
puting an incoming SPT by relaxing and closing only
nodes that are marked as candidates in SASG. For
each closed node Y, compute the lower bound L(Q(G,
0, s, d), Y). If the lower bound is greater than the
upper bound, mark Y as non-candidate in DASG, else
mark it as candidate. It can be proven that only candi-
date boundary sets in DASG need to be searched for
an optimal query.

4.4 Techniques for Fast Skeleton Path
Finding

Another contribution of this work are several techniques for
a faster computation of a skeleton path.

4.4.1 Query Super Graph

Under this framework, sketch graph pruning is the first
phase in finding an optimal path. During the pruning phase,
an outgoing (local) SPT SPT; rooted at source s in source
fragment S, and an incoming (local) SPT, rooted at des-
tination d in destination fragment D are first computed.
Hence, the optimal distances from s to any vertex in S,
and the optimal distances from any vertex in D to d have
been calculated. These computed optimal distances could
be used to facilitate the second phase, the skeleton path
finding phase.

Given an optimal query Q(G,0,s,d), we can build a query
super graph for the query from the super graph as the fol-
lowing:

1. Add the new nodes s and d into the super graph, if
they are not already there.

2. For each boundary vertex v in S, insert a super edge
from s to v, if it is not already there, into the super
graph with distance SD(S, 0,s,v).

3. For each boundary vertex u in D, insert a super edge
from u to d, if it is not already there, into the super
graph with distance SD(D, 6, u,d).

4. When s and d are in the same fragment, insert a super
edge from s to d, if it is not already there, into the
super graph with distance SD(S, 6, s, d).

The differences between an augmented super graph and
a query super graph lie in the source fragment and the des-
tination fragment. The former includes all nodes and edges
in S and D, while the latter contains only the outgoing su-
per edges of s inside S, and only the incoming super edges
of d inside D. Computing a skeleton path in a query super
graph is faster than that in its corresponding augmented
super graph.

4.4.2 Successor Fragment Relaxation

Given a CP query Q(G,0,s,d), conceptually, DiskCP applies
Digkstra’s algorithm on the (pruned) query super graph to
compute a skeleton path from s to d. It iteratively selects a
vertex u, with the minimum optimal distance from s, among
all open vertices in the (pruned) super graph, adds it into
a closed vertex set, then retrieves all adjacent edges of u
and does relaxation on them. If u is a boundary vertex,
then all adjacent super edges of u are retrieved as well. Let
BS|[Fy, F5] be the boundary set holding u, which is selected
and closed in some i iteration. Obviously, all boundary
vertices in fragments F; and Fy (except u) are u's adjacent
vertices in super graph and are relaxed in the i*" iteration.

Let a skeleton path ps be {e1, es, ..., e,), where m>2.
Let e;_1= (vz, vy)F, and e;=(vy, v2)F,,, where ;1 and ¢;
are skeleton edges, for some i€[2, m]. The vertex sequence
(vz, vy, v;) is & sequence of boundary vertices. Then, the
predecessor of boundary vertex v, in path p, is v, and the
successor of v, is v,. Likewise, the adjacent fragments F},
and Fj are said to be predecessor fragment and the succes-
sor fragment of vy, respectively.

Given a CP query Q(G,0,s,d), there is a nice triangle
inequality property for any boundary vertices z,y,z in a
fragment F: SD(F,0,x,y)+SD(F,0,y,z) >SD(F,0,x, z).
This property follows from the fact that, given a CP query
class, the existence of optimal paths z-y and y-z implies
the existence of a satisfying path z-z. Let u be a boundary
vertex in a fragment F. Assume that p is a skeleton path
from s to u. Let F' be the predecessor fragment of u on a
skeleton path p. With the triangle inequality property, we
can prove that it is unnecessary to relax the outgoing super
edges of u inside its predecessor fragment F. The way to
prove this claim is to show that, even if those edges were
relaxed, the optimal distance of the head of a relaxed edge
will not be improved. We denote z.distance as the potential
optimal distance from source s to a vertex x in a given graph
G. Once z is closed, z.distance = SD(G, 0, s, x).

Lemma 4.5 Given a CP optimal route query Q(G,0,s,d),
suppose we apply Dijkstra’s algorithm, starting from source
s, to an augmented super graph or to a query super graph.
Suppose in the ith iteration of Dijkstra’s algorithm, a bound-
ary vertez u is selected to be closed, where i € [2,n], and n
is the number of iterations in the algorithm. Denote p as
the skeleton path computed so far from source s to u in the
graph. Let e;_1=(v, u)p, be the last edge in p, and e;_1 is
a skeleton edge. Then it is unnecessary to relax any super
edge of u inside F; in the it" iteration.

