

Support for Collaborative Feature-Based

Product Configuration in Software Product Lines

Marcilio Mendonca, Donald Cowan

David R. Cheriton School of Computer Science, University of Waterloo

Waterloo, Ontario, Canada

{marcilio,dcowan}@csg.uwaterloo.ca

http://csg.uwaterloo.ca/~marcilio

Technical Report CS-2007-30, August 2007

Abstract

In Software Product Lines (SPLs), product configuration is a decision-making process in

which a group of stakeholders indicate the features desired for a particular product (software).

A feature model is normally used to represent the spectrum of available configuration

decisions and thus works as a guide to the configuration process. Although in practice

product configuration is seen as a collaborative activity that involves satisfying stakeholders

with divergent interests and skills, current configuration technology is essentially single-user-

based in which user requirements are interpreted and translated into configuration decisions

by a single role referred to as the application engineer. As a consequence, product

configuration becomes time-consuming and inaccurate especially in the case of large product

lines. This technical report discusses a doctoral research proposal on Collaborative Product

Configuration (CPC). The research aims at investigating the major challenges of realizing

CPC in SPLs and, subsequently, at developing an approach that explicitly addresses the

problems identified. CPC concepts, algorithms, and tool support are discussed and some

preliminary experimental results are shown. The research is expected to bring contributions to

the SPLs field by paving the way for a deeper understanding of collaborative product

configuration, and ultimately by fostering the development of newer and better approaches in

the future.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
2/54

1 Introduction

Software Product Lines (SPLs) [1][3] is a product-family approach to software development that

capitalizes on reusable assets as a means to improve software quality while reducing production costs and

shortening time-to-market [2]. Unlike traditional start-from-scratch software development approaches

where new artifacts are produced for every new product, SPLs foster a reuse-driven construction process

based on two major phases namely product-line engineering (or domain engineering) and product

engineering (or application engineering). At product-line engineering a set of reusable core assets (e.g.

UML class diagrams, source code templates, test cases) are developed to address a whole problem domain

rather than a single problem, and thus expose some variation points, i.e., points for customization. In the

product-engineering phase available core assets are customized according to user requirements in order to

produce individual software products. Currently, SPLs is a very active area of research where the

combined effort of the academia and the industry has proven highly beneficial to its development.

Product configuration is a key product engineering activity in SPLs in which the features desired for a

product are chosen. Features are commonly arranged in hierarchical structures known as feature models

[6] that provide a convenient place for storing product configuration decisions. After a set of configuration

decisions are made a product specification is produced that will commonly serve as input for automated

product generation tools.

In practice, the spectrum of product configuration decisions represented in the feature model commonly

spans over several technical and non-technical knowledge domains thus demanding decision makers with

different backgrounds (e.g. customer, product manager, software engineer, database administrator) to

actively participate in the configuration process. Furthermore, collaborative product configuration

scenarios may also have to enforce a specific authority scheme in which, for example, the decisions of a

particular configuration role (e.g. product manager or customer) should prevail over other roles’ decisions

(e.g. technical decisions of a database manager or a software engineer). In fact, as well pointed by Krueger

[4], “the decision-making role for product creation may be an engineering role such as an application

engineer ... or it may be a non-engineering role such as a product marketer, a sales person, or the

customer. The role should be given to the person who can make the best decisions at the best time”. As a

consequence, coordination of activities becomes a major issue in product configuration in order to

minimize decision conflicts and enforce the correctness of product specifications. For instance, decision

conflicts arise when different configuration actors, i.e., the people directly involved in the configuration

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
3/54

decision-making, make decisions that can not hold together typically because they violate one or more

configuration constraints.

Furthermore, large product lines may exhibit thousands of features (sometimes refereed to as feature

explosion [7]) thereby requiring about the same number of configuration decisions to be dealt with.

Teamwork in such scenarios is highly desirable to cope with the general complexity of the configuration

process. In addition, other factors such as proper authority and specialized knowledge may require people

with complementary backgrounds to participate in the configuration process. In other scenarios products

may be configured in multiple stages [8] in which in each stage a partial configuration of the product is

produced as in the case of software supply chains [8]. The rationale for splitting product configuration in

multiple stages can be related to time, roles and targets [8].

As a consequence, understanding how to proper support collaborative work in the context of product

configuration turns out to be a critical issue in SPLs especially with regards to its adoption by software

organizations that already have a high demand for efficient and coordinated teamwork. Similarly

important is to understand what makes current SPLs technology inappropriate for collaborative product

configuration and how to provide useful extensions.

1.1 Problem Statement

Although in practice product configuration may be seen as a collaborative process where people with

different expertise and authority levels actively contribute in building a single and consistent product

specification, current product configuration approaches in SPLs do not explicitly support collaborative

configuration. In fact, current configuration technology is essentially single-user-based where user

requirements are interpreted and translated into configuration decisions by a distinct configuration role

generally known as application engineer. This process is error-prone and time-consuming especially when

large feature models with hundreds or thousands of features are considered. In addition, stakeholders’

participation in the process is essentially passive, i.e., limited to providing requirements to application

engineers and hoping that useful features are included in the product. As a clear evidence of the problem

several product configuration approaches [6][24][25][26][27] and tools [14][15][16][34][28][30] in SPLs

heavily rely on feature models to support product configuration yet there is still a considerable knowledge

gap on how to use feature models in a multi-user-configuration context. Indeed, while most of the

approaches incorporate abstractions related to variability such as features very rarely teamwork concepts

are taken into consideration. As a consequence, effective tool support for collaborative configuration is

missing.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
4/54

Some SPL research works have attempted to tackle configuration decision-making in different ways but in

general the approaches adopted are either just high-level descriptions of collaborative configuration

scenarios with no tool support or based on too restrictive assumptions such as assuming that configuration

tasks can be split into fully independent sets, which is generally not the case in practice.

In reality, the challenges to enable collaborative configuration are many including finding effective means

to split and coordinate configuration tasks. For instance, configuration work needs to be split among

multiple configuration actors who, guided by a plan, coordinate their actions to produce a single consistent

product specification. The coordination problem becomes a real issue if we consider feature models with a

complex network of feature constraints connecting different branches of the feature tree. Potentially, the

higher the number of constraints the higher the degree of work coupling which in turn requires strategies

for conflict resolution. In fact, coordinating configuration work is a critical issue to the success of

collaborative product configuration approaches.

Finally, some technical issues make the development of software for collaborative configuration

particularly challenging. Because collaborative configuration scenarios may involve connecting people

distributed across different space and time dimensions, configuration software should ideally be thought

of as a distributed system. Hence, aspects such as communication and group awareness become relevant in

order to minimize decisions conflicts and facilitate work coordination.

The research problems we identified can be summarized by the following questions:

� How can current technology for product configuration be adapted or extended to explicitly

address collaborative configuration demands?

� How can collaborative configuration scenarios be represented and validated? Is it possible to

perform static analyses to validate such scenarios? How can scenario representations be made

executable?

� What kind of tool support can be provided to support collaborative configuration? How scalable

are such tools and major algorithms involved?

� What are relevant properties of collaborative product configuration? How can they be enforced?

� Can groupware concepts be borrowed to improve tool support for collaborative product

configuration? Which concepts are worth borrowing?

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
5/54

1.2 Limitation of the State-of-the-Art

Some attempts to improve the process of configuring products have been made but generally none of them

tackled collaborative configuration as a first-class problem.

Reducing the overall complexity of product configuration

Several works on product configuration have focused on providing mechanisms to cope with the inherent

complexity of large configuration spaces. For instance, in large product lines that encompass thousands of

features the process of specifying product variants can be non-trivial. Proposed alternatives to alleviate

this problem have mostly concentrated on minimizing the mandatory number of decisions required to

configure products. Some examples include the use of default values or assumptions regarding the

selection state of features as well as the provision of propagation mechanisms. Furthermore, current

product configuration tools provide some sort of mechanism to support the reuse of configuration

decisions based on a existing configurations [14][15] or the specialization of partial specifications [16]. In

practice, a base configuration can be represented by a partially configured feature model that serves as a

starting point to configure new products. Reusing configurations can be particularly useful when the

product line tends to derive very similar products. Nevertheless, producing a base configuration or

adapting an old configuration can be a cumbersome process that may even requires teamwork in order to

identify what should or not be reused. The trade-offs of using a base or old configuration to support

product configuration were discussed in [18].

On the other hand, support for collaborative configuration in such approaches is virtually non-existent.

Most of the configuration work is performed by reusing and adapting previous configuration decisions and

there is a lack of understanding about how this process can be conducted by teams.

Product configuration as a Constraint Satisfaction Problem

Product configuration has also been addressed as a Constraint Satisfaction Problem (CSP) [19][20].

Product line configuration knowledge is described in terms of a component-port representation [21] that

includes a set of constraints to restrict the components combinability. Constraints are normally expressed

in a formal notation (e.g., logic predicates). Similarly, user requirements are translated to a formal

representation allowing the problem to be solved by automated systems (also known as configurators).

Configurators will attempt to find a set of values that satisfy both, the user requirements and the

configuration constraints. Because multiple solutions can be found, configurators may have to incorporate

optimal solution strategies to find a single final configuration. For instance, a configurator may use a cost-

based strategy to distinguish among a group of components so that the lowest-cost one is chosen.

Enhanced versions of the CSP approach were developed to support the notion of distributed configuration

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
6/54

[21]. Typically, the configuration problem was translated into a distributed constraint satisfiability

problem (DisCSP) [22] in which the problem constraints and variables are fragmented over multiple

configuration environments. Each environment is controlled by an intelligent software agent that works as

a local configuration system. DisCSP approaches work on distributed algorithms to support software

agents’ communication (e.g., message passing mechanisms) and coordination (e.g., enforcement of local

and global constraints).

The CSP and DisCSP approaches focus on developing algorithms and machinery support for solving

constraint satisfaction problems. The assumption is that machines can quickly process thousands of

instructions and perform efficient backtracking until a desirable solution is found. The involvement of

humans in the process is limited to providing requirements to the configuration system in terms of logic

formulas. In our approach, even though we plan to take advantage of CSP machinery and algorithms the

goal is to assist human decision-making. Consequently, it is not natural to think of processing power in

this context but rather means to boost human coordination. For instance, communication and awareness

are two possible strategies humans can take advantage of to minimize decision conflicts. In this context,

CSP-related algorithms and graphical user interfaces can be combined to assist humans in visualizing and

resolving decision conflicts.

Staged configuration of products

The work on staged configuration [8][23] pointed out various scenarios in which product configuration

can be performed in stages. The authors introduced two configuration techniques called specialization and

multi-level configuration to support the idea of staged configuration. A case-study in the automotive

industry was provided to exemplify how an embedded operating system for a vehicle could be configured

in multiple stages. A high-level workflow illustration was given showing that in each stage it was possible

to have multiple configuration actors configuring a subset of the feature model concurrently and have their

specifications combined afterwards.

In our approach we look deeply at aspects related to collaborative configuration. Among other issues, we

want to understand how configuration tasks can be properly split and assigned to roles, how to specify,

validate and execute configuration scenarios, and how to provide effective support for decision conflict

resolution. Additionally, we want to borrow groupware concepts that might prove valuable in the context

of collaborative configuration such as coordination, communication, and awareness. Ultimately, the idea

is to tackle collaborative product configuration in a broader and more explicit manner and provide

appropriate tool support.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
7/54

1.3 The Proposed Research at a Glance

To overcome the problems mentioned we propose an approach that builds upon well-established product

configuration models to explicitly support feature-based product configuration or as we will refer from

now on Collaborative Product Configuration (CPC). Among the driving forces are the needs to better

understand how configuration tasks can be split, represented, validated, and executed so that multiple

configuration actors can actively participate in the product configuration process.

More specifically, the research aims at:

� Developing a model for collaborative configuration that extends feature-based product configuration

abstractions to explicitly include teamwork concepts

� Proposing a representation to describe collaborative configuration scenarios including the semantic

of its elements (e.g. merge operation)

� Developing algorithms to generate validation constraints to check the correctness of specified

configuration scenarios

� Providing means to check collaborative configuration properties such as termination, backtrack-

freeness, and deadlock-freeness.

� Developing tool support based on groupware concepts for the specification and execution of

collaborative configuration scenarios

� Running case-studies, simulations, or both to check the feasibility and scalability of our approach

1.4 Expected Contributions

The expected contributions of our research could include:

� A model that explicitly represents collaborative product configuration abstractions

� A representation for describing collaborative configuration scenarios

� Algorithms to generate constraints to validate collaborative configuration scenarios

� Formal verification of collaborative configuration properties

� The development of supporting tools to build and execute collaborative configuration scenarios

� Case studies and simulations that shows the feasibility and scalability limits of the approach

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
8/54

We hope that by addressing the research problems discussed in Section 1 we will pave the way for a

deeper understanding of collaborative product configuration and ultimately foster the development of

newer and better approaches in the future.

1.5 Research Applicability

An important goal in our research is the widespread integration of the approach being developed with a

variety of available methods, techniques, and tools for product configuration. For instance, the approach

relies primarily on basic feature modeling concepts which allows for an improved compatibility with

current feature-based configuration approaches [6][24][25] [26][27] and tools [14][15][16][28][30][34].

