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Abstract

In this paper, we give two main technical results: (i) we show a stronger lower bound
for substring search problem via compression extending results of Demaine and López-Ortiz
(SODA ’01); (ii) improve the results of Gal and Miltersen (ICALP ’03) by showing a bound
on the redundancy needed by the polynomial evaluation problem that is linear in terms of the
information-theoretic minimum storage required by a polynomial.

1 Introduction

In this paper, we revisit recent work of Demaine and López-Ortiz [5], Gal and Miltersen [10],
and Munro et al. [25]. We start with the text retrieval problem. This problem gained more
importance in recent years. For example, Google index expanded by a factor of 1000 in seven
years from 1998-2005 [27]. They are also rumored to increase their index up to 100 billion pages
as compared to their index in 2005 that was of size approximately 8 billion pages. Consider a
simple scenario where we have a text T and a pattern P , we are to answer a query whether P
occurs in T , and, if yes, find a position of such an occurrence. There has been large body of work
devoted to this problem, for example, the algorithm of Knuth, Morris, and Pratt [19] has complexity
O(|T | + |P |), which can be acceptable for small text files on a PC hard drive (e.g. grep utility),
but not for large scale search engines like Google. This algorithm uses some precomputation on
the given pattern P , but not on the text T . In real life applications, e.g. search engines, it is
possible to perform some precomputation on the text while crawling the web. The common data
structures that take advantage of the preprocessing stage are suffix trees [32, 22, 31, 12, 6, 17], suffix
arrays [21, 18, 15, 16, 28, 29], FM-index [7, 8, 9], and wavelet trees [14]. Some recent developments
include [13, 2] that can be used as building blocks in these data structures. Such data structures
provide various time-space tradeoffs (so called upper bounds) between the size of the storage and
time to perform text retrieval operations, such as searching for a pattern.

To facilitate the progress in this direction further, it is important to understand the intrinsic
limitations (lower bounds) imposed on any type of data structure by the problem. The question
can be informally stated as follows: is it possible to design a data structure that stores s bits of
information and performs a given set of queries in time t (s and t can be functions of |T |, |P |, the
alphabet size |Σ|, and some other parameters such as the k-th order entropy of the text)? Very
little is known about lower bounds for text retrieval operations. The widely accepted model to
study lower bounds is Yao’s cell probe model [33]. However, no lower bounds for the text searching
problem are known in this model unless we make an additional restriction that our data structure
has to store the text in its “raw form” plus some auxiliary information I (called the index) to
facilitate efficient implementation of retrieval operations. We can informally describe the model
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as follows: the text is stored in slow and inexpensive memory, and the index is stored in fast and
expensive memory. The retrieval algorithm is allowed to access the text incurring the time cost
one, while accessing the index is free of charge; we pay the space cost one for each bit of the
fast memory used by the index, however the text is stored for us without any cost. We are not
concerned with the time and space for intermediate computations. Thus, the computation can be
viewed as a decision tree with the top node labeled “I = ?” and 2r outgoing edges labeled by the
possible contents of the index, where r = |I| is the space cost. The other nodes of the tree are
labeled “S[i]=?”, where S[i] is the i-th position of the text, and the outgoing edges are labeled
with characters from Σ. The leaves are labeled with the outputs of the algorithm. The time cost
t of the algorithm is defined to be the depth of this tree. For example, such lower bounds were
considered by Yao [34] for permutations and inverting functions.

Demaine and López-Ortiz [4, 5] considered the substring report problem where we are required
to output the location of an occurrence of the pattern P , if any. Gal and Miltersen [10] considered
the problem where we are to output only YES/NO. Both results are for the case of binary alphabets
and are shown in the the indexing bit probe model where we can only query one bit of T at a time.
Let L denote the length of the text.

Theorem 1 (Demaine and López-Ortiz [5]). For the substring report problem in the indexing bit
probe model, if |P | = lg n+o(lg n), t = o((lg L)2/ lg lg L) and t = Ω(lg L), then (r+1)t = Ω(L lg L).

Theorem 2 (Gal and Miltersen [10]). For the substring search problem in the indexing bit probe
model, if 2 lg L + 5 ≤ |P | ≤ 5 lg L then (r + 1)t = Ω(L/ lg L).

For small values of t, Theorem 1 is always better than Theorem 2, particularly, in the case
t = Θ(lg L), Theorem 1 gives a linear lower bound on the space cost. Clearly, in this model, the
linear space cost is the best possible: if we can afford to store the whole text in the index, then no
bit probes are needed to the slow memory. However, as t reaches Ω((lg L)2/ lg lg L), the techniques
from [5] aren’t good enough to yield any meaningful lower bound on the space cost, while Theorem 2
gives a non-trivial lower bound. An interesting question posed in [10] “ Can the two techniques
be combined to yield a better lower bound?”. Is the limitation t = o((lg L)2/ lg lg L) essential for
the substring search/report problem? We develop a new compression technique and answer this
question affirmatively by showing

Theorem 3. For the substring report problem in the indexing bit probe model, if |P | = lg L+o(lg L),
t = o(

√
L/ lg L), and t ≥ lg L, then

r ≥ LD2

4t lg L
−Θ

(
LD

t lg L

)

where D = lg L− 2 lg lg L− 2 lg t.

