Categorization of Implicit Invocation Systems
ROLANDO BLANCO, PAULO ALENCAR
David R. Cheriton School of Computer Science, University of Waterloo

Waterloo, Ontario, Canada N2L 3G1

Technical Report CS-2007-31

Development and maintenance of implicit invocation systems is not as well understood and
supported as the development of explicit invocation systems. The situation is aggravated in sys-
tems that allow the composition of functionality developed by different organizations, potentially
using different programming languages and methodologies. In this document, we categorize the
various ways in which implicit invocation systems can define, bind to, announce, subscribe, and
deliver events. We also categorize the architectures and topologies of implicit invocation systems.
The purpose of the categorization is to increase the understanding of the type of requirements
that these systems impose on software development practices. As the categories are introduced,
documented representative invocation systems are discussed in order to illustrate the types of sys-
tems that fall under each given category. Our categorization applies to systems as varied as active
databases, aspect-oriented applications, and distributed heterogeneous event-based systems.

Categories and Subject Descriptors: D.3.3 [Programming Languages|: Language Constructs
and Features— Procedures, functions, and subroutines; D.1.3 [Programming Techniques]: Con-
current Programming— Distributed Programming; D.2.12 [Software Engineering]: Interoper-
ability—Distributed objects; C.2.4 [Computer-Communication Networks|: Distributed Sys-
tems— Distributed Applications

General Terms: Algorithms, Languanges, Design
Additional Key Words and Phrases: Implicit Invocation Systems, Reactive Systems, Event Pro-
gramming

1. INTRODUCTION

Applications are regularly developed by composing functionality implemented by
modules, classes, and/or programs. The composition of functionality can be done
by procedural abstraction and implicit invocation [Dingel et al. 1998; Notkin et al.
1993]. When composing functionality by procedural abstraction, also referred to as
explicit invocation in this document, names that identify a functional component
are statically bound to the component implementing the functionality. This is the
case of a function in one module invoking another function in another module,
or a program in one computer using a Remote Procedure Call (RPC) to invoke
functionality implemented by a different program on another computer. In contrast,
when composing functionality by implicit invocation, a component announces an
event. This event announcement triggers the invocation of a functional component.
The component announcing the event may or may not be required to know the
name nor location of the component triggered by the event.

Frequently, the composition of functionality by explicit invocation is synchronously
done: the component invoking the functionality is blocked until the invoked func-

University of Waterloo Technical Report CS-2007-31, Pages 1-24.

2 . Rolando Blanco, Paulo Alencar

tionality completes its execution. Implicit invocation is often done asynchronously:
the component invoking the functionality is not blocked while the requested func-
tionality executes.

Explicit invocation of functionality produces applications that are tightly cou-
pled, in the sense that, changes in the name or location of the components providing
functionality may need to be known by the components using the functionality. Im-
plicit invocation, on the other hand, produces applications where the coupling is
reduced. This is because in implicit invocation systems, the providers and users
of functionality can be decided at run time, without requiring a priori knowledge
of their names nor locations. Both, explicit and implicit invocation composition
modes, can be used by the same application. Explicit invocation is generally used
to implement stepwise functionality. Implicit invocation is generally used when an
application needs to react to changes in the environment or within the application
itself.

The reduced coupling between functional components in implicit invocation sys-
tems causes a relaxation in the development and maintenance constraints imposed
on the functional components in the system. Development and maintenance con-
straints include the requirement to use a specific programming language or devel-
opment technique. The level of autonomy of the functional components is also
a maintenance constraint. In explicit invocation systems, strict development and
maintenance constraints force the development of homogeneous functional compo-
nents, highly dependent on each other. In implicit invocation systems, on the other
hand, the relaxation of the development and maintenance constraints allow the
implementation of functional components that are autonomous and heterogeneous.

The assumptions developers can make about the functional components in a
system are reduced when the development and maintenance constraints are relaxed,
therefore, reducing the amount of knowledge developers have about the system. The
situation is aggravated in systems with large number of functional components,
running in different computers/devices. Such systems are expected in ubiquitous
computing environments [Weiser 1993], as well as web applications integrating a
large, or unpredictable, number of applications [Geihs 2001; Rosenblum and Wolf
1997].

As observed in [Miihl et al. 2006], hierarchical structuring mechanisms available
when developing applications with explicit invocation do not exist for the develop-
ment of applications that use implicit invocation. In the case of UML [Booch et al.
2005], the treatment of implicit invocation is limited to annotating class diagrams
and using interaction diagrams to model how system components react to events.
Fiege [Fiege 2005] proposes to use event visibility as a structuring abstraction in
implicit invocation systems. The visibility of an event determines the components
that can produce and react to the event. Fiege’s proposal does not include method-
ologies for the identification and modeling of the structural and scope properties of
an implicit invocation system.

Although it is clear what constitutes composing functionality by implicit invoca-
tion, it is not clear in how many different facets that composition can be done. In
this document we first look at previous proposals for categorizing implicit invoca-
tion systems. We then propose a categorization that combines and extends previous

University of Waterloo Technical Report CS-2007-31

University of Waterloo Technical Report CS-2007-31 : 3

published categorizations. Section 3 looks at whether components share or not a
program space. Section 4 categorizes systems based on how events are defined,
generated, and consumed. Section 5 looks at how the event model is implemented.
In section 6, based on our categorization, we discuss some of the requirements
that must be met by software engineering methodologies for the development and
maintenance of implicit invocation systems.

2. RELATED WORK

Notkin el al [Notkin et al. 1993] enumerate key design considerations that arise when
extending traditional languages with implicit invocation. These design considera-
tions are: (a) the vocabulary used to define events and the location of the event
definition; (b) the information that is associated to events; (c) how and when are
events bound to the functional components that process them; (d) whether events
are announced explicitly or implicitly, and if events are explicitly announced, what
procedures exist to announce the events; (e) whether events are delivered to one
or all functional components interested in the event; (f) the number of threads of
control that exist in the system. Although intended for single program-space ap-
plications, most of the design considerations discussed in [Notkin et al. 1993] apply
to multi-program implicit invocation systems as well.

A categorization of multi-program invocation systems is done by Meier and Cabhill
in [Meier and Cahill 2005]. Meier and Cahill look at the event model and event
service of a system as the basis for a taxonomy of distributed event-based pro-
gramming systems. The event model refers to the view of the event system an
application developer must have in order to develop an event-based application. In
essence, the event model specifies how an application subscribes to events, and how
it produces and delivers the events. The event service refers to the middleware that
implements the event model.

Meier and Cahill propose to classify the event model in distributed implicit in-
vocation systems as peer-to-peer, mediator, and implicit. In a peer-to-peer event
model, functional components announcing and consuming events communicate di-
rectly with each other. In a mediator event model, the communication is made via
one or more mediator components. In an implicit event model, functional compo-
nents consuming events subscribe to a particular event type rather than to another
functional component or mediator.

The event service, is categorized by Meier and Cahill according to its organization,
interaction model, and features. The organization of the event service determines to
the location of the system components. The interaction model is the communication
path over which the communication between the system components takes place.
The event service features can be functional and non-functional. The functional
features are the event propagation model, event type, event filtering, component
mobility, and composition of events. Non-functional features include quality of
service (QoS), event ordering, system security, and failure mode.