Consequently, configuration engineers may use their favorite feature modeling tool to create a feature

models and afterwards use a CPC tool to enable the collaborative configuration of that models. For

instance, the FeaturePlugin [16] configuration tool can be used as to author a feature model specification

which, thereafter, can be imported and interpreted by a CPC tool. Furthermore, we expect our approach to

work well with product configuration techniques such as specialization and multi-level configuration used

in the context of staged-configuration [23]. In staged-configuration cases arise in which different parties

are required to configure a single feature model concurrently and afterwards merge their decisions into a

single consistent specification. The CPC approach can be helpful in this context by offering a safe

environment, i.e., with well-known rules, validation algorithms, tool support, etc., to describe and perform

collaborative product configuration.

The remainder of this document is organized as follows. Section 1 of this document presents the

motivation of the research, the research problems identified, some related works that attempted to alleviate

these problems, and an overview of the proposed research and the major expected contributions.

Background and related work are presented in section 2. The research proposed is presented in more detail

in section 3. The context of the research is highlighted, an overview of the research goal is presented

followed by a discussion of the approach’s components and some preliminary solutions envisioned.

Section 3 discusses the limitations of the approach and possible validation alternatives. Section 4 discusses

the current state of the research in terms of publications and tool support implementation. Future directions

are presented in section 5 and references are provided in section 6.

2 Background and Related Work

In this section we provide a background discussion on research topics related to our work.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
9/54

2.1 Feature-based Product Configuration

Feature-based product configuration approaches have feature models as its central constituent. Originally

proposed by the Feature-Oriented Domain Analysis (FODA) [6] method, feature models offer a powerful

yet simple representation to represent commonalities and variabilities of a software product family. Since

its inception, feature models have been widely supported by several SPL approaches [6][24][25][26][27]

and tools [14][15][16][34][28][30]. Various enhancements have been proposed in attempts to improve its

descriptive power and make it more appropriate for automated product generation. Examples of SPL

methods that support the notion of feature models include FORM [24], FOPLE [25], FeatuRSEB [34],

Alexandria [26], and generative programming [27]. In addition, the feasibility of using feature models to

boost product derivation made them specially attractive to commercial and academic product configuration

tools such as FeaturePlugin [16], CaptainFeature [30], pure::variants [15], Gears [14], xFeature [28]. While

some tools are specifically designed to support product configuration (e.g., FeaturePlugin in Figure 1-A)

others will also support fully automated product generation (e.g., pure::variants in Figure 1-B).

The major concept behind a feature model is that of a feature. According to Kang [6] a feature is “a

prominent or distinctive and user-visible aspect, quality, or characteristic of a software system or

systems”. A slightly different definition by Czarnecki [27] states that a feature is “a system property that is

relevant to some stakeholder and is used to capture commonalities or discriminate among systems in a

family”. In the context of our research on collaborative configuration the feature definition from Czarnecki

sounds more appropriate as he emphasizes the concept of stakeholders that can directly influence product

configuration. For instance, stakeholders such as the customer, a sales manager, a database manager, a

system administrator, or even a software developer may be directly involved in the product configuration

decision-making thereby indicating the features desired for a particular software product. In our research,

we support the notion of a feature model as repository of configuration decisions that need to be dealt with

at some point during the product configuration process. The decisions should be made by skilled people

based on their knowledge and authority in the process.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
10/54

(A)

(B)

Figure 1: A Web-Portal product line feature model drawn on FeaturePlugin (A) and pure::variants (B)

Figure 1 shows a feature model of a Web-Portal product line drawn with two distinct feature-based product

configuration tools [16][15]. Mandatory and optional features as well as exclusive-or and alternative

features are described (boxes 2, 3, 4, and 5 in Figure 1). These types of features form the core of feature

models and hence are commonly supported by product configuration approaches. In the product line

engineering phase a feature model is created to represent the available configuration options for a product

family. At product engineering, a group of configuration actors will carry out decisions that will customize

the product line core assets according to specific user requirements thus yielding to a product specification.

Consequently, it is important to ensure that appropriately skilled people are involved in the configuration

decision-making to avoid producing products that do not provide the appropriate value to their customers.

The use of additional constraints to restrict feature combinations increases the complexity of product

configuration especially in a collaborative context. Yet constraints are at the core of the configuration

problem and are indeed often used in practice. Without constraints the output of the configuration process

could be a specification that does not represent a valid product, i.e., where all the components work well

together and do not conflict with each other. An example of an invalid product would be an automobile

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
11/54

with a powerful engine, let us say a V6-engine, and a simple mini-chassis that does not support large

engines. In this case, we say that the mini-chassis feature conflicts with the V6-engine feature.

(A)

(B)

Figure 2: Web-Portal feature model constraints - FeaturePlugin (A) and Pure::variants (B) configuration tools

The use of configuration constraints is also a common practice and thus constraints are widely supported

by product configuration tools. In Figure 2, we show constraints for the Web-Portal product line. Figure 2-

A illustrates constraints using the FeaturePlugin XPath constraint language. Figure 2-B shows the same

constraints written in pure::variants pvscl constraint language. Constraint #4 enforces that whenever

feature security_authentication is selected so must be feature gui_templates_userlogin. In other words, if

authentication is a requirement then a user login interface must be available to gather users’ login and

password information.

2.2 Feature Explosion

A common issue with the use of feature models to describe product lines variabilities is the feature

explosion [7] problem. For instance, suppose the feature model sketched in Figure 1 contains thousands of

features and a fairly large number of constraints. In this case, the configuration problem would gain a new

dimension in terms of complexity. In a large feature model it may be hard to understand the exact impact

of making a decision because of the intricate network of decision dependencies and automatic decision

propagation mechanisms, to identify who is in charge of what features and how to coordinate the decision-

making, and to be aware of other players’ decisions and the corresponding impact in ones’ decision space.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
12/54

As we discussed previously, attempts to alleviate this problem have mostly focused on minimizing the

need for decisions by fostering the reuse of previous decisions. As argued, the reuse of decisions is also a

decision-making process itself that may require decisions makers to carefully analyze which decisions are

worth reusing. Furthermore, the process of generating a database of reusable configuration requires

collaborative work where domain experts will indicate the most appropriate configuration choices for

different situations and configuration goals.

2.3 Feature Mappings

Research on feature mappings [31][29] has exploited means to link features to architectural software

components as a means to support the automation of product generation. The challenge of feature

mappings is due to the scattering and tangling nature of feature realization at architectural level. For

instance, the decision to select feature database in the Web-Portal product line in Figure 1 may affect

several architectural artifacts such as source code files, libraries, scripts, configuration files, etc. While

feature mapping approaches allows for a rapid production process that fulfills time-to-market demands,

maintainability can be a challenge since changes on feature models or architectural components may also

require updating the mappings.

2.4 Feature Interaction

Feature interaction [31][32] is another interesting area of research involving feature models. The problem

initially rose in the telecommunication domain and has also been object of research in SPLs. According to

Zave, “a feature interaction is some way in which a feature or features modify or influence another feature

in defining overall system behavior” [32]. Hence, feature interaction concerns the way features are

composed to form a software service or product. While features enable the flexibility of offering

personalized products to clients they also require a deep understanding of how their composition may

affect each others’ expected functionality at the cost of having “software bugs, cost and schedule overruns,

and unfortunate user experiences” [33]. A very clear example of a real feature interaction problem in the

telecommunication domain can be found in [33]. In our Web-Portal illustration, a feature interaction

analysis would be required for example to include the user authentication as a feature. A user

authentication policy in the Web-Portal would require other features, especially functional ones, to check

whether the portal users have the right privileges to access specific resources. Feature interaction is

considered a semantic problem where the addition of new features can interfere with existing ones.

However, in our research we primarily focus on static dependencies among features expressed in terms of

additional constraints. As we progress in our research we may eventually reconsider our position

concerning feature interaction problems.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
13/54

2.5 Feature Model Extensions

Several extensions have been proposed to enhance feature models descriptive power including cloning

[38], references [38], attributes [38], relationships [34][35][36], feature categories and annotations

[34][37], feature cardinality [38], modularization [39], as well as a variety of rendering styles and

graphical notations and those discussed in [40] (e.g., see Figure 1 for two examples of tree-like graphical

notations). A comprehensive discussion on feature model extensions can be found in [23] and [40]. In our

approach to collaborative configuration we plan to initially support basic feature model abstractions and

progressively incorporate new concepts whenever it makes sense.

2.6 Feature Model Formalization

The formalization of feature models has also been focus of research in SPLs. The work from Riebisch [43]

discussed similarities among feature representation arrangements, proposed a categorization scheme for

features (functional, interface and parameter features), and analyzed different feature relations and

constraint conflicts. Batory’s work [41] discussed a logic-based representation to express feature relations.

By transforming feature models in propositional formulas the work enabled the use of existing logic-based

tools such as logic-truth maintenance systems (LTMS) and CSP/SAT solvers. Major benefits include the

ability to reason on and debug feature models, support for automatic decision propagation, and rationale

support for configuration decisions. Benavides [42] also elaborated on the benefits of connecting feature

models to formal logic. More specifically, he discussed the advantages of viewing feature-based product

configuration as a constraint satisfiability problem including the ability to track the number of valid

configurations available, to filter products features based on particular attributes, to verify the satisfiability

of a feature model, and to find the best product configuration according to a given criterion.

2.7 Staged Configuration

Some preliminary research work has also supported the notion of teamwork on product configuration even

though having analyzed the problem generally at a high-level. For instance, Czarnecki’s work on staged

configuration [23] provided various examples where product configuration is performed collaboratively in

which configuration actors specialize and configure feature models in stages. The examples provided also

showed that in certain situations merge operations are needed to compose resulting partial specifications.

However, the work leaves open issues such as how configuration tasks can be arranged and validated, how

to merge inconsistent specifications, what policies for conflict resolution can be used, etc.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
14/54

2.8 Feature-Based Production Planning

Kang proposed an approach [45] that integrates feature models and the production plan document

proposed by the SEI [5]. He suggested that feature models should be split in smaller independent units

(binding units) so that product developers would be able to configure them separately. However, when

feature models expose a complex network of feature dependencies identifying independent binding units

may be very complex especially when tool support is not provided. In addition, partition strategies may

require dealing with a large number of configuration decisions in diverse knowledge domains thereby

requiring a clear strategy to cope with work dependency. In our research, we also suggest the splitting of

feature models in smaller more manageable units but rather based on organizational factors such as

specialized knowledge, proper authority, or other attributes that help identifying contributors to the

configuration process, i.e., qualified configuration actors. Similarly, our approach provides means to

explicitly specify, analyze, validate and represent work dependencies in collaborative product

configuration allowing specified collaboration scenarios to be executed by an automated tool. In addition,

we plan to borrow groupware ideas as a means to improve tool support for collaborative configuration.

2.9 Groupware and CSCW

The area of Computer-Supported Collaborative Work (CSCW) was initiated in the mid-80’s with the

purpose of studying how technology could help improve group work [48]. In the years that followed the

community strived to define a coherent research agenda to the field [46][47][49]. While some research

groups focused on the CS dimension, i.e., the development of computer systems to support collaborative

work, other groups enforced the CW perspective, i.e., understanding the different types of human

collaborative engagements so as to adequate the underlying technology accordingly. In the context of our

research we are particularly interested in the technical dimension of CSCW, i.e., models, techniques and

applications, and how we could capitalize on developed knowledge as a means to provide adequate support

for feature-based collaborative product configuration in SPLs.

Collaborative and individual work pertains to the same work domain but represent “different ways of doing

the same” [59]. In other words, collaborative work changes the means not the ends. For instance, in our

approach to collaborative configuration the input is still a feature model and the outcome is a consistent

product specification just as in the case of individual product configuration. Another interesting

observation is that cooperative ensembles are normally transient and dissolve after reaching a goal [46].

That is mostly the case in collaborative product configuration when a group of configuration actors get

together in a temporary work based on their skills, knowledge, authority or other attribute relevant to the

problem. After the product is configured and derived the group normally disbands.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
15/54

2.10 Work Coordination, Communication and Awareness

Another key aspect of collaborative work is work coordination. The coordination problem may be defined

as the “integration and harmonious adjustment of individual work efforts toward the accomplishment of a

larger goal” [62]. In formal collaboration scenarios, i.e., where it can be accurately described who is

doing what and when, tools such as workflows can be very useful as a means to explicitly support work

coordination. Conversely, in other informal collaboration scenarios participants are usually in charge of

coordinating interdependent activities themselves by means of communication. In practice, it is observed

that regulated and flexible scenario may occur intertwined.

Communication among participants of a collaborative engagement can be synchronous or asynchronous. In

real-time interactions synchronicity is normally a requirement as people expect instant feedback. For

instance, teleconferencing systems generally provide real-time audio and video communication

mechanisms so as to allow participants to see and talk with each other synchronously. Drawbacks of

synchronous communication include high infrastructural costs and scalability. In other cases,

asynchronous communication may be more appropriate especially when participants are distributed across

different time zones. That is, communication requirements are highly dependent on space and time

constraints. A typical asynchronous communication mechanism is an e-mail system. E-mails are normally

used when there is no sense of urgency otherwise a messenger system, for example, would be more

appropriate. Another factor that has to be considered when choosing a communication mechanism is that

the higher the work coupling the higher the communication requirements [60]. That is, tightly work

coupling requires people to constantly communicate to coordinate their work as opposed to loose work

coupling where communication can be sporadic. Depending on the case it may be convenient to provide

more elaborate communication mechanisms, i.e., that adds value to basic features such as audio, video, file

attachment, and so forth. For instance, in a collaborative design tool remote modelers resolving a conflict

involving a UML class (say one wants to delete the class while the other wants to extend it) should be

assisted by a tool with relevant data regarding the UML class, dependencies, the rationale for

adding/removing the class, and so forth. Just allowing modelers to communicate may not be helpful

enough.

