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Abstract. In this paper we study the problem of reconstructing or-
thogonal polyhedra from a putative vertex set, i.e., we are given a set
of points and want to find an orthogonal polyhedron for which this is
the set of vertices. We are especially interested in testing whether such
a polyhedron is unique. Since this is not the case in general, we focus
on orthogonally convex polyhedra, and give an O(nlogn) algorithm to
find the answer. We then consider the case where the given set of points
may be rotated beforehand. For 2D, we prove uniqueness and provide an
O(nlogn) algorithm to obtain the answer, which can then be used for
an O(n”logn) algorithm in 3D.
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1 Introduction

In this paper, we study the following problem: Given a set of points S in 3D, is
there an orthogonal polyhedron for which the set of vertices is exactly S? And
if there is such a polyhedron, is it unique? (Precise definitions of orthogonal
polyhedra and their vertices will be given in Section 2.)

Motivation and our results Our interest in the problems arises from the
question of possible representations of orthogonal polyhedra. The “standard”
representation of polyhedra (representing the graph as doubly-connected edge
list (see [12]) and vertex coordinates) contains much redundancy when applied to
an orthogonal polyhedron. What information can be omitted while maintaining
uniqueness of the polyhedron?

We are specifically interested in the vertex representation, where we store the
vertex coordinates and nothing else. Our problem can hence be re-phrased as
follows: Is the vertex representation unambiguous, i.e., does it give rise to one
unique orthogonal polyhedron?

Bournez et al. [3] gave an example where this representation is ambiguous,
even in 2D (see Figure 1). In this example, the polygon boundary touches itself
repeatedly, which is not usually allowed. We show that if we forbid this, then
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Fig. 1. Two polygons (one touching itself) that have the same set of vertices. From [3].

there is a simple, O(n logn), algorithm, to test whether a set of 2D points belongs
to an orthogonal polygon.

In 3D the vertex representation is indeed ambiguous, see Figure 2. But this
example is not orthogonally convex, so what is the situation if we restrict our-
selves to orthogonally convex polyhedra? The precise problem is as follows:

/] /]

|

Fig. 2. Two orthogonal polyhedra that have the same vertex set.

Problem 1. Given a set S of n points in 3D, is there an orthogonally convex
polyhedron for which the set of vertices is exactly S?

We give an O(nlogn) algorithm to solve this problem. Also, there is a unique
polyhedron, since the reconstructed polyhedron is in fact the orthogonally convex
hull of P. We then study a generalization where we allow rotations.

Problem 2. Given a set of n points S in 3D, is there a rotation S’ of S and an
orthogonally convex polyhedron P such that the vertices of P are exactly S'?

It is quite easy to show that this problem is solvable in O(n®logn) time. We

work on reducing this time complexity. First, we consider the 2D problem, and
provide an O(nlogn) algorithm to find a suitable polygon. We also show that
if such a polygon exists, then it is unique. Then we use this to reduce the time
complexity for 3D to O(n?logn).
Related results Reconstructing polygons from a given point set was first pro-
posed by Steinhaus [13]. Unless the points are collinear, there always exists a
polygon, and it can be found in many ways; see [8] for a good overview on this
topic. The three-dimensional version (reconstruct a general polyhedron from a
set of points) appears to first have been solved by Griinbaum [7]; see [8] for
extensions and generalizations.
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Noone appears to have studied reconstructing orthogonal polygons and poly-
hedra from point sets, but related results appear in the literature on representa-
tions of orthogonal polyhedra via their vertices. Aguilera and Ayala [1, 2] showed
how to reconstruct an orthogonal polyhedron from its vertices if we know which
vertices are “extreme” (have degree 3.) From this information they can generate
all edges of the polyhedra (the extreme vertices must “pair up”, similarly as in
our algorithm for 2D polygons in Section 3.1). Bournez, Maler and Pnueli [3] as-
sume that with each vertex we know whether a (pre-determined) octant is inside
the polyhedron or outside. They do not reconstruct the edges or faces, but give a
test that determines in O(nlogn) time whether a given point is inside the poly-
hedron or outside. (Their technique works for arbitrarily high dimensions, and
the runtime then becomes O(nd?(log n+2%)).) Contrasting our results with these
papers, we demand less information (nothing except vertex coordinates), but in
exchange can reconstruct only orthogonally convex polyhedra. Furthermore, we
also consider rotations of the point set.