This bound is stronger than [5]: it applies to a much wider range of parameters t; in the range
≤ L1/2−ε for arbitrarily small constant ε > 0, this bound is as good as Theorem 1; and also in the
interesting case t = c lg L, it gives a better constant for the index size in front of Θ(L).

Similar techniques were used in Cryptography by Gennaro and Trevsian [11, Lemma 1]. Al-
though not explicitly claimed in [11], using their techniques it is possible to show a stronger lower
bound for inverting permutations than in Munro et al. [25]. The permutations problem is to repre-
sent π on n elements such that π(i) and π−1(i) queries can be supported efficiently for 1 ≤ i ≤ n.
A natural setting to consider this problem can be the indexing cell probe model, where the nodes
of the decision tree are labeled “π(i)=?”, and edges are labeled by the numbers from [n]. In other
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words, the permutation is stored in “raw form”, the value S[i] of the i-th cell of storage is π(i) (so
that the π(·) queries are trivial to implement). The algorithm that implements π−1(i) is allowed
to keep a small index, and perform cell probes to S for a time cost of 1.

Theorem 4 (Theorem 5, Munro et al. [25]). For the permutations problem in the indexing cell
probe model, if t = o(lg n/ lg lg n), then t(r + 1) = Ω(n lg n).

This result is derived from Theorem 1 by converting cell probes into bit probes. A disadvantage
of these results is that the range of applicability is quite small: t = o(lg n/ lg lg n). It is not
unreasonable to have running times higher than this, for example, an interesting data structure
based on Benes networks proposed by Munro et al. [25] offers very little redundancy space in
exchange for running time t = O(lg n/ lg lg n) (this is not an indexing data structure, and we leave
its discussion outside the scope of the paper). We first show how to apply the results of [11] to the
permutations problem obtaining

Theorem 5. For the permutations problem in the indexing cell probe model, if t = o(
√

n), then
t(r + 1) ≥ n lg

n

(t + 1)2
.

Yao [34, Theorem 2] also shows a similar lower bound for inverting 1-cycle permutations and
functions [n] 7→ [n] in the randomized case. The proof was omitted from [34] (extended abstract)
and to the best of our knowledge did not appear in a journal version.

However, the results of [11] cannot be directly applied to improve the lower bound of [5] for the
substring report problem. Our contribution is a new technique that allows to apply these results to
the substring report problem and in conjunction with ideas from [5] obtain a stronger lower bound
for the substring report problem, Theorem 3.

In the second part of the paper, we consider lower bounds in Yao’s bit probe model without the
indexing assumption. There are only very few non-trivial lower bounds for data structures in this
model. We are aware of only one famous example of lower bounds for the predecessor problem,
e.g. [1, 23, 24, 3, 30, 26]. In this problem, we are to store a set X of n numbers from the universe
[m], and for i ∈ [m], answer a query of the form “what is the largest number from X that is smaller
than i?” However these bounds are intrinsically developed for the cell probe model with the word
size w = Ω(lg n). The only example of a non-trivial lower bound in Yao’s bit probe complexity
that we are aware of is the polynomial evaluation problem [10] that can be stated as follows. Given
a polynomial P ∈ F[x] of degree d over a field F of order n, represent it so that values P (i) can
be computed efficiently for i ∈ F. The decision trees for queries P (i) do not have the top node
corresponding to the index, all other nodes are labeled “S[l]=?” for 1 ≤ l ≤ s, where s = |S| is the
space cost. The depth of tree t is the time cost. In this model, Gal and Miltersen [10] showed the
following

Theorem 6 (Gal and Miltersen [10]). For the polynomial evaluation problem in the non-indexing
model s ≥ (1 + 1/3t)Υ, where Υ = (d + 1) lg n is the information-theoretic lower bound for storing
such a polynomial.

For the case t = Θ(lg n), their lower bound amounts to s = Υ + Ω(Υ/ lg n). Our general
approach to tackle this problem is somewhat similar to [10] and ideas in [11, 5]. Our contribution
is to combine these ideas with a new lemma about families of sets (Lemma 2) that might be of
independent interest. We are able to obtain bounds of the form s = Υ + Ω(Υ) for the case of
polynomials of degrees d = nΘ(1). This is the first result that allows to show a bound of this form
for a problem in the bit probe model without the indexing assumption. We show some partial
progress on this problem
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Theorem 7. For the polynomial evaluation problem (in Yao’s bits probe model without indexing
assumption) with parameters s, t = R lg n and d = nα, we have the bound s ≥ cd lg n for a choice
of parameters R, c, and α, such that R/c < − ln(1− α/c).

For example, for polynomials of degree d = n3/4, and running times R = 1.25 lg n, we can show
that a storage of size at least 1.1Υ bits is required. Similarly to [10], our results also naturally
extend to the case of any problem with an error correcting property. We belive that one might be
able to prove stronger results for this problem by using an improved version of the Lemma 2 in the
discrete case.