Work coordination in groupware systems is also facilitated by the presence of awareness systems.

Awareness can be defined as the understanding of who is working with you, what they are doing, and how

your own actions interact with theirs [63]. Several CSCW works have shown the importance of group

awareness in supporting work coordination. A study on the impact of awareness on open-source software

development [61] showed that even when work partition is informal, i.e., when developers can contribute

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
16/54

to any part of the code, awareness helped programmers to coordinate their activities effectively and

minimize conflicts. Additionally, group awareness can be especially convenient as a means to reduce the

need for communication as reported in the open-source study. The importance of group awareness in

collaborative work is so evident that frameworks for evaluating distributed collaboration based on

awareness have been proposed [60]. In general, they discussed the connection between awareness and

other concepts such as work coupling, communication, and coordination.

2.11 The 3C Model: Communication, Coordination and Cooperation

CSCW has also proposed models to support groupware development such as the 3C model (see Figure 3)

[51]. In this model, collaboration is defined as a combination of cooperation, coordination and

communication. The model has been instantiated in a variety of domains (e.g., learningware [50]) and the

experience gathered led to the proposal of a systematic process approach to groupware construction based

on the Rational Unified Process (RUP) called 3C-RUP-Groupware [56]. A comprehensive discussion on

the use of the 3C model to support groupware development can be found in [57].

Figure 3: The 3C model instantiated for group work (figure from [50])

Figure 3 shows the 3C model instantiated for group work. The three main concepts, the 3Cs, are related by

associations such as “generates commitments that are managed by”, “arranges tasks for”, and “demands”.

The 3C model along with other important issues such as space/time considerations in groupware

development will serve as basis in our research to develop a model for collaborative work applicable in the

context of feature-based product configuration. We understand that it is crucial to take CSCW work

seriously into account in our approach as this community has made significant progress exploring models

for collaborative work that also greatly support groupware development.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
17/54

2.12 Collaborative Software Engineering

Software engineering is viewed as an inherent “collaborative social practice” [9]. In the context of

Software Engineering, CSCW has been materialized as Collaborative Software Engineering (CSE) [55].

CSE aims at studying collaborative work within software development processes such as modeling,

coding, and testing. Up to now, some important tools to support collaborative software engineering

processes have been developed as in the case of software configuration management [11][10] and

collaborative software design [12]. For an excellent annotated bibliography of collaborative software

engineering works please refer to [13].

3 Proposed Research

This section overviews the proposed research, gives a good notion of how we intend to approach the

research problems, and glances over the major components of the approach.

3.1 Context

The context of the research is depicted in Figure 4. The major research area is Software Product Lines,

more specifically Collaborative Product Configuration as indicated by the dashed rectangle labeled

“Software Product Lines – Collaborative Product Configuration”. The general goal is to investigate how

current configuration technology (e.g., models, algorithms, processes) can be extended to support the

notion of collaborative product configuration. We intend to take advantage of some concepts and

techniques from at least three other fields that seem applicable in the context of our research as indicated

by the filled ellipses labeled “Logics”, “Groupware/CSCW”, and “Workflow”. Recent research works

[41][42] has built a connection between logics and feature models by translating feature trees into

propositional formulas. This allowed off-the-shelf software components such as SAT solvers and CSP

tools to be used in the context of product configuration (e.g. debugging feature models, checking for

satisfiability).

The area of Groupware/CSCW studies how technology can help improve collaborative work and has

raised important issues in the development of collaboration systems. Concepts such as awareness that

encourage teamwork players to be aware of each others’ activities can help in minimizing product

configuration conflicts. For instance, someone making configuration decisions may avoid decision

conflicts by being aware of other’s configuration decisions. Workflows are very useful to represent

organizational processes. Collaborative product configuration as a teamwork process will eventually

require some sort of workflow to describe the sequence of steps of configuration processes. Process

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
18/54

notations such as BPMN [58] may prove suitable to describe such collaborative configuration scenarios

[66].

Figure 4: Research Context: Collaborative Product Configuration and Related Fields

3.2 Overview

Figure 5 illustrates how we intend to approach the research problems introduced in Section 1. Figure 5-A

shows a product configuration scenario as it is commonly viewed, i.e., as a single-user activity. In this

scenario, a feature model produced during product line engineering serve as basis for product

configuration. A single configuration actor using a feature-based product configuration tool will select the

desired features for a product based on particular user requirements. Stakeholders’ involvement in the

process is limited to providing requirements to the single configuration actor. Configuration conflicts

caused by incompatible user requirements are normally not anticipated and handled in an ad-hoc manner.

On behalf of the stakeholders configuration actors derive a product specification that will serve as input for

automated product generation.

Figure 5-B illustrates how we intend to enhance scenario A to support multi-user configuration. Similarly

to scenario A, a feature model is provided as input for the configuration process. However, before the

actual product configuration takes place a CPC scenario specification activity is required to annotate

SOFTWARE PRODUCT LINES: Collaborative Product Configuration

• Product Configuration
• Feature models
• Configuration techniques
• Configuration tools
• …

Logics

• Propositional formulas
• CSP Tools
• SAT
• Formal notation

Groupware/CSCW

• Coordination
• Communication
• Awareness
• Conflict resolution
• Flexibility x regulation
• Space x time constraints

Workflow

• BPMN
•

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
19/54

feature models with teamwork abstractions. This activity involves identifying desired configuration roles,

actual players for each role, and specifying the set of configuration decisions for each role. The goal of this

activity is to produce a CPC scenario description that describes how the configuration actors are expected

to participate in the process, the order of their tasks and the resolution of possible decision conflicts.

Figure 5: Traditional (A) and collaborative (B) feature-based product configuration scenarios

Yet on scenario B the CPC scenario execution activity supports collaborative product configuration based

on a CPC scenario description provided as input. This activity is ideally supported by a collaborative tool

that is capable of interpreting and executing CPC scenario descriptions. The tool enforces coordination

constraints described in the process model, offers communication and awareness mechanisms, facilitates

conflict resolution, and produces a valid product specification as the outcome.

In the following we discuss our approach to collaborative product configuration that aims at supporting the

scenario illustrated in Figure 5-B. We also point out some research issues and questions that might arise in

developing the approach.

3.3 Approach

In the following we provide a detailed discussion of the relevant issues and questions concerning our

research work.

3.3.1 Specifying Collaborative Product Configuration Scenarios

The first step in our approach to CPC is to specify a collaboration scenario description that will guide the

product configuration process and allow teams of configuration actors to make decisions in a proper

coordinated manner. The person in charge of specifying the collaboration scenario description is ideally

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
20/54

the one in charge of the product line and that also interfaces with the customer. What qualifies this person

is her privileged view on the people involved in the product customization, what their skills and roles are,

and how they could contribute to the process. We use to think of this person as playing the product

manager or project manager role. From now on, we will refer to this role simply as the product manager.

Among the major activities of the product manager role are the identification of the configuration roles and

potential candidates to play them, the splitting of the configuration responsibilities, the analysis and

refinement of the work dependencies, and the design of collaborative configuration scenarios. In the

following, we discuss how we plan to tackle these activities and the major research issues involved.

3.3.1.1 Incorporation of collaborative product configuration abstractions

A common technique to integrate new and existing abstractions into a single model is to manipulate the

abstract syntax representation of the model (e.g. meta-model). The first step consists in adding the new

abstractions to the abstract syntax and subsequently to draw associations between previous and new

abstractions. Several feature model meta-models have been proposed in the literature [27] [23] and

described in terms of UML class diagrams which allows new abstractions to be easily incorporated. While

some meta-models support basic feature model abstractions [27] such as mandatory, alternative, inclusive-

or, and exclusive-or features (see Figure 6) others [23] also include concepts such as references, feature

attributes, and feature cardinality. The incorporation of new abstractions into feature models meta-models

is very likely to continue as an attempt to improve quality attributes such as expressiveness, succinctness,

and naturalness [44].

Figure 6: Feature model meta-model described in [23] simplified to describe only basic feature model concepts

In our approach we plan to integrate collaborative configuration abstractions with basic feature model

abstractions. As our approach develops we may attempt to gradually support other advanced feature model

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
21/54

abstractions as long as they make sense in the context of collaborative configuration. Furthermore, as we

just mentioned it is very unlikely that there will be a definitive feature model meta-model that incorporates

all the extensions proposed in the literature which kind of reflects the different research viewpoints on

feature models.

Figure 6 shows a feature model meta-model proposed by Czarnecki [23] simplified to describe only basic

feature model concepts. The meta-model specifies that a feature model has a single root feature and that

features can contain other features building a hierarchical structure. Features can be solitary

(SolitaryFeature) or grouped (GroupedFeature)in feature groups (FeatureGroup). Some parent/children

constraints are enforced by the elements ContainableByFG and ContainableByF.

In Figure 7, we sketch out a collaborative configuration meta-model that contains three main abstractions:

configuration space, configuration role, and configuration actor. These three abstractions are at the core of

our approach as they enable teamwork in product configuration. Configuration spaces are the means to

split the set of decisions in the feature model into simpler modular units. Currently, we have defined that

configuration spaces correspond to sub-trees of the feature model (see the TreeConfigurationSpace

element in Figure 7). Each configuration space is assigned to a single configuration role that is in charge of

making configuration decisions within the space. The rationale to assign configuration spaces to

configuration roles can be related to factors such as required knowledge or authority to make decisions

within the space. Configuration actors are the actual people that play configuration roles.

Figure 7: A collaborative configuration model and its relation to feature model concepts

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
22/54

The abstractions depicted in Figure 6 and Figure 7 allow us to draw decorated feature models as the Web-

Portal feature model shown in Figure 8. In addition to features and feature groups the feature model also

contain explicit references to configuration spaces (W, P, G, S, N, and F), configuration roles (project

manager, database manager, web designer, and security specialist), and configuration actors (a1, a2, a3,

a4, a5 and a6). Configuration spaces group configuration decisions based on a particular criterion and are

later assigned to proper configuration roles. The space-role assignment process should enforce the

selection of the best-fit role to make decisions taking into consideration the nature of decisions represented

in the configuration space. For instance, in Figure 8 persistence-related decisions encompassed by

configuration space {P} were assigned to the database manager role given his credentials to make

decisions in the domain of knowledge.

Figure 8: A Web-Portal feature model extended with configuration spaces, roles and actors.

The example shows that the database manager role is in charge of persistence configuration decisions

while the web designer role is responsible for GUI-related decisions. Multiple configuration spaces can be

assigned to a single configuration role as in the case of the security specialist role. The project manager

role makes high-level decisions that may or may not require further specialized decisions. For instance, if

feature GUI is not selected by the project manager role the web designer role has no decisions left and

thus does not take part in the configuration process. The configuration spaces depicted in Figure 8 seem to

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
23/54

follow a knowledge-based strategy in which each role is assigned a set of configuration decisions in a

particular domain of knowledge (e.g., database, GUI, system security/networking). Likewise, decision

power is differentiated as in the case of the project manager role that may cause other roles to be left out

of the configuration process.

The red dashed arrows that connect two or more features highlight feature dependencies. In the example, a

decision to select feature storage will require decision propagation to also select feature database.

However, features storage and database belong to different configuration spaces and in the case of the

Web-Portal example assigned to different configuration roles. Consequently, if feature storage is selected

by the security specialist role feature database also has to be. However, the decision of the database

manager role may be the opposite, i.e., to unselect feature database and thus unselect feature storage. This

is known as a decision conflict and represents a major issue in collaborative configuration as we will

discuss later in this document.

Operator Semantic

tree(f) Extracts a sub-tree of the feature model rooted by f

combine_tree(f1,f2,…,fn) Extracts the smallest sub-tree enclosing the sub-trees rooted by f1,..., fn

cut_tree(f, {f1,f2,..,fn}) Extracts a sub-tree rooted by f but containing f1, f2, …, fn as leaves

ind_tree(f) Extracts the smallest independent sub-tree starting at feature f

(i.e., a sub-tree that can be configured entirely independently)

Table 1: Preliminary list of operators to represent configuration spaces in feature models

Configuration Space Operator

{W} cut_tree(‘Web-Portal’, {‘persistence’,’gui’,’’security’,’network’,’performance’ })

{P} tree(‘persistence’)

{G} tree(‘gui’)

{S}, {N}, {F} tree(‘security’), tree(‘network’), tree(‘performance’)

Table 2: Describing the configuration spaces in Figure 8 using the operators in Table 1

As we mentioned, configuration spaces contain a set of configuration decisions grouped according to

particular criteria. They are the primary means for assigning configuration decisions to configuration roles.

We understand that configuration spaces can be as simple as sub-trees in the feature model associated with

a particular domain of knowledge, for example. Splitting a feature model into tree-like configuration

spaces has several advantages. Firstly, the splitting process is relatively straightforward as it follows the

natural hierarchical structure of the feature model tree. Secondly, it is natural to think of a feature model as

a composition of other simpler feature models in the same sense that a product-line may be thought of as a

combination of simpler product-lines (e.g. sub-systems, components). In this case, each component

supplier could be responsible for configuring the branch of the feature tree that corresponds to the

component they provide. Lastly, viewing configuration spaces as sub-trees of the feature model tree also

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
24/54

simplifies establishing the order of execution of the configuration tasks basically by enforcing that parent

configuration spaces have to be configured prior to their children. We propose some preliminary operators

to help representing configuration spaces in feature model trees. A list with the operators is presented in

Table 1. We could use the operators described in Table 1 to represent the configuration spaces depicted in

Figure 8 as follows in Table 2.

