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Abstract

In this paper, we study small planar drawings of planar graphs. For arbitrary
planar graphs, 6(n?) is the established upper and lower bound on the area. It is a
long-standing open problem for what graphs smaller area can be achieved. We show
here that series-parallel can be drawn in O(n3/ 2) area and outer-planar graphs can be
drawn in O(nlogn) area, but partial 3-trees and 2-outer-planar graphs require €2(n?)
area. Our drawings are visibility representations, which can be converted to poly-line
drawings of asymptotically the same area.

1 Introduction

A planar graph is a graph that can be drawn without crossing. Fary, Stein and Wag-
ner [Fard8, Stebl, Wag36] proved independently that every planar graph has a drawing
such that all edges are drawn as straight-line segments. De Fraysseix, Pach and Pollack
[FPP90], and independently Schnyder [Sch90] established that in fact O(n?) area suffices for
a straight-line drawing of an n-vertex planar graph, with vertices placed at grid points. This
is asymptotically optimal, since there are planar graphs that need 2(n?) area [FPP8S].

A number of other graph drawing models (e.g., poly-line drawings, orthogonal drawings,
visibility representations) exist for planar graphs. See Section 2.1 for precise definitions. In
all these models, O(n?) area can be achieved for planar graphs, see for example [Kan96,
FKK97, Wis85]. On the other hand, 2(n?) area is needed, even in these models, for the
graph in [FPP88|.

An important open question in graph drawing [BEG'03] is whether an area of o(n?) is
possible, at least in a weaker drawing model such as poly-line drawings, for subclasses of
planar graphs. The only subclass of planar graphs for which such drawings were known are
trees, and outer-planar graphs under special restrictions (see below.) We show in this paper
that in fact all series-parallel graphs can be drawn in o(n?) area, and also consider some other
subclasses such as outer-planar graphs, planar partial k-trees and k-outer-planar graphs.

*Part of these results appeared in a preliminary version at Graph Drawing 02 [Bie02]. The author would
like to thank participants at the Algorithmic Problem Session at University of Waterloo, and at the Dagstuhl
Seminar 05191 on Graph Drawing, for inspiring discussions.
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biedl@uwaterloo.ca. Research supported by NSERC. Part of the work was done while the author was
on sabbatical leave at University of Passau.



1.1 Known results

Every tree has a straight-line drawing in O(nlogn) area [Shi76|, and in O(n) area if the
maximum degree is asymptotically smaller than n [GGT96]. See [DBETT98| for many other
upper and lower bounds regarding drawings of trees graphs under special restrictions.

Not many drawing results are known for outer-planar graphs. It is quite easy (and
appears to be folklore) to create straight-line drawings of area O(nd), where d is the diameter
of the dual tree of the graph. In another result, any n points in general position can be used
for a straight-line drawing of any outer-planar graph [CU96]. However, O(n?) area is needed
to create n grid points in general positions, so this result does not lead to area bounds smaller
than the trivial O(n?). Since the appearance of a preliminary version of this paper [Bie02],
Garg and Rusu [GR03] showed that any outer-planar graph with maximum degree A has a
straight-line drawing of area O(An!4®), so o(n?) area drawings exist for outer-planar graphs
with small maximum degree.

Many drawing results are known for series-parallel graphs, see e.g. [BCDB"94, CBTT95,
HEQL98]. However, the emphasis here was on displaying the series-parallel structure of the
graph, and/or to use the structure to allow for additional constraints. All known algorithms
bound the area by O(n?) area or worse.

No graph drawing results specifically tailored to k-outer-planar graphs (for k£ > 2), or
planar partial k-trees appear to be known, at least not for 2-dimensional drawings.

While higher-dimensional drawings are not the focus of our paper, we would like to
mention briefly that all graph classes considered in this paper can be drawn with linear area
in 3D, because they are partial k-trees for constant k; see [DMWO05], and also [FLWO03] for
some earlier results for outer-planar graphs.

We would also like to note that all these graphs have constant-size separators, and hence
by a result Leiserson [Lei80] they have a two-dimensional orthogonal point-drawing in O(n)
area if the maximum degree is at most 4. However, the drawing need not be planar.

1.2 Our results

In this paper, we study two-dimensional planar poly-line drawings of some subclasses of
planar graphs, and provide the following drawing results:

e As our main result, we show that every series-parallel graph has a visibility represen-
tation in O(n®?) area if we can choose the planar embedding.

e We can improve this under some circumstances. In particular, a series-parallel graph
for which at most f graphs are combined in parallel has a visibility representation in
O(fnlogn) area; this is at most O(Anlogn) area.

e This easily implies that every outer-planar graph has a visibility representation in
O(nlogn) area.

e For outer-planar graphs, we can maintain the “standard” planar embedding with the
same area bound: Every outer-planar graph has an orthogonal box-drawing with area
O(nlogn) in which all vertices are drawn on the outer-face.

We also provide the following lower bounds for drawings in various models:



e There are series-parallel graphs that require {(n?) area in any poly-line drawing that
respects the planar embedding.

e There are series-parallel graphs that required Q(nlogn) area in any orthogonal box-
drawing, even if we can choose the planar embedding.

e There are series-parallel graphs that required Q(nlogn/loglogn) area in any straight-
line drawing, even if we can choose the planar embedding.

e There are outer-planar graphs that required Q(n?) area in any poly-line drawing such
that the vertices are on the bounding box.

e There are partial 3-trees that require 2(n?) area in any poly-line drawing.

e There are 2-outer-planar graphs that require (n?) area in any poly-line drawing.

For algorithms, we restrict our attention to visibility representations and orthogonal
drawings, because, as we briefly recall in Section 2, any such drawing can be converted to a
poly-line drawing without increasing the area by more than a constant. Hence all our upper
bounds (given in Section 3 and Section 4) also hold for poly-line drawings. On the other
hand, our lower bounds in Section 5 are mostly for poly-line drawings; this also implies the
same asymptotic lower bounds for all other drawing models.

2 Background

2.1 Graphs and graph classes

Let G = (V, E) be a graph with n = n(G) = |V| vertices and m = m(G) = |E| edges. We
assume that G is simple, i.e., it has no loops and multiple edges. Throughout this paper,
we will assume that G is planar, i.e., that G can be drawn without crossing. Such a planar
drawing can be characterized by the cyclic order of edges around each vertex. A planar
drawing splits the plane into connected pieces; the unbounded piece is called the outer-face,
all other pieces are called interior faces.