2 Lower Bounds for Indexing Data Structures

We start by considering the permutations problem. Gennaro and Trevsian [11, Lemma 1] showed
that given a permutation π on n elements and an algorithm A that computes π−1(i) with the time
cost t using no auxiliary data (i.e. index), it is possible to encode π using 2 lg

(
n
a

)
+ lg((n − a)!)

bits, where a = n/(t + 1). It is not hard to generalize this lemma to the case where A is allowed to
store an index of size r. We first show a different proof of this lemma in the spirit of the results of
Demaine and López-Ortiz [5]. An advantage of this proof is that we are able to extend it for the
substring report problem in the indexing bit probe model.

Lemma 1. Given algorithm A computes π−1(i) for i ∈ [n] with time cost t and the space cost r, it
is possible to encode any π on n elements with lg

(
n
a

)
+ lg(n!/a!) + r bits, where a = n/(t + 1).

Proof. Let S denote the “raw storage” for π, S[j] = π(j). Initially all the cells in S are marked
as being not discovered. We simulate A on queries π−1(1), π−1(2), . . . , π−1(n) in this order. In the
process of these simulations, we mark some of the cells as discovered; at the end of the simulations,
all the cells are discovered. Also, we record a list of cells P, and a binary list L. If a simulation
probes an undiscovered cell, we mark it as discovered, append the value stored in this cell to the
list P and append 0 to the list L. We make an exception from this rule: if we simulate a query
q that computes π−1(i) and A happens to probe a cell j, such that S[j] = i, then we (i) do not
record the value i in P, (ii) terminate A immediately, (iii) append 1 to L (to mark the end of the
simulation), and (iv) mark S[j] as discovered. We call S[j] the target cell of q. If the simulation
π−1(i) successfully terminates with the answer j, then we mark the target cell S[j] discovered, and
append 1 to L. Before running the next simulation q in the list, say π−1(i), we first check whether
its target cell was discovered earlier; if so, then we call the simulation q absent and skip it without
recording anything to P and L (since its result is already known), otherwise we call it present, and
proceed with the execution of the algorithm A on the query q. Note that the simulations that were
terminated are also present.

Let a be the number of present simulations. Note that L is n bits long, exactly a of which are
1-bits (marking the stops of present simulations). The list P consists of n− a cells, since for each
present simulation, we mark exactly one cell the value of which is not recorded in P as discovered.
Since the distances between consecutive 1-bits in L cannot be larger than t (time complexity of
A), we have a ≤ n/(t+1). We can store P using the information-theoretic minimum of dlg(n!/a!)e
bits, since the same value does not appear twice in P. L can be stored using lg

(
n
a

)
bits.

The decoding algorithm also simulates the queries π−1(1), π−1(2), . . . , π−1(n) in this order. It
starts with an uninitialized storage S. Before simulating a query q for π−1(i), we check whether the
value i is already present in S, if so, we skip the simulation (q is absent in this case). Whenever A
makes a probe to an uninitialized location l, we first read the next bit from L, if its value is 0 then
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we read the next element from P and store it in S[l], otherwise we store i in S[l] and terminate the
simulation. When A terminates with an answer j, we store j in S[l] and skip the next bit in L.

We present the pseudocode for the encoding/decoding algorithms in the appendix for complete-
ness (Algorithm 1 and Algorithm 2). Using this lemma, it is not hard to show Theorem 5.

Proof. There are at least a constant fraction of permutations that have high Kolmogorov complex-
ity [20] of K = lg n! − O(1), and therefore cannot be described using less than K bits. Thus, for
such permutations, the length of our encoding is

lg
(

n!
(n/t)!

)
+ lg

(
n

n/t

)
+ r ≥ lg n!−O(1)

Therefore r ≥ (n/t) lg(n/t2)−Θ(n/t).

Now we present the proof of Theorem 3.

Proof. Let A be an algorithm that implements the substring search query on a string of length L
with time cost t and space cost r. We set L = n(2 lg n+3). Let π be a permutation on n elements.
We will encode π as a bit vector B of length L:

B = 0 binarydlg ne(π(1)− 1) 0︸ ︷︷ ︸
dlg ne+ 2 bits

11 . . . 1︸ ︷︷ ︸
dlg ne+ 1 bits

. . . 0 binarydlg ne(π(n)− 1) 0︸ ︷︷ ︸
dlg ne+ 2 bits

11 . . . 1︸ ︷︷ ︸
dlg ne+ 1 bits

(1)

where binarydlg ne(x) is the binary representation for x using dlg ne bits padded with leading zeroes
as necessary. The part of B that encodes π(i) − 1 is called the i-th chunk. The bits of B that do
not depend on π are called separators. For each i = 1, 2, . . . , n in that order, we simulate the query
that searches for the pattern “qi = binarydlg ne(i− 1)0”. In the process of these simulations, we
mark some of the bits in B as discovered. Initially, all the separator bits are marked as discovered.
We build the bit vectors P and L similarly to the proof of Lemma 1. However, in the bit probe
model we have five differences: (i) If a simulation qi probes a bit in its target chunk, the chunk that
encodes i − 1 in binary, we terminate the simulation just before such probe is made and append
a 1-bit to L. (ii) We call qi absent if its target chunk has more than k discovered bits just before
running qi (we do not perform such simulations). (iii) At the end of all the simulations, it might
happen that not all the bits in B are discovered, we collect all such bits from left to right in the
bit vector R. (iv) We also need to store which simulations are present in a bit vector S, since
the decoding algorithm might not be able to identify whether the target chunk of qi has at least k
discovered bits. (v) Also, some of the locations might be marked as discovered twice: once when
probed by the simulation of a query qi, and the second time when it is a part of the target chunk of
another present query qj ; we call such locations overlaps. By the construction, there are at most k
such bits per query qj (otherwise, qj is called absent and skipped during simulations). In [5], they
stored these bit vectors directly and showed Theorem 1.