Most of the work in [Meier and Cahill 2005] focuses on the communication and
structural properties of the implicit invocation system, whilst the work in [Notkin
et al. 1993] focuses on the design options made to produce the event model for the

University of Waterloo Technical Report CS-2007-31

4 . Rolando Blanco, Paulo Alencar

Program Space: Event Model: Event Model Implementation:
e Centralized Event Definition e Architecture
e Distributed Event Parameters/Attributes e Topology

Event Binding e Location of Event of Filtering

Event Announcement
Event Subscription
Event Delivery
Event Persistence

Event Notification

Fig. 1. Major Categorization of Implicit Invocation Systems

system. Neither work provides a classification that is precise enough to categorize
the key properties of interest in most implicit invocation systems. [Notkin et al.
1993] lacks categories that would be relevant to distributed implicit invocation sys-
tems, while many of the categories in [Meier and Cahill 2005] are made from an
architectural-only point of view. With the purpose of providing a general catego-
rization of implicit invocation systems, we combine and complement [Notkin et al.
1993] and [Meier and Cahill 2005] into a extended categorization summarized in
Figure 1, and discussed in the remainder of this document. The extended cate-
gorization will be used to identify the key properties that need to be considered
when studying the development, verification, and evolution of implicit invocation
systems.

3. PROGRAM SPACE

The program space category refers to whether or not the functional components
generating and reacting to events share the same program space. Centralized im-
plicit invocation occurs when the functional components are within the same pro-
gram space. Distributed implicit invocation occurs when the components run on
different program spaces, possibly on different computers.

Examples of centralized implicit invocation system include the Abstract Win-
dow Toolkit’s (AWT) Java Delegation Event Model [SUN-AWT 1997], Aspect]
[Kiczales et al. 2001], and the Ada extension proposed by Garlan and Scott [Garlan
and Scott 1993]. In the Java Delegation Model, events are objects belonging to a
java.util.EventObject superclass. Events are dispatched from a source object to
a listener object that has registered its interest in the event. In AWT, both source
and listener objects are part of the same program space.

AspectJ is a general-purpose Java implementation of aspect-oriented program-
ming (AOP) [Kiczales et al. 1997]. In AOP, functional components called “advice”
are invoked when a program reaches certain execution points, known as pointcuts.
In AspectJ, both the aspect code and the base code triggering the aspects share
the same program space.

In [Garlan and Scott 1993], interfaces for Ada packages are extended with the
declaration of the events the package generates. The implicit invocation extensions
are precompiled into code that executes in the same program space as the rest of
the program.

Examples of distributed implicit invocation systems are the CORBA Event Ser-
vice [CORBA-ES 2004], Hermes [Pietzuch 2004], Information Bus [Oki et al. 1993],
the Cambridge Event Architecture (CAE) [Bacon et al. 2000], the Scalable Internet

University of Waterloo Technical Report CS-2007-31

University of Waterloo Technical Report CS-2007-31 : 5

Event Model:

e Event Definition:
— Type of Declaration:
o Fixed event vocabulary
o Static event declaration
o Dynamic event declaration
o No event declaration
— Location of Declaration:
o Centralized declaration of events
o Distributed declaration of events
Event Parameters/Attributes
Event Binding
Event Announcement
Event Subscription
Event Delivery
Event Persistence

e e 00000

Event Notification

Fig. 2. Event Definition Sub-Category

Event Notification Architecture (SIENA) [Carzaniga et al. 2001], Gryphon [Banavar
et al. 1999; Aguilera et al. 1999], and Elvin [Segall and Arnold 1997].

4. EVENT MODEL

The event model determines how events are defined, generated, and consumed. In
[Meier and Cahill 2005], the event model is categorized structurally, based on the
interactions between components in the event system. In contrast, [Notkin et al.
1993] focuses on the design options available for the definition, generation, and
delivery of events. The result is a categorization of some of the essential attributes
in an event model.

The categorization of the event model here presented is based on the work in
[Notkin et al. 1993]. Specifically, sub-categorization of the event definition (Section
4.1), event parameters (Section 4.2), and event binding (Section 4.3) are exactly
those in [Notkin et al. 1993]. The event announcement sub-categorization (Section
4.4) is partially from [Notkin et al. 1993], as well as the delivery model in the
sub-categorization of the event delivery (Section 4.6). All other categorizations,
although not in [Notkin et al. 1993], are here considered in order to understand the
essence of the event model in an implicit invocation system.

4.1 Event Definition

4.1.1 Fized Event Vocabulary. There is a fized event vocabulary when the set
of events that can be defined is determined by the system (Figure 2). Examples
of implicit invocation systems with a fixed event vocabulary are the the signal
notification system used in UNIX for inter-process communication [CSRG 1986],
the Java Message Service (JMS) [SUN-JMS 2002], and AOP ([Kiczales et al. 1997]).

In UNIX based operating systems, a process can announce a signal to another
process. Signals are used to notify a process that some condition has occurred
[Stevens 1992]. A previously registered callback routine, referred to as a signal
handler, is invoked by the process receiving the signal announcement. A signal is
identified by a positive integer, and only a predetermined set of numbers represent
valid signals.

Messages are generated and received by functional components in JMS. Messages
must be of one of six types: Text Message, Map Message, Bytes Message, Stream
Message, Object Message, and Message. No new message types can be defined.

University of Waterloo Technical Report CS-2007-31

6 . Rolando Blanco, Paulo Alencar

The set of events in AOP corresponds to the points in the execution of a program
where advice can be executed. As previously mentioned, advice is the name given
to the functional component reacting to an AOP event.

4.1.2 Static Event Declaration. When new events can be defined, but the set
of events must be known when the program is generated, the system has static
event declaration. The extension to Ada proposed in [Garlan and Scott 1993] is an
example of static event declaration. In [Garlan and Scott 1993], interfaces for Ada
packages are extended with the declaration of the events the package generates.
The name of the package methods to be invoked when specific events are generated
are also part of the implicit invocation declaration. Figure 3 is an example of such
event definition. In the example, the package Accounts declares that it generates
the event NewCustomer. The Accounts package also declares that it shall be notified
when the event BankPayment is generated. Similarly, the package BankGateway
declares that it generates the event BankPayment, and that it is interested in being
notified when the event NewCustomer is generated.

for Package_Accounts
declare Event_NewCustomer
CustomerNum: Integer,
CustomerName: String (1 .. 30)
when Event_BankPayment => Method_ProcessPayment TransId
end for Package_Accounts
for Package_BankGateway
declare Event_BankPayment
TransId: Integer;
when Event_NewCustomer => Method_InformBank CustomerNum
end for Package_BankGateway

Fig. 3. Event Definition Sub-Category

The event declaration in this Ada extension is then precompiled and Ada-only
code is generated. An executable program is built by compiling and linking the
generated Ada code with the rest of the application code.

4.1.3 Dynamic Event Declaration. When events can be defined at run time,
the system has dynamic event declaration. An example of an implicit invocation
system with dynamic event declaration is Hermes [Pietzuch 2004]. In Hermes, the
functional components that react to events are programs. Programs subscribe and
unsubscribe to events via event brokers. Programs generating events register event
types with the event brokers. Once an event type is registered, a program can
announce events of the registered event type. Event types can be registered and
unregistered dynamically.

4.1.4 No FEvent Declaration. In some implicit invocation systems, events are
announced with no event declaration, for example by just announcing an arbitrary
string or a list of strings. An example of such a system is the Java Event-Based
Distribution Architecture (JEDI) [Cugola et al. 1998]. In JEDI, an event is an
ordered set of strings. The first string corresponds to the event name. The rest
of the strings are the event parameters. JEDI Functional components generating
and receiving events are called “active objects”. An active object announces an
event by invoking the method sendEvent. The sendEvent method receives as its

University of Waterloo Technical Report CS-2007-31

University of Waterloo Technical Report CS-2007-31 : 7

argument the ordered set of strings representing the event. Active objects wishing
to be notified of events, must subscribe to the events they are interested in. An
event subscription specifies the name of the event and, possibly, filtering arguments
on the event parameters.