An outer-planar graph is a planar graph that can be drawn such that all vertices are
incident to the outer-face. A maximal outer-planar graph is an outer-planar graph to which
we cannot add an edge without destroying simplicity or outer-planarity. Such a graph consists
of an n-cycle with chords and every interior face is a triangle. When drawing outer-planar
graphs, we will generally assume that they are maximal outer-planar, because we can make
outer-planar graphs maximal by adding edges, draw the resulting graph, and then delete
added edges.

A 2-terminal series-parallel graph with terminals s,t is a graph defined recursively as
follows: (a) An edge (s,t) is a 2-terminal series-parallel graph. (b) If G;, i = 1,2 are 2-
terminal series-parallel graphs with terminals s; and ¢;,, then in a series composition we
identify ¢; with sy to obtain a 2-terminal series-parallel graph with terminals s; and 5. (c)
If G;,7=1,...,k, are 2-terminal series-parallel graphs with terminals s; and ¢;, then in a
parallel composition we identify sq, s9,..., s, into one terminal s and %q,%s,...,%; into one
terminal ¢ to obtain a 2-terminal series-parallel graph with terminals s and . We assume for
a parallel composition that £ has been chosen as large as possible, i.e., none of the graphs G;



used for the parallel composition is itself obtained via a parallel composition. The fan-out of
a series-parallel graph is the maximum number of subgraphs k& used in a parallel composition.

Given a 2-terminal series-parallel graph G, a subgraph from the composition is any of
the subgraphs G,..., Gy that was used to create G, or recursively any subgraph from
the composition of G1,...,G. Since we never consider any other subgraphs, we will say
“subgraphs” instead of “subgraphs from the composition”.

A series-parallel graph, or SP-graph for short, is a graph for which every biconnected
component is a 2-terminal series-parallel graph. A mazimal series-parallel graph is a series-
parallel graph to which we cannot add any edge without destroying simplicity or series-
parallelness. Similarly as for outer-planar graphs, whenever we speak of a series-parallel
graph from now on, we will in fact assume that it is maximal series-parallel, since this
makes no difference for asymptotic upper bounds on the area of graph drawings. One can
easily show that a maximal series-parallel graph is a 2-terminal series-parallel graph, for
which additionally in any parallel composition there exists an edge between the terminals,
and in any series composition each subgraph is either an edge or obtained from a parallel
composition.

2.2 Drawing models and their relationships

We consider the following drawing models (see also Figure 1):
o Straight-line drawings: Vertices are points, all edges are straight-line segments.
e Poly-line drawings: Vertices are points, all edges are contiguous sequences of straight-
line segments.
e Orthogonal point-drawings: A poly-line drawing where all edge segments are horizontal
or vertical. Such drawings exist only if the maximum degree is at most 4.1

e Orthogonal box-drawings: Vertices are boxes,? edges are contiguous sequences of hori-
zontal or vertical segments.

Visibility representations: Vertices are boxes, edges are horizontal or vertical segments.
—
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LA F |

Figure 1: The same graph in a straight-line drawing, a poly-line drawing, an orthogonal
point-drawing, an orthogonal box-drawing, and a visibility representation.

For a planar graph, such drawings should be planar, i.e., have no crossing. We also
assume that all defining features have integral coordinates; in particular points of vertices

'We mention orthogonal point-drawings here for completeness’ sake; they will not be studied in this
paper, and from now on, whenever we say “orthogonal drawing” we mean “orthogonal box-drawing.”
2Tn this paper, the term “box” always refers to an axis-parallel box.
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and transition-points (bends) in the routes of edges have integral coordinates, and boxes
of vertices have integral corner points. We allow boxes to be degenerate, i.e., to be line
segments or points.

The width of a box is the number of vertical grid lines (columns) that are occupied by it.
The height of a box is the number of horizontal grid lines (rows) that are occupied by it. A
drawing whose minimum enclosing box has width w and height A is called a w x h-drawing,
and has area w - h.

There are some relationships between these graph drawing models, which we will exploit
to obtain the same area bounds for most models. Note that by definition every visibility
representation is an orthogonal box-drawing, and every straight-line drawing is a poly-line
drawing. Other relationships can be obtained by modifying the drawings, which we explain
now.

2.2.1 Orthogonal box-drawings to poly-line drawings

From any orthogonal box-drawing, one can easily obtain a poly-line drawing with asymp-
totically the same area as follows: Add empty grid-lines until every segment of every edge
has length at least 2. Now for every vertex v, create a point for v at an arbitrary grid point
inside the box of v. For each incident edge e of v, re-route e to end at this point by placing
a new bend (if needed) at the grid point next to where e used to attach to the box of v.
(Such a grid point must exist, and is not contained in any other vertex, since e had length
at least 2 by assumption.) See Figure 2 for an illustration.

Figure 2: Converting to a point-drawing.

The initial step at most doubles the width and height of the drawing, since by adding a
new row/column after every existing row/column, all edges are guaranteed to have length at

least 2. Thus, if the orthogonal box-drawing has area A, the new drawing has area at most
4A.

Lemma 2.1 If G has an orthogonal bozx-drawing with area A, then it also has a poly-line
drawing with area at most 4A.
2.2.2 Flat visibility representations to 1-directional visibility representations

Recall that a visibility representation is an orthogonal box-drawing where edges have no
bends, i.e., they are either horizontal or vertical line segments. Visibility representations



can be distinguished into different types. A I-directional visibility representation uses only
vertical lines for edges. A flat visibility representation has height 1 for every box. Every 1-
directional visibility representation can be made flat, since no vertex has incident horizontal
edges. The other direction is also feasible by transforming the drawing.

Assume we are given a flat visibility representation. Replace every grid-line in it by two
new grid-lines. If vy, ..., v, are the vertices in row r from left to right, then place vy, ..., v
alternatingly in the two rows r; and ry that replaced r. If a vertex intersected column c
before, then let it now intersect both columns that replaced c.