Proof Assume the boundary vertex v is closed in the ;"
iteration. Obviously the fragment F; is the successor frag-
ment of v on p and we have 1<j<i. When v is closed,
we do relaxation on all outgoing super edges of v, includ-
ing those inside Fj, in the j** iteration. Hence, during
the relaxation process of v in the ;¥ iteration, for any
boundary vertex x in Fy, if SD(G, 6, s,v)+SD(F;,0,v,x) <
x.distance, then x.distance is updated to SD(G, 0, s,v) +
SD(F;,0,v,x). As a result, at the end of the j* iter-
ation, z.distance <SD(G,6,s,v) + SD(F},0,v,x). Since
j<i, in the i*" iteration, we still have z.distance <
SD(G,0,s,v) + SD(F;,0,v,z). According to the trian-
gle inequality property, SD(F;,0,v,x2) < SD(F;,0,v,u) +
SD(Fy,0,u,z). Since SD(G,0,s,u) = SD(G,0,s,v) +
SD(F;,0,v,u), we have z.distance < SD(G,0,s,v)
+ SD(F,0,v,x) = SD(G,0,s,u) — SD(F,0,v,u) +
SD(Fy,0,v,2)<SD(G,0,s,u) + SD(F},0,u,z). Conse-
quently, u is not the predecessor of a boundary vertex x
in its predecessor fragment F; on any skeleton path from s
to . Thus, it is unnecessary to relax any outgoing super
edge of u inside Fj. |

When a node u is closed and its adjacent nodes are re-
laxed, the adjacent super edges are retrieved by reading in
matrices in the DMDB. Computation is done on u’s adja-
cent nodes to update their potential distances. With the
concept of successor fragments, some of these adjacent su-
per nodes and super edges are not retrieved. As a result,
computation is reduced. The I/O accesses of the DMDB
could potentially be reduced. However, the cache size has
much influence on the improvement since the distance ma-
trices involved could be in the cache if it is of a reasonable
size.

4.4.3 Dynamic Boundary Vertex Pruning

Algorithms in [2] select a boundary vertex or a vertex
inside the source fragment or the destination fragment
to be closed, and then relax its outgoing edges itera-
tively. However, we observe that when a boundary vertex
v€Y is selected, where Y is the boundary set holding v,
and if v.distance+L(Y,d,Q(G,0))>U(Q(G, 0, s, d)), where
L(Y,d,Q(G,0)) and U(Q(G, 6, s, d)) are the lower bound
from Y to the destination d and an upper bound on s-d
path, respectively, then any optimal route from s to d will
never go through v, and thus v is eligible to be pruned. It is
worth noting that the lower bounds and upper bounds have
been computed during the sketch graph pruning phase. In
addition, as we will prove later, all currently non-closed ver-
tices of Y can be also pruned. Since this technique reduces
the number of boundary nodes that need to be closed, it
has the advantages of reducing both the skeleton path com-
putation time and DMDB accesses.

Lemma 4.6 provides the correctness proof of the dynamic
boundary vertex pruning.

Lemma 4.6 Let vertex u be the closed boundary vertex in
the it" iteration of the DiskCP algorithm, where i€[2, n]
and n is the number of iterations in the algorithm. Let Y
be u’s host boundary set. If u.distance+L(Y, d, Q(G,0))
>U(Q(G, 0, s, d)), then u and all the currently non-closed
vertices in Y can be pruned.

Proof After u is closed in the it iteration, w.distance

is SD(G, 0, s, wu). In addition, SD(G, 6, wu,
d)>L(Y,d,Q(G,0)). Hence, we have SD(G, 6, s, u)+SD(G,
0, u, d) >udistance + L(Y,d,Q(G,0))> U(Q(G, 0, s,
d))>SD(G, 0, s, d). Consequently, the length of any path
from s to d via u is greater than SD(G, 0, s, d); that is,
u is eligible for pruning. Let v be a non-closed boundary
vertex of Y in the i" iteration of DiskCP. SD(G, 0, s, v)
must be greater than or equal to u.distance, because u is
closed before v is. Thus, SD(G, 6, s, v)+SD(G, 6, v, d)
>u.distance+L(Y,d,Q(G,0)) >U(Q(G, 0, s, d))>SD(G, 0,
s, d). Therefore, v can also be pruned. |