2 Definitions

A polygonal curve is a simple closed curve that consists of a finite number of line
segments. A polygon is a set P in a plane whose boundary 9P is a polygonal
curve. A wverter of a polygon P is a point on its boundary where 0P changes
slope. An edge of a polygon is a line segment on its boundary that connects two
vertices.

A set S C R? is convex if x € S and y € S implies that the segment [zy]
is entirely in S. For a set S C R? we define the convex hull CH(S) to be the
intersection of all convex sets that contain S. CH(S) is a convex polygon for
any bounded set S.

An orthogonal polygon (sometimes also called rectilinear polygon) is a polygon
whose boundary is composed entirely of axis-parallel segments. An orthogonal
polygon P is orthogonally convex if for any two points in P that determine a
horizontal or vertical line segment, this line segment is entirely in P.

Defining polyhedra precisely is nontrivial. Let a closed polyhedral surface be
the union of a finite set of polygons that satisfies the following properties [4, 5]:
(1) Any pair of polygons meet only at their edges or vertices. (2) Each side of
each polygon meets exactly one other polygon along an edge. (3) It is possible
to travel from the interior of any polygon to the interior of any other. (4) Let
v be any vertex and let Fy, Fy, ..., Fy be the k polygons which meet at v. It is
possible to travel over the polygons F; from one to any other without passing
through v. See the books by Coxeter, Cromwell or O’Rourke [4, 5, 10] for detailed
discussions of these properties. The vertices and edges of the closed polyhedral
surface are the vertices and edges of the polygons that define it. A polyhedron is
then a subset of R® whose boundary is a closed polyhedral surface.

To obtain the faces of the polyhedron, we merge co-planar adjacent polygons
of the surface. A face may or may not be a polygon (because its boundary may
touch itself, or its boundary may consist of multiple polygonal chains), but we
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define its vertices and edges similar to polygons: A vertex of a face is a place
where its boundary changes direction, or where the boundary touches itself, or a
point where some other face has a vertex. An edge of a face is a line segment on
its boundary that connects two of its vertices. The doubly-connected edge list
stores the list of edges and their incidences to vertices and faces.

An orthogonal polyhedron is a polyhedron whose boundary is composed en-
tirely of polygons that are lying within an orthogonal plane, i.e., a plane whose
normal is one of the coordinate axes. An orthogonally convexr polyhedron is a
polyhedron whose intersection with every orthogonal plane is either empty or a
single orthogonally convex polygon.

An orthogonally convex hull of a point set may be defined in different ways
which are not all equivalent (see [11] for details for 2D). We use the following
definition. An orthogonal line is a line that is parallel to a coordinate axis. An
orthogonal half-space is a a set S such that for every orthogonal line ¢, the
intersection of ¢ with S is a line, a ray, or empty. (Fink and Wood [6] study
properties of these half-spaces in detail.) The orthogonally convezr hull of a set
S is then the intersection of all orthogonal half-spaces that contain S.

3 Reconstructing without rotation

In this section, we first study the problem of reconstructing orthogonal polygons
in 2D, given a set of points. This has been implicitly solved by Aguilera and
Ayala [2], and we mostly review it here. Then we give an O(nlogn) algorithm
for the 3D problem, and also explain why other approaches do not work.

3.1 Point sets in 2D

So, assume we are given a set S of points, and we want to find an orthogonal
polygon for which this is the set of vertices. Let s1,...,s; be a maximal set of
points in S that have the same y-coordinate, sorted by increasing x-coordinate.
Since every vertex is incident to exactly one horizontal edge, (s;, s;4+1) must be
an edge for odd values of i and is not an edge for the rest (see Figure 3).

Fig. 3. Reconstruction in 2D: There must be an edge between odd-indexed and even-
indexed vertices in each row and column.

Repeating this for every set of points with the same z-coordinates, and in a
symmetric fashion for every set of points with the same y-coordinates, we obtain
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exactly which pairs of vertices must form edges and which pairs are not allowed
to be edges. The resulting set of edges either surrounds a polygon (then we are
done) or it doesn’t (then no such polygon can exist.) Clearly the algorithm can
be implemented in O(nlogn) time by sorting the points suitably twice and then
scanning them in order.