3.3.1.2 Dependency of configuration tasks

As shown, feature models encompass a set of configuration decisions that need to be addressed in order to

configure software products. To cope with the complexity of handling multiple configuration domains that

potentially requires people with proper authority and/or specialized knowledge to participate in the product

configuration decision-making we proposed a divide-and-conquer approach based on the concepts of

configuration spaces and roles. That is, an initial feature model is partitioned in smaller components called

configuration spaces which group inter-related configuration decisions and are subsequently assigned to

multiple configuration roles. In this scenario, the complexity of the collaborative configuration process is

substantially dependent on the arrangement of the configuration spaces and roles proposed. In fact, there is

a trade-off between teamwork coordination and the complexity of the decision-making. For instance, in a

fine-grained partitioning scenario where a large number of configuration spaces and roles are indicated we

expect the decision-making to be facilitated as the number of configuration decisions per role ratio is

reduced and the assignment of domain-specific decisions to skilled people is improved. On the other hand,

the higher the number of configuration spaces/roles the higher the likelihood of increasing the degree of

coupling among playing roles.

3.3.1.3 Validation of configuration spaces, roles, and actors

According to our definition configuration spaces must be sub-trees of the feature model. In the following

we describe the rules for specifying valid configuration spaces, role, and actors.

� A configuration space must be a tree, i.e., each node must contain a single root feature except for the

root node that may node have a parent

� The only allowed overlapping between two configuration spaces are the root/leaves features as in the

case of parent/child or siblings configuration spaces

� The root feature of a configuration space represents a point of connection with other parent/sibling

configuration spaces.

� All grouped features in feature group must be included as an integral part of a single configuration

space.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
25/54

� A given configuration space can only be assigned to a single role

� A configuration role may be assigned multiple configuration spaces

� A configuration role can be played by multiple configuration actors and a configuration actor can be

play many roles

� Configuration spaces, roles and actors can be uniquely identified

The validation rules discussed can be expressed, for example, in terms of UML constraints attached to the

collaborative configuration meta-model in Figure 7. It is important to notice that the validation rules

proposed reflect the current state of our research and may be subject to change as the research progresses.

3.3.1.4 Representation of collaborative product configuration scenarios

Once configuration spaces and roles are specified and validated the next step is to design a process model

to describe collaborative configuration scenarios. At the core of the process model is work coordination

and a successful model is one that minimizes conflicting situations, optimizes parallel and independent

work, and clearly describes the configuration roles and their responsibilities in the configuration process.

In addition, a collaboration process model should ideally be executable, i.e., allow an external tool to parse

and execute its operations thereby running an actual collaborative configuration scenario.

An intriguing question in our research regards the way we should describe collaborative configuration

processes. It seems that some concepts can be borrowed from the area of process languages and workflows

as they have been largely used as a means to describe activities carried out by teams of machines and/or

humans. Coordination has been at the core of these languages to help coping with work interdependency

and to enforce consistency. For instantce, by using a workflow language one is able to describe how

individual and shared resources are handled by a group of people as they carry out their activities towards

a specific goal. Activities can be performed in a sequence when they expose dependencies or in parallel

when work can be performed independently. In some cases the outcomes produced by independent

activities need to be merged into a consistent state. In the end of the process it is expected that a goal has

been reached and some resources eventually produced.

The context of collaborative configuration is quite similar. A team of humans with special skills are

assigned partial configuration tasks in order to produce intermediate resources that are consistently merged

to produce a single final outcome, i.e., a valid product specification. Even though the use of workflows

seem to be quite applicable in the context of our approach it will certainly require precise semantic

definitions for particular operations. For instance, a merge operation is a generic operation that combines

two or more inputs and produces a single output that represents a consistent combination of the input

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
26/54

elements according to some validation rules. In practice, as in the case of feature-based collaborative

configuration the semantics of the merge operation has to be defined precisely to avoid ambiguity and

errors.

Operation/Symbol Name Description

→ Sequential flow operator Arrange configuration sessions in a

sequence

|| Parallel flow operator Parallelize configuration spaces decision-

making

MERGE-DECISIONS

- PRIORITY-MERGE

- MINIMIZE-CHANGES-MERGE

Merge operator

- Priority merge

- Minimize changes

Merge configuration spaces decisions

- Specify priorities for merging decisions

- Minimize changes over decisions made

MANUAL-MERGE

Manual merge

Perform a real-time manual merge

requiring configuration roles to resolve a

conflict

Table 3: Possible operators of a collaborative product configuration process language

Manual versus Automatic Merge

� A manual merge is performed by humans with machinery assistance

� An automatic merge is fully automated based on a conflicting resolution strategy

Group Awareness

� When awareness is on configuration roles will be notified about decisions that may impact their

configuration spaces and how their own decisions impact others

� When awareness if off configuration roles will work entirely independently from each other even

when their collective decisions are inconsistent (solved by a merge later on)

⌂ Goal: Find a solution to a CSP problem that best approximates given sets of variable assignments

⌂ Parameters:

⌂ - P: A CSP problem

⌂ - C: additional constraints over P variables not yet added to P

⌂ - S: a current solution for P (not considering constraints C)

⌂ - H: an assignment over a sub-set of P variables

⌂ Pre-conditions:

⌂ - P is satisfiable

⌂ - S is a solution for P

⌂ - A is a sub-set of S (A ⊆ S)

⌂ Return: a solution R that satisfies P (including constraints C) and best approximates the assignments in A

MERGE-DECISIONS (P , C : Constraints; S , A : Assignments) → R : Assignments

1. begin

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
27/54

2. add C to the set of constraints of problem P

3. ⌂ if S satisfies problem P returns S

4. if SAT(P,S)

5. then R ← S

6. ⌂ goal: find a solution that best approximates A

7. else

8. then maxA = 0, maxS = 0

9. ⌂ check all solutions X that satisfies P

10. for each solution X where SAT(P,X)

11. if (S = { })

12. then S ← X

13. ⌂ temporarily saves the solution that best approximates A

14. else if count(X ∩ A) > maxA

15. then S ← X

16. maxS ← count(X ∩ S)

17. maxA ← count(X ∩ A)

18. ⌂ enforce that the solution also minimizes changes in S

19. else if count(X ∩ A) = maxA

20. then if count(X ∩ S) > maxS

21. then S ← X

22. maxS = count(X ∩ S)

23. end

Example function calls:

Priority Merge = MERGE-DECISIONS(P1 U P2, C1-2, S1 U S2, S1)

Minimized Overall Changes Merge = MERGE-DECISIONS(P1 U P2, P1-2, S1 U S2, S1 U S2)

Currently, we have identified some elements of the collaborative product configuration process language

typically control flow and merging operators as described in Table 5. A proof-of-concept implementation

of the merge operation is shown in the previous page and supports both priority and minimize-changes

merges. The algorithm starts declaring the merge function Merge-Decisions. The parameters are: P: a CSP

problem; C: an additional constraints over P variables not yet added to P; S: a current solution for P (not

considering constraints C); H: an assignment over a sub-set of P variables. The objective of the function is

to find a solution for problem P including constraints C as so to minimize the changes in S based on the

assignments on H. Line 2 adds constraints C to problem P. If S satisfies P then the algorithm stops (lines 4

and 5). Lines 10-17 search for a solution for P that best approximates the variable assignments in H. Lines

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
28/54

19-22 enforce that the solution should ideally minimize changes in S too. The result assignment R contains

a solution for P that minimizes changes in H, primarily and in S, secondarily. The function uses a brute-

force algorithm that tests all solutions for P and thus may be limited in practical situations. However, the

function provides the right interface we are looking for in the approach to merge configuration

specifications based on priority or minimization of changes. A goal in the approach is to know the

scalability of the function and try to optimize it later, even though our research is not directly related to

algorithms and optimizations.

What makes describing collaborative configuration particularly challenging is its dynamic nature. For

instance, an anticipated dependency between two configuration spaces, say Ca and Cb, that led them to be

arranged and executed in sequence may have disappeared during the configuration process as a

consequence of previous decisions suggesting now that the configuration spaces should be executed in

parallel. The question of whether it is possible to optimize the collaborative configuration process

dynamically by analyzing the network of dependencies among the various configuration spaces and roles

available is a future research target.

Currently, the approach to describe collaborative configuration is based on the concepts of configuration

spaces and configuration roles as well as on analyzes of their dependencies. We have considered two basic

relationships between configuration spaces: order and dependency. A dependency relationship occurs

when two configuration spaces have decisions that may affect each other. For instance, if the selection of

feature Fa in the configuration space Ca requires the selection of feature Fb in configuration space Cb we

say Ca depends on Cb, and vice-versa. If configuration spaces Ca and Cb are assigned to different

configuration roles then a potential conflicting scenario is characterized thus requiring a proper

coordination strategy to be put in place. As mentioned, a possible solution would be to arrange the

configuration spaces in a sequence thus avoiding conflicts. However, a clear disadvantage of sequences is

that chaining configuration spaces may delay decisions that could be made earlier in the process as they do

not expose any dependencies. In other words, if the number of dependencies is low then ideally the

configuration spaces should be handled in parallel and merged in the end. In the eventual case of a conflict

during the merge a special negotiation phase would take place. All decisions regarding the arrangement of

the configuration spaces/roles might also consider additional factors such as organizational hierarchy and

time-to-market constraints.

The order relationship is a strong type of dependency between two or more configuration spaces. In fact,

we view order as a parent-child relationship where parent configuration spaces encompass decisions that

may either activate or deactivate the children configuration spaces. Activating a child configuration space

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
29/54

means the decisions within the space must be handled by a configuration role. Contrarily, deactivating a

configuration space means that all decisions within the space were automatically made to a particular state,

for example, all features were deselected. The order relationship can be derived from the hierarchical order

of the configuration spaces in the feature model considering a scenario where configuration spaces are

always structured as trees. In Figure 8, we say that configuration space {W} is handled before configuration

spaces {G}, {S} and {F} considering that decisions in {W} may or may not require further decisions to be

handled on {G}, {S} or {F}.

3.3.1.5 Validation of collaborative product configuration scenarios

Another intriguing point in collaborative configuration regards the validation of configuration scenario

descriptions. That is, the order in which configuration decisions are made is fundamentally important to

avoid inconsistencies or other undesirable scenarios such as deadlocks. A possibility to support the

validation of configuration decisions arrangements is to specify constraints to enforce certain properties

regarding the order and dependency of configuration spaces. In fact, configuration spaces encompass

configuration decisions that can be either internal (do not affect any other roles’ configuration space) or

external (may affect other roles’ configuration spaces).

Figure 9: Web-Portal feature model - configuration spaces and role compact view

For instance, Figure 9 represents a simplification of the of the Web-Portal feature model depicted in Figure

8 that highlights specified configuration spaces and roles. From the arrangement of the elements in Figure

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
30/54

9 it is possible to generate constraints to validate collaborative configuration scenarios for the Web-Portal

product line as follows:

Collaborative Configuration Process Constraints Type of Relationship

1. {W}.pm : {G}.wd, {S}.ss, {F}.ss Order

2. {P}.dm ↔ {S}.ss ↔ {N}.ss ↔ {F}.ss Dependency

3. {G}.wd ↔ {S}.ss Dependency

4. {W}.pm : {P}.dm (derived from 1 and 2) Order

5. {W}.pm : {N}.ss (derived from 1 and 2) Order

Table 4: Constraints to validate collaborative scenarios for the Web-Portal product line

Where:

{ds}.cr - represents the configuration space ds assigned to configuration role cr

 X : Y implies that X is handled before Y, and

X ↔ Y implies that X’s decisions depends on Y’s decisions and vice-versa.

In constraint 1) we say that configuration space {W}.pm is handled before configuration spaces {G}.ss,

{S}.ss, and {F}.ss considering their arrangement in the feature model. It means that the project manager

role’s decisions on configuration space {W}.pm will define whether or not roles web designer and security

specialist will handle decisions on configuration spaces {G}.ss, {S}.ss, and {F}.ss.

Furthermore, by analyzing the additional feature constraints in the feature model of Figure 8 we find out

dependency paths (see elements d1 and d2 in Figure 9) among configuration spaces that allow us to

express dependency relationships such as in 2) and 3). These constraints convey that decisions in

configuration spaces {P}.dm, {S}ss, {N}.ss and {F}.ss as well as in {G}.wd and {S}.ss may affect each other

thereby requiring a coordination strategy to be put in place.

Constraints 4) and 5) were derived from constraints 1) and 2) to indicate that configuration space {W}.pm

is also handled before configuration spaces {P}.dm and {N}.ss. The derivation comes from the fact that

whenever three configuration spaces A, B, and C are such that A is handled before B and B depends on C

we expect A to also be handled before C. In other words, the order relationship is stronger than the

dependency relationship when the same set of configuration spaces is considered.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
31/54

Figure 10: Two collaborative configuration scenarios (A and B) for the Web-Portal product line

Feature Abbr. Feature Abbr. Feature Abbr.