5 Experiments

Section 4.3 presents improved versions of sketch graph prun-
ing, and the resulting query evaluation algorithms are called

DiskCPpspy and DiskCPx gop, respectively. Section 4.4
describes two optimization techniques to improve the run-
ning time and I/O cost of finding a skeleton path. Let
us call the algorithm with all these sketch graph pruning
and optimization techniques incorporated DiskCP. That is,
DiskCP could either be DiskCPgspps or DiskCPxpgop, de-
pending on the sketch graph pruning algorithm used, and
with all optimization techniques incorporated.

Since there is no comparable algorithm, DiskCP is com-
pared with a main-memory and a disk-based CP algorithms
without any data materialization. We shall call them the
main-memory brute-force (MMCPpr) and the disk-based
brute-force (DiskCPgr) CP route query evaluation algo-
rithms. We briefly outline these brute-force algorithms in
Section 5.4. We first describe the environment of the ex-
periments in Section 5.1, and then present the experimental
results in Sections 5.2 to 5.4.

5.1 Environment, Data, and Query Sets

The PC for testing is a Pentium IV 1.6 GHz system with
1GB DDR, and the hard drive is an Ultra ATA /100 at 7,200
rpm. The operating system is Microsoft Windows Server
2000 with SP4. All algorithms are implemented with Java
1.4.1.

The road system of Connecticut, denoted as CT, from
Tiger/Line file [12] is chosen as our first test case. It consists
of around 190,000 edges and 160,000 nodes. CT is small
enough to be loaded into the main memory and yet large
enough to test the proposed main-memory and disk-based
algorithms. To test the scalability of the proposed disk-
based algorithms, the road system of eastern five states,
which is denoted as Fasts, is used as the second test case.
East5 is composed of the road systems of Connecticut, Mas-
sachusetts, New Jersey, New York, and Pennsylvania. It
consists of more than three million edges and two and half
million nodes. To make a homogeneous environment, we
set the Java Virtual Machine (JVM), for CT and FEastb
test cases, to 512MB and 1GB, respectively. It has been
shown that, for DiskSP, the optimal fragment size for CT
and East5 are 1000 nodes and 2500 nodes, respectively [2].
On average, each such a CT fragment occupies 145KB while
an Eastd fragment is about 272KB. These fragment size
databases are used in the experiments. The size of the frag-
ment databases for CT and for Eastb are 20MB and 315MB,
respectively, while the size of distance databases DMDB for
CT and for Eastb are 2 MB and 40 MB, respectively. Be-
cause the sketch graph pruning algorithms are designed for
small and large graphs, for CT, the algorithm DiskCPgspns
is called while for Eastb, DiskCPxgop is invoked.

For DiskCP, the most I/O intensive structure is DMDB
and its cache size is set to 25%. Since at most two frag-
ments are needed during query evaluation, the cache size of
a fragment database is set so that at most two fragments, at
any time, are main-memory resident. All other data struc-
tures consume a relatively small amount of memory, and
their cache sizes are set to 100% [2].

10

Queries with different ranges are investigated, and they
are: long, medium, and short. The long-range queries are
more than 66% of the longest possible shortest distance in
the graph, the short-range ones are less than 33%, while the
medium-range ones are between 33% and 66%. Each query
set is randomly generated, and the number in a set will be
given later in each experiment. Each testing result in this
work is the average of all queries in a query set; each query
is executed once.

5.2 Sketch Graph Pruning Evaluation

In Section 4.3, two improved algorithms on sketch graph
pruning are proposed. In this section, we evaluate their
performances by comparing with the exhaustive approaches
proposed in [2]. All CP route query classes should benefit
from sketch graph pruning. As explained in Section 4.2,
all CP query classes can be reduced to the SP query class.
Thus, SP query class is used in this experiment. The result
obtained for SP query class should carry over to other CP
route query classes. Since all pruning algorithms, given
an optimal route query and the same pre-computed data,
produce the same pruned sketch graph, we evaluate the
pruning algorithms on their execution times. It is worth
noting that the graph involved in sketch graph pruning is
main-memory resident.