A system that supports both dynamic event declarations and no event declara-
tions is SIENA [Carzaniga et al. 2001]. SIENA can operate under what the SIENA
creators call “subscription-based semantics” and “announcement-based semantics”.
Irrespectively of the operation mode, an event is a set of typed attributes. Objects
announce events by invoking a publish call. Under subscription-based semantics,
functional components interested in being notified, subscribe to events by invoking
a subscribe call. A filtering expression specifying values for the event attributes is
passed as parameter of the subscribe call. A functional component is notified of
the occurrence of an event if the filtering expression specified in the subscription call
matches the event notified via a publish call. When operating under subscription-
based semantics the SIENA system requires no event declaration. In contrast, when
operating under announcement-based semantics, functional components generating
events, need to register the events they will be generating by invoking an advertise
call. An unadvertise call is used by functional components to inform that a given
event will no longer be generated. Under announcement-based semantics the SIENA
system has dynamic event declaration.

4.1.5 Location of the Event Declaration. When events are declared, the implicit
invocation system may require that all declarations be done at a given specialized
location. In this case, such a system implements centralized declaration of events.
Alternatively, an implicit invocation system may allow the event declarations to
occur at multiple locations. In this former case, the system implements distributed
declaration of events.

An example of an implicit invocation system where the events are declared in
a central location is Yeast [Krishnamurthy and Rosenblum 1995]. In Yeast events
are generated when object attributes change. The system provides a predefined
set of objects and attributes (e.g. Object file, attributes file name, creation
time, modification time, etc). Users can declare new events by defining objects
and their attributes via commands that are executed on the client side. These
declarations are processed and stored by the Yeast server.

An example of an implicit invocation system with distributed event declara-
tion is Hermes [Pietzuch 2004]. In Hermes several event brokers, possibly running
at different locations in the system, process the event registration and subscrip-
tion/unsubscription requests from the functional components generating and pro-
cessing the events.

4.2 Event Parameters

4.2.1 No Parameters. Implicit invocation systems may allow the association of
parameters/attributes to the event (Figure 4). If parameter passing is not sup-
ported, relevant information related to the event must be deduced from the event
name or be retrieved, via global variables, shared memory/database space, explicit
invocation, or any other means by the component reacting to the event announce-

University of Waterloo Technical Report CS-2007-31

8 . Rolando Blanco, Paulo Alencar

Event Model:

e Event Definition

e Event Parameters/Attributes:
— No parameters

— Fixed parameter list

— Parameters by event type
— Parameters by announcement
Event Binding

Event Announcement

Event Subscription

Event Delivery

Event Persistence

Event Notification

Fig. 4. Event Parameters Sub-Category

ment. The signal notification system in UNIX [CSRG 1986] is an example of an im-
plicit invocation system where there are no parameters associated with the events.
Processes using signals, must develop their own protocols for retrieving any relevant
information associated to the occurrence of a signal. Moreover, the protocol used
to retrieve the relevant information is separate from the signal notification system
itself.

4.2.2 Fized Parameter List. Other systems may associate the same fized pa-
rameter list to each event. This is the case of the Java Message Service [SUN-JMS
2002]. All messages in JMS have a message header, a set of message properties,
and a message body. Any application information relevant to the message must
be coded in the message body by the functional component generating the mes-
sage. Functional components receiving the message must know how to decode the
information in the message body. JMS supports the codification of data in the
message body as a string (for example representing an XML document), a list of
attribute/value pairs, a serialized object, a stream of bytes, or a stream of Java
primitive data types.

Another example of a system that associates the same fixed parameter list to
every event is JINI [SUN-JINT 2003]. JINI allows Java objects to be notified of
events occurring on other, possibly remote, objects. Every event has four associated
parameters: (1) an attribute identifying the type of event; (2) a reference to the
object on which the event occurred; (3) a sequence number identifying the instance
of the event type; (4) a hand-back object. The hand-back object is a Java object
that was originally specified by the functional component receiving the event when
the component first registered its interest on the event.

Similarly to JINT, the Corba Event Service [CORBA-ES 2004] supports a “Generic
Event Communication” mode where all events have a single attribute of type any
corresponding to the event data. Functional components in the Corba Event Ser-
vice must agree on how required event information, if any, is coded into the event
data attribute.

4.2.3 Parameters by Fvent Type. In some systems, events are instances of a
certain event type. In this case the set of attributes associated to the event is
determined by the the type of the event. For example, Hermes [Pietzuch 2004] uses
XML Schema specifications [W3C 2004] to represent event type definitions. The
event type definitions are then used in Hermes to type check event subscriptions
and publications. EAOP, the model and tool described in [Douence and Siidholt

University of Waterloo Technical Report CS-2007-31

University of Waterloo Technical Report CS-2007-31 : 9

Event Model:

e Event Definition
e Event Parameters/Attributes
e Event Binding:
— Call Binding:
o Static event binding
o Dynamic event binding
— Parameter Binding:
o All parameters
o Selectable parameters
o Parameter expressions
Event Announcement
Event Subscription
Event Delivery
Event Persistence

Event Notification

Fig. 5. Event Binding Sub-Category

2002] for event-based aspect-oriented programming, is another example of a system
where the number and type of attributes associated to an event are determined by
the type of the event. EAOP has a fixed event vocabulary (see 4.1) with four types
of events: method call, method return, constructor call, and constructor
return. Depending on the type of the event, there are a number of attributes
associated to each event. For example, some of the attributes associated to events
of type method call are the method name, the values of the arguments passed to
the method, and the depth of the execution stack.

CAE, the Cambridge Event Architecture [Bacon et al. 2000], is also an implicit
invocation system where the event parameters depend on the event type. An event
occurrence is represented in CAE as the instance of a given event class. Event types
are defined using an Interface Definition Language (IDL). Functional components
interested in events of a specific class, specify a value or wildcard for each attribute
of the given event class.

4.2.4 Parameters by Announcement. Alternatively, any number of parameters
and their types may be determined at the time the event is announced. In this
case, two different announcements of events of the same type may have different
parameters. An example of such a system is JEDI [Cugola et al. 1998]. In JEDI, an
event is an ordered set of strings. The first string is the name of the event, and the
reminder strings are the event parameters. There is no guarantee that two events
with the same name represent the same event type. Similarly, there is no guarantee
that all announcements of events of the same type are done with same-sized ordered
sets of strings.

4.3 Event Binding

A binding determines which functional components are to be invoked when an event
is announced (Figure 5).

4.3.1 Call Binding. In static event binding, the functional components that re-
act to an event are predetermined at compile time. An example of static event
binding is the proposal made by Garlan and Scott in [Garlan and Scott 1993] to
extend ADA with implicit invocation. As shown in the example in Figure 3, an
event specification language is used to indicate, for each package, the events the
package wishes to be notified about, and the methods that are to be invoked when

University of Waterloo Technical Report CS-2007-31

10 . Rolando Blanco, Paulo Alencar

Event Model:

Event Definition
Event Parameters/Attributes
Event Binding

Event Announcement:
— Announcement Addressability:
o Addressed (directed) events
o Unaddressed (undirected) events
— Announcement Procedure:
o Explicit Announcement:
* Single announcement procedure
% Multiple announcement procedures
o Implicit Announcement
— Announcement Call Model:
o Blocking Announcement:
* Until event received
% Until event processed
o Non-blocking Announcement
Event Subscription
Event Delivery
Event Persistence

Event Notification

Fig. 6. Event Announcement Sub-Category

the event occurs. Hence, the functional components generating the events, and the
functional components reacting to each event, are known at compile time.

In dynamic event binding, bindings between events and functional components
that react to the events can be established or terminated dynamically. Most sys-
tems support dynamic event binding. Examples include Hermes [Pietzuch 2004]
and SIENA [Carzaniga et al. 2001}, In both Hermes and SIENA, the functional com-
ponents that react to events are programs. Programs subscribe and unsubscribe to
events via event brokers.