Replace edges as follows. If e is routed vertically in column ¢, then place it in the right
of the two columns that replaced c. If e is routed horizontally, then (since the drawing is
flat) it must connect two vertices v; and v; 1 that were placed consecutively in the same row
r. Vertex v; is now in (say) row r; and v;4; in row 7y that replaced r. Extend vertex v; to
the right until it overlaps the leftmost column of v;, 1, and route e vertically in this column.
See Figure 3.

R R e e

Figure 3: Converting a flat visibility representation to a 1-directional visibility representa-
tion.

Assume e is a horizontal edge between v; and v;,1. Note that no vertical edge has been
placed in the columns between v; and v;,; (otherwise, this would cross edge e in a planar
drawing), and there is no other vertex in this space (since v; and v;;; are consecutive.)
Also, the leftmost column of v;;; does not contain a vertical edge (since any such edge is
placed in the right of the two columns that replaced it.) So this transformation maintains a
visibility representation and converts all horizontal edges into vertical edges, hence gives a
1-directional visibility representation.

Lemma 2.2 If G has a flat visibility representation with area A, then it also has a 1-
directional visibility representation with area at most 4A.

Figure 4 summarizes all relationships between drawing models; solid arrows mean that
drawings in one model are automatically drawings in the other model as well, whereas dashed
arrows mean that drawings in one model can be transformed to drawings in the other model
without asymptotic increase in the area.

1-dir. vis.repr. :; flat vis.repr.—*® orth. box-drawing ~ ~ = “®poly-line drawing

straight-line drawing

Figure 4: Relationships between drawing models.

From Figure 4, it should be clear why in our constructions we (mostly) consider flat
visibility representations: this implies the same asymptotic bounds for all other drawing
models except straight-line drawings. On the other hand, poly-line drawings are the best
model for lower bounds.



3 Flat visibility representations of series-parallel graphs

In this section, we study how to create small visibility representations of series-parallel
graphs, and first give an algorithm depending on some parameter L. If the series-parallel
graph has fan-out at most L, i.e., all parallel compositions of the series-parallel graph have
at most L subgraphs, then the resulting drawing has an area of O(Lnlogn). In particular,
this yields area O(Anlogn) for all series-parallel graphs, by choosing L = A. If the fan-out
exceeds L, then by choosing L suitably we get an area bound of O(n3/?).

3.1 The invariant

Presume from now on that we are given a maximal SP-graph G, which we know to be a
2-terminal series-parallel graph. Our algorithm draws G and recursively all its subgraphs
H (recall that this means subgraphs used for compositions to obtain G). To ease putting
drawings together, we put constraints on the location of the terminals (see also Figure 5):

e Vertex s is placed in the upper right corner of the bounding box.

e Vertex ¢ is placed in the lower right corner of the bounding box.

S
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t

Figure 5: Illustration of the induction hypothesis, and the base case n = 2.

With our construction we will also develop a recursive formula for the height of the
drawing of H, and denote it by h(m), where H has m edges. More precisely, h(m) is the
maximum height of a drawing obtained with our algorithm over all maximal SP-graphs with
m edges.® In the base case (m = 1), simply place s atop t; see Figure 5. The conditions of
the induction hypothesis are clearly satisfied, and we have h(m) = 2 for m = 1.

3.2 Some operations

If our subgraph is more than an edge, then we will obtain a suitable drawing for it by split-
ting it into further subgraphs, drawing them, and merging their drawings together suitably.
Before merging the drawings, we will sometimes have to modify them, and hence study in
this sub-section how to modify drawings. Both operations given below can be applied not
only to a flat visibility representation, but in fact to any flat orthogonal drawing (i.e., an
orthogonal drawing for which all vertices have height at most 1.) Neither of them adds bends
(the second one may remove bends), hence applying them to a visibility representation will
again give a visibility representation.

3Tt is easy to show that maximal SP-graphs have m = 2n — 3 edges; we will use m instead of 2n — 3 to
simplify the computations.



The first operation is absolutely straightforward, but the ability to do this operation is
one of the main reasons why creating orthogonal drawings is so much easier than straight-line
drawings.

Lemma 3.1 Let I'(H) be a flat orthogonal drawing of H of height h > 2 that satisfies the
invariant. Then for any h' > h, there exists a flat orthogonal drawing I'(H) of H of height
h' that satisfies the invariant and has the same number of bends as T'(H).

Proof: Simply insert A" — h empty rows between the top row and the bottom row. All
edge segments that intersect a new empty row are necessarily vertical, and hence simply can
be extended. O

The second operation is a bit more involved. We say that in a drawing a vertex spans
the top (bottom) row if its vertex box contains both the top (bottom) left point and the top
(bottom) right point of the smallest enclosing box of the drawing.

Lemma 3.2 Let I'(H) be a flat orthogonal drawing of H of height h > 2 that satisfies the
invariant. Then there ezists a flat orthogonal drawing T'(H) of H of height h+1 that satisfies
the invariant, has no more bends than I'(H), and vertex s spans the top row.

Proof: Add a new row above I'(H), and move s into this row, spanning it all the way.
The main question is how to re-route the edges incident to s. For all edges that attach at s
vertically, we simply extend the edge to reach the new position of s.

Since s has height 1 and contains the top right corner, at most one edge attaches hori-
zontally at s. If there is one, then let z be the other endpoint of the horizontal segment in
the top row (z could be a vertex or a bend.) Since s spans the top row in I'V(H), s must be
now above z, so we can re-route the edge by continuing vertically upward from z towards s.

See also Figure 6. O
S
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Figure 6: Moving s so that it spans the top row.

We call this approach releasing terminal s. With exactly the same approach at the
bottom end, we can obtain the following results:

Lemma 3.3 Let I'(H) be a flat orthogonal drawing of H of height h > 2 that satisfies the
invariant. Then there ezists a flat orthogonal drawing I'(H) of H of height h+1 that satisfies
the invariant, has no more bends than I'(H), and vertex t spans the bottom row.

Lemma 3.4 Let I'(H) be a flat orthogonal drawing of H of height h > 2 that satisfies the
invariant. Then there exists a flat orthogonal drawing T'(H) of H of height h+2 that satisfies
the invariant, has no more bends than I'(H), and vertices s and t span the top and bottom
rows.