All these pruning algorithms, given an optimal route
query, require the computation of an upper bound and nu-
merous lower bounds. Since the cost of computing the up-
per bound is the same for all algorithms, they differ on the
cost of lower bound computations. We shall denote each
such a computation a lower bound computation. The exe-
cution time of a pruning algorithm is proportional to the
number of lower bound computations, and thus it is used
in evaluating different pruning algorithms. Each query set
consists of 100 randomly generated queries. Since the origi-
nal sketch graph pruning algorithms as proposed in [2] em-
ploy an exhaustive search, while our proposed pruning algo-
rithms are based on the BFS, we shall denote them, in this
section, as exhaustive and BFS, respectively. Table 1 shows
the performances of different pruning algorithms in term of
the number of lower bound computations. The experimen-
tal result in Table 1 shows that, with our proposed BFS
pruning algorithms, the number of lower bound computa-
tions are reduced drastically. The reduction varies from
30% for long-range queries to 80% for short-range queries.

BSDM| Short| Med.| Long| XHOP| Short| Med.| Long
Exh. | 694 | 694 | 694 | Exh. | 6132 | 6132 | 6132
BFS 114 | 219 | 399 | BFS 1174 | 3027 | 4364

Table 1: Average Number of Lower Bound Calculations
Per Skeleton Path Computation With a BFS and With an
Exhaustive Search

5.3 Skeleton Path Finding Techniques
Evaluation

In Section 4.4, we propose three techniques to improve the
performance during the skeleton path finding phase, and
they are: (i) We propose to conduct the skeleton path com-
putation on a query super graph (QSG); rather than on
an augmented super graph (ASG). (ii) Instead of relaxing
all outgoing super edges of a closed boundary vertex, we
propose to relax only the outgoing super edges of a closed
boundary vertex in its successor fragment (SF). (iii) We
introduce a dynamic pruning (DP) of boundary vertices.

In order to determine the effect individually, we inves-
tigate them separately. Since the proposed techniques are
for improvement on the skeleton path finding, the discussion
in this subsection will concentrate on this particular aspect
only. For execution time, the dominant costs are graph-
related and queue operations. For I/O cost, the most sig-
nificant is the accesses to DMDB. Each query set consists
of 100 randomly generated queries.

CcT Short | Med. | Long | Eastb5 | Short | Med. | Long
ASG 15236 | 25382 | 34303 | ASG 113972 264979 368811
QSG 7628 15977 | 23589 | QSG 88786 | 223174 315415

Table 2: Average Number Queue Operations Per Skele-
ton Path Computation With Augmented Super Graph and
With Query Super Graph

The advantages of using a query super graph, instead of
an augmented super graph, in computing a skeleton path
are that there is no ‘merging’ of source and destination frag-
ments with the super graph, and the size of the graph in-
volved is likely smaller. As a result, the algorithm is less
complex, and the computation time is shorter. Table 2
shows the number of queue operations performed by both
algorithms. For CT (East5) data set, the reduction ranges
from 30% (15%) for long to 50% (22%) for short queries.
However, this technique has no influence on DMDB ac-
cesses.

The successive fragment relaxation improves the running
time of a skeleton path computation by reducing the num-
ber of boundary edges that it relaxes. When a closed node
is relaxed, adjacent nodes are accessed, computation and
queue operations are performed on them. Table 3 illus-
trates that, in both CT and East5 data sets, the succes-
sor fragment relaxation technique reduces the number of
times boundary nodes are accessed (which is the same as
the number of times adjacent edges are relaxed) by more
than 40%. Consequently, the skeleton path computation
time is reduced as well. Since the distance matrix for adja-
cent boundary nodes are likely in cache when a boundary
node is closed, this technique does not improve much on the
DMDB accesses.

Dynamic boundary node pruning results in a fewer num-
ber of boundary nodes need to be processed. Table 4 shows
the reduction in the number of closed boundary nodes. It is

11

CcT Short | Med. | Long | East5 | Short | Med. | Long
No 0.07M| 0.15M| 0.22M| No 1.2M | 3M 4.2M
SE SE

\Sﬂléjth 0.04M| 0.09M| 0.13M \Sﬂléjth 0.7M | 1.7TM | 2.5M

Table 3: Average Number (in Millions) of Times Boundary
Nodes are Accessed Per Skeleton Path Computation With
and Without SF Relaxation

worth noting that the number of nodes closed is the num-
ber of iterations in the skeleton path finding algorithm. For
both the CT and East5 data sets, the reduction is about
30%, and is independent of the query type.