4.3.2 Parameter Binding. Another classification criteria related to event bind-
ing, is based on how event parameters are translated to subscriber’s parameters.
One option is to pass all parameters in the event to the functional component re-
acting to the event. A different option is to allow a component to select the event
parameters of interest. Alternatively, a component may specify parameter expres-
sions and receive the result of the evaluation of the expressions. All but one of the
reviewed implicit invocation systems that support event parameters choose to pass
all the event parameters to the components reacting to the event. The exception
is the Ada extension in [Garlan and Scott 1993]. In [Garlan and Scott 1993, func-
tional components reacting to events are package methods. The name of the event
parameters to pass to the methods reacting to an event is included as part of the
event declaration. Not all event parameters need to be bound to method param-
eters. As an illustration, consider the example in Figure 3. In the example, the
package Accounts declares the event NewCustomer with parameters CustomerNum
and CustomerName. The method InformBank, in package BankGateway, reacts to
the NewCustomer event and only binds the CustomerNum event parameter to one of
its (method) parameters. The other event parameter, CustomerName, is not bound
to any method parameter.

4.4 Event Announcement

4.4.1 Announcement Addressability. Independently of whether the event bind-
ing is static or dynamic, the events can be addressed or unaddressed (Figure 6).
Addressing of events, also referred to as directing of events, happens when the an-

University of Waterloo Technical Report CS-2007-31

University of Waterloo Technical Report CS-2007-31 : 11

nouncer of the event specifies the functional component that will be notified of the
event. Dingel et al [Dingel et al. 1998] use this type of announcement in their model
for the verification of implicit invocation systems. In [Dingel et al. 1998], functional
components, called methods, send events via an announcement call where the first
argument of the call is the intended recipient of the event, and the second parameter
of the call is the event data itself.

The UNIX signal notification system also requires functional components to di-
rect the events [CSRG 1986]. In UNIX, signals are events with no associated in-
formation. The functional components generating and processing the signals are
called processes. A process is uniquely identified by a numeric process identifier,
and a group of processes is uniquely identified by a numeric group identifier. A
process invokes the system call kill(pid, signal) to send the signal signal to
the process with identifier pid. If 0 is provided as the process identifier, the signal
is sent to all processes belonging to the same group as the process generating the
signal.

The requirement to address events augments the degree of coupling between
event announcers and event consumers. Hence, most implicit invocation systems
have unaddressed event announcement, where the component generating the event
just announces the event and the system is in charge of directing the event to the
components registered for the event.

4.4.2 Announcement Procedure. Systems can also be classified based on whether
there is one or several ezrplicit announcement procedures, or if the announcement
of the event is implicit. Most systems have explicit announcement procedures
that need to be used to generate an event. In some systems there is a unique
“announce” or “publish” procedure or method, while in other systems there are
several announcements methods. For example, Hermes [Pietzuch 2004], provides
two announcement methods named publishType and publishTypeAttr. The first
method announces an event that will trigger the execution of functional compo-
nents that have subscribed to events of the given event type. The second method
triggers the execution of functional components that have subscribed to events of
certain type and with certain attribute values.

In implicit invocation systems with implicit announcement, the event is generated
as a side effect of executing an instruction or procedure. AOP is an example of an
implicit invocation system with implicit event announcement [Kiczales et al. 1997].
In AOP, events are generated when the execution of the program reaches certain
points (method calls, control structures, assignments, etc). Another example of
implicit announcement is active database systems [Cilia et al. 2003]. In active
database systems, functional components, known as database triggers, are invoked
as a side effect of the insertion, deletion, or updating of data in the database.

4.4.3 Announcement Call Model. When an event is announced, the execution
of the functional component announcing the event may be blocked until the event is
received by all functional components to be notified of the event, or until the event
is processed by all functional components receiving the event. Alternatively, the an-
nouncement of an event may not block the execution of the component announcing
the event.

University of Waterloo Technical Report CS-2007-31

12 . Rolando Blanco, Paulo Alencar

Event Model:

e Event Definition
e Event Parameters/Attributes

e Event Binding

e Event Announcement

e Event Subscription:

— No subscription

— Single-event subscription

— Composed-event subscription
e Event Delivery

Event Persistence
o Event Notification

Fig. 7. Event Subscription Sub-Category

In general, centralized implicit invocation system tend to follow a blocking call
model for the announcement of the event, with many of the systems blocking until
the components processing the event finish their processing of the event. Most
distributed implicit invocation systems, on the other hand, provide a non-blocking
call model.

The model and tool for event-based aspect-oriented programming (EAOP) pre-
sented in [Douence and Siidholt 2002] is an example of an implicit invocation system
where the code generating events is suspended until all functional components, ad-
vise in this case, process the event. An execution monitor in EAOP tracks the
events generated during the execution of a base program on which advise has been
defined. When an event is generated, the execution of the base program is sus-
pended and the execution monitor sequentially invokes every advise associated to
the given event. Once each advise has executed, the monitor gives control back to
the base program.

Most active databases support a blocking call model as well. Programs inserting,
deleting, or updating data are blocked until the code reacting to these database
operations (database triggers) complete their execution. An interesting feature
is that, in active database, the changes made to the data in the database, by
the functional components generating the events and the functional components
reacting to the event , are typically part of a single database transaction. Logically,
all or none of the modifications to the database are carried out — independently of
whether the modification was performed by the functional component generating
the event or the functional component reacting to the event.

4.5 Event Subscription

Functional components may or may not be required to register their interest to be
notified when events are announced (Figure 7). If there is no requirement to register
for events, also referred to as “subscribing” for events, event announcements may be
broadcasted to all components in the system. Alternatively, event announcements
may be registered in a shared memory space that is accessed by components wishing
to inquiry if a certain event has been announced. Linda [Gelernter 1985] is an
example of an implicit invocation system where functional components are not
required to announce their interest for events. In Linda, implicit invocation is
done via a shared memory region called the tuple space. Functional components,
processes in the case of Linda, generate tuples that are stored in the tuple space.

University of Waterloo Technical Report CS-2007-31

University of Waterloo Technical Report CS-2007-31 : 13

Other processes monitor the tuple space and can read and, optionally, remove the
tuples that have been added to the tuple space.

Most implicit invocation systems require that functional components register for
the events they wish to be informed about. In systems with single-event sub-
scription, there is a subscription procedure that must be invoked for each event of
interest. In systems with composed-event subscription, a functional component can
express its interest to be notified when a composition of events occurs. In this latter
case, the implicit invocation system provides a method for functional components
to express an event composition condition. When supporting composed event sub-
scription, implicit invocation systems typically provide a language that allows the
specification of temporal conditions on the event occurrences [Carlson and Lisper
2004; Konana et al. 2004; Liebig et al. 1999; Mansouri-Samani and Sloman 1997].

SIENA is an example of an implicit invocation system that supports composed
event subscription. A filtering condition f, on the event type and event attribute
values, can be specified in SIENA as part of the event subscription call. A pat-
tern f1, fo, ..., fn can also be specified, where each filtering condition f; may apply
to a different event type. Such subscription indicates that the functional compo-
nent running the subscription operation shall be notified if events ey, eo, ..., e, are
generated, such that:

e ¢; occurs after e;_1 forall2 <i<n
e The filtering condition f; is true when evaluated for the event e;, with 1 <7 <n

The language proposed in [Konana et al. 2004] for the specification of compos-
ite events allows the identification of a sequence of events that satisfy or violate
timing and event attribute-value constraints. Based on real time logic (RTL), the
specification of conditions of the type “the third occurrence of the event of type e;
after time ¢t must have a value v for attribute e;.attr” are possible in the proposed
language. [Konana et al. 2004] also assumes the existence of data repositories in
the form of relational databases. Hence, conditions on the data stored in the data
repositories are also part of the event composition language.