3.3 Subgraphs from parallel compositions

Now we are ready to work on recursive cases. Assume first that H is a subgraph of G
which is obtained in a parallel composition from subgraphs Hy,..., Hy, k > 2. As before,
we assume that k is as big as possible, i.e., each H; is an edge or is obtained from a series
composition. Let m; be the number of edges of H;, and we assume that the naming is such
that my > mo > ... > my.

Recursively obtain drawings of Hy, ..., Hg; the drawing of H; has height at most h(m;).
Since they are being combined in parallel, each of Hy, ..., H; has the same set of terminals,
say s and t. For i = 2,... k, release both s and t at H;, thereby adding two units of height
to the drawing of this subgraph. Let h < max{h(m;), h(mz) + 2,...,h(my) + 2} be the
maximum height among the drawings of the subgraphs. Apply Lemma 3.1 to increase the
heights of all drawings to exactly h.

Now place the drawing of H; leftmost, and the drawings of Hs, ..., H; to the right of it.
Note that in all drawings (which are all of height h) vertex s is in the top row, and with the
exception of Hy, it spans the top row. Similarly vertex ¢ is in the bottom row, and with the
exception of Hj, spans the bottom row. Hence we can combine all the drawings of s into
one long box of height 1, and similarly combine all drawings of ¢. This gives a drawing of H
that satisfies the invariant, see Figure 7. The height of this drawing is

h(m) < max{h(mi), h(ms) +2,..., h(mg) + 2} = max{h(mq), h(ms) + 2} (1)
since mgy > mg > ... > my and the height-function is monotone.

) ) S )

“,, H, , .

Figure 7: Combining subgraphs in parallel.

3.4 Subgraphs from series compositions

Now we turn to the more difficult case when H is obtained from a series composition, say of
graphs H, and Hy,. Assume s and t are the terminals of H and z is the common terminal
of H, and H,. Since we study maximal SP-graphs, each of H, and H, is either an edge or
obtained from a parallel composition. We distinguish cases.

Case (S1): One subgraph is an edge. Assume first that H, is an edge (z,t¢). In this
case we draw H, recursively, extend the drawing of terminal s to the right, place ¢ in the
bottom row, and connect edge (x,t) horizontally. See Figure 8. The case that H, is an edge
is symmetric.
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Figure 8: A series composition when one subgraph is an edge.

Case (S2): Both subgraphs are obtained from parallel compositions. So assume
from now on that both H, and H, contain at least two edges, and hence must be obtained
from parallel compositions. Furthermore assume that H, has no more vertices than H, (the
other case is symmetric.) We break H, down further, say it was obtained from a parallel
composition of subgraphs Hy, ..., Hy. We assume that subgraphs Hy, ..., Hy are sorted by
decreasing number of edges, so H; has the most edges, and Hy, is an edge (z,t) (which exists
since the SP-graph is maximal.)

Figure 9: Breaking down subgraph H,.

We again break down some (but not all) subgraphs farther. Let L be an integer; we will
discuss later how to choose L. We break down H; for all i < min{L, k}; we know that H;
is not an edge since we have no multiple edges and Hj, is an edge. Since k was as big as
possible, H; is obtained in a series composition of two subgraphs H® and H? with a common
terminal y;. The naming is such that H?® has terminals x and y;, and H? has terminals y;
and t. See also Figure 10. In what follows, for any strings o and 3 we use m? to denote the
number of edges of H”.

Recursively draw each of the subgraphs H,, H& H? for i = 1,...,min{k, L} — 1,and
H;, for i = L,...,k — 1. Before we can combine these drawings, we need to release some
terminals again (recall Lemma 3.2). We proceed as follows:

e The drawing of H, is unchanged and has height h(m,).

e Fori=1,..., min{L, k} —1, release terminal x in the drawing of H?, and terminal ¢ in
the drawing of H?. The drawings hence have height at most A(m¢) + 1 and h(m?) + 1.
e Fori=L,...,k— 1, release both terminals in the drawing of H;. The drawing hence

has height at most h(m;) + 2.

To explain how we put these drawings together, we distinguish two sub-cases:
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Figure 10: Breaking down some subgraphs further.

Case (S2a): Assume first that £ < L, and consider Figure 11. We place H, on the left,
followed by HY, HS,...,Hp ;. All these graphs share terminal z, which is placed in the
bottom row. Note that x spans the drawings of Hf,..., Hi_; by construction, and hence
all drawings of x can be combined into one. Now for s = 1,...,k — 1, flip the drawing of
HP? horizontally such that terminal ¢ spans the bottom row and terminal y; occupies the top
left corner. We place these flipped drawings in reversed order, i.e., place the drawings as
H} | H? , ... H?in such a way that their common terminal ¢ is in the bottom row. Since
x and ¢ are in the same row, we can draw the edge between them horizontally.

Increase heights (refer to Lemma 3.1) such that H® and H? have the same height; this
then places y; in the same row in both occurrences in H? and H?. For i < k — 1, increase
heights further in both H? and H? such that the row of y; is at least one row above the top
row of the drawing of H,; and Hf+1; then the two drawings of 3; can be combined into one.

Finally increase the height of H, such that it is at least one row taller than the drawing of
H¢ and H?. Then we can extend terminal s of H, to the right until it occupies the top right
corner of the whole drawing. We hence obtain a drawing of H that satisfies the invariant.

S
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Figure 11: Combining the subgraphs for a series composition. The case £ < L.

Let h; be the height of the drawing of H®* and H? together in the final drawing. Then
he—1 < max{h(m¢_,)+1,h(ml_,)+1} < h(mg_1) + 1, where the last inequality holds since
mi_, < my 1 and m¢_, < my_; and the height-function is monotone. Also, for 1 < k — 1
heights have been increased such that h; exceeds h;.1, so h; < max{h(m;) + 1,h;z1 + 1}.
Using induction, one therefore obtains

hy < max{h(my) +1,h(mg) +2,...,h(mg_1) + k — 1}
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The total height is at most max{h(m,), hy + 1}, so we have

h(m) < max{h(m,), h(m1) + 2, h(mso) + 3, ..., h(mg_1) + k} (2)

Case (S2b): Now we study the case k£ > L, which is similar, but we treat the graphs
Hp,..., H_, differently.* Place H,, H¢,...,H¢ ,,H® ., ..., H? exactly as before.