The only property that we have used is that each vertex has exactly one ver-
tical and one horizontal incident edge. Therefore, even the existence of multiple
orthogonal polygons with disjoint boundaries may be tested using our algorithm.

Theorem 1. For a set of n points in 2D, we can determine in O(nlogn) time
whether there exists a set of polygons with disjoint boundaries whose vertics are
exactly S. Such a set is unique.

3.2 Points sets in 3D

Now we study Problem 1 in 3D, and give an O(nlogn) time algorithm that uses
O(n) space.

Approaches that do not work We first want to mention two simple ap-
proaches, of which one does not work at all, and the other works only partially.

The first idea would be to emulate the algorithm for 2D as follows: Compute
for each orthogonal plane the set of points that is in it. Whenever there are
points, use the 2D algorithm to identify the edges within that plane, which then
defines the vertices of the polyhedron. Unfortunately, this is not correct. In the
2D algorithm, the crucial step was that every vertex has exactly one horizontal
and one vertical edge. The equivalent statement is not true in 3D: A vertex may
have one or two incident edges parallel to a coordinate axis. Even worse, it is
actually not possible to identify all faces within one orthogonal plane by only
looking at the vertices in that plane; see Figure 4.

L L

Fig. 4. Two polyhedra may have the same set of vertices, but different faces, within
one orthogonal plane.

The second idea would be to compute the orthogonally convex hull of the
given point set S, and to test whether its vertex set is exactly .S. This approach
is principally correct: One can show that if there is an orthogonally convex
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polyhedron P with vertex set S, then indeed the orthogonally convex hull of §
is P. However, there appears to be very little work done on efficiently computing
the orthogonally convex hull. The question “given a set S, are all these points
on the convex hull” can be answered in O(nlogn) time by computing whether
each point is a local maximum in one of the 8 directions. But there appear to
be no results in the literature that truly reconstruct the orthogonally convex
polyhedron, including all vertex and edge information, in O(nlogn) time.

Our approach Our algorithm consists of two steps. In the first step, we sweep
through all six orthogonal directions and construct the shadows of parts of the
polyhedron. In the second step, we extract the actual edges and faces of the
polyhedron from these shadows. Once the actual edges and faces are recon-
structed, we can describe a closed polyhedral surface and thus the polyhedron
is reconstructed.

To explain this in more detail, we need some definition. Assume that we have
an orthogonally convex polyhedron P. Let 1 < x2 < ... < z; be the values for
which some point in S has z-coordinate x;. For ¢ = 1,...,¢, let P, be the left
half of the polyhedron obtained when slicing P with a plane {z = z; + ¢} (for a
small € > 0), and let 7; be the projection of P,” onto an z-plane; we call m; the
ith shadow in x T -direction. See Figure 5. We define 7y to be the empty set. The
following lemmas, whose fairly straightforward proofs we omit for space reasons,
are crucial to our algorithm:

Fig. 5. The definition of .

Lemma 1. Let P be an orthogonally convex polyhedron. Then each m;, i =
1,...,t is an orthogonally convex polygon. Moreover, m; is the orthogonally con-

vex hull of all vertices in P, projected onto an x-plane.

Lemma 2. Let P be an orthogonally convex polyhedron. Fori=1,...,t, let F;
be the set of all faces whose normal is the negative x-axis and whose x-coordinate
is x;. Then the union of the faces in F; is exactly the closure of m; — mi—1.

Our algorithm can now be outlined as follows. Assume that we have sorted
the points by z-coordinates. Let 1 < ... < x; be the z-coordinates for which



Reconstructing Orthogonal Polyhedra from Putative Vertex Sets 7

a vertex with this z-coordinate exists, and let the ith layer be all vertices with
a-coordinate z;. For ¢ = 1,...,t, compute the (2D) orthogonally convex hull
of the projections of the first i layers onto an z-plane. We call the result ;,
since by Lemma 1 this is exactly the ith shadow if there exists a polyhedron
P. Next, compute 7; — m;_1; this then computes the faces as in Lemma 2 if P
exists. Repeating this for all 6 directions, we obtain all faces (and can obtain
edge information and incidence structure from there.) This computes the only
possible set of faces that could belong to an orthogonally convex polyhedron
P with vertex set S. Now we need to verify that these faces indeed form a
polyhedron (i.e., check the properties of a polyhedral surface), and that the
vertices that they define is exactly set S.