Authentication au Ms ms Sec se

Database da Network ne Security sc

FTP ft NNTP nn Storage st

GUI gu Performance pe Templates te

Header he Persistence ps Transfer tr

Https ht Protocol pr User Login ul

Min mi Resolution re XML xm

Table 5: Abbreviations of feature names for the Web-Portal product line

Figure 10 illustrates two possible collaborative configuration scenarios for the Web-Portal product line.

Both scenarios respect the order and dependency constraints described in Table 6 based on the

configuration space and roles arrangements described in Figure 8. It basically specifies order constraints

(e.g., {W} is handled before {S}) and the need of a merge operation whenever depending configuration

spaces assigned to different configuration roles are handled in parallel (e.g. {G} and {S}). Now, let us

discuss how a product specification can be achieved for each of the scenarios depicted in Figure 10. To

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
32/54

improve readability we will use abbreviated feature names for the Web-Portal feature model’s features as

described in Table 7.

In scenario-1 the goal was to discourage negotiation among configuration roles by sequencing the

configuration spaces that could potentially lead to conflicts, i.e., spaces of different configuration roles but

that expose dependencies. Constraints 2) and 3) of Table 6 illustrate these configuration spaces. In line 2 of

scenario-1 the collaborative configuration scenario begins. Line 2 describes the initial state of the product

specification indicating that features ne and ps are initially selected by the system as they are always true

for all products in the Web-Portal product line. In line 3, step-1 is started where the configuration role

project manager makes decision on configuration space {W}.pm. Line 4 shows the decisions of the project

manager that selected features gu, sc, and pe. Underlined features ps and ne represent automatic decisions

either made by the system or as the result of the propagation of previous decisions. The selection of feature

gu triggered the automatic selection of feature te in the configuration space {G} of the configuration role

web designer as represented by the expression gu[{G}.wd:te] in line 4.

Collaborative Configuration for the Web-Portal Product Line

Scenario 1: Figure 10.A

1. BEGIN

2. Initial state: (ne, ps)

3. Step: 1

4. {W}.pm = (ne, ps, gu[{G}.wd:te], sc, pe)

5. Commit: gu, te, sc, pe

6. Current state: (ne, ps, gu, te, sc, pe)

7. Step: 2

8. {S}.ss = (au[{G}.wd:ul], st[{P}.dm:da], {P}.dm:~xm], ~tr)

9. {N}.ss = (pr, ~ht, nn, ft)

10. {F}.ss = (ms[~se, ~mi], ~se, ~mi)

11. Commit: au, ul, st, da, ~xm, ~tr, pr, ~ht, nn, ft, ms, ~se, ~mi

12. Current state: (ne, ps, gu, te, sc, pe, au, ul, st, da, ~xm, ~tr, pr, ~ht, nn, ft, ms, ~se, ~mi)

13. Step: 3

14. {P}.dm = (da, ~xm)

15. {G}.wd = (te, he, ul, re)

16. Commit: he, re

17. Final state: (ps,gu,sc,ne,pe,~xm,da,te,re,he,ul,au,st,~tr,pr,~ht,nn,ft,ms,~se,~mi)

18. END

19. Final Specification: (ps,gu,sc,ne,pe,~xm,da,te,re,he,ul,au,st,~tr,pr,~ht,nn,ft,ms,~se,~mi)

20. {W} = (ps, gu, sc, ne, pe)

21. {P} = (~xm, da)

22. {G} = (te, re,he, ul)

23. {S} = (au, st, ~tr)

24. {N} = (pr, ~ht, nn, ft)

25. {F} = (ms, ~se, ~mi)

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
33/54

In Line 5, the project manager decisions are committed to the feature model after validating that all

mandatory decisions were made and that none of the decisions violate the constraints of configuration

space {W}. In addition, it is very important to check whether the decisions made by the project manager

are leading the configuration process to a valid configuration state. In other words, the system needs to

check whether the remaining constraints are still satisfiable, i.e., there is at least one set of feature

decisions that satisfy the constraints left. Line 6 shows the partial state of the product specification after the

project manager decisions on configuration space {W} have been made. Line 7 starts step-2 of the

configuration process that involve configuration spaces {S}, {N}, and {F}. These three sets were grouped

together strategically because they are under the responsibility of the same configuration role, i.e., the

security specialist. As a consequence, there is no need of merging the decisions of these configuration

spaces as the system assumes the security specialist will be aware of decision propagation within these

spaces. In fact, we could see these three configuration spaces as a single {S,N,F} configuration space.

Lines 8, 9 and 10 show the decisions of the security specialist regarding security ({S}), network ({N}), and

performance ({P}), respectively, as well as the corresponding propagations. For instance, the selection of

feature au triggered the selection of feature ul in the web designer configuration space {G}. Because the

strategy enforced in this scenario was the sequencing of potentially-conflicting configuration spaces the

propagated decision to select feature ul will hold until the end of the configuration process thereby not

allowing the configuration role web designer to make any changes. In line 11 the security specialist

configuration decisions are committed after proper validation. Line 12 shows the partial state of the

product configuration after step-2 distinguishing between the features that were manually and

automatically (underlined) decided. Step 3 starts at line 13. All previous decisions made hold at this stage.

As a consequence no decision was left open in configuration space {P} as illustrated in line 14 where

features da and xm are underlined. Hence, there is no need for configuration role database manager to get

involved in the process according to the rules of scenario-1. In line 15, configuration role web designer

selects features he and re. Feature te and ul represent propagations and cannot have their selection states

changed. In line 16 step-3 decisions are committed. Note that only two features (he and re) are illustrated

since all other features represent propagations. Line 17 shows the final state of the product specification

pointing out selected and deselected features as well as human and automatic/propagated decisions. By

following the propagation paths (e.g., au[{G}.wd:ul]) is possible to trace back the decisions that caused a

particular feature to be included or excluded in the product specification. For instance, the inclusion of

feature ul was caused by the decision of the configuration role security specialist to include feature au.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
34/54

Thus, feature ul is found highlighted in the final specification in line 19. Lines 20-25 show feature

decisions in each configuration space.

In scenario-2 the goal was to achieve maximum parallelism and postpone conflict resolution to a later

stage. In addition, automatic merging was chosen indicating that conflict resolution is performed

automatically based on particular merging strategies. Similar to scenario-1 in the first step the project

manager role started making top-level decisions. Line 4 shows the decisions made in step-1 which are

similar to those in scenario-1. In line 5 step-1 decisions are committed and the current state of the product

decisions is shown in line 6. Step-2 parallelized five depending configuration spaces ({S}, {N}, {F}, {P}

and {G}) assigned to three distinct configuration roles (security specialist, database manager, and web

designer). Because {S}, {N} and {F} are assigned to the same configuration role and are part of the same

step (security specialist) explicit propagation occurs within the boundaries of this configuration spaces. In

other words, these configuration spaces can also be seen as a single {SNF} configuration space that

represent the union of all features, constraints and decisions of {S}, {N}, and {F}. Lines 8-12 show the

decisions made in each configuration space and the effects of their propagations without crossing the

boundaries of each configuration space. In a realistic scenario we can either enable activity awareness so

that decision roles are aware about others decisions and their impact on their own decisions or disable

awareness and make decision roles solely concentrate on their own decisions.

Collaborative Configuration for the Web-Portal Product Line -

Scenario 2: Figure 10.B

1. BEGIN

2. Initial state: (ne, ps)

3. Step: 1

4. {W}.pm = (ne, ps, gu[{G}.wd:te], sc, pe)

5. Commit: gu, te, sc, ps

6. Current state: (ne, ps, gu, te, sc, pe)

7. Step: 2

8. {S}.ss = (au[{G}.wd:ul], st[{P}.dm:da, {P}.dm:~xm], ~tr)

9. {N}.ss = (pr, ~ht[{S}.ss:~tr], nn, ft)

10. {F}.ss = (ms[~se, ~mi], ~se, ~mi)

11. {P}.dm = (~da[xm], xm)

12. {G}.wd = (te, he, ~ul[{S}.ss:~au], re)

13. Merges step

14. Merge 1 – Priority merge of {S} and {G}

15. SGConstraints = {S}/constraints U {G}/constraints

16. SGLinkingConstraints = LinkingConstraints({S},{G})

17. SGSolution = {S}/decisions U {G}/decisions

18. MERGE-DECISIONS(SGConstraints, SGLinkingConstraints, SGSolution, {S}/decisions)

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
35/54

19. = Conflict: {S} U {G} = (au, ul, st, ~tr) U (te, he, ~ul, re)

20. = (au, &ul, st, ~tr, te, he, re) // conflict solved

21. Merge 2 – Minimum changes merge of {P}, {S,N,F}

22. {SNF} = {S}U {N} U {F}

23. PSNFConstraints = {P}/constraints U {SNF}/constraints

24. PSNFLinConstraints = LinkingConstraints({P}, {SNF})

25. PSNFSolution = {P}/decisions U {SNF}/decisions

26. MERGE-DECISIONS(PSNFConstraints, PSNFLinConstraints, PSNFSolution, PSNFSolution)

27. = Conflict: {P} U {SNF} = (~da, xm) U (… da, ~xm, …)

28. = Attempt #1: keep “da” ? (~xm) // 1 change

29. = Attempt #2: keep “~da” ? (~st, tr, ht, ~ms, se) or (~st, tr, ht, ~ms, mi) // 5 changes

30. = (au, ul, st, &da, &~xm, ~tr, pr, ~ht, nn, ft, ms, ~se, ~mi) // conflict solved

31. Merge1 U Merge2 = (au,ul,st,&da,&~xm,~tr,pr,~ht,nn,ft,ms,~se,~mi,te,he,re)

32. Commit: (au,ul,st,&da,&~xm,~tr,pr,~ht,nn,ft,ms,~se,~mi,he,re)

33. Final state: (ps,gu,sc,ne,pe,&~xm,&da,te,re,he,ul,au,st,~tr,pr,~ht,nn,ft,ms,~se,~mi)

34. END

35. Final Specification: (ps,gu,sc,ne,pe,&~xm,&da,te,re,he,ul,au,st,~tr,pr,~ht,nn,ft,ms,~se,~mi)

36. {W} = (ps, gu, sc, ne, pe)

37. {P} = (&~xm,&da)

38. {G} = (te, re,he, ul)

39. {S} = (au, st, ~tr)

40. {N} = (pr, ~ht, nn, ft)

41. {F} = (ms, ~se, ~mi)

According to the model in Figure 10-B, merges are necessary to solve eventual decision conflicts. Two

merges were anticipated based on different conflict resolution strategies. The first merge operation in line

14 is a priority merge where decisions in {S} will prevail over decisions in {G}. To achieve the priority

merge we used our MERGE-DECISIONS operation described previously. The parameters to the merge

operation are the local constraints of {S} and {G} (line 15), the constraints that link {S} and {G} and not

taken into account during step-2 so far (line 16), and the decisions made in {S} and {G} represented by the

SGSolution set in line17. The merge function call in line 18 passes these sets as parameters and the last

paramater indicates that the merge operation should preserve as much as possible security specialis role’s

decisions in {S}. Line 19 shows that there is a decision conflict while trying to combine the decisions in

{S} and {G}. The decision of the security specialist in selecting feature au indicates triggered the selection

of feature ul which is incompatible with the decision made by the web designer to deselect ul. The conflict

was solved through the merge operation by selecting ul and respecting the priority of {S}’s decisions over

{G}’s decisions. In Line 20, ul is preceded by an & indicating that the feature was decided by the merging

operation. The second merge in line 21 aimed at merging decisions in {P}, {S}, {N} and {F} minimizing

the changes of previous decisions made. The call to the MERGE-DECISIONS operation is similar to the

previous one except that this time a set with all combined decisions of {P}, {S}, {N} and {F} are passed as

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
36/54

the last parameter indicating that the merge should look for a set of decisions that satisfies all constrains

(line 23) and linking constraints (line 24) involving {P}, {S}, {N} and {F} and preserve as much as

possible the decision already made. Line 27 shows a decision conflict between {P} and {S} regarding

features da and xm. Attempts to combine decisions made on {P} and {S} taken propagations into account

on {N} and {F} are shown in lines 28 and 29. The first attempt (line 28) focuses on preserving the decision

to select da which leads to a change to xm that had to be deselected. Thus, one change is required. In the

second attempt ~da (deselection of feature da) is enforced and propagations change 5 other decisions made

in {S}, {N} and {F} (features st, tr, ht, ms, se). Hence, the first attempt represents the solution to the merge

operation as it minimizes the changes on decisions previously made (line 30). In line 31 the two merge

solutions are unified and committed in line 32. The final specification and the decision per configuration

space are shown in lines 35-41. Again, we indicate by the operator & the decisions that were eventually

changed during the merge operation so that the final configuration (line 35) explicitly indicates which

decisions were changed through the merging. For instance, features da and xm are preceded by the &

operator to indicate that the database manager’s original decisions on these features were changed in

merge 2 (lines 21-30).

In addition, it is interesting to notice that even though resulting product specifications in scenarios 1 and 2

are identical they were achieved through different strategies. In scenario-1 conflicting configuration spaces

were serialized to avoid merges as opposed to scenario-2 where parallelism was enforced and conflicts

were solved through different merge policies.

3.3.2 Executing Collaborative Product Configuration Scenarios

In this section we describe the dynamics of collaborative configuration taking into account five key

concepts: coordination, conflict resolution support, awareness, communication and traceability. However,

let us start by discussing the elements that support the dynamics of collaborative configuration scenarios.