We now describe a new compression technique. Let a be the number of present simulations. We
introduce an additional bit vector C′ of length n, C′[i] = 1 if the chunk i was the target chunk of a
present simulation, we call such chunks present, and otherwise absent. In other words, the chunk j
is present if and only if it had at most k discovered bits at the moment when the simulation for the
query qπ(j) was about to execute. We encode all the bits in all the absent chunks in the bit vector
R′ from left to right. Note that these bits are of two types: all the bits recorded in R, and some of
the bits from P. The bit vector C′ can be encoded using using dlg (

n
a

)e bits of space. The bit vector
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R′ can be compressed to dlg(n!/a!)e bits, since it encodes n − a distinct numbers from [n]. Using
C′ and R′ we can restore the contents and the locations of all the absent chunks. Note that storing
the bit vector S is no longer necessary, since the i-th simulation is present if and only if the chunk
encoding i− 1 is not among the absent chunks. Also, we can remove all the bits that are located in
the absent chunks from P obtaining P ′ (since those bits are already encoded in R′); respectively,
we remove the corresponding 0-bits from L obtaining L′. Note that P ′ consists of overlap bits only.
Denote the number of overlap bits by v = |P ′|. Since in each present chunk we have at most k
overlap bits, it follows that |P ′| ≤ ak. The bit vector L′ consists of the concatenation of bit vectors
1f ′i0 for all present queries qi in the increasing order of i. The value f ′i denotes the number of
bits that corresponds to qi in P ′, that is, the bits that were recorded in P during the simulation
of qi, and were not removed from P later (i.e. the overlap bits). The length of L′ is |P ′| + a,
and a of them are 1-bits. Thus, we can encode L′ using only lg

(
ak+a

a

)
bits of space. Using the

index I, the algorithm A, and the bit vectors P ′, R′, L′, and C′, we can decode the permutation π:
start by decoding the absent chunks, and then follow the idea in the proof of Lemma 1. Consider
permutations that are hard in Kolmogorov’s sense, the length of their encoding is

|I|+ |R′|+ |C′|+ |L′|+ |P ′| ≥ lg(n!)−O(1) (2)

We estimate all the sizes on the right side up to an O(a) additive term:

|I| ≥ lg(n!)− lg(n!/a!)− lg
(

n

a

)
− lg

(
ak + a

a

)
− v

≥ a lg a− a lg
n

a
− a lg k − v −Θ(a) = a lg

a2

nk
− v −Θ(a)

= aD − v −Θ(a),

where D = lg(a2/(nk)). The total number of bits A probed during a present simulations is at most
ta; v of these bits were probed in the present chunks and hence at most ta− v in the absent ones.
However, there are at least (k + 1)(n − a) bits probed in the absent chunks by definition of the

absent chunks. We conclude that ta− v > k(n− a) and thus a >
nk + v

t + k
. Therefore,

D > lg(nk/(t + k)2) ≥ lg n− 2(lg t)− lg lg n

since k ≤ dlg ne. To derive a meaningful lower bound, we require D = ω(1), so that (n lg n)/t2 =
ω(1) choosing k = Θ(lg n), in other words t = o(

√
n lg n).

We will minimize the function aD − v subject to the linear constraints 0 ≤ v ≤ ak, and
a > (nk + v)/(t + k). These constraints define two points on the (a, v)-plane that correspond to
the vertices of the feasible set of the corresponding linear program (the variables n, t, k, and D
are fixed) where the minimum can be reached: (nk/(t + k), 0) and (nk/t, nk2/t). We maximize the
resulting expression over all possible choices of parameter k. It follows that

aD − v ≥ max
k

min
{

nkD

t + k
,
nk

t
(D − k)

}

The first term is bigger iff D/(t + k) > (D − k)/t iff Dt > Dt− tk + kD − k2 iff k > D − t. There
are two candidates for the max: k = D/2 (the second term is quadratic in k) and k = D − t (the
first term is an increasing function of k). If D/2 < D − t, then k = D − t and max = n(D − t),
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otherwise k = D/2, and max = nD2/4t. Hence,

|I| ≥ aD − v −Θ(a) ≥
{

n(D − t)−Θ
(

n(D−t)
t

)
for t < D

2

nD2

4t −Θ
(

nD
t

)
otherwise

where D = lg n− 2 lg t− lg lg n. We consider running times t ≥ lg n and omit the first branch.
We can also reduce the length of the bit vector B by using separators of the form 01lg lg n0

instead of 01dlg ne+10 without losing the asymptotic bounds. We give the proof of this result in the
appendix.