Increase heights until Hy, ..., Hy_; all have the same height h;, and place them below
the rectangle of x; this uses hy — 1 additional rows. We may have to add some columns to z
if it is not wide enough for the subgraphs. Now terminal ¢ is placed hy — 1 rows below the
row of terminal z. To make the two occurrences of ¢ match up, we extend the drawings of
H® . ..., H? downwards by hy — 1 lines and draw edge (z,t) vertically. See Figure 12.
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Figure 12: Combining the subgraphs for a series composition. The case k > L.

To obtain a formula for the resulting height, we hence need to add hy; — 1 to the formula
of Inequality 2 (after replacing k£ by L in it.) Since hy is the maximum height among
Hy,...,H, 1, and my > ... > my, we have hy < h(my)+2 (recall that both terminals were

released for Hy, ..., H,_1), and therefore

h(m) < max{h(mg), h(my) +2,h(my) +3,...,h(mr_1) + L} + h(mg) +1 (3)

3.5 Analysis

Now we show that the above algorithm indeed yields a small area, by evaluating Inequali-
ties 1, 2 and 3 for small upper bounds on h(m). We need a few auxiliary claims:

Claim 1 For a parallel composition, m; < m/2 fori > 2.

Proof: We have m; > m;, and hence m > m; + m; > 2m,; as desired. O

Claim 2 In case (52), we have m; < m/2 for i > 1 and m; < mgy/2 for i > 2.

Proof: We have m, > my = mqi + ...+ my, so m > mg +m; > 2m;. Also, m; > m;, so
me > my +my; > 2m,; for ¢ > 2. O

Now we are ready for the main proof:

4In the way of motivation: Since the H;’s are sorted by decreasing size, these graphs are very small. If we
placed them all as in case (S2a), then each would increase the height by 1, which is too much height increase
for a small number of edges.
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Lemma 3.5 For a suitable choice of L, we have h(m) < 12\/m.

Proof: In the base case, m = 1 and h(m) = 2 and the lemma holds. For a parallel
composition, Claim 1 gives m; < m/2 for i > 2, and hence by Inequality 1
h(m) < max{h(mi),h(mz)+2,...,h(my) + 2}
< max{h(m), h(m/2) + 2} < max{12y/m,12y/m/2 + 2} < 12¢/m.
In case (S1), we have h(m) = h(m,) < 12,/m, < 12y/m. In case (S2), we assumed m, > m.

Also, my > 3 (because H® and H? have each an edge, and (z,t) exists), and hence m > 6.
We choose L = 3,/m, + 1.° Now for case (S2a), we have by Inequality 2

h(m) < max{h(m,), h(mi) + 2, h(ms) +3,..., h(mk_1) + k}
< max{h(m,),h(m/2) + L} since m; < m/2 and k < L
< max{12y/mg, 124/m/2 4+ 3\/m, + \%\/ﬁ} since L = 3,/m, +1 and m > 6
< max{12, (% +3+ %)}\/ﬁ since m, <m
< 12¢/m

Finally we consider case (S2b), which is by far the most difficult. Recall that the height in
this case is by Inequality 3

h(m) max{h(m,), h(m1) + 2, h(ms) +3,...,h(mr_1) + L} + h(mg) + 1
max{h(m,), h(m1),h(ma) +1,...,h(mr_1) + L — 2} + h(my) + 3
max{h(m,), h(m./2) + L — 2} + h(mg) + 3 by my < m, and m; < m,/2 for i > 2

12./m, + 12/mp + 3,

where the last inequality holds because h(m,/2) + L —2 < 12\/@ +3/mq — 1 < 12/my,.

We now need to show that 12,/m, +12,/mr +3 < 12y/m. At first this seems unintuitive,
because m, can be arbitrarily close to m. But since we are in case (S2b), there are L ~ /m,
subgraphs of H,, each of which has at least 2 edges. This leaves just enough room for the
other terms. More precisely, we have

VAN VAN VANRVAN

1 1 1 1
(\/m+\/7n_L+Z)2=ma+mL+E+2\/ﬁa\/m_L+§\/rTa+§\/m—L

1 1 1
< Mg+ my 4 Tey/mamp + 2y/mam + 5y/Mamy + 2y/mamp by ma > V3 > 3
< mg+mp+3ymegmp =mg+mp + (L—1)mg by L =3/m, +1
< mg+mp+mi+mo+...+mp_1 by m; > my fori < L
which is at most m, so 12(y/mq + /mr, + 1) < 12¢/m as desired. O

SMany thanks to Jason Schattman for helping find small constants that work, using MAPLE.
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Theorem 1 Any series-parallel graph has a flat visibility representation with area O(n®?).6

Proof: By the previous lemma, the height is O(y/m) = O(y/n) by m = 2n — 3. To analyze
the width, notice that at the most we use one column for each edge. (Each vertex obtains
at least one incident vertical edge in the base case, and hence does not contribute additional
width.) Hence the width is at most m < 2n — 3, and the total area is O(n?/?). ]

We get easier proofs and better bounds if case (S2b) does not happen, i.e., if every parallel
composition uses at most L subgraphs, i.e., if the series-parallel graph has small fan-out.

Lemma 3.6 For a series-parallel graph with fan-out f, we have h(m) < 2+ flogm.

Proof: We proceed by induction on the number of edges. In the base case h(1) = 2 <
2+ flogm. In case of a parallel composition, by Inequality 1 we have height

h(m) < max{h(mi),h(mz) + 2} < max{h(mi), h(m/2) + 2}
< max{2+ flogmi,2+ flog(m/2) +2} <2+ flogm
since f > 2. For case (S1), the height is h(m) = h(m,) < 2+ flogm, < 2+ flogm. In

case (S2), we choose L = f, and hence always have k < L and are in case (S2a). Here, the
height is by Inequality 2

h(m) max{h(my,), h(m1) + 2, h(mgy) + 3, ..., h(my_1) + k}
max{h(mg), h(m/2) + f} since m; < m/2 and k < f

max{2 + flogmg, 2+ flog(m/2) + f} <2+ flogm.

INIAIA

Arguing as in Theorem 1 about the width, we hence obtain:

Theorem 2 Any series-parallel graph with fan-out f has a flat visibility representation of
area O(fnlogn).