This algorithm can easily be implemented in O(n?logn) time if we use the
(2D) orthogonally convex hull algorithm by Ottman et al. [11], which takes
O(nlogn) time and is applied O(n) times (for each layer in each of six directions.)

The time complexity can be improved by dynamically updating the orthogo-
nal convex hull as new points are added at each layer, and immediately comput-
ing the faces. Given a set of points with its orthogonally convex hull, it is easy
to update the orthogonally convex hull in O(logn) time per added point. (This
is well-known for general convex hulls, see e.g. [12], and can easily be modified
to handle orthogonally convex hulls.)

To compute 7; —m;_1, observe that all connected components of 7m; —m;_1 are
incident to at least one point in layer i. Hence, exploring the boundary of m; from
vertices in layer 7, we can walk around each connected piece of 7; — m;_1, hence
find each face F' and explicitly list all vertices and edges. The time to do this is
proportional to the number of vertices in the faces found; over all faces and all
layers this is O(n) time. The final verification steps can also be implemented in
O(n) time. Once we are finished with the ith layer, we can discard m;_; which
is no longer needed, hence the space complexity is O(n) as well.

Theorem 2. For a set of n points in 3D, we can determine in O(nlogn) time
whether there exists an orthogonally convex polyhedon whose vertex set is exactly
S. Such a polyhedron is unique.

4 Rotated point sets

In this section, we study Problem 2, i.e., we allow a rotation to be applied to the
point set before searching for a polygon/polyhedron. The following notation will
be helpful: An «a-orthogonal polygon (for 0 < o < mw/2) is a polygon for which
all edges have slope tan(a) or — cot(a). A rotated orthogonal polygon is an a-
orthogonal polygon for some 0 < « < 7/2. A rotated orthogonal polyhedron is a
polyhedron obtained by applying some rotation matrix to an orthogonal polyhe-
dron. Similarly we define a-orthogonally convex polygon and rotated orthogonally
convex polygon/polyhedron.
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4.1 Point sets in 2D

Problem 2 is far from trivial even in 2D, where it becomes the following: Given
a set of points S in 2D, is there a rotated orthogonal polygon whose vertices are
S?

A straightforward approach consists of trying all possible angles «, and for
each of them, running the algorithm of Section 3.1. To find the possible angles,
compute the convex hull CH(S) of S. For each of the edges on the convex hull,
try the angle o that makes this edge horizontal or vertical. Clearly, if P exists,
then one of these rotations must find it because of the following observation:

Lemma 3. Let P be an orthogonal polygon, and let CH(P) be the convex hull
of its vertices. Then there are at least four edges of P that are on the boundary
of CH(P). If P is orthogonally convez, then there are exactly four such edges,
and they are edges of CH(P).

The time complexity of this approach is O(n?logn) for an input set of n
points, since the convex hull has at most n edges.

Theorem 3. For a set S of n points in 2D, we can determine in O(n?logn)
time whether there exists a rotated orthogonal polygon whose set of vertices is
exactly S.

For orthogonally convex polygons, with some pre-computation we can elim-
inate all but one possible rotation, and hence improve the time complexity to
O(nlogn). To do so, we first show that in fact only one rotation is possible.

Given an edge e of a convex polygon C, we define H(e) to be the closed
half-circle of e that intersects C. See also Figure 6(a).

Lemma 4. Let P be an a-orthogonally convex polygon for some 0 < a < /2,
and let e = (v,w) be an edge of CH(P). If e is not an edge of P, then H(e)
contains at least one vertex # v,w of P.

Proof. Assume e is not an edge of P. Vertex v has two incident edges in P, one
of slope tan(«) and the other of slope — cot(«). Furthermore, these edges must
be inside CH(P), which (since the convex hull has angles less than 7 and the
two edges are at angle 7/2) means that one of them must enter H(e). Call the
other endpoint of this edge v’. Similarly one can argue that one incident edge of
w must enter H(e); call its other endpoint w’. See also Figure 6(a).

Clearly v’ # w and w’ # v since e is not an edge of P. If either one of v' and
w’ is inside H (e), then we are done. But if both are outside H (e), then the edges
(v,v") and (w,w’) cross, because the two corresponding rays have perpendicular
slopes and hence meet exactly on H(e). But the boundary of a polygon is a
polygonal curve, which is simple and must not cross itself, a contradiction. [

We need a second observation. Let P be a rotated orthogonally convex poly-
gon and let e, ..., e3 be the four edges of P that are also edges of CH(P), in
order as encountered when walking along P (cf. Lemma 3.) We call these the ez-
treme edges of P. In what follows, the indices of ey, ..., es will be taken modulo
4, and ||e;|| denotes the length of e;.