3.3.2.1 An execution model for collaborative configuration scenarios

We propose a model packaged as cc_dynamics in Figure 11 to support collaborative configuration

scenarios. The ConfigurationScenario element represents configuration scenarios and may encompass

several ordered configuration steps (ConfigurationStep element). Configuration steps enforce order

constraints among configuration decisions as discussed in a previous session. For instance, multiples

configuration steps are shown in Figure 10, scenarios A and B. As multiple configuration roles may be

playing in the same step the concept of a configuration session (ConfigurationSession) is suggested. A

configuration session grants configuration roles a safe and independent place to make decisions without

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
37/54

the risk of damaging any other playing roles. That is, a session checks in a copy of the current state of the

feature model locally and allows for temporary inconsistencies.

The configuration role in charge of the session will configure all configuration spaces associated with the

session. For instance, on step-2 of scenario-B in Figure 10 a configuration session will be created

containing configuration spaces {N}, {S}, and {F} and assigned to configuration role security specialist as

this role is in charge of all three configuration spaces. All decisions propagated from previous steps will

appear as immutable. Likewise, only configuration spaces that can be activated will be available for

configuration, i.e., those that had their root feature selected by the project manager. For instance,

configuration space {S} will only appear as active if the project manager has selected feature Security.

Session decisions can only be committed when all mandatory decision were made and validated.

Figure 11: Model elements to support the dynamics of collaborative configuration

In addition, a session commit is only made to the master copy of the feature model after all prescribed

merging operations were performed. It means that in Figure 10 Scenario-B the two merges have to be

successfully performed before committing step-2 decisions to the centralized master copy of the feature

model. Notice that even though sessions isolate configuration roles an awareness system

(AwarenessSystem element) takes care of keeps configuration roles aware of each other’s activities. The

awareness systems works as a event propagator within the collaborative configuration system broadcasting

relevant events to all active configuration sessions. Again, considering scenario-B in Figure 10, when the

security specialist role decides to select feature authentication the awareness system sends an event to the

web designer’s configuration session to notify that feature user_login is of interest to another role. That is,

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
38/54

if feature user_login is not selected a decision conflict will happen. In this case, awareness may encourage

the web designer to select feature user_login and avoid a conflict or even to start a conversation session

with the security specialist role to investigate decision rationales and other alternatives.

Figure 12: Dynamic view of the CPC runtime system

3.3.2.2 Arrangement of CPC runtime components

Figure 12 illustrates how dynamic CPC model elements depicted in Figure 11 can be arranged as part of a

runtime distributed system for CPC scenario descriptions. Figure 12 shows one configuration step (#N)

containing two configuration sessions (A and B), three configuration actors (P, Q, and R), and some

configuration spaces (X, Y, and Z). Configuration sessions A and B run concurrently within step #N. The

awareness system takes care of providing activity awareness to actors P, Q, and R. For instance, if actor R

makes a decision that impact actors P and Q configuration spaces the later will be notified. Awareness is

an important element of coordination and may also help to minimize decisions conflicts. Each

configuration session contains a session product specification, i.e., a local copy of the product

specification master copy that allows each session to run independently. However, because multiple

configuration actors may be playing the same role they can be operating over the same session at the same

time. Therefore, a synchronization unit (see Synch label in Figure 12) is included to avoid inconsistent

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
39/54

concurrent updates to the shared session product specification. For instance, in Figure 12 actors P and Q

are playing the same role on session A and configuring the exact same configuration spaces (X, Y, and Z).

We say that session A is a shared session to resemble the concept of shared spaces in collaboration

systems. The main goal of shared sessions is to encourage cooperation among playing actors.

Notice that sessions are represented in both the client applications and the central runtime server. In the

client sessions are more a visual representation while in the server they enforce consistency and provide a

unified view of the session product specification. Each session also contains a local awareness component

that communicates with the awareness system to notify about events that may be of interest to other

configuration actors. The CPC Scenario Runtime unit is the major component in the system. It reads a

CPC scenario description, executes its steps, and updates the product specification master copy. In the end

of the configuration process the product configuration master copy contains all actors’ decisions and

represents the final outcome of the process.

3.3.2.3 Collaborative product configuration and groupware/CSCW concepts

In our approach, support to coordination is achieved through ordering configuration steps and facilitating

decision negotiations through automatic and manual merges. Collaborative configuration scenarios

specified by the product manager can be either highly regulated in which steps have to be performed in a

strict order or flexible allowing for maximum parallelism of configuration tasks. Flexibility comes at the

price of group work awareness and negotiation among configuration roles to implement coordination. For

instance, Figure 10 shows two scenarios with different coordination demands. Scenario-A imposes a strict

order of steps and no merge is required. Scenario-B maximizes concurrent work but requires merge

operations to combine configuration decisions. Decision merging is automatically achieved in a way that

minimizes impacts on previous decisions made.

Awareness is supported by allowing configuration roles to see the impact of their decisions on others

configuration spaces and vice-versa. By being aware of others decisions decision roles are able to

anticipate and intentionally minimize conflicts. For instance, by being aware that the database manager

has selected feature XML the security specialist may avoid a conflict by deselecting feature data storage in

the Web-Portal product line. At worst, one of the decision sides could start a communication session with

the other to discuss about the options to avoid later conflicts. In our approach, awareness is a very

important component and thus is supported by a specific module called awareness system. The awareness

system connects configuration sessions within the same step and is a central component for group work

coordination along with communication mechanisms. The implementation of the awareness system relies

on logic-based propagation and reasoning systems with the extra burden of supporting distributed

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
40/54

configuration environments. It should be noticed that support for collaborative configuration entails the

development of a distributed system with a centralized server that enforces decision-making consistency.

That is, only decisions that do not violate configuration constraints relying on the configuration server will

be accepted and committed.

Conflict resolution is another key component in the approach. In automatic resolution, merge operations

will attempt to find solutions that preserve as much as possible decisions made. Examples of such merges

include priority merges and minimize changes merges. Conflicts can also be resolved manually either by

an external role such as the product manager or by the roles directly involved in the conflict. For that, we

plan to offer tool support benefiting from the merge operations to allows roles to reason on conflicts and

how they could change their decisions so that to resolve the conflict. We are planning to develop a conflict

resolution interface where configuration roles involved in a particular conflict can play together and

analyze possible scenarios for resolving a conflict. For instance, the system can suggest various different

scenarios to resolve conflict based on the minimization of decision changes or on a given priority rule.

As for communication requirements we understand that configuration roles might need to communicate

synchronously or asynchronously depending on the situation. In a real-time scenario when configuration

roles are making decisions concurrently it may be interesting to allow them to freely interact and thus

coordinate their work. We have a particular commitment not to be too formal or restrictive in the process

and rather allow configuration roles to eventually decide the best way to go. A messenger-based system

augmented with a conflict resolution/reasoning interface is initially what we have planned to support

synchronicity. In other situations, asynchronous communication might be more appropriate especially

when configuration roles are distributed across different time zones. In this case, configuration roles may

still reason on conflict resolution strategies and send asynchronous messages to each other containing

particular desired scenarios.

Traceability is the ability to identify the configuration roles and actors that caused a feature to be included

in or excluded from a product specification. In non-collaborative configuration traceability is very hard to

achieve as there is a single configuration actor in charge of all decisions based on user requirements.

Tracing back to identify what requirement caused a feature to be included in a product specification entails

mapping requirements to features and can be highly complex. In collaborative configuration traceability

can be achieved by linking features to associated configuration decisions. In addition, we need to take into

account scenarios involving automatic and/or manual merges as well as decision propagation.

We plan to test the scalability of our approach through simulation. For instance, we can simulate the merge

of large feature-based product specifications by automatically generating feature models and valid

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
41/54

specifications. Likewise, we want to test the scalability of other algorithms such as those to support CPC

metrics. For this purpose, the same simulation strategy can be used. Previous studies [41][54] have

suggested that even though product configuration can be generally seemed as a constraint satisfaction

problem, i.e., NP-complete problems, it is usually a feasible problem when the complexity of feature

dependencies in feature models is low. Ultimately, our goal is to better understand the limits of our

approach by identifying scenarios where proposed algorithms work best and where they fall short.

Appendix A at the end of this document illustrates a possible XML representation to describe collaborative

product configuration scenarios.

3.4 Limitations

Most of the current limitations of our approach are subject to further research and thus were listed in the

Next Research Steps section.

3.5 Validation

Alternatives to validate the research include the formal verification of CPC properties, the conduction of

empirical case studies, and the use of a simulation environment. The primary alternative is to formally

verify desirable CPC properties. For instance, termination is a desirable property of the CPC runtime

system that enforces that every valid CPC scenario execution will come to an end, i.e., will terminate.

Likewise, we want to study how we could check for deadlocks on CPC scenario descriptions. Deadlocks

occur when two or more configuration actors are blocked waiting for each other’s decisions before they

can continue. As expected, deadlocks are highly undesirable as they may block the whole configuration

process. Backtracking is another characteristic of collaboration systems that regards the eventual need of

undoing past actions and/or decisions in order to restore the overall consistency of a system or process. In

the case of collaborative product configuration, backtracking can be really expensive requiring a large

number of decisions to be undone together because of complex dependencies among them. In certain

configuration scenarios, it may be the case that we have to enforce a backtrack-free process in a sense that

decisions made in the past can never be undone. The point becomes: Can we express or at least prove that

a given CPC scenario description is backtrack-free?

As for case studies, an initial plan is to run a case study using a large feature model. A possible candidate

is the e-Shop feature model described in [17] that contains hundreds of features. Another alternative is to

use an expanded version of the Web Portal feature model shown in previous sections of this proposal. Case

studies can be very helpful to demonstrate the feasibility of the approach in practical situations.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
42/54

Finally, simulation is also an alternative. In a simulation environment human configuration actors are

replaced by software agents that make random decisions. Simulation can be very useful in scenarios in

which it is difficult or even impractical to run a real case study or when the aspects to be assessed in the

approach do not necessarily depend on mirroring a real world situation. For instance, we plan to devise an

algorithm to generate random feature models with tens of thousands of features and run simulations to

evaluate the boundaries of the approach’s components such as its algorithms, data structures, and so forth.

4 Research to Date

4.1 Publications

Prior to the writing of this proposal we had the opportunity to discuss our research in international

academic events and gather valuable feedback to improve our ideas and broaden our perspective on related

works.

SPLC 2006

Mendonca M., Oliveira T., Cowan D.D., Collaborative and Coordinated Product Configuration,

International Software Product Line Conference, SPLC 2006, Doctoral Symposium, August 2006,

Baltimore, Maryland, USA.

At SPLC 2006 we discussed our research with a committee of experts in the field of Software Product

Lines. An article [64] previously submitted and accepted guided the discussion. The committee suggested

the use of large feature models to test our approach and its scalability and the development of a simulation

environment to reproduce real product configuration scenarios which would allow us to validate the

outcomes produced.

OOPSLA 2006

Mendonca, M., Czarnecki, K., Oliveira, T., Cowan, D.D.: Towards a Framework for Collaborative and

Coordinated Product Configuration, Companion to the 21th ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006, Doctoral

Symposium, October 2006, Portland, Oregon, USA.

In another Doctoral Symposium event, this time at OOPSLA 2006, we discussed our research through a

paper entitled Towards a Framework for Collaborative and Coordinated Product Configuration [65].

Suggestions included the use of the available CSP infrastructure (with possible extensions) to provide

support for human collaboration especially with regards to conflict resolution support, and the study of

CSCW concepts and how we could potentially reuse them in our approach especially in terms of tool

support.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
43/54

HICCS 2007

Mendonca, M., Oliveira, T., Cowan, D.D.: A Process-Centric Approach for Coordinating Product

Configuration Decisions, 40th Hawaii International Conference on Systems Science, HICSS-40 2007,

Software Technology track, IEEE Computer Society, January 2007, Waikoloa, Hawaii, USA.

At HICCS 2007 we presented a paper entitled A Process-Centric Approach for Coordinating Product

Configuration Decisions [66] in the Software Engineering track. In the paper we discussed how to describe

CPC scenarios using a process notation, namely BPMN [58]. Moreover, we developed some techniques to

support conflicts resolution based on priority schemes. During the discussions it was suggested the

development of a specific interface for conflict resolution, what we called conflict resolution support

interface (CSRI), to assist playing configuration roles in manually resolving decision conflicts.

Configuration roles could for example try different alternatives and ask the CSRI to check if conflicts were

resolved. Additionally, the CSRI could also make suggestions to configuration roles to resolve conflicts.

4.2 Experimentation

Collaborative configuration model

We have defined a first version of our collaborative configuration meta-model as shown is Figure 10 and

Figure 11. The three core abstractions to enable collaboration were specified: configuration spaces,

configuration roles, and configuration actors. The dynamics of collaborative configuration are supported

by concepts such as configuration scenarios, steps, and sessions. We expect to refine our meta-model as

we progress in our research. The architecture of the CPC runtime system is under construction. We are

concentrating primarily on the major components such as the runtime environment and the conflict

resolution interface.