4.6 Event Delivery

4.6.1 Delivery Model. Once an event is announced, the system must select the
functional components that will receive the event (Figure 8). In single delivery of
events, an event is delivered to only one of the functional components interested in
the event. In full delivery, the event is delivered to all the functional components
interested in the event. Implicit invocation systems implementing addressed events
(Section 4.4), typically support single delivery of events. For example, the UNIX
signal notification system ([CSRG 1986]), operates in single delivery mode when a
signal is sent to a process. Full delivery operation occurs when a signal is addressed
to a group of processes.

Linda [Gelernter 1985], supports both single and full delivery. Events, represented
as tuples in Linda, are stored in a tuple space that is accessible to all functional
components. A component reacting to an event has the option of removing the
event from the tuple space. To guarantee that only one functional component

University of Waterloo Technical Report CS-2007-31

14 . Rolando Blanco, Paulo Alencar

Event Model:

e Event Definition

e Event Parame-
ters/Attributes

Event Binding

Event Announcement
Event Subscription

Event Delivery:
— Delivery Model:
o Single Delivery
o Full Delivery
— Event Filtering:
o Unfiltered Delivery
o Filtered Delivery:
* Type based
* Content based
— Delivery Semantics:
o Exactly once
o At least once
o At most once
o Best effort
e Event Persistence
e Event Notification

Fig. 8. Event Delivery Sub-Category

accesses the event, semaphores and other process synchronization techniques, can
be modeled in Linda.

4.6.2 Fvent Filtering. Some systems allow the filtering of events. In systems
with event filtering, an event is delivered to a functional component only if the
component is interested in the event, and an expression associated with the interest
of the component for the event holds. The expression can be based on the type of
the event, or it can be based on the content of the event. Type based event filtering
is also known as “subject” or “topic” based. Content based filtering is also known
as “attribute” based filtering. As discussed in Section 4.5, some systems allow
event filtering expressions to refer to more than one event [Carlson and Lisper
2004]. These composite event expressions may specify patterns of events and, in
some cases, include temporal constraints [Carzaniga et al. 2001; Konana et al. 2004].
The actual event filtering may occur at central location [Konana et al. 2004], at each
functional component [Oki et al. 1993], or at specialized event servers [Carzaniga
et al. 2001].

4.6.3 Delivery Semantics. An event may be delivered ezactly once, at least once,
at most once, or in best effort, there are no delivery guarantees. Exactly-once
and at-most-once delivery are usually more difficult to implement than the other
options, since the implementation may require the use of transactional protocols.
An important part of the delivery semantics, is whether or not there are order
guarantees in the delivery of events. Some systems may provide order guarantees
within events of a single event type. In these systems it is possible to identify, for
two events of the same type, which one was generated before the other, or whether
both were generated at the same time. Other systems may provide system-wide
ordering guarantees. In this later case, it would be possible to identify, for any two
events, even if not of the same type, which one was produced before the other.

IBM’s Gryphon project [Bhola et al. 2002], implements a protocol that guaran-
tees exactly once delivery if the functional components being notified of the events
maintain their connectivity to the system. The protocol models a knowledge graph
where nodes, named routing brokers, represent functional components in charge of

University of Waterloo Technical Report CS-2007-31

University of Waterloo Technical Report CS-2007-31 : 15

Event Model:

Event Definition

Event Parameters/Attributes
Event Binding

Event Announcement

Event Subscription

Event Delivery

Event Persistence:
— No persistence
— Persistence:
o Until delivered
o Time-to-live
e Event Notification

Fig. 9. Event Persistence Sub-Category

routing events. Arcs in the graph represent filtering conditions on the events. The
filtering conditions are used to split the routing of events between routing brokers.
The graph is dynamically adjusted in case of node/network failures. Further re-
finement of the protocol is presented in [Zhao et al. 2004]. In this later work, the
protocol is extended to guarantee not only exactly once delivery, but ordered deliv-
ery of events matching a single subscription. Functional components named sub-
scription brokers, receive subscription requests from other functional components
in the system wishing to be notified of events. Ordered delivery is accomplished
by associating, with each event generated, a vector containing information for each
subscription request related to the event. Virtual timers at subscription brokers are
used to identify, from a stream of events matching a subscription, the first event in
the stream after which every single event is guaranteed to be delivered, in order,
to the functional component that subscribed to the events. To accomplish this
functionality, the protocol propagates subscription information from subscription
brokers to the functional components generating the events. Event information is
propagated from the functional components generating the events to the subscrip-
tion brokers. In this refinement of the original protocol, routing brokers are in
charge of routing, both, the subscriptions and events.

4.7 Event Persistence

When an event is delivered, the intended recipients of the event may not be available
to receive the event (Figure 9). In this case, the implicit invocation system may
choose to save the event and attempt the delivery at a later time, or it may choose
to abort the delivery of the event to the functional component that is unavailable.
When persistence of events is supported by the system, the event may be maintained
in the system until all intended recipients receive the event. Alternatively, the event
may be maintained in the system until a time-to-live expires. The time-to-live may
be the same for all events, it may be determined by the type of event, or it may be
specified when the event is announced.

Most implicit invocation systems deliver events only to functional components
available at the time the event is generated. Linda [Gelernter 1985] and other
systems based on data repositories are exceptions. In Linda, events represented
as tuples are stored in a common area until they are explicitly removed, either
by the functional component generating the event, or by any functional component
reacting to the event. Similarly, in Oracle’s Advanced Queuing [Oracle 2005], events
in the form of messages are stored in Oracle’s relational database. An expiration

University of Waterloo Technical Report CS-2007-31

16 . Rolando Blanco, Paulo Alencar

Event Model:

Event Definition

Event Parameters/Attributes
Event Binding

Event Announcement

Event Subscription

Event Delivery

Event Persistence

Event Notification:
— Synchronism:
o Immediate notification (synchronous)
o Deferred notification (asynchronous)
— Provision Method:
o Push:
* Wait loop
* Interrupt / Callback
o Pull:
* Blocking notification
% Non-blocking notification

Fig. 10. Event Notification Sub-Category

interval can be individually associated to each generated event. When no expiration
interval is associated with the event, a functional component must explicitly remove
the event from the system.

As illustrated, the delivery semantics (Section 4.6) of the system highly influence
the event persistence supported by the system. With the exception of best effort
delivery, the system must support some kind of event persistence.

4.8 Event Notification

When an event is announced, the components receiving the event may be immedi-
ately notified or, in deferred notification, notified at a later time (Figure 10). When
the system provides immediate notification of events, the events are usually pushed
to the components interested in the the events. The receiving components may im-
plement a wait loop, or their execution may be interrupted by calling a previously
registered callback routine. The UNIX signal notification system [CSRG 1986] im-
plements immediate notification with interrupted execution. When a UNIX process
receives a signal, its execution is interrupted and a previously registered callback
routine is executed. Processes can explicitly ignore notifications of certain signals.
This would be equivalent to a functional component unsubscribing from certain
types of events.

When the event notification is deferred, the functional component may pull the
system for information about any events of interest that may have occurred since
any previous pull call. The pull operation may be blocking or non-blocking. An
example of a system where events are pulled by functional components reacting to
the events is the Corba Event Service Notification CESN [CORBA-ES 2004]. In
CESN, a blocking pull call is used by a functional component to retrieve an event
generated by an event producer. If no events have been generated, the execution
of the functional component is suspended until an event is available. An alternate
try_pull call in CESN may be used when the functional component reacting to
the event does not wish to be blocked in the absence of events. The Java Message
Service JMS [SUN-JMS 2002] also supports blocking event polling. Blocking is
supported via a receive method call. A mode of event pushing is also supported
in JMS via an extra functional component called a message listener. Upon arrival
of an event, the message listener invokes a previously registered call-back method.