CT Short| Med. | Long | East5| Short| Med. | Long
No 320 791 1690 | No 4101 | 11844| 22899
DP DP

With | 226 530 1190 | With | 2966 | 8741 | 16546
DP DP

Table 4: Average Number of Closed Boundary Vertices Per
Skeleton Path Computation With and Without DP

CT Short| Med. | Long | East5| Short| Med. | Long
No 18 36 69 No 108 311 592
DP DP

With | 16 30 57 With | 84 242 452
DP DP

Table 5: Average Number of Distance Matrix I/O Calls Per
Skeleton Path Computation With and Without DP

Fewer number of closed boundary nodes implies shorter
computation time and fewer DMDB accesses. The improve-
ment of the I/O calls to DMDB is illustrated in Table 5. It
shows the reduction of distance matrix I/O calls for CT
(East5) data set ranges from 11% (22%) for short queries
to 17% (24%) for long queries. Thus, this technique reduces
the I/O cost of skeleton path computation, and its benefit
increases proportionally with the size of the graph and the
length of a query.

5.4 Evaluation With Distance Materializa-
tion

In this section, we shall show that DiskCP outperforms, by a
wide margin, both the main memory and disk-based brute-
force algorithms MMCPgpr and DiskCPgp. This shows the
desirability of DiskCP. This also demonstrates that distance
materialization is essential in fast CP route query evalua-
tion. Since Eastb is too large to be main-memory resident,
only DiskCP and DiskCPpp are compared for this data set.

MMCPgp is obtained from main-memory Dijkstra’s with
a slight modification. Given a CP query Q(G,0,s,d), and
after a node is closed during an iteration, instead of relax-
ing all adjacent edges, MMCPgp only relaxes all satisfying
adjacent edges wrt 6. So in effect, MMCPgp is Dijkstra’s
applies to G's transformed Gy. By Corollary 4.2, MMCPgr
correctly computes the answer to a CP query.

Once a graph is partitioned into a collection of fragments,
one can apply a Dijkstra-like algorithm onto fragments to
compute a CP optimal route. In such an algorithm, no pre-
computed data such as distance materialization is used to
speed up the search process. In DiskCPpp, the search for
a path starts from the source by reading in the source frag-
ment and its auxiliary data structure. Nodes are extracted
from the priority queue iteratively. In each iteration, the
extracted node is closed, and all its adjacent satisfying edges
with respect to @ are relaxed.

It takes a relatively long time for brute-force algorithms
to execute a CP query. Since Eastb is significantly larger
than CT, the number of randomly selected queries for a
query set for CT and for Eastb are 30 and 15, respectively.

Three optimal route query classes are chosen in our eval-
uation: SP, forbidden edges, and forbidden nodes queries.
These three sets are chosen because of their importance
and/or potential real-life applications. For forbidden edges
queries, 1% and 0.1% of edges in CT and East5, respec-
tively, are randomly selected to form the forbidden edges
set. No optimal route can pass through any edges in the
forbidden set. For forbidden modes queries, five nodes or
seeds are first selected; one in the center of the graph and
the remaining four locate at the center of the four quad-
rants of the graph. Each of the five seeds selected is used to
generate a cluster of forbidden nodes. Starting with a seed,
a BFS is performed to locate all forbidden nodes in a clus-
ter. The search is terminated when the number of nodes in
a cluster reaches (zxV)/5, where V is the number of nodes
in the graph. The values of z are 0.2% and 0.01% for CT
and Eastb, respectively. For forbidden nodes queries, no
optimal route is allowed to pass through a node in any of
the five clusters.

For DiskCPgpr, we measure the amount of I/O per-
formed on fragment databases and on the auxiliary data
required during its execution. We observe that whenever a
fragment is accessed, its auxiliary data are also retrieved.
Consequently, for DiskCPgpp, the cache sizes for fragment
database and for auxiliary database are set to the same
value.

We experiment several cache sizes for CT and for East5
data sets, and we found the optimal cache sizes for
DiskCPpr with CT and East5 are 50% and 20%, respec-
tively. These cache sizes are used in the rest of the experi-
ments. The cache sizes for disk-based structures in DiskCP
are stated in Section 5.1. Due to the nature of these algo-
rithms, the memory requirement by DiskCPpp are signifi-
cantly larger than that by DiskCP.