Reconstructing Orthogonal Polyhedra from Putative Vertex Sets 9

v e; w

Fig. 6. (a) H(e) must contain another vertex. In this picture, o ~ 7 /6. Polygon P is
dashed. (b) e;—1 can at most be half as long as e;. Polygon P is dashed.

Lemma 5. Let P be a rotated orthogonally convex polygon with extreme edges
€g, ... es. For any i, if H(e;) contains some vertex of P other than the endpoints
of €i, then |lei|| = 2min{|le; 1|, [lei1]]}-

Proof. After possible rotation, e; is horizontal and the rest of P has smaller
y-coordinates than e;. Let v and w be the endpoints of e; with v left of w. Let
s # v, w be a vertex of P inside H (e;). See also Figure 6(b). The intuition behind
the lemma is that s is on the “other side” of P, which imposes restrictions on
how long the neighbouring extreme edges can be.

To prove this formally, consider the vertical line through s. This line intersects
P at s and somewhere along edge (v,w). It cannot intersect P anywhere else
by orthogonal convexity. So it splits the boundary of P into two chains, one of
which is monotone in y-direction since P is orthogonally convex. Assume that the
monotone chain is the one that contains s and v but not w; this chain contains
e;—1. (The other case is similar, yielding a bound on e;;1.) Since the chain is
monotone, edge e;,_1 (which is vertical) cannot be longer than the distance from
s to (v,w), which is at most ||e;||/2 since s is inside H/(e;). O

The contrapositive of this lemma implies that if e; is the shortest extreme
edge, then H (e;) must not contain any other vertex of the polygon, which yields
the following crucial corollary:

Corollary 1. Let P be a rotated orthogonally convex polygon. Then for at least
one extreme edge e of P, H(e) contains no other vertex of P.

This corollary and Lemma 4 now imply uniqueness.

Theorem 4. For a set S of points in 2D, there can exist at most one rotated
orthogonally convex polygon whose set of vertices is exactly S.

Proof. Assume for contradiction that S is the vertex set of both an a-orthogonally
convex polygon P and an o’-orthogonally convex polygon P’ where 0 < a # o/ <
7/2. By Corollary 1, there exists an extreme edge e of P for which H(e) contains
no other point of S. Edge e is on CH(S) = CH(P) = CH(P’), but it is not an
edge of P’, since P’ has different slopes than P. So by Lemma 4, H(e) contains
some vertex of P’, which is a point of S, a contradiction. (J

The same results also help to find such a polygon efficiently, if one exists.
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Theorem 5. For a set S of n points in 2D, we can determine in O(nlogn) time
whether there exists a rotated orthogonally convexr polygon whose set of vertices
is exactly S.

Proof. First, compute the convex hull CH(S) of S; this takes O(nlogn) time
(see e.g. [12].) Then, for each edge e of S, test whether H(e) is empty. This
can be done by pre-computing the Voronoi-diagram of S in O(nlogn) time (see
e.g. [12].) For each edge, H(e) is empty if and only if the nearest points of the
midpoint of edge e are the endpoints of edge e and no other point of S. This can
be read from the Voronoi-diagram in O(nlogn) total time.

Now we can read the appropriate rotation from whether the half-circles are
empty. Namely, if H(e) is empty for some edge e, then by Lemma 4 e must be an
edge of any rotated orthogonally convex polygon P on this point set. So rotate
S such that e becomes horizontal or vertical, and then apply the algorithm from
Section 3.1 to determine whether there is indeed such a polygon. This is the only
rotation that could possibly work, so if any H(e) is empty, we can determine
whether a polygon exists in O(nlogn) time. If none of H(e)’s is empty, then by
Corollary 1, no polygon P can exist and we are done. [

4.2 Points in 3D

For point sets in 3D, the trivial algorithm (try all possible rotations) takes
O(n?logn), and even then only works for orthogonally convex polyhedra. Namely,
in order to fix a rotation, we need to fix two face normals. Hence there are O(n?)
pairs of normals to choose (among the O(n) face normals of the convex hull of
the input set). For each of them, applying our O(nlogn) algorithm from Sec-
tion 3.2 after a suitable rotation yields an O(n3logn) algorithm to reconstruct
a rotated orthogonally convex polyhedron if one exists.