University of Waterloo Technical Report CS-2007-31

University of Waterloo Technical Report CS-2007-31 : 17

Event Model Implementation:

® Architecture:
— API
— Native language support
— Precompilation / Code generation
e Topology:
— Client/Server
— P2P
— Mediator:
o Centralized
o Distributed
— Shared Space:
o Tuplespace
o Information Bus
o Event Queue
e Event Filtering:
— At event announcement
— At event delivery
— At event reception

Fig. 11. Event Model Implementation Category

5. EVENT MODEL IMPLEMENTATION

In the classification here presented, the event model implementation is characterized
by the architecture of the event system, the system topology, and the location of the
event filtering. Of these subcategories, the topology and location of event filtering
are inspired by the work in [Meier and Cahill 2005].

5.1 Architecture

5.1.1 API The event model may be implemented as an API that must be
linked to, or loaded by, the components in the system (Figure 11). Examples include
Java’s Abstract Window Toolkit (AWT) Delegation Model [SUN-AWT 1997], .Net’s
Delegation Event Model [DOTNET 2005], Java’s Message Service [SUN-JMS 2002],
and JINT’s Distributed Events Specification [SUN-JINI 2003].

When several implementations of the API exist for different programming lan-
guages, functional components developed in one language can react to events gen-
erated by components developed in another language. Hermes [Pietzuch 2004] is
an example of such a system. In Hermes, functional components generating and
reacting to events link to language dependent API libraries. These functional com-
ponents are called “clients” in Hermes. Brokers in charge of routing events and
subscriptions implement language independent functionality that is accessible via
the client APIs. The actual API calls and exchanged data are represented in Her-
mes using XML Schema specifications [W3C 2004]. The language-dependent APTs
implement a binding layer between the data/functionality represented in XML and
data/functionality available in a given language.

5.1.2 Native Language Support. Some languages provide native language sup-
port to implicit invocation. In this case, functional components developed in one
language may or may not be able to interact with components developed in a dif-
ferent language. FLO [Ducasse 1997|, an object-oriented functional language, is
an example of a programming language with native support for implicit invoca-
tion. FLO supports three object oriented entities: objects, classes, and connectors.
Connectors are special objects that connect other “participant” objects. The main
function of a connector is to manage the message passing between participant ob-
jects. The specification of connectors include information on how each message

University of Waterloo Technical Report CS-2007-31

18 . Rolando Blanco, Paulo Alencar

affects participant objects. In particular, what functionality of the participant ob-
ject must be invoked when a message is delivered to the object. Moreover, if guard
conditions are not met by the messages, connectors have the ability to block mes-
sages from reaching the participant objects. Connectors themselves can participate
in connections managed by other connectors.

5.1.3 Precompilation / Code Generation. Yet another option is to extend pro-
gramming languages. In this latter case, functional components are developed by
combining instructions in a base language with instructions specific to the implicit
invocation extension. The source code containing both types of instructions is then
processed by a precompiler or code generator that generates source code containing
instructions in the base language only. The extension to Ada proposed in [Garlan
and Scott 1993] is an example of such a system (see Section 4.1). Another exam-
ple is Aspect] [Kiczales et al. 2001], where application code containing Java and
AspectJ directives is compiled into a Java-only program. In the CORBA Event
Service [CORBA-ES 2004], an specialized Interface Definition Language (IDL) is
used for the definition of the events and the bindings between events and functional
components. The declarations made with the IDL are then are compiled into stubs
that are linked to programs written in traditional programming languages.

It is possible to have implicit invocation systems where the above techniques
are combined. For example, a system may provide a definition language for the
declaration of events, and an API for the announcement and consumption of events.
In such a system, the declaration of events may be used to generate code that is
linked to the functional components invoking the API.

5.2 Topology

5.2.1 Client/Server. The topology of an implicit invocation system indicates
the types of interactions between the functional components in the system. In a
client/server system, events generated by client functional components are com-
municated to a single server component that reacts to the events. Yeast [Krishna-
murthy and Rosenblum 1995] is an example of such a system. In Yeast, a server
receives notification of attribute changes in non-temporal objects running on client
functional components. When the Yeast server is notified about the change on a
non-temporal object, it decides if the change should trigger an action. This de-
cision is based on event specifications submitted to the server by client functional
components. Actions associated to event specifications are a sequence of commands
that are executed on the computer where the Yeast server runs. Hence, the Yeast
server is, effectively, the functional component determining if an event has been
generated, and if so, it is also the functional component reacting to the event.

The E-Brokerage architecture defined in [Konana et al. 2004] is also an example
of a client/server topology. In this architecture, events are streamed into an event
server. The event server establishes if conditions on the event stream are satisfied.
As previously discussed in Section 4.5, the conditions specify timing and event
attribute-value constraints. Actions associated to a given condition are executed
when the condition is satisfied by the event stream.

University of Waterloo Technical Report CS-2007-31

University of Waterloo Technical Report CS-2007-31 : 19

5.2.2 Peer-to-Peer. In peer-to-peer (P2P) systems, a component announcing an
event interacts directly with the components that react to the event. Similarly, a
functional component wishing to receive events must directly inform the component
generating the events of its interest. An implicit invocation system with P2P topol-
ogy may or may not be implemented on top of a P2P routing system. Similarly,
an implicit invocation system implemented on top of a P2P routing system may or
may not have a P2P topology. Hermes [Pietzuch 2004], for example, is implemented
on top of Pastry [Rowstron and Druschel 2001]. Although Pastry is a P2P routing
system, as discussed later in this section, Hermes itself does not implement a P2P
topology. This is because, in Hermes, functional components generating events do
not interact directly with the functional components reacting to the events.

5.2.3 Mediator. In mediator systems, components announcing and processing
events communicate indirectly via specialized components called mediators. The
mediators process event subscriptions and event announcements, and filter and
dispatch events. Hermes [Pietzuch 2004] is an example of such a system. In Her-
mes components called event brokers process subscription requests and disseminate
events to interested components. A component wishing to announce events regis-
ters with an event broker close-by. The event registration includes a description of
the type of the event and its attributes. The event broker then advertises the event
by providing the event registration when requested by event consumers. Event con-
sumers register their interest on particular events with their closest event broker.
Once the event is registered, the component may announce events of the registered
type to the event broker. The event broken then disseminates the announced event
to the functional components that have registered their interest in the event.

Mediator systems can be further categorized as centralized or distributed. A cen-
tralized mediator system has one or multiple mediators all running on the same
server. In a distributed mediator system, the mediators are running on more than
one computer. Moreover, mediators can be hierarchically organized. If hierarchi-
cally organized, the hierarchical structure is used to propagate event registrations
and announcements.

Jedi [Cugola et al. 1998] is an example of an implicit invocation system with a
centralized mediator. In Jedi, events are delivered via a centralized event dispatcher.
Functional components generating events, communicate the events to the event
dispatcher. Upon communication of an event, the event dispatcher decides what
functional components are interested in the event, and delivers the event to them.
Systems with distributed mediators include SIENA [Carzaniga et al. 2001], Gryphon
[Banavar et al. 1999; Aguilera et al. 1999] and Hermes [Pietzuch 2004].

The system described in [Tam et al. 2003], is an example of an implicit invocation
system with a hierarchical mediator architecture. In this system, event notifications
are multicasted via a tree-like structure of functional components. For a given tree,
the functional component at the root manages subscriptions and notifications of
events of a certain event type. Functional components at the leafs are interested in
receiving notifications when events of the type managed by the root of the tree are
produced.

University of Waterloo Technical Report CS-2007-31

20 . Rolando Blanco, Paulo Alencar

5.2.4 Shared Space. A fourth type of topology occurs when the interaction be-
tween components happens via a shared space. Shared space interaction may take
the form of a tuple space, and information bus, or an event queue. A tuple space is
a collection of tuples that can be accessed by the components of the system [Gel-
ernter 1985]. Tuples can be added, read, and removed from the collection. Reading
of tuples is done by providing a template. Tuples matching the template are re-
turned as the result of the read operation. In an information bus [Oki et al. 1993],
components are linked via a logical communication bus. Events are announced to
the bus and broadcasted to all components.