Queues are an important part for all these algorithms.
Thus, the number of queue operations performed is a good
indication of the complexity of an algorithm. Consequently,
in addition to execution time, the number of queue opera-
tions are also compared among these algorithms.

12

5.4.1 SP Query Class

Table 6 compares the I/O of the two disk-based CP algo-
rithms: DiskCP (CP) and DiskCPpp(BF). The amount
of I/O by DiskCP for CT (Eastb) data set, relative to
DiskCPgr, are reduced by 91% (95%) for short queries and
95% (97%) for long queries. Thus, DiskCP requires only a
small fraction of I/O accesses in evaluating an SP query
when compared with DiskCPpp.

CcT Short| Med. | Long | East5| Short| Med. | Long

BF 6.5 14.3 | 24.85| BF 92 321 470

cP 0.567] 0.818] 1.283| CP 4.4 9.8 16
Table 6: Average I/O (MB) Per SP Query

Table 7 records the average number of queue operations
by all three algorithms. Relative to MMCPgpr(MM), the
average numbers of queue operations of DiskCP on short,
medium, and long queries on CT data set are reduced
by 85%, 89%, and 88%, respectively. With respect to
DiskCPpr, the reduction of queue operations on short,
medium and long queries on CT (East5) are 91% (95%),
92% (97%) and 92% (96%), respectively.

CT Short| Med. | Long | Eastb| Short| Med. | Long
BF 0.12M| 0.24M| 0.4M | BF 1.5M | 5M 6.8M
cP 0.01M 0.02M| 0.03M| CP 0.07M| 0.16M{ 0.26M]
MM 0.07M] 0.19M 0.29M]

Table 7: Average Number (in Millions) of Queue Operations
Per SP Query

CT Short| Med. | Long | East5| Short| Med. | Long
BF 6.01 12.28 | 20.11 | BF 103 607 820
CcP 049 | 086 | 1.52 | CP 4.02 | 9.1 15
MM | 274 | 437 | 6.00

Table 8: Average Query Evaluation Time (Seconds) Per SP
Query

Table 8 shows the running time for all three algorithms.
The execution time confirms the results obtained in Ta-
bles 6 and 7. Over all query sets, DiskCPpp has the worst
running time while DiskCP performs the best. For CT data
set, the query evaluation time of DiskCP, compared to that
required by MMCPgp, is about 18% for short and up to
25% for long queries. Compared to DiskCPgp, DiskCP re-
quires about 8% of DiskCPgr execution time to evaluate a
query, independent of the query sets. For Eastb data set,
the reduction of execution time is even more dramatic. For
short, medium and long queries, DiskCP requires only 4%,
1.5% and 2%, respectively, of time needed by DiskCPpp.
Thus, with a relatively small amount of distance material-
ization and with the proposed optimization, the CP query

evaluation time and I/O can be reduced drastically. This
result also demonstrates the scalability of DiskCP.

5.4.2 Forbidden Edges Query Class

Table 9 shows the amount of I/O performed by the two
disk-based CP algorithms. The amount of I/O by DiskCP
for CT (Eastb) data set, relative to DiskCPgp, are reduced
by 81% (91%) for short queries and 86% (93%) for long
queries.

CT Short| Med. | Long | Eastb| Short| Med. | Long
BF 6.48 14.26 | 24.9 BF 92.25| 321.4| 449
cprP 1.202 | 2.02 3.49 CcP 8.04 19.45] 33.33

Table 9: Average I/O (MB) Per Forbidden Edge Query

Table 10 records the average number of queue operations
by all algorithms. Relative to MMCPgp, the average num-
bers of queue operations of DiskCP on short, medium, and
long queries on CT data set are reduced by 85%, 89%, and
89%, respectively. With respect to DiskCPgp, the reduc-
tion of queue operations on short, medium and long queries
on CT (East5) are 90% (96%), 93% (97%) and 92% (96%),
respectively.