We can eliminate many of these rotations by applying the 2D algorithm to
each face of the convex hull. More precisely, assume that F' is a face of the convex
hull, and Sp is the set of all input points that lie in F'. Apply the 2D algorithm
(for rotated point sets) to Sp which takes O(|Sg|log|SF|) time. If it succeeds,
then the resulting rotated orthogonally convex polygon Pr could be an extreme
face of a solution polyhedron P, but only if the rotation is such that the edges of
Pr and the face normal of F' become coordinate axes. After rotating S with this
rotation, apply the algorithm for 3D non-rotated point sets; this will reconstruct
P if it exists. We need to repeat this for every face of the convex hull where the
2D algorithm succeeds, so the time complexity is O(n? logn).

Theorem 6. For a set S of n points in 3D, we can determine in O(n?logn)
time whether there exists a rotated orthogonally convex polyhedron whose set of
vertices is exactly S.

We know of some heuristics to decrease the number of rotations that must be
tried, but none of them leads to an improvement in the worst case. In particular,
the 3D equivalent of Lemma 4 holds if we replace H(e) by a ball B(e) spanned
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by e for every edge e on CH(S). Thus if B(e) is empty for some edge e (which
can be tested in O(nlogn) time), then there is only one possible rotation. Unfor-
tunately, there are orthogonaally convex polyhedra for which the 3D equivalent
of Corollary 1 does not hold, so there need not always be an edge for which B(e)
is empty. Also, since Corollary 1 need not hold, we do not know whether the
rotted orthogonally convex polyhedron in Theorem 6 is unique.

5 Conclusion and further remarks

In this paper, we studied the problem of reconstructing a polygon or polyhedron
given only its set of vertices. We provided efficient algorithms for orthogonally
convex polygons/polyhedra, both if we must use points as they are, and if we
are allowed to rotate points. For 2D, we also showed that there can be only one
rotation that works.

In our problem, we did not allow any points other than the vertices of the
polyhedron. If our input results from taking the vertices of a polyhedral surface
that described a polyhedron, then we may have extra vertices that are on the
surface of the polyhedron. Hence we are also interested in the following problem:

Problem 3. Given a set S of points in 3D, is there an orthogonal polyhedron P
for which every vertex is in .S, and all points in .S are on the surface of P?

All our results for orthogonally convex polygons and polyhedra hold for this
problem as well. The 2D algorithm in Section 3.1 does not work (more below),
but to reconstruct an orthogonally convex polygon from a set of points, we
simply compute the orthogonally convex hull in O(nlogn) time; see [11]. Our
3D algorithm from Section 3.2 works without changes, since the additional points
will not change the computed shadows at all. Our 2D algorithm from Section 4.1
works as long as we remove all points from S that are on CH (), but not vertices
of CH(S). Therefore, the 3D algorithm from Section 4.2 works as well.

For the non-orthogonally convex case, Problem 3 is difficult. The answer
need not be unique, even in 2D, see Figure 7. With a fairly simple reduction
from Hamiltonian Cycles in Grid Graphs (which is NP-hard [9]), one can in fact
show that Problem 3 becomes NP-hard, even in 2D, for orthogonal polygons.

Fig. 7. The 2D case may have multiple answers when additional vertices are allowed.

The main remaining open problem concerns non-orthogonally convex poly-
gons and polyhedra when we are given the exact vertex set. Can we improve the
running time in Theorem 3 to O(nlogn) as well? Is the polygon unique in this
case? Our proof does not carry over easily: Lemma 4 extends to non-orthogonally
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convex polygons (with some small modifications), but there are orthogonal poly-
gons (not orthogonally convex) for which Corollary 1 does not hold. So is there a
2D point set that is the vertex set of two different rotated orthogonal polygons?

|
e

Fig. 8. An orthogonally convex polyhedron P and a non-orthogonally convex polygon
for which the equivalent of Corollary 1 does not hold.

Finally, in 3D the vertex representation is ambiguous for non-orthogonally

covex polyhedra. But given a point set, can we reconstruct some orthogonal
polyhedron for which this is the set of vertices? Or is this NP-hard?
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