In an event queue, events are appended to a shared queue when the events are
announced. There may be a unique queue, or a different queue for each event type.
Events may be addressed (Section 4.4) in which case, queue managers are in charge
of delivering the events that are queued. If the events are unaddressed, components
interested in the events must retrieve the queued events. Examples of implicit
invocation systems implementing event queues are IBM’s MQSeries [Gilman and
Schreiber 1996], and Java’s Message Service (JMS) when operating in point-to-point
mode [SUN-JMS 2002].

5.3 Event Filtering

When an implicit invocation system supports event filtering (Section 4.6), the fil-
tering may happen when the event is announced, at a mediator component when
the event is being delivered, or locally at each component registered for the given
event type. In implicit invocation systems where events are produced in high num-
bers or in a constant stream fashion, the performance and location of the event
filtering functionality is critical for the overall performance of the system. Recent
database research on data streams focuses on the filtering functionality for event
streams [Babu and Widom 2001; Plale and Schwan 2003].

Yeast [Krishnamurthy and Rosenblum 1995] is an example of an implicit invo-
cation system where filtering occurs when the event is announced. As discussed
in Section 5.2, a Yeast server component, decides, based on an event specification
that may include filtering conditions, if an event has occurred or not.

Some implicit invocation systems where filtering occurs at mediators include
[Tam et al. 2003] and Gryphon [Aguilera et al. 1999]. In [Tam et al. 2003], a
distributed hash table implementation is used to store indexing information on event
attributes. The indexing information itself may be stored on several nodes in the
system. Event filtering occurs by applying indexing information to verify filtering
conditions. The nodes in the system are the functional components generating and
reacting to events. Hence, the work to filter events is distributed among all the
functional components in the system.

In Gryphon, a functional component generating an event communicates the event
to an assigned event broker. The event broker is then in charge of doing the
event filtering and, based on the results of the filtering, decide which functional
components need to be notified of the occurrence of the event.

In the Information Bus architecture, described in [Oki et al. 1993], each compo-
nent registered for a given event type, locally performs event filtering. The Infor-
mation Bus broadcasts events to all functional components attached to a logical

University of Waterloo Technical Report CS-2007-31

University of Waterloo Technical Report CS-2007-31 : 21

shared area. Functionality local to each component implements the filtering and
decides whether or not to notify the local functional component that reacts to the
events.

6. REQUIREMENTS OF IMPLICIT INVOCATION SYSTEMS

Since there are few systems that compose functionality by implicit invocation only,
most implicit invocation systems use some form of explicit invocation as well.
Hence, methodologies and abstractions developed for explicit invocation systems
are regularly used to model and develop implicit invocation systems. The problem
with this approach, is that the implicit invocation aspect of the application or sys-
tem is not abstracted, modeled and structured as well as the rest of the application.

Moreover, the functionality being composed in an implicit invocation system may
be independently developed and maintained, potentially using different languages
and methodologies. This reduced coupling causes developers to only have partial
knowledge of the functionality of the whole system.

Ideally, abstractions and methodologies for implicit invocation should be appli-
cable to the diverse event models and event model implementations discussed in
this document. They should also address the reduced coupling and heterogeneity
common in some implicit invocation systems. At this time it is not clear what
abstractions should be used to structure implicit invocation systems.

7. CONCLUSIONS

Implicit invocation systems have been categorized based on the way events are
declared, announced, and how functional components subscribe to events. The ac-
tual semantics used in the delivery of the events has been also considered in the
categorization, as well as the implementation options for the implicit invocation
functionality. Figure 12 summarizes the categorization. The goal of the catego-
rization is the identification and understanding of the essential characteristics of
implicit invocation systems.

REFERENCES

AGUILERA, M. K., STROM, R. E., STURMAN, D. C., ASTLEY, M., AND CHANDRA, T. D. 1999.
Matching events in a content-based subscription system. In Proceedings of the 18th ACM
Symposium on Principles of Distributed Computing (PODC). ACM Press, 53-61.

BaBuU, S. AND WiDoM, J. 2001. Continuous queries over data streams. SIGMOD Rec. 30, 3,
109-120.

BAcon, J., Mooby, K., BATEs, J., HAYTON, R., MA, C., McNEIL, A., SEIDEL, O., AND SPITERI,
M. 2000. Generic support for distributed applications. Computer 33, 3, 68-76.

BANAVAR, G., CHANDRA, T., MUKHERJEE, B., NAGARAJARAO, J., STROM, R., , AND STURMAN, D.
1999. An efficient multicast protocol for content-based publish-subscribe systems. In ICDCS
’99: Proceedings of the 19th IEEE International Conference on Distributed Computing Systems.
IEEE Computer Society, Washington, DC, USA, 262.

BHOLA, S., STROM, R. E., BAGCHI, S., ZHAO, Y., AND AUERBACH, J. S. 2002. Exactly-once delivery
in a content-based publish-subscribe system. In DSN ’02: Proceedings of the 2002 International
Conference on Dependable Systems and Networks. IEEE Computer Society, Washington, DC,
USA, 7-16.

BoocH, G., RUMBAUGH, J., AND JACOBSON, 1. 2005. Unified Modeling Language User Guide, The
(2nd Edition) (Addison-Wesley Object Technology Series). Addison-Wesley Professional.

University of Waterloo Technical Report CS-2007-31

22 :

Rolando Blanco, Paulo Alencar

Program Space:

o Centralized
e Distributed

Event Model:

Event Definition:
— Type of Declaration:
o Fixed event vocabulary
o Static event declaration

o Dynamic event declaration
o No event declaration

— Location of Declaration:
o Centralized declaration of events
o Distributed declaration of events

Event Parameters/Attributes:

— No parameters

— Fixed parameter list

— Parameters by event type

— Parameters by announcement

Event Binding:
— Call Binding:
o Static event binding
o Dynamic event binding
— Parameter Binding:
o All parameters
o Selectable parameters
o Parameter expressions
Event Announcement:
— Announcement Addressability:
o Addressed (directed) events
o Unaddressed (undirected) events
— Announcement Procedure:
o Explicit Announcement:

% Single announcement procedure
% Multiple announcement procedures
o Implicit Announcement
— Announcement Call Model:
o Blocking Announcement:
* Until event received
* Until event processed
o Non-blocking Announcement
Event Subscription:
— No subscription
— Single-event subscription

Event Delivery:
— Delivery Model:
o Single Delivery
o Full Delivery
— Event Filtering:
o Unfiltered Delivery
o Filtered Delivery:
+« Type based
* Content based
— Delivery Semantics:
o Exactly once
o At least once
o At most once
o Best effort
Event Persistence:
— No persistence
— Persistence:
o Until delivered
o Time-to-live

Event Notification:
— Synchronism:
o Immediate notification (synchronous)
o Deferred notification (asynchronous)
— Provision Method:
o Push:
* Wait loop
* Interrupt / Callback
o Pull:
* Blocking notification
* Non-blocking notification

Event Model Implementation:

e Architecture:
— API
— Native language support
— Precompilation / Code generation

Topology:
— Client/Server
— P2P
— Mediator:
o Centralized
o Distributed
— Shared Space:
o Tuplespace
o Information Bus
o Event Queue

— Composed-event subscription

Event Filtering:
— At event announcement
— At event delivery

— At event reception

Fig. 12. Categorization of Implicit Invocation Systems

CARLSON, J. AND LISPER, B. 2004. An event detection algebra for reactive systems. In EMSOFT
’04: Proceedings of the 4th ACM international conference on Embedded software. ACM Press,
New York, NY, USA, 147-154.

CARZANIGA, A., ROSENBLUM, D. S.; AND WoOLF, A. L. 2001. Design and evaluation of a wide-area
event notification service. ACM Trans. Comput. Syst. 19, 3, 332-383.