Note in particular that a series-parallel graph with maximum degree A has fan-out at
most A, so any series-parallel graph has a flat visibility representation of area O(Anlogn).

4 Drawing outer-planar graphs

Every outer-planar graph is a series-parallel graph, and hence by the results of the previous
subsection, has a visibility representation of area O(n%/2) or O(fnlogn). We now show that
outer-planar graphs have fan-out f < 2, and therefore they have visibility representations
of area O(nlogn). Secondly, we show that by modifying the construction, we can obtain
orthogonal box-drawings of area O(nlogn) that have all vertices of the graph drawn on the
outer-face.

6The emphasis in this paper was on achieving an area of o(n?), not on obtaining particularly small
constant. The constant hidden behind O is 48 in our case, but can likely be improved with a more careful
analysis, and in particular by considering larger subgraphs for base cases.
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4.1 Visibility representation

We first prove the claim on the fan-out of an outer-planar graph by re-proving the well-known
fact that any outer-planar graph is series-parallel.

Lemma 4.1 Let G be a maximal outer-planar graph, embedded such that all vertices are on
the outer-face, and let (s,t) be an edge of G on the outer-face. Then G is a series-parallel
graph with terminals s,t with fan-out at most 2. Moreover, for every parallel composition
one subgraph is an edge.

Proof: We proceed by induction on the number of vertices; the claim is trivial for n = 2
since G is an edge. For n > 3, consider the interior face F' incident to edge (s,t). Since G
is maximal outer-planar, F' is a triangle; let x be the third vertex on the triangle. Let G
be the subgraph induced by all vertices between s and x on the outer-face of G, and let G;
be the subgraph induced by all vertices between z and ¢ on the outer-face of G. See also
Figure 13.

G, is outer-planar with edge (s, ) on the outer-face, and G; is outer-planar with edge
(t,x) on the outer-face, so we obtain a series-parallel composition for them with terminals s, z
and z,t, respectively. Combine these two compositions in series, and then apply a parallel
composition with edge (s,t). This gives a series-parallel composition for G that satisfies all
conditions. O

Figure 13: A series-parallel composition for an outer-planar graph.

From Theorem 2, we hence obtain the following for outer-planar graphs:

Theorem 3 FEvery outer-planar graph has a visibility representation of area O(nlogn).

4.2 Orthogonal box-drawings

Next, we study how to modify our construction such that for outer-planar graphs, we can
draw all vertices on one face. To do so, we use a series-parallel composition for which the
terminals are an edge (s,t) on the outer-face of the graph (Lemma 4.1.) Then each parallel
composition contains only one sub-graph that is not an edge. The constructions of Section 3
hence simplify to the ones shown in Figure 14; note in particular that case (S2b) does not
happen.

15
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Figure 14: The drawing algorithm applied to outer-planar graphs. Case (P), (S1) and (S2a).

This keeps all vertices on the outer-face except in case (S2a): here edge (z,t) cuts off
y; (and possibly other vertices in H? and H?) from the outer-face. We can avoid this by
routing edge (x,t) with two bends, see Figure 15. The clockwise order of edges around z in
the drawing then exactly corresponds to the clockwise order of edges around z in the planar
embedding that had all vertices on the outer-face; therefore the drawing has all vertices on
the outer-face.

S t
‘ —_— Ha - b
a:l Hj Hy

z T t

Figure 15: The alternate construction to keep all vertices on the outer-face.

Note that we use one more row to route the edge (z,t), but in exchange, there is no need
to free the terminals in H® and H?; the height requirement therefore is unchanged compared
to the original construction, and is O(logm) since the fan-out is 2. The width requirement
increases (every edge with two bends now uses two columus instead of none), but still clearly
remains O(m).

Theorem 4 Let G be an outer-planar graph. Then G has an orthogonal boz-drawing of area
O(nlogn) such that all vertices are on the outer-face. Every edge has at most 2 bends.

5 Lower bounds

5.1 Series-parallel graphs

Most of the previously given lower bounds for planar drawings (see e.g. [FPP88, MNNO1,
BB05]) rely on an argument that we call the “stacked cycle argument”, which we briefly
repeat here because we will modify it later. Assume we have a planar graph G with a fixed
planar embedding and outer-face. Furthermore, assume that G' has vertex-disjoint cycles
C1,...,C% such that for any ¢ > 1, any path from a vertex in C; to the outer-face crosses all
cycles C; with j > 4. We say that G has k stacked cycles. Now in any drawing of G that
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respects the planar embedding and outer-face, each cycle C; must be drawn “around” all
cycles C'y, ..., C;_1. Since the cycles are vertex-disjoint, this is possible only if the drawing of
C; uses at least one more row on top, one more column on the right, one more row below, and
one more column on the left than the drawing that contained Ci,...,C; 1. (This argument
holds in all drawing models that we study.) Therefore, a graph with k stacked cycles needs
at least 2k rows and 2k columns in any drawing that respects this planar embedding and
outer-face.

This stacked cycles argument is usually applied to graphs with a fixed planar embedding
and a fixed outer-face. However, we obtain the same asymptotic lower bound even if we allow
a choice of the outer-face. For let f be an arbitrary face, and presume that ¢ is such that f
lies outside C; but inside C;y;. Then in a planar drawing where f is the outer-face, cycles
Cy,...,C; are stacked and cycles Cy, ..., C;y; are stacked (in reverse order.) Therefore, we
have at least [k/2] stacked cycles and need k rows and k columns in any planar drawing
that respects the planar embedding (but not necessarily the outer-face.)

Using the stacked cycles argument, it is easy to come up with (n?) lower bounds on
the area, simply by constructing graphs that consist of n/3 stacked cycles [FPP88], or Q(n)
stacked cycles for some graph classes that do not allow stacked triangles [MNNO1, BB05|.
In particular, there is a series-parallel graph that consists of n/3 stacked cycles, and hence
needs (2(n?) area in any drawing that respects the planar embedding. See Figure 16.

Theorem 5 There ezists a series-planar graph that requires Q(n?) area in any drawing that
respects the planar embedding.

a——aaN
Nz

Figure 16: Two lower bounds for series-parallel graphs. The left graph has n/3 stacked
cycles, and hence needs Q(n?) area in any drawing that respects the planar embedding. The
right graph has Q(logn) stacked cycles in any planar embedding.