Tooling and algorithms

We have a strong commitment to make our research practical. Thus, we plan to develop tool support for

specifying and executing collaborative configuration scenarios as discussed in this proposal. We have

already investigated some existing class libraries and tools that could be potentially extended for our

purposes. SAT4J [53] is a SAT solver library written in Java and developed by the Lens Computer Science

Research Centre in France. The library contains several efficient implementations of SAT algorithms

which attempt to find a solution for CSP problem described. The library can be used either as a “black-

box” by first users or tailored to particular research needs. After prototyping with SAT4J we came to the

conclusion that its use in our research would be too limited as satisfiability is just a small piece in our

approach.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
44/54

We are now prototyping with a popular open-source CSP Java tool called Choco [52]. CSP problems in

Choco are represented by the Problem class that stores a set of variables, variable domains and constraints.

Our major interest in a CSP tool like Choco is two-fold: i) identify the adherence of the library to our

objectives of supporting collaborative configuration, and ii) understand its extension mechanisms so that

we can adapt the tool to our needs. In fact, in order to support collaborative configuration properly we need

to develop a configuration distributed system where each node is able to perform some local independent

tasks and have the result of such tasks unified and committed to the central repository. So far, our

experience with Choco has been positive in the sense that we were able to partially implement and validate

some of our ideas. However, further research is needed to understand the limitations of the tool and its

adherence to our goals in collaborative configuration. In particular, we have had some hard time to find a

straightforward way to support the awareness system component we planned for our approach. Apparently

Choco does not provide adequate support for reasoning on distributed problem-solving. Additionally,

problems (the combination of variables, variable domains, and constraints) and solutions (variable

assignments) in Choco can not be cloned, joined, or merged, essential operations to support negotiation

and conflict resolution in our approach. Extensions to the library are needed for this purpose.

In the following, we illustrate how configuration space {N} of the Web-Portal product line can be

represented as a Choco Problem object. Line 2 creates the Problem object. Variables (represented by the

features in our feature model) are created in lines 3-7 and associated with the problem. Line 9 shows a

group constraint among features https, nntp, and ftp requiring that at least one of these features be selected

during product configuration. Line 10 enforces the requires relation between parent (protocol) and

children (https, nntp, and ftp) features in configuration space {N}.

Configuration Space {N} modeled as a Problem in Choco

01. /**** {N} Configuration Space ****/
02. nConfSpace = new Problem();

03. /** {N} Decisions **/
04. IntDomainVar protocol = nConfSpace.makeEnumIntVar("Protocol", 0,1);
05. IntDomainVar https = nConfSpace.makeEnumIntVar("HTTPS", 0,1);
06. IntDomainVar nntp = nConfSpace.makeEnumIntVar("NNTP", 0,1);
07. IntDomainVar ftp = nConfSpace.makeEnumIntVar("FTP", 0,1);

08. /** {N} Constraints **/
09. nConfSpace.post(

nConfSpace.atleast(
new Constraint[] {

nConfSpace.eq(1,https),
nConfSpace.eq(1,nntp),

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
45/54

nConfSpace.eq(1,ftp)}, 1));
10. nConfSpace.post(

nConfSpace.relationTupleAC(
new IntVar []
 {protocol, https, nntp, ftp}, new
ParentChildrenConstraint()));

On the other hand we have been able to implement in Choco the MERGE-DECISIONS algorithm proposed in

section 3.3.1. The code is shown below. Please refer to section 3.3.1 for details on the algorithm

implementation.

private int [] mergeDecisionsImpl(Problem p, Constraint [] c, int [] s, int [] a) {

 int [] r = {};

 int maxSimilarityA = 0;

 int maxSimilarityS = 0;

 // Add the constraints in "c" to problem "p"

 for (int i = 0 ; i < c.length ; i++) {

p.post(c[i]);

 }

 // if "s" satisfies "p" returns "s"

 if (satisfies(p,s)) {

 return s;

 }

 // search a solution for "p" that best approximates the assignments in "a"

 else {

 // for all solutions in "p"

 p.solve();

 do {

 int SimilarityA = compareAssignments(p,a);

 if (r.length == 0) {

 maxSimilarityA = SimilarityA;

 r = solutionToIntArray(p);

 }

 // temporarily saves the solution that best approximates A

 else {

 // ensures the solution also minizes changes in 's'

 if (SimilarityA == maxSimilarityA) {

 int SimilarityS = compareAssignments(p,s);

 if (SimilarityS > maxSimilarityS) {

 r = solutionToIntArray(p);

 maxSimilarityS = SimilarityS;

 }

 }

 else if (SimilarityA > maxSimilarityA) {

 r = solutionToIntArray(p);

 maxSimilarityS = compareAssignments(p,s);

 maxSimilarityA = SimilarityA;

 }

 }

 } while (p.nextSolution().booleanValue());

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
46/54

 }

 return r;

 }

We applied the MERGE-DECISIONS algorithm in two different merge scenarios for the configuration spaces

of the Web-Portal product line. The first merge was a priority merge where configuration space {P}

decisions would prevail over {S}, {N}, and {F}. Parameters p, c, s, and a of the algorithm are indicated in

each scenario below. The output shows the algorithm attempting to find a solution for the merge that

primarily minimizing changes in {P} and subsequently in the remaining configuration spaces. For instance,

each line described in the Output session correspond to a solution found and calculations to check if the

solution is appropriate for the purposed of the merge operations. Line 1 “A:(0,0:2) S:(2,0:12)”, for

example, indicates that the first solution found had no overlapping with A (the set of decisions made in

{P}) and 2 out of 12 overlapping with S. Thus, the solution does not seem to be interesting as the merge

aims at minimizing changes in {P}. The 9
th
 solution in line 9 fully overlaps with A and shares 5 decisions

with S. The best solution is coincidently found in the last solution (line 11). The statistics session shows

that changes to A were fully minimized (see Changes to Restriction) and 41.67% of S’s

assignments were changed. In other words, the database manager’s decisions on {P} were all preserved

and prevailed over the security specialist decisions that had to be eventually changed.

First Run: Priority Merge

Goal: decisions in {P}.dm will prevail over decisions in {S}.ss U {N}.ss U {F}.ss

 p = {P}.dm U {S}.ss U {N}.ss U {F}.ss

 c = (“storage requires database”)

 s = 1,0,1,1,0,1,0,1,1,1,0,0 (xm,~da,au,st,~tr,pr,~ht,nn,ft,ms,~se,~mi)

 a = 1,0 (xm,~da) - database manager role’s decisions on configuration space {P}

Output

1. A:(0,0:2) S:(2,0:12)
2. A:(0,0:2) S:(3,2:12)
3. A:(0,0:2) S:(4,3:12)
4. A:(0,0:2) S:(6,4:12)
5. A:(0,0:2) S:(8,6:12)
6. A:(0,0:2) S:(9,8:12)
7. A:(0,0:2) S:(10,9:12)
8. A:(2,0:2) S:(4:12)
9. A:(2,2:2) S:(5,4:12)
10. A:(2,2:2) S:(6,5:12)
11. A:(2,2:2) S:(7,6:12)

STATISTICS
Restriction: 1,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
Original...: 1,0,1,1,0,1,0,1,1,1,0,0

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
47/54

Merged.....: 1,0,1,0,1,1,1,1,1,0,0,1,1,1,1,1,1,1
Changes to Restriction: 0/2 (0.00%)
Changes to Original...: 5/12 (41.67%)

In the second run of our algorithm (see below) we performed a minimize-overall-changes merge in which

no priority was assigned to any of the configuration spaces. Instead, the aim is to minimize the overall

number of changes in all configuration spaces. The algorithm used is the same as in the previous case but

the parameters changes. Essentially, the difference is achieved by indicating that A = S, i.e., minimize

changes in all configuration spaces.

Second Run: Minimize Overall Changes Merge

Goal: Minimize changes on {P}.dm, {S}.ss U {N}.ss U {F}.ss (no priorities)

 p = {P}.dm U {S}.ss U {N}.ss U {F}.ss

 c = (“storage requires database”)

 s = 1,0,1,1,0,1,0,1,1,1,0,0 (xm,~da,au,st,~tr,pr,~ht,nn,ft,ms,~se,~mi)

 a = s

Output

1. A:(4,4:12) S:(4,0:12)
2. A:(5,4:12) S:(5:12)
3. A:(6,5:12) S:(6:12)
4. A:(7,6:12) S:(7:12)

STATISTICS
Restriction: 1,0,1,1,0,1,0,1,1,1,0,0
Original...: 1,0,1,1,0,1,0,1,1,1,0,0
Merged.....: 1,0,1,0,1,1,1,1,1,0,0,1,1,1,1,1,1,1
Changes to Restriction: 5/12 (41.67%)
Changes to Original...: 5/12 (41.67%)

5 Next Research Steps

Strategies to Minimize Conflicts

One of the major goals in our approach is to promote a smooth and consistent collaborative configuration

process while maximizing parallel work and minimizing decision conflicts. Currently, conflict

minimization is fostered by awareness mechanisms and algorithms for automatic and manual merge of

configuration decisions. However, we believe that other mechanisms can be put in place to help reducing

conflicts. The first idea is to allow configuration roles to indicate the importance of the decisions they are

dealing with. Currently, we have provided a categorization scheme for decisions based on their impact

throughout the configuration spaces. However, the algorithms we proposed especially merge operations

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
48/54

consider all decisions of equal importance. By allowing a decision role to indicate that she “doesn’t care

for” a decision could have a great impact on minimizing conflicts. In addition, allowing for constraint

relaxing (e.g., weak versus strong constraints) or even their elimination would reduce the likelihood of

decision conflicts. We plan to use both mechanisms in the future and study their impact on the scalability

of our algorithms.

Conflict Resolution Support Interface

The Conflict Resolution Support Interface aims at assisting configuration actors in manually resolving

decision conflicts. This interface supports the manual merge of configuration decisions where

configuration actors are allowed to relax some of their decisions and check for the overall consistency of

the partial product specification achieved. The intention is to use off-the-shelf CSP components such as

those provided by Choco combined with our own algorithms for merging decisions. The user of the

interface can be either the configuration actors involved in the conflict or a specific actor assigned to

resolve the conflict.

Case studies

We plan to validate the applicability of the approach through case studies. There are interesting feature

models in the literature that can be used in this case including an e-Shop feature model that contains

hundreds of features and an augmented version of the Web Portal product line discussed in previous

sections of this document. Building large feature models for an existing family of product is also a

possibility.

Simulation and scalability tests

To test the approach’s scalability we plan to develop a simulation environment in which large randomly-

generated feature models are configured automatically by software agents, by a single human role, or both

following a particular CPC scenario description. Simulation will allow us to know the boundaries of the

approach and search for better means to improve its performance.

3C model instantiation for collaborative configuration group work

A possible alternative to build a more explicit connection between our work and CSCW would be to

instantiate the 3C model illustrated in Figure 3 in the context of collaborative configuration group work.

References

[1] Software Engineering Institute (SEI). Software Product Lines website. Link: http://www.sei.cmu.edu/

productlines/index.html

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
49/54

[2] P. Clements, L. Northrop. Software Product Lines: Practices and Patterns, Addison-Wesley, Longman Publishing

Co., Inc., Boston, MA, 2001. ISBN: 0201703327.

[3] C. Krueger. Software Product Lines website. Link: http://www.softwareproductlines.com/

[4] C. Krueger. Software Product Lines web site. Link: http://www.softwareproductlines.com/introduction/

production2.html

[5] Software Engineering Institute (SEI). Software Product Lines web-site. Production Planning. Link:

http://www.sei. cmu.edu/productlines/production_plan.html

[6] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-oriented domain analysis (FODA) feasibility

study. Technical Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, PA, Nov. 1990.

[7] J. van Gurp, J. Bosch. Managing Variability in Software Product Lines. Landelijk Architectuur Congres,

Amsterdam 2000.

[8] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using feature models. In Proceedings of the

Third Software Product Line Conference 2004, pages 266–282. Springer, LNCS 3154, 2004.

[9] A. Goldberg. Collaborative Software Engineering. In: Journal of Object Technologies, 1 (2002) 1, S. 1-19.

[10] R. Krikhaar, and I. Crnkovic. Software Configuration Management. Sci. Comput. Program. 65, 3 (Apr. 2007),

215-221. DOI= http://dx.doi.org/10.1016/j.scico.2006.10.003

[11] W. F. Tichy. Tools for Software Configuration Management. In Proc. Of the Int. Workshop on Software

Version and Configuration Control, pages 1–20, Grassau, January 1988.

[12] N. Graham, H. Stewart, A. Ryman, R. Kopaee, and R. Rasouli. A World-Wide-Web Architecture for

Collaborative Software Design. In Software Technology and Engineering Practice, pages 22–32. Pittsburgh,

Pennsylvania, August 1999.

[13] Carl Cook. Collaborative Software Engineering: An Annotated Bibliography. Technical Report TR-COSC

02/04, Department of Computer Science and Software Engineering, University of Canterbury, Christchurch,

New Zealand, June 2004. Work in Progress.

[14] C. Krueger. BigLever GEARS tool, BigLever Software Inc., link: http://www.biglever.com/extras/

Gears_data_sheet.pdf

[15] Pure-systems GmbH. Variant Management with Pure::Consul. Technical White Paper. Link: http://web.pure-

systems.com, 2003.

[16] M. Antkiewicz and K. Czarnecki, K. FeaturePlugin: Feature modeling plug-in for Eclipse. In: OOPSLA’04

Eclipse Technology eXchange (ETX) Workshop. (2004) Link: http://www.swen.uwaterloo.ca/kczarnec/

etx04.pdf. Software available from gp.uwaterloo.ca/fmp.