Note that for an interesting case t ∼ c lg L, c > 1, we obtain a bound r ≥ L/4c−Θ(L/(lg L)) is
always better (in terms of constants) than the lower bound for the similar case shown by Demaine
and López-Ortiz [5], namely r ≥ L(1 + 2c− 2

√
c(1 + c))−Θ((L lg lg L)/ lg L). We also present the

pseudocode for the encoding/decoding algorithms in the appendix for completeness (Algorithm 3
and Algorithm 4).

3 Lower Bounds for Non-Indexing Data Structures

In this section, we consider the polynomial evaluation problem. For convenience, we say that a
polynomial P (x) := a0 + a1x + . . . ad−1x

d−1 has degree d, the coefficients belong to some finite
field F of order n. The problem is to represent this polynomial so that the queries P (i) can be
implemented efficiently for i ∈ P .

We use the following notation: Υ = d lg n is the information-theoretic lower bound to store
a polynomial of degree d over F; s is the space cost of our data structure storing a polynomial;
r = s−Υ is redundancy; t is the running time of the algorithm implementing queries P (i) for i ∈ F;
R = t/ lg n.

3.1 Families of Sets with Large Unions

We first discuss the problem that concerns families of sets. The problem is as follows: we are given
a universe of size s, and a family of n subsets of size t each. We say that this family satisfies the
large union condition if the union of every subfamily of d subsets (from our given family) is of
size at least z. The question is: under what condition of parameters s, n, t, d, and z a family of
sets with the large union condition exists. The values s, m, n, t correspond to their counterparts
defined earlier for the polynomial evaluation problem, so we use this overlapping notation.

We can answer this question in the following two simple cases: (i) if z = t then the universe
of size s = t is large enough; and (ii) if z = dt then all sets are required to be disjoint, and we
require the of size at least s = nt. An interesting question is to solve this problem when t < z < dt.
This problem can be stated in two flavors: for discrete sets (indivisible elements of measure 1)
and for sets with continuous measure. In this section, we are able to provide an answer to this
question in the case of continuous measure sets using linear programming. Our approach also gives
non-trivial bounds for the discrete case as well, however, we believe that the integrality gap of the
linear program is large, and one should be able to obtain stronger results for this case.

Lemma 2. Let S1, S2, . . . , Sn be a family of n subsets of a set S with a measure µ. Let µ(Si) = t
for some fixed t > 0. Assume that the measure of union of every subfamily of d sets µ(Si1 ∪ Si2 ∪
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. . . ∪ Sid) ≥ z for some z > 0, and all 1 ≤ i1 < i2 < . . . in ≤ n. Then µ(S1 ∪ S2 ∪ . . . ∪ Sn) ≥ s(z),
where s is a piecewise linear function of z with the following n vertices on the (z, s)-plane:

Vi =

{
nt

i

(
1−

(
n−d

i

)
(
n
i

)
)

,
nt

i

}

for 1 ≤ i ≤ n. If s ≥ s(z), we can also construct S, µ, and S1, S2, . . . , Sn that satisfy the above
conditions.

Proof. Define the following notation: let α be a subset of [n], then S∪α = ∪i∈α ∪Si. We can rewrite
our problem as

Find s(z) = minS∪[n] subject to
{

µ(Si) = t for all i ∈ [n]
µ(S∪α ) ≥ z for all α ⊂ [n] such that |α| = d

We can formulate this problem as a linear program. Let β be a vertex of the hypercube
{+1,−1}n, define

Qβ = µ(Sβ1 ∩ Sβ2 ∩ . . . ∩ Sβn)

where X+1 is defined as X, and X−1 is defined as S∪[n] \ X. Note that Q(−1,−1,...,−1) is always 0.
Given a set of variables Q′

β for all β ∈ H, where H = {+1,−1}n \ {(−1,−1, . . . ,−1)}, we claim
that the there exists a family of n sets, so that Qβ = Q′

β for all β ∈ H if and only if Q′
β ≥ 0 for all

β ∈ H. Informally, the values Qβ form “elementary blocks” of our family of sets {Si}: given Qβ’s,
we can express any possible combination of unions, intersections, or set differences of Si’s as a sum
of Qβ’s. Thus, we can also express µ(S∪α ) for every α as follows

µ(S∪α ) =
∑

{Qβ| there exist an index i ∈ α, such that βi = +1} (3)

(the union of a subfamily of sets α consists of all the blocks Qβ that have at least one of the sets
i ∈ α with +1 sign in β). Thus, we can rewrite our problem as a linear program with variables Qβ.

To solve it, we first reduce the number of variables by observing that this linear program is
symmetric upon permutations of the indices of the sets. Namely let π be a permutation on [n].
Define πQβ = Qπβ, where πβi = βπ(i) is permutation of the indexes. We claim that if Qβ form a
feasible point of the linear program, then πQβ is a feasible point as well. If π acts on πQβ, then the
conditions (3) on µ(S∪α ) are also going to permute according to π. Namely the condition µ(S∪α ) ≥ z
in variables Qβ is equivalent to the condition S∪πα ≥ z in permuted variables πQβ. The conditions
(3) on µ(Si) are going to permute similarly. Note that the objective function is invariant with
respect to permutations of indices. Therefore, if Qβ is a minimum of our linear program, then πQβ

is also a minimum for any permutation π. We consider all possible permutation of indices of Qβ

and take their convex combination
Qs

β =
1
n!