Note, however, that our graph (in contrary to the other lower bound graphs cited above)
does have many different planar embeddings, and using a different embedding one can easily
construct drawings of it in area O(n). We will have to work harder to obtain series-parallel
graphs with good lower bounds even if we can choose the planar embedding.

To do so, we first define a class of series-parallel graphs C(7) such that in any poly-line
drawing, the smaller of width and height is i € Q(logn). C(1) is a triangle. C(4) consists of
three copies of C'(: — 1) and two more vertices s, ¢, with each s-terminal of C'(i — 1) incident
to s and each ¢-terminal of C(7 — 1) incident to t. See Figure 16.

Note that C(7) essentially has only one embedding, because changing the order of edges
incident to s and ¢ does not change what subgraph is attached there. Regardless of the
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embedding of C(7), there is one cycle (the outer-face), which is around (and entirely disjoint
of) one copy of C'(i — 1). Therefore, by induction C(7) has i stacked cycles. One can easily
show by induction that C(7) has 4 - 3"~! — 2 vertices, and hence C(7) has Q(logn) stacked
cycles.

Note that C(7) has fan-out 3, so it proves that our construction (which gives O(logn) in
this case) gives asymptotically optimal height.

Now we use the graphs C(i) to create graphs with good lower bounds on the area for
orthogonal box-drawings. Recall that K5, is the complete bipartite graph with 2 and n
vertices, respectively. This is a series-parallel graph, with the two vertices of degree n as
terminals. For given parameter N, let C'(logs N) U K5 x denote the graph obtained from a
parallel composition of C'(logs N) with K5 n, and note that this graph has n = (V) vertices.

Theorem 6 There exists a series-parallel graph that needs Q(nlogn) area in any orthogonal
bor-drawing. In particular, if the graph is drawn in a W x H-grid with W > H, then
W e Q(n) and H € Q(logn).

Proof: Consider an arbitrary orthogonal box-drawing of C(logg N) U K3 y. Then H >
logs N € 6(logn), since C(logy N) has logg N stacked cycles. Also, K y has a vertex of degree
N. The box representing this vertex must have perimeter at least N, so the larger of its
width and height must be at least N/4, so the drawing of K5 y must have W > N/4 € 6(n).

O

Note that this theorem crucially relies on that vertices are represented by boxes; once we
allow poly-lines, a vertex of high degree does not require particularly much area by itself.
However, using a different argument on the same graph, we can get non-trivial lower bounds
also for straight-line drawings.

Theorem 7 There exists a series-parallel graph that requires Q(nlogn/loglogn) area in
any straight-line drawing.

Proof: We use again the graph C(logy N) U K, n, which has §(N) vertices. Assume we
have a straight-line drawing of this graph with width W and height H, and W > H. As
before, we have H > log; N. Now we apply a result on straight-line drawings of K, », which
states that Wlog H € Q(N) [BCLOO03].

Note that the function z/logx is minimized when z is as small as possible (presuming
x > 2). Therefore H/log H > logs N/loglogs N (as long as N > 9), which gives

W-H=W-logH - H/logH > W -log H - log; N/loglogs N € Q(N) -log; N/loglogs N

and hence the result. O

5.2 Outer-planar graphs

The lower bound graph given above is not outer-planar. While we suspect that Q(nlogn)
area is required for some outer-planar graph (in particular the so-called snowflake graph in
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Figure 17: The snowflake graph, and a graph that requires Q(n?) area if vertices are drawn
on the bounding box.

Figure 17), we leave this as an open problem, and instead give lower bounds under a stronger
drawing requirement.

While in our orthogonal box-drawings of outer-planar graph all vertices are on the outer-
face, they are not clearly visible as such (consider in particular vertex y; in Figure 15.)
Another more natural way of displaying outer-planar graphs would be to require that all
vertices are on the boundary of the minimum enclosing rectangle (respectively touch it if
they are boxes). It is known that trees may require Q(nlogn) are in this model [UlI83,
p.83ff]. We show now that for outer-planar graphs, 2(n?) area is required in this model.

Theorem 8 There exists an outer-planar graph G such that any poly-line drawing I' of G
with all vertices on the boundary of the minimum bounding boz has area 2(n?).

Proof: Let G be the outer-planar graph illustrated in Figure 17. It consists of five groups
of n/5 vertices, connected with chords between them. Assume we have a drawing I' such
that all vertices are on the boundary of the minimum bounding box B. Of the five groups,
hence at least one must be entirely on one side of B, say the top. Duplicate the drawing and
flip it upside down. The resulting drawing has asymptotically the same area and contains a
multi-graph with n/2 stacked cycles, so its area is Q(n?). O

Figure 18: Any poly-line drawing must have (n?) area.

We note here without proof that the same graph also yields a lower bound of Q(n?) for
other models of “being visible on the outer-face”, such as “having a horizontal or vertical
segment that reaches to the boundary of the enclosing rectangle”, or even “having an escape
hatch” (see [Lei80]).
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5.3 Other graph classes

A natural question for this paper is what other sub-classes of planar graphs could be studied
to see whether o(n?) area can be achieved. We give here two sub-classes for which this is
not possible, because we can show a lower bound of 2(n?) area.

5.3.1 k-outer-planar graphs

A k-outer-planar graph is defined as follows. Let G be a graph with a fixed planar embedding.
G is called 1-outer-plane if all vertices of G are on the outer-face (i.e., if G is outer-planar
in this embedding.) G is called k-outer-plane if the graph that results from removing all
vertices from the outer-face of G is (k — 1)-outer-plane in the induced embedding. A graph
G is called k-outer-planar if it is k-outer-plane in some planar embedding.

Clearly, k-outer-planar graphs generalize the concept of outer-planar graphs, and hence
for small (constant) k are good candidates for o(n?) area. Also, by definition we cannot use
a stacked cycle argument on them (a k-outer-planar graph has at most k stacked cycles.)
Nevertheless, we can show an (n?) lower bound on the area even for 2-outer-planar graphs.

In some ways, this is to be expected. For in order to draw a 2-outer-planar graph G,
we must draw the outer-planar graph G; that results from removing the outer-face of G.
Moreover, (G; must be drawn in such a way that all vertices are accessible to their neighbours
in G — G,. But we know from Section 5.2 that such drawings typically require 2(n?) area.
This in itself is not a proof (because we would have to make “accessible” more precise), and
for the exact proof we instead modify the stacked-cycle argument.