CT Short | Med. | Long | East5| Short| Med. | Long
BF 0.12M| 0.24M| 0.4M | BF 1.5M | 5M 6.8M
CcP 0.01M| 0.018M0.03M| C'P 0.06M 0.16M| 0.27M|
MM | 0.08M 0.17M| 0.28M]

Table 10: Average Number (in Millions) of Queue Opera-
tions Per Forbidden Edge Query

CT Short| Med. | Long | East5| Short| Med. | Long
BF 6.1 12.4 | 20.9 BF 111 577 942
CcP 075 [105 | 181 | CP 4.65 | 10.6 | 18.3
MM | 2.79 | 4.15 | 5.81

Table 11: Average Query Evaluation Time (Seconds) Per
Forbidden Edge Query

Table 11 shows the running time for all three algorithms.
For CT data set, the query evaluation time of DiskCP, com-
pared to MMCPgF, is about 27% for short and up to 31%
for long queries. Compared to DiskCPpr, DiskCP requires
only 12% for short and 8% for medium and long queries of
DiskCPpr execution time to evaluate a query. For Eastb
data set, the reduction of execution time is even more sig-
nificant. For short, medium and long queries, DiskCP re-
quires only 4%, 2% and 2%, respectively, of time needed by
DiskCPBF.

13

CT Short] Med. | Long | East5| Short| Med. | Long
BF 7.18 | 14.34] 24.9 BF 92.42 | 321.2§ 448.61
cprP 1.21 | 1.95 3.34 CcP 8.15 25.08 | 44.52

Table 12: Average I/O (MB) Per Forbidden Node Query

5.4.3 Forbidden Nodes Query Class

From Table 12, the amount of I/O accessed by DiskCP for
CT (East5) data set, relative to DiskCPpp, are reduced by
83% (91%) for short queries and 87% (90%) for long queries.

CcT Short| Med. | Long | East5| Short| Med. | Long
BF 0.13M| 0.24M| 0.4M | BF 1.5M | 5M 6.8M
cpP 0.01M| 0.02M| 0.03M| CP 0.06M| 0.2M | 0.36M|
MM | 0.08M 0.17M| 0.28M

Table 13: Average Number (in Millions) of Queue Opera-
tions Per Forbidden Node Query

Table 13 records the average number of queue operations
by all three algorithms. Relative to MMCPpgF, the average
numbers of queue operations of DiskCP on short, medium,
and long queries on CT data set are reduced by 86%, 90%,
and 89%, respectively. With respect to DiskCPpp, the re-
duction of queue operations on short, medium and long
queries on CT (Eastb) are 91% (96%), 93% (96%) and 93%
(95%), respectively.

CcT Short| Med. | Long | East5| Short| Med. | Long
BF 6.67 | 124 | 209 | BF 106 574 866
CcpP 0.577] 0.852| 1.57 | CP 4.3 12.2 | 214
MM | 2.79 | 4.12 5.8

Table 14: Average Query Evaluation Time (Seconds) Per
Forbidden Node Query

Table 14 shows the running time of different ranges of
queries for all three algorithms. For CT data set, the query
evaluation time of DiskCP, relative to MMCPpgr, is about
21% for short and up to 27% for long queries. Compared to
DiskCPgr, DiskCP requires only 9% for short and 8% for
long queries of DiskCPpp query evaluation time. For East5
data set, and for short, medium and long queries, DiskCP
requires only 4%, 2% and 3%, respectively, of time needed
by DiSkCPBF.

6 Conclusion

We have studied the problem of how to evaluate classes of
optimal route queries fast by a unified algorithm on a mas-
sive graph. To evaluate a query fast, a graph is partitioned
and distances of some optimal paths are materialized. Un-
der such a setting, we found an algorithm, which we called

DiskCP, that can be used to evaluate classes of optimal
route queries. To our best knowledge, DiskCP is the first
disk-based algorithm that can evaluate classes of optimal
route queries efficiently. The classes of queries that are
evaluated by DiskCP are called constraint preserving (C'P).
CP optimal route queries contain, among others, SP, for-
bidden edges and nodes, a-autonomy, and CP hypothetical
weight changes route query classes. CP also represent the
largest classes of optimal route queries that can be evalu-
ated very fast with distance materialization on a massive
graph. We then turn our attention to the optimization of
the proposed algorithm. With this method, a query is eval-
uated in three steps: sketch graph pruning, skeleton path
finding and skeleton edge filling. There is not much op-
timization can be done in the last phase, and techniques
were found to speed up the evaluation process for the first
two phases. For sketch graph pruning, we generalized exist-
ing pruning algorithms [2] to the CP optimal query classes.
Moreover, we improved the running time by employing the
BFS, instead of an exhaustive search. In finding a skele-
ton path, several optimization techniques were proposed to
reduce the execution time and I/O accesses. Experiments
were conducted and these techniques have been shown to
be effective.