∑
π

Qπβ

Note that Qs is also an optimum of the linear program, and it is also invariant with respect to
permutation of indices, namely Qs

β depends only on the number of +1’s in β. We can define the
new set of variables Qi = Qs

β where β has exactly i ones in it, and rewrite the linear program in
terms of Qi’s.

Find s(z) = minS∪n subject to





Qi ≥ 0 for all i ∈ [n]
µ(S∪1 ) = t
µ(S∪d ) ≥ z

8



where µ(S∪j ) denotes the measure of the union of any j sets (µ(S∪j ) is also invariant under permu-
tations of indices in the new variables Qs

β). Using (3), we can express µ(S∪j ) as a sum of Qi as
follows

µ(S∪j ) =
∑

i

((
n

i

)
−

(
n− j

i

))
Qi

where
(
n
i

)− (
n−j

i

)
is the number of ways to choose a set of size i so that it intersects with a given

set of size j from a universe of size n.
The feasible set of our linear program can be viewed as the n − 1 dimensional simplex that is

bounded by the “fixed” constraints Qi ≥ 0 and µ(S∪1 ) = t intersected with the “sliding” hyperspace
µ(S∪d ) ≥ z. If z ≤ t, then our hyperspace contains the whole simplex, and the solution is clearly
s(z) = minµ(S∪n ) = t at the vertex V ′

n with the coordinates Qn = t and Qi = 0 for i < n (all the
sets coincide with each other). The biggest value of z where the hyperspace still intersects with the
simplex is z = dt, and the solution is s(z) = nt at the vertex V ′

1 with the coordinates Q1 = t, and
Qi = 0 for i > 1 (all the sets are disjoint). We can show that s(z) is a piecewise linear function
of the parameter z, and the i-th vertex of it corresponds to the vertex of the simplex where all
coordinates are zero except for the coordinate Qi. The linear function between the vertices Vi and
Vi+1 on (z, s)-plane correspond to edge of the simplex between the corresponding vertices V ′

i and
V ′

i+1 of the simplex. At i-th vertex V ′
i , we have

Qi =
t(

n
i

)− (
n−1

i

) =
nt

i
(
n
i

)

z = µ(S∪d ) =
nt

i

(
1−

(
n−d

i

)
(
n
i

)
)

s(z) = µ(S∪n ) =
nt

i

The statement of the lemma follows.

An example of such function s(z) is shown in the appendix, Section 5.2.

3.2 Implications to the Lower Bounds

We start by describing the techniques from [10]. Let S be a data structure for the polynomial
evaluation problem. They pick E, a set of cardinality r + 1, randomly and uniformly chosen from
[s]; and erase the locations indexed by E in S. For given polynomial, each query P (i) uses some
fixed set Yi of locations in S, |Yi| ≤ t. If the probability of the set E to intersect the fixed set
Yi is small enough, then with probability 2/3 there are at least d sets Yi that do not intersect E.
Using the probabilistic method, there exists a choice of E such that for at least 2/3 fraction of
polynomials, we are still able to perform d queries after erasing the locations of E. However, a
polynomial P of degree at most d is uniquely identified by its values at any given set of d points of
F. We arrive at the conclusion that are are able to decode 2/3 fraction of polynomials using just
Υ− 1 bits which contradicts the simple counting argument.

We can allow the set EP of the positions of erased bits depend on the polynomial P in question.
The seeming disadvantage of this approach is that we need to encode the set EP together with the
values of all the bits that we did not erase in order to decode P . An alternative approach could be
to consider a set of d queries P (i1), P (i2), . . . , P (id) and encode indices i1, i2, . . . , id together with
the values of the bits of S that these queries need to probe. This approach is somewhat similar to

9



the proof of Lemma 1: for each query P (ij) in the increasing order of ij , we encode the sequence
of probed bits that this query made to S in a list of bits P. Once a bit is appended to P, the
corresponding location in S is marked as discovered. If a probe made to a discovered location,
we do not duplicate its value in P and proceed to the next probe. The decoding algorithm is
also similar to the proof of Lemma 1, and we will omit it. The number of bits recorded in P is
|Yi1 ∪ Yi2 ∪ . . . ∪ Yid |, and the indices i1, i2, . . . , id can be encoded using dlg (

n
d

)e bits. To obtain a
contradiction, we need to be able to find a set of indices such that |P| < d lg n − lg

(
n
d

) − 1. We
denote z = d lg n − lg

(
n
d

) − 1 = d lg d − Θ(d). On the other hand, Lemma 2 claims that if we are
not able to find such indices for every polynomial, then the size of our storage s = |S| is at least
s(z). More precisely, if |S| < s(z), then an abstract family of sets that satisfies the large union
condition does not exists, and hence there is no family of discrete sets Yi that satisfies the large
union condition. Therefore, we are able to find a set of indices i1, i2, . . . , id, such that |P| < z;
and encode every polynomial of degree at most d using less than d lg n bits as described above,
obtaining a contradiction.