Let G be a graph with a fixed planar embedding, and let C},...,Cy be k edge-disjoint
cycles in G. Moreover, for 1 < i < k, cycles C; and Cj, are vertex-disjoint, except that they
may have one vertex v; in common. (We allow that v; = v;41, i.e., any number of consecutive
cycles may have one vertex in common.) We say that C,...,Cy are 1-fused stacked cycles
if for 7+ > 1, any path from a vertex v # v; in C; to the outer-face must cross all cycles
Cit1, ..., Cg. Figure 19 illustrates this concept.

!

b =DPE=Ds
Figure 19: 5 cycles that are 1-fused stacked cycles, and adding a 1-fused cycle around a

drawing.

Lemma 5.1 Let G be a planar graph with o fized planar embedding and outer-face, and
assume G has k 1-fused stacked cycles Cy,...,Cy. Then any poly-line drawing of G that
respects the planar embedding has width and height at least k + 1.
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Proof: We proceed by induction on k. Clearly we need width and height 2 to draw the
cycle C;. For k > 1, let G’ be the subgraph obtained from G by deleting all vertices of Cj
except the vertex vg_; that Cy has in common with Cy_; (if it exists.) Then G’ has the
1-fused stacked cycles C4,...,C% 1, and by induction needs width and height at least k in
any poly-line drawing.

Consider an arbitrary poly-line drawing I of G, and let I be the induced drawing of G,
which has width and height at least k. Consider Figure 19. The drawing of Cj in I" must
stay outside I, except at the point p where vy_; is drawn. Let py and pg be points in the
top and bottom row of ['; by & > 2 they are distinct. So p # py or p # ps; assume the
former. To go around py, the drawing of Cj in [' must reach a point strictly higher than
pn, and hence uses at least one more row above I”. Similarly one shows that I has at least
one more column than I". O

Similarly as for stacked cycles, we get asymptotically the same lower bounds for 1-fused
stacked if we can choose the outer-face (with a fixed planar embedding), because at least
half of the cycles remain 1-fused stacked cycles.

Now all that remains to do is to create a 2-outer-planar graph that contains Q(n) 1-fused
stacked cycles. Figure 20 shows such a graph. Note that this graph is 3-connected, hence no
other planar embedding is possible. Also note that in fact all stacked cycles of this graph
share the same vertex, which is specifically allowed in our definition.

V] =V = ...

Figure 20: A 2-outer-planar graph that requires 2(n?) area in any poly-line drawing.

Theorem 9 There ezists a S-connected 2-outer-planar graph that requires Q(n?) area in any
poly-line drawing.

5.3.2 Partial k-trees

Since we only consider partial k-trees for £ = 2,3, we will not give the general definition
here, but refer the interested reader for example to [Bod97]. Partial 2-trees are exactly the
series-parallel graphs. Planar partial 3-trees can be characterized as follows. A planar graph
is a planar 3-tree if it is obtained recursively as follows: A triangle is a planar 3-tree. If G
is a planar 3-tree, and T is a face of G that is a triangle, then the graph obtained from G
by adding a new vertex inside 7" and making it adjacent to all vertices of 7" is also a planar
3-tree. Any subgraph of a planar 3-tree is a planar partial 3-tree.

The graph in Figure 20 can easily be shown to be a partial 3-tree. We give another
planar partial 3-tree in Figure 21 (the vertices are labeled in the order in which they are
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added), which also requires Q(n?) area, since it has n/3 stacked cycles and is 3-connected,
hence has only one possible planar embedding. This graph has some additional features,
hence eliminating other possible candidates for graph classes to be drawn in o(n?) area. In
particular, it is triangulated and has maximum degree 6. Without going into the definition
of these terms, we would like mention that this graph also has pathwidth 3, and in fact has
proper pathwidth 3 (all these define strict subclasses of each other.)

2

Figure 21: A planar 3-tree that requires 2(n?) area.

Theorem 10 There exists a planar partial 3-tree that requires Q(n?) area in any planar
poly-line drawing. Moreover, this graph is triangulated and has maximum degree 6, and has
proper pathwidth 3.

Since planar partial 3-trees are also partial k-trees for any £ > 3, our lower bounds holds
for all partial k-trees with £ > 3, hence destroying the hope that the linear-area layouts in
3D [DMWO05] could be replicated in 2D.

6 Conclusion

In this paper, we studied planar poly-line drawings of some subclasses of planar graphs.
Using a recursive algorithm, we achieved O(n®?) for series-parallel graphs, and O(fnlogn)
area for series-parallel graphs with fan-out f. In particular, this implies O(Anlogn) area
for series-parallel graphs with maximum degree A, and O(nlogn) area for outer-planar
graphs. The drawings we create are in fact flat visibility representations, from which poly-
line drawings of the same asymptotic area are easily obtained. For outer-planar graphs, we
also gave a variant that achieves orthogonal box-drawings of area O(n logn) which keeps all
vertices on the outer-face.

We also studied lower bounds, both for these two graph classes, and for some other
subclasses of planar graphs where we showed that Q(n?) area is required.

Many open problems remain:

e What subclasses of planar graphs have straight-line drawings of area o(n?)? Can we
achieve o(n?) for all outer-planar graphs, not only those where the diameter and/or the
maximum degree is small? Can we achieve o(n?) straight-line drawings of series-parallel
graphs, at least under some conditions on other graph-parameters?
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e For outer-planar graphs, can we achieve visibility representations of area O(nlogn)
that keep all vertices on the outer-face? Or better even, that respect any given planar
embedding?

e What are correct lower bounds? Does the snowflake graph (or some other outer-planar
graph) require 2(nlogn) area? Does some series-parallel graph (with large fan-out)
require w(nlogn) area?

Of particular interest are also other techniques for proving lower bounds. The technique
of stacked cycles cannot be applied to outer-planar graph. We also conjecture that more
than Q(logn) stacked cycles are not possible for series-parallel graphs. Either way, to
obtain better lower bounds we need different techniques, and the only one that we
are aware of only works for K, for straight-line drawings [BCLOO03]. What are other
techniques of proving lower bounds on the area for planar drawings?
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