To evaluate DiskCP, we implemented a main-memory
(MMCPgr) and a disk-based (DiskCPgr) CP route query
evaluation algorithms with no data materialization. Three
optimal route query classes were chosen in the test, and
they are SP, forbidden edges and forbidden nodes. To in-
vestigate the scalability of these disk-based algorithms, two
data sets were chosen: a relatively small graph called CT
and a larger graph named East5. We showed empirically
that the proposed DiskCP algorithm outperforms, both in
term of execution time and I/O accesses, the main-memory
and the disk-based algorithms by a wide margin. When re-
spect to CT data set, the execution time of DiskCP ranges
from 18% to 31% that of required by MMCPgr. When
compared with DiskCPgp, the running time (I/O accesses)
ranges from 8% (5%) to 12% (19%) of that required by
DiskCPpr. For Eastb data set, the execution time (I/O
accesses) of DiskCP is about 1.5% (3%) to 4% (10%) of
that needed by DiskCPgp. This shows that DiskCP is de-
sirable and scalable in evaluating C'P optimal route queries.
This also implies that distance materialization is essential in
fast CP route query evaluation, especially when the graph
is large.

The CP optimal query classes can be evaluated fast is
due some pre-computation is done on a graph so that this
information is used to speed up a route query evaluation. It
is an open question to see if and how non-CP query classes
can be evaluated in a similar fashion. This work requires
a graph to be static and the query class to be known in
advance so that pre-processing can be performed on the
query class. Currently, we are investigating on how to relax
these restrictions in fast route query evaluation.

Acknowledgement

14

The authors wish to thank the financial support of the Nat-
ural Sciences and Engineering Research Council of Canada.

References

[1] Agrawal, R. and Jagadish, H.V., “Algorithms for
Searching Massive Graphs,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 6, No. 2, pp.
225-238, April 1994.

[2] Chan, E.P.F. and Lim, H., Ewvaluation and Optimiza-
tion of Shortest Path Queries. VLDB Journal (16:3),
July 2007, pp.343-369.

[3] Chan, E.P.F. and Zhang, N., “Finding Shortest
Paths in Large Network Systems,” Proceedings of the
9th ACM International Workshop on Advances in
Geographic Information Systems, Atlanta, Georgia,
pp-160-166, November 2001.

[4] Guo, L. and Matt, I, “Search Space Reduction in QoS
Routing,” Computer Networks 41(1), pp. 73-88, 2003.

[5] Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G.
and Teng, S-H, “On Trip Planning Queries in Spatial
Databases,” Proceedings of the 9th International Sym-
posium on Spatial and Temporal Databases, pp. 273-
290.

[6] Korkmaz, T., and Krunz, M., “Multi-Constrained Op-
timal Path Selection,” Proceedings of INFOCOM 2001,
pp-834-843.

[7] Jing, N., Huang Y.W. and Rundensteiner, E.A., “Hi-
erarchical Encoded Path Views for Path Query Pro-
cessing: An Optimal Model and Its performance Eval-
uation,” IEEFE Transactions on Knowledge and Data
Engineering, Vol. 10, No. 8, pp. 1-23, May/June 1998.

[8] Jung, S. and Pramanik, S., “An Efficient Path Com-
putation Model for Hierarchicallly Structured Topo-
graphical Road Maps,” IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 14, No. 5, pp.1029-
1046, September/October 2002.

[9] Juttner, A., Szviatovszki, B., Mecs, 1., and Rajko,

Z., “Lagrange Relaxation Based Method for the QoS

Routing Problem, Proceedings of INFOCOM 2001,

pp.859-868.

Papadias, D., Zhang, J., Mamoulis, N. and Tao, Y.,

“Query Porcessing in Spatial Network Databases,”

Proceedings of VLDB, 2003, pp. 802-813.

Terrovitis, M., Bakiras, S., Papadias, D., and Moura-

tidis, K., “Constraint Shortest Path Computation”,

Proceedings of the 9th International Symposium on

Spatial and Temporal Databases, pp. 181-199.

Tiger/Line Files, US Department of Commerce Eco-

nomics and Statistics Administration, Bureau of Cen-

sus, 1998.

Vazirgiannis, M and Wolfson, O., “A Spatialtempo-

ral Model and Language for Moving Objects on Road

Networks,” Proceedings of the 7th International Sym-

posium on Spatial and Temporal Databases, pp. 20-35,

L.A., CA, July 2001.

[12]

[13]