Let us choose d = nα for 0 < α < 1. Denote p0 =
(
n−d

i

)
/
(
n
i

)
, and p1 = 1 − p0 (p1 can be

interpreted as the probability of two uniformly chosen random sets of sizes i and d intersecting in a
universe of size n) for i, 1 ≤ i ≤ n. We substitute z = d lg d−Θ(d) = αd lg n−Θ(d) into Lemma 2.
To obtain bound s ≥ s(z), we need to find the smallest index i such that

ntp1

i
≤ z, (4)

so that s(z) = nt/i. We can estimate

p0 =
(n− d)(n− d− 1) . . . (n− d− i + 1)

n(n− 1) . . . (n− i + 1)
=

(
1− d

n

)(
1− d

n− 1

)
. . .

(
1− d

n− i + 1

)

=
(

1− d

n− γ

)i

∼ exp
(
− id

n− γ

)
∼ exp

(
− id

n

)

for i = o(n), where γ is some number, 0 < γ < i. Let us try to choose the parameters so that
s(z) = nt/i = z/p1 − o(z/p1) ≥ cΥ for some constant c > 1. Equivalently, we need p1 ≤ z/(cΥ) ∼
α/c, this constraint reduces to

i ≥ n

d
ln

(
1

1− α/c

)
, (5)

where “ln” denotes the natural logarithm. Now we need to check that i chosen according to this
constraint also satisfies (4) condition. Let us substitute (5) into ntp1/i and use the bound for p1

ntp1

i
∼ dtp1

ln
(

1
1−α/c

) ≤ dtz

cΥ ln
(

1
1−α/c

) =
Rz

c ln
(

1
1−α/c

) ,

recall that R = t/ lg n, R > 1. The right part is less than z when

R

α
<

c

α
ln

(
1

1− α/c

)
= f

( c

α

)
,

where f(x) = −x ln(1 − 1/x). For fixed values of α and R, we can find c/α as a solution to the
equation f(c/α) = R

c (for x > 1, f is a monotonically decreasing function of x). This method will
yield a linear lower bound s ≥ cΥ for some c > 1 if R < − ln(1 − α), and so α > 1 − 1/e > 0.64.
We conclude with the statement of Theorem 7.
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5 Appendix

5.1 The function s(z)

In the figure 5.1, we illustrate the function s(z) by specifying vertices Vi, the vertex V1 has co-
ordinates (4, 10), and V10 has coordinates (1, 1), V2, V3, . . . , V9 are located from right to left. The
specified family of abstract sets with parameters n = 10, d = 4, t = 1 exists if and only s ≤ s(z).

0

2

4

6

8

10

s(z)

1 2 3 4

z

Figure 1: Example of s(z) for n = 10, d = 4, t = 1
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5.2 Proof of Theorem 3. Small separators.

Proof. We can reduce the length of the bit vector B by using separators of the form 01z0 instead of
01dlg ne+10 without losing the asymptotic bounds. In the following, for simplicity of the presentation,
we assume that n is a power of 2. We call a number i ∈ [n] valid if its binary encoding does not
contain 1z anywhere in it. Let M z

n be the set of all valid numbers. We choose z = 2 lg lg n, and
bound

n′ = |M z
n| ≥ n− (dlg ne − z + 1)2dlg ne−z ≥ n− 2n lg n

(lg n)2
= n− o(n)

by excluding all the numbers that have a substring 1z starting at position j for all the positions
j = 1, 2, . . . , dlg ne−z+1. We will encode a permutation on [n′] elements instead of n, and simulate
queries for valid numbers only; note the set M2 lg lg n

n depends on n only, so we do not need to encode
it explicitly. Inequality (2) becomes

|I| ≥ lg(n′!)− lg(n′!/a′!)− lg
(

n′

a′

)
− lg

(
a′k′ + a′

a′

)
− v′,

We use the same analysis as before and obtain

|I| ≥ a′D′ − v′ −Θ(a′) ≥




n′(D′ − t)−Θ
(

n′D′
t

)
for t < D′

2

n′(D′)2
4t −Θ

(
n′D′

t

)
otherwise

(6)

where D′ = lg n′ − 2 lg t− lg lg n′. The length of the bit vector B′ with short separators is

L′ = n′ lg n + 2n′ lg lg n + 2n′ < n′ lg n′ + 2n′ lg lg n′ + 3n′

and thus n′ > L′/ lg L′, and lg n′ > lg L′ − lg lg L′. Substituting this into (6), we obtain

|I| ≥
({

L′
lg L′ (D

′ − t) for t < D′
2

L′(D′)2
4t lg L′ otherwise

)
−Θ

(
L′D′

t lg L′

)
, (7)

where D′ = lg L′− 2 lg lg L′− 2 lg t. The reasonable value for the running time t is at least lg n′ (to
be able to check whether the occurrence we output is correct and to be able to read the input), so
that t ≥ lg n′ > lg L′ − lg lg L′ > D′/2. Thus, it is natural to consider the second case only. The
statement of the theorem follows.