[17] S. Lau. Domain Analysis of E-Commerce Systems Using Feature-Based Model Templates. Master of Applied

Science Thesis, Electrical and computer Engineering, University of Waterloo. Link:

http://gp.uwaterloo.ca/files/2006-lau-masc-thesis.pdf

[18] S. Deelstra, M. Sinnema, and J. Bosch: Product Derivation in Software Product Families – A case study.

Journal of Systems and Software, Volume 74, Issue 2, 15 January 2005, Pages 173-194.

[19] E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press, London and San Diego, 1993 ISBN 0-

12-701610-4.

[20] V. Kumar. Algorithms for Constraint Satisfaction Problems: a Survey. AI Msg. 13 (1) (1992) 32-44.

[21] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. Towards Distributed Configuration. Proc. KI-2001,

Joint German/Austrian Conference on AI, Vienna, Austria, Lecture Notes in AI, Springer Verlag.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
50/54

[22] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The Distributed Constraint Satisfaction Problem:

Formalization and Algorithms. IEEE Transactions on Knowledge and Data Engineering, v.10 n.5, p.673-685,

September 1998.

[23] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Configuration through Specialization and Multi-level

Configuration of Feature Models. Software Process Improvement and Practice, 10(2), 2005.

[24] K. Kang, S. Kim, L. Lee, K. Kim, E. Shin and M. Huh. FORM: A Feature-Oriented Reuse Method with

Domain-Specific Reference Architectures. Annals of Software Engineering, 5, 1998, pp. 143-168.

[25] K. Kang, K. Lee, and J. Lee. FOPLE - Feature Oriented Product Line Software Engineering: Principles and

Guidelines. Pohang University of Science and Technology, 2002

[26] M. Riebisch et al. ALEXANDRIA: Software Product Line Development Methodology.

Link: http://www.theoinf.tu-ilmenau.de/~pld/

[27] K. Czarnecki and U.W. Eisenecker. Generative Programming. Addison Wesley, 2000. ISBN: 0201309777.

[28] V. Cechticky, A. Pasetti, O. Rohlik, and W. Schaufelberger. XML-based Feature Modelling. LNCS, Software

Reuse: Methods, Techniques and Tools: 8th ICSR 2004. Proceedings, 3107:101–114, 2004.

[29] K. Czarnecki and M. Antkiewicz. Mapping features to models: A template approach based on superimposed

variants. In R. Gl¨uck and M. Lowry, editors, GPCE’05, volume 3676 of LNCS, pages 422–437. Springer,

2005.

[30] T. Bednasch, C. Endler, and M. Lang. CaptainFeature, 2002-2004. Tool available on SourceForge at

https://sourceforge.net/projects/captainfeature/.

[31] P. Sochos, M. Riebisch and I. Philippow. The Feature-Architecture Mapping (FArM) Method for Feature-

Oriented Development of Software Product Lines. In: 13th Annual IEEE International Conference and

Workshop on the Engineering of Computer Based Systems.

[32] P. Zave. Feature Interactions and Formal Specifications in Telecommunications. IEEE Computer 26, 8, 20-28.

[33] P. Zave. FAQ Sheet on Feature Interaction. Link: http://www.research.att.com/~pamela/faq.html

[34] M. Griss, J. Favaro, M. d’Alessandro. Integrating Feature Modeling with the RSEB. Proceedings of the Fifth

International Conference on Software Reuse (ICSR), IEEE Computer Society Press, Los Alamitos, CA, pp.

76–85.

[35] J. van Gurp, J. Bosch, and M. Svahnberg. On the Notion of Variability in Software Product Lines. In

Proceedings of the Working IEEE/IFIP Conference on Software Architecture (WICSA), IEEE Computer

Society Press, Washington, DC, pp. 45–55.

[36] K. Lee, K. Kang, and J. Lee. Concepts and Guidelines of Feature Modeling for Product Line Software

Engineering. In C. Gacek (ed.), Software Reuse: Methods, Techniques, and Tools: Proceedings of the Seventh

Reuse Conference (ICSR7), Austin, USA, Apr. 15-19, 2002, Vol. 2319 of Lecture Notes in Computer Science,

Springer-Verlag, Heidelberg, Germany, pp. 62–77.

[37] K. Czarnecki. Generative Programming: Principles and Techniques of Software Engineering Based on

Automated Configuration and Fragment-Based Component Models. PhD thesis, Technische Universit¨at

Ilmenau, Ilmenau, Germany. Available from http://www.prakinf.tu-ilmenau.de/~czarn/diss.

[38] K. Czarnecki, T. Bednasch, P. Unger, U. Eisenecker. Generative Programming for Embedded Software: An

Industrial Experience Report. In D. Batory, C. Consel and W. Taha (eds), Proceedings of the ACM

SIGPLAN/SIGSOFT Conference on Generative Programming and Component Engineering (GPCE’02),

Pittsburgh, October 6-8, 2002, Vol. 2487 of Lecture Notes in Computer Science, Springer-Verlag, Heidelberg,

Germany, pp. 156–172.

[39] T. Bednasch. Konzept und Implementierung eines konfigurierbaren Metamodells f¨ur die

Merkmalmodellierung, Diplomarbeit, Fachbereich Informatik und Mikrosystemtechnik, Fachhochschule

Kaiserslautern, Standort Zweibr¨ucken, Germany. Available from http://www.informatik.fh-

kl.de/~eisenecker/studentwork/dt_bednasch.pdf

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
51/54

[40] K. Czarnecki, C. H. P. Kim, and K. T. Kalleberg. Feature Models are Views on Ontologies. In: Software

Product Line Conference (2006).

[41] D. Batory. Feature Models, Grammars, and Propositional Formulas. In: Software Product Line Conference

(2005).

[42] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated reasoning on feature models. In Proceedings of the

17th Conference on Advanced Information Systems Engineering (CAiSE’05), Porto, Portugal, 2005, LNCS.

Springer, 2005.

[43] M. Riebisch. Towards a More Precise Definition of Feature Models. In Riebisch, M., Coplien, J. O., and

Streitferdt, D., editors, “Modelling Variability for Object-Oriented Product Lines”, pp. 64–76, Norderstedt,

Germany (2003). BookOnDemand Publ. Co.

[44] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Generic Semantics of Feature Diagrams. Computer

Networks 51, 2 (Feb. 2007), 456-479. DOI= http://dx.doi.org/10.1016/j.comnet.2006.08.008

[45] J. Lee, K. Kang, and S. Kim. A Feature-Based Approach to Product Line Production Planning. LNCS,

Springer Berlin / Heidelberg, Volume 3154/2004, Pages 183-196. ISBN: 978-3-540-22918-6.

[46] K. Schmidt and L. Bannon. Taking CSCW Seriously. In Computer Supported Cooperative Work Journal,

(1992) pp. 7-40.

[47] L. Bannon, and S. Kjeld. CSCW: Four characters in search of a context. ECSCW ’89. Proceedings of the First

European Conference on Computer Supported Cooperative Work, Gatwick, London, 13-15 September, 1989,

pp. 358-372. - Reprinted in Studies in Computer Supported Cooperative Work. Theory, Practice and Design, J.

M. Bowers and S. D. Benford, Eds. North-Holland, Amsterdam etc., 1991, pp. 3-16.

[48] I. Greif. Computer-Supported Cooperative Work: A Book of Readings. San Mateo, Calif.: Morgan Kaufmann

Publishers.

[49] J. Grudin. CSCW: The convergence of two development contexts. In S. P. Robertson, G. M. Olson, and J. S.

Olson (eds.): CHI ’91. ACM SIGCHI Conference on Human Factors in Computing Systems, New Orleans, 28

April-2 May 1991. New York, N.Y.: ACM Press, pp. 91-97.

[50] C. J. P. Lucena, H. Fuks, A. Raposo, M. A. Gerosa, and M. Pimentel, Communication, Coordination and

Cooperation in Computer-Supported Learning: The AulaNet Experience. In Advances in Computer-Supported

Learning, F.M.M. Neto and F. Brasileiro (orgs), ISBN 1-59904-356-4, 2006, pp. 274-297.

[51] C. A. Ellis, S. J. Gibbs, and G. L. Rein, (1991). Groupware - Some issues and experiences. Communications of

the ACM, 34(1), 38-58.

[52] F. Laburthe and N. Jussien. Choco - Constraint Programming System. Link: http://choco.sourceforge.net/,

2003-2007.

[53] SAT4J - A Satisfiability Library for Java. Available at http://www.sat4j.org

[54] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Using Java CSP Solvers in the Automated Analyses

of Feature Models. In Post-Proceedings of the Summer School on Generative and Transformational

Techniques in Software Engineering (GTTSE). LNCS 4143, 2006.

[55] A. Goldberg. Collaborative Software Engineering. Journal of Object Technology, Vol. 1, No. 1, May-June

2002. Published by ETH Zurich, Chair of Software Engineering. Available at:

http://www.jot.fm/jot/issues/issue_2002_05/column1.pdf

[56] M. G. Pimentel. RUP-3C-Groupware: um processo de desenvolvimento de groupware baseado no Modelo 3C

de Colaboração. Tese de Doutorado, Departamento de Informática, Pontifícia Universidade Católica do Rio de

Janeiro (PUC-Rio), 22 de março de 2006 (in Portuguese).

[57] J. C. P. Lucena. Applying the 3C Model to Groupware Development. International Journal of Cooperative

Information Systems (IJCIS), v.14, n.2-3, Jun-Sep 2005, World Scientific, ISSN 0218-8430, pp. 299-328.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
52/54

[58] Object Management Group (OMG). BPMN: Business Process Modeling Notation. Link:

http://www.bpmn.org/index.htm

[59] K. Schmidt and T. Rodden. Putting it all Together: Requirements for a CSCW Platform. In Shapiro, D.,

Tauber, M., Traunmüller, R. (eds.): The Design of Computer Supported Cooperative Work and Groupware

Systems. North Holland, Holland, pp. 157-176.

[60] D. C. Neale, J. M. Carroll, and M. B. Rosson. Evaluating Computer-Supported Cooperative Work: Models and

Frameworks. In Proceedings of the 2004 ACM Conference on Computer Supported Cooperative Work

(Chicago, Illinois, USA, November 06 - 10, 2004). CSCW '04. ACM Press, New York, NY, 112-121. DOI=

http://doi.acm.org/10.1145/1031607.1031626

[61] C. Gutwin, R. Penner, and K. Schneider. Group Wwareness in Distributed Software Development. In

Proceedings of the 2004 ACM Conference on Computer Supported Cooperative Work (Chicago, Illinois, USA,

November 06 - 10, 2004). CSCW '04. ACM Press, New York, NY, 72-81. DOI=

http://doi.acm.org/10.1145/1031607.1031621

[62] B. Singh. Invited Talk on Coordination Systems at the Organizational Computing Conference (November 13-

14, 1989, Austin, Texas).

[63] P. Dourish and V. Bellotti. Awareness and Coordination in Shared Workspaces, Proc. ACM CSCW 1992, 107-

114.

[64] M. Mendonca, T. Oliveira, D.D. Cowan, Collaborative and Coordinated Product Configuration, International

Software Product Line Conference, SPLC 2006, Doctoral Symposium, August 2006, Baltimore, Maryland,

USA.

[65] M. Mendonca, K. Czarnecki, T. Oliveira, D.D. Cowan: Towards a Framework for Collaborative and

Coordinated Product Configuration, Companion to the 21th ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006, Doctoral Symposium,

October 2006, Portland, Oregon, USA.

[66] M. Mendonca, T. Oliveira, D.D. Cowan: A Process-Centric Approach for Coordinating Product Configuration

Decisions, 40th Hawaii International Conference on Systems Science, HICSS-40 2007, Software Technology

track, IEEE Computer Society, January 2007, Waikoloa, Hawaii, USA.

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
53/54

Appendix A:

XML representation of a collaborative configuration scenario

<configuration_scenario configuration_roles_spaces_file=”Web-Portal_roles_spaces.xml”>

<configuration_step name="step1">

 <pre_conditions/>

 <configuration_sessions>

 <session name="pm_session" configuration_role="project manager">

 <communication_scheme/>

 <configuration_space name="{W}">

 </configuration_space>

 </session>

 </configuration_session>

 <post_conditions/>

</configuration_step>

<configuration_step name="step 2">

 <pre_conditions/>

 <configuration_sessions>

 <session name="ss_session" configuration_role="security specialist" awareness="on">

 <communication_scheme/>

 <configuration_space name="{G}">

 </configuration_space>

 <configuration_space name="{S}">

 </configuration_space>

 <configuration_space name="{N}">

 </configuration_space>

 </session>

 <session name="wd_session" configuration_role="web designer" awareness="off">

 <communication_scheme/>

 <configuration_space name="{G}">

 </configuration_space>

 </session>

 <session name="dm_session" configuration_role="database manager" awareness="on">

 <communication_scheme/>

 <configuration_space name="{P}">

 </configuration_space>

 </session>

 </configuration_session>

 <post_conditions>

 <merge type="minimize_changes" >

 <sessions>ss_session, dm_session</sessions>

 </merge_type>

 <merge type="priority" >

 <sessions>ss_session, wd_session</sessions>

 </merge_type>

Technical Report CS-2007-30

Marcilio Mendonca (PhD Candidate), SCS, University of Waterloo
54/54

 <merge type="union" >

 <sessions>ss_session, dm_session, wd_session</sessions>

 </merge_type>

 </post_conditions>

</configuration_step>

</configuration_plan>