CiLia, M., HaupT, M., MEZINI, M., AND BUCHMANN, A. 2003. The convergence of aop and active
databases: towards reactive middleware. In GPCE ’03: Proceedings of the second international
conference on Generative programming and component engineering. Springer-Verlag New York,
Inc., New York, NY, USA, 169-188.

CORBA-ES. 2004. Corba event service, version 1.2. http://www.omg.org/technology/
documents/formal/event_service.htm. Object Management Group.

CSRG. 1986. Unixz Programmer’s Reference Manual, 4.3 BSD ed. Computer Systems Research
Group, University of California, Berkeley.

Cucora, G., NitTo, E. D., AND FUuGGETTA, A. 1998. Exploiting an event-based infrastructure
to develop complex distributed systems. In ICSE ’98: Proceedings of the 20th international
conference on Software engineering. IEEE Computer Society, Washington, DC, USA, 261-270.

DINGEL, J., GARLAN, D., JHA, S., AND NOTKIN, D. 1998. Reasoning about implicit invocation.
In SIGSOFT ’98/FSE-6: Proceedings of the 6th ACM SIGSOFT international symposium on
Foundations of software engineering. ACM Press, New York, NY, USA, 209-221.

DOTNET. 2005. .NET framework developer’s guide. http://msdn2.microsoft.com/en-us/
library/. Microsoft Corporation.

University of Waterloo Technical Report CS-2007-31

University of Waterloo Technical Report CS-2007-31 : 23

DOUENCE, R. AND SUDHOLT, M. 2002. A model and a tool for event-based aspect-oriented pro-
gramming (EAOP). Tech. Rep. 02/11/INFO, Ecole des Mines de Nantes.

Ducassg, S. 1997. Message passing abstractions as elementary bricks for design pattern im-
plementation. In ECOOP ’97 Workshop Reader, European Conference on Object-Oriented
Programming, J. Bosch and S. Mitchell, Eds. Lecture Notes in Computer Science 1357, 96-99.

FIEGE, L. 2005. Visibility in Event-Based systems. Ph.D. thesis, Department of Computer Science,
Darmstadt University of Technology, Darmstadt, Germany.

GARLAN, D. AND ScotT, C. 1993. Adding implicit invocation to traditional programming lan-
guages. In ICSE ’93: Proceedings of the 15th international conference on Software Engineering.
IEEE Computer Society Press, Los Alamitos, CA, USA, 447-455.

Gemns, K. 2001. Middleware challenges ahead. Computer 34, 6, 24-31.

GELERNTER, D. 1985. Generative communication in linda. ACM Trans. Program. Lang. Syst. 7, 1,
80-112.

GILMAN, L. AND SCHREIBER, R. 1996. Distributed Computing with IBM MQSeries. John Wiley
& Sons, Inc., New York, NY, USA.

KiczaLes, G., HiLsDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J., AND GRrISWOLD, W. 2001.
Getting started with aspectj. Communications of the ACM 44, 10, 59—65.

KiczaLEs, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LoPEs, C. V., LOINGTIER, J.-M., AND
IrwIN, J. 1997. Aspect-oriented programming. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP). Springer-Verlag.

Konana, P., Liu, G., LEg, C.-G., AND W00, H. 2004. Specifying timing constraints and composite
events: An application in the design of electronic brokerages. IEEE Transactions on Software
Engineering 30, 12, 841-858. Member-Aloysius K. Mok.

KRISHNAMURTHY, B. AND ROSENBLUM, D. S. 1995. Yeast: A general purpose event-action system.
IEEE Transactions on Software Engineering 21, 10, 845-857.

LieBiG, C., CiLA, M., AND BUCHMANN, A. 1999. Event Composition in Time-dependent Dis-
tributed Systems. In Proceedings of the 4th IFCIS International Conference on Cooperative
Information Systems (CooplS 99). IEEE Computer Society, 70-78.

MANSOURI-SAMANI, M. AND SLOMAN, M. 1997. Gem: A generalised event monitoring language
for distributed systems. IEE/IOP/BCS Distributed Systems Engineering Journal 2 (June), 96
— 108.

MEIER, R. AND CAHILL, V. 2005. Taxonomy of distributed event-based programming systems.
The Computer Journal 48, 5, 602-626.

MUHL, G., FIEGE, L., AND PiETzUCH, P. R. 2006. Distributed Event-Based Systems. Springer-
Verlag.

NoOTKIN, D., GARLAN, D., GriswoLD, W. G., AND SULLIVAN, K. J. 1993. Adding implicit in-
vocation to languages: Three approaches. In Proceedings of the First JSSST International
Symposium on Object Technologies for Advanced Software. Springer-Verlag, London, UK, 489—
510.

Oki1, B., PFLUEGL, M., SIEGEL, A., AND SKEEN, D. 1993. The information bus: an architecture for
extensible distributed systems. In SOSP ’93: Proceedings of the fourteenth ACM symposium
on Operating systems principles. ACM Press, New York, NY, USA, 58-68.

ORACLE. 2005. Oracle® streams advanced queuing user’s guide and reference 10g release 2 (10.2),
part number b14257-01. http://download-east.oracle.com/docs/cd/B19306_01/server.102/
b14257/toc.htm. Oracle Corporation.

PieTzucH, P. R. 2004. Hermes: A scalable event-based middleware. Ph.D. thesis, University of
Cambridge, Queens’ College.

PLALE, B. AND ScHWAN, K. 2003. Dynamic querying of streaming data with the dquob system.
IEEE Trans. Parallel Distrib. Syst. 14, 4, 422-432.

RoseNBLUM, D. S. AND WOLF, A. L. 1997. A design framework for internet-scale event observation
and notification. In ESEC ’97/FSE-5: Proceedings of the 6th European conference held jointly
with the 5th ACM SIGSOFT international symposium on Foundations of software engineering.
Springer-Verlag New York, Inc., New York, NY, USA, 344-360.

University of Waterloo Technical Report CS-2007-31

24 . Rolando Blanco, Paulo Alencar

RowsTRON, A. I. T. AND DRUSCHEL, P. 2001. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Middleware 01: Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms Heidelberg. Springer-Verlag, Lon-
don, UK, 329-350.

SEGALL, B. AND ARNOLD, D. 1997. Elvin has left the building: A publish/subscribe notification
service with quenching. In Proceedings of the Australia Unix Users Group Conference AUUG97.
Brisbane, Australia, 243-255.

STEVENS, W. R. 1992. Advanced programming in the UNIX environment. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA.

SUN-AWT. 1997. Java awt: Delegation event model. http://java.sun.com/j2se/1.3/docs/
guide/awt/designspec/events.html. Sun Microsystems, Inc.

SUN-JINI. 2003. Jini’s distributed events specification, version 1.0. http://java.sun.com/
products/jini/2.1/doc/specs/html/event-spec.html. Sun Microsystems, Inc.

SUN-JMS. 2002. Java message service (jms) specification, version 1.1. http://java.sun.com/
products/jms/docs.html. Sun Microsystems, Inc.

TaMm, D., Azimi, R., AND JACOBSEN, H.-A. 2003. Building content-based publish/subscribe
systems with distributed hash tables. In Proceedings of the 1st International Workshop on
Databases, Information Systems, and P2P Computing (DBISP2P). Lecture Notes in Com-
puter Science, vol. 2944. Springer-Verlag.

W3C. 2004. W3C xml schema. http://www.w3.org/XML/Schema. World Wide Web Consortium.

WEISER, M. 1993. Some computer science issues in ubiquitous computing. Communications of
the ACM 36, 7, 75-84.

ZHAO, Y., STURMAN, D., AND BHOLA, S. 2004. Subscription propagation in highly-available
publish/subscribe middleware. In Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware. Springer-Verlag New York, Inc., New York, NY, USA,
274-293.

University of Waterloo Technical Report CS-2007-31