5.3 Related Results. Tightness of Lemma 2. Discussion

Using the probabilistic argument, we can show that lemma 2 even “somewhat tight” for discrete
sets. , we show that for particular choices of c and R, we can find a set system Si such that union
of every subfamily of d sets has the union of size at least Υ. We estimate the probability B that
a random (uniformly chosen from universe of size s = cΥ) family of d sets has union at most Υ,
B ≤ (

s
Υ

)(
Υ
t

)d
/
(
s
t

)d. The probability of an event that at least one subfamily of d sets has union
smaller than Υ is then at most

(
n
d

)
B. If this value is strictly smaller than 1 then there exist a choice

of the required family of n sets.

log

(
n
d

)(
S
Υ

)(
Υ
t

)d

(
s
t

) d lg
ne

d
+ SH2(1/c) + dt lg

Υe

t
− dt lg

se

t
≤ d lg n(1 + cH2(1/c)−R lg c)− d lg

d

e
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where H2(1/c) is binary entropy of 1/c. We can choose constant R > (1+H2(c))/ lg c large enough
so that the expression in the bracket is negative. We believe that it is possible to turn such system
of sets into an an artificial problem with an error correcting property. If so, then the linear lower
bound is essentially optimal for this class of problems. Thus, to make further progress on the
polynomial evaluation problem we either need to use some other (non-error correcting) properties
or improve upper bounds.

Also we can easily show that Gal and Miltersen’s [10] techniques for the polynomial evaluation
problem can yield a slightly better lower bound than claimed in [10]:

r ≥ s

t
lg nd ≥ d lg n

t
lg

n

d

Using similar probabilistic method ideas and inspired by the proof of the set lemma, we can show
that this lower bound is somewhat tight for t = Ω(lg n lg lg n). The proof is not complicated, but
slightly technical, so we leave it out for this version of the paper.

5.4 of the encoding/decoding algorithms

Algorithm 1 Encode Permutation
P is a sequence of cells, initially empty
L is a sequence of bits, initially empty
for all i = 1, 2, . . . , n do

if location π−1(i) is not marked as probed then
Call simulation i present
Execute A on the query π−1(i)
Let l1, l2, . . . , lz denote the locations of the cells that A inspected in order of its execution
(z ≤ t)
Let j be the target cell (j = π−1(i))
for all f = 1, 2, . . . , z do

if location lf is not marked as discovered then
if lf = j then
{ Probing our target cell. Do not store S[lf ] in P }
Terminate the loop on f

Append S[lf ] to the end of P
Append 1 to the end of L
Mark lf as discovered { Same location is never recorded twice}

Append 0 to the bit vector L
Mark j as discovered
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Algorithm 2 Decode Permutation
Start with an uninitialized storage S
for all i = 1, 2, . . . , n do

if the value i does not occur in S then
{ The simulation i is present }
Start simulating A on the input i
When A needs to probe the cell at a location l
if S[l] is initialized then

Provide the value S[l] to the algorithm A
else

Read the next bit g from L
if g = 0 then
{ This probe is made to the target cell}
Initialize S[l] with i
Terminate the simulation and put control back to the beginning of the loop on i

Initialize S[l] with the next value in the sequence P
Provide the value S[l] to the algorithm A

Keep running the simulation until it stops naturally with an answer j
Initialize S[j] with i

Algorithm 3 Encode Bit String
P, L, and R are sequences of bits, initially empty
A is a binary vector of length n
for all i = 1, 2, . . . , n do

if the target chunk of qi has at most k probed bits then
{ Simulation i is called present }
Set A[i] to 1
Simulate A on the query qi

Let l1, l2, . . . , lz denote the locations of the bits that A probed in order of its execution
(q ≤ t)
Let (2dlg ne+ 3)j + 1 be the output of A { the first position of the target chunk of qi }
for all f = 1, 2, . . . , z do

if location lf is not marked as discovered then
if lf belongs to the target chunk then

Terminate the loop on f
Append B[lf ] to the end of P
Append 1 to the end of L
Mark lf as probed {Same location is never recorded twice in P}

Mark all the bits in the target chunk as discovered { Some of the bits in the target chunk
might have already been marked as discovered, recall that in this case we call those bits
overlaps, and there are at most k such bits }

else
{ Simulation i is called absent }
Set A[i] to 0
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Algorithm 4 Decode Bit String
Let B be a bit vector of length L = n(2 lg n + 3).
Initialize all the separator positions with corresponding separators
Using R′ and C′, initialize all the absent chunks in B
for all i = 1, 2, . . . , n do

if (i− 1) does not occur as the content of an absent chunk then
{ qi is present }
Simulate A on the query qi

When A needs to probe the bit at a location l in B
if B[l] is initialized then

Provide B[l] to the algorithm A
else

Read the next bit g from L′
if g = 0 then
{This probe is made to an undiscovered location in the target chunk}
Let j be the chunk where l is located
Initialize the bits of the j-th chunk of B with binarydlg ne(i− 1)
Terminate the simulation and put control back to the beginning of the loop on i

Initialize B[l] with the next bit in the sequence P ′
Provide the value B[l] to the algorithm A

Keep running the simulation until it stops naturally with an answer (2dlg ne+ 3)j + 1
Initialize the j + 1-st chunk of B with binarydlg ne(i− 1)
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