
PSALM: Accurate Sampling for
Cardinality Estimation in a Multi-user

Environment
Huaxin Zhang, Ihab F. Ilyas, Kenneth Salem

Technical Report CS2007-21

David R. Cheriton School of Computer Science

Abstract

In database systems that support fine-grained access controls, each
user has access rights that determine which tuples are accessible and which
are inaccessible. Queries are answered as if the inaccessible tuples are not
present in the database. Thus, users with different access rights may get
different answers to a given query. To process queries efficiently in the
presence of fine-grained access controls, the database system needs accu-
rate estimates of the number of tuples that are both accessible according
to the access rights of the submitting user and relevant according to the
selection predicates in the query. In this paper we present sampling-based
cardinality estimation techniques for use in the presence of fine-grained
access controls. These techniques exploit the fact that access rights are
relatively static and are common to all queries that are evaluated on behalf
of a particular user. We show that the proposed techniques provide more
accurate estimates than simpler techniques that do not exploit knowledge
of access rights. We quantify these improvements analytically and through
simulations.

1 Introduction and Motivation

Access controls determine which data are accessible to each database user. Fine-
grained access controls allow access rights to be specified on a per-tuple basis.
Under the so-called Truman model [17], a user’s queries are answered as if the
database includes only those tuples that are accessible to the user. Variations
of the Truman model are commonly used by systems that support fine-grained
access controls, including Oracle [14, 15], DB2 [10], and SQL Server [12]. For
example, Oracle customizes each user’s query by extracting the user’s access
control predicates from the user’s profile and appending the predicates to the
where clause of the query [15]. The access control predicates filter tuples that
are inaccessible to the user.

To create efficient query plans in the presence of fine-grained access controls,
a query optimizer needs accurate cardinality estimates that account for the effect
of the access controls. That is, instead of estimating the number of tuples that
satisfy a particular query predicate, the optimizer must estimate the number of
accessible tuples that satisfy the predicate. Since different users have different
access rights, this number depends on which user submitted the query. This is
the problem that we address in this paper.

1

Suppose that a query includes a predicate PQ on one of its input relations, R.
PQ may be a simple or complex predicate. Suppose further that the predicate
PACi represents the access rights of the ith user, for relation R. That is, those
tuples of R that satisfy PACi are accessible to user i, and those that do not
satisfy PACi are not accessible. If the query is being executed on behalf of the
ith user, the effect of the fine-grained access controls is to replace PQ in the
query with PQ ∧ PACi. To obtain an accurate estimate of the number of R
tuples that will be used by the query, the query optimizer needs to estimate the
selectivity of PQ ∧ PACi.

If PACi is expressed in a form that is understandable to the query optimizer,
e.g., as a SQL predicate, it can simply estimate the selectivity of PQ ∧ PACi

as it would for any other complex predicate. However, there are two problems
with this approach. First, it ignores the fact that PACi is relatively static and
is common to all queries involving relation R that are executed on behalf of
the ith user. A user’s access rights change only in response to changes in the
system’s access control policies, and we expect that such changes will occur
much less frequently than queries. The second problem is the difficulty of esti-
mating the selectivity of complex predicates. The typical approach is to obtain
individual selectivity estimates for PQ and PACi and then multiply those esti-
mates to obtain an estimate for PQ ∧ PACi. This assumes that PQ and PACi

are independent, which will not, in general, be the case. If PQ and PACi are not
independent, the resulting estimate may be inaccurate. Of course, this problem
is not restricted to selectivity estimation in the presence of fine-grained access
controls. The query optimizer faces similar problems when it is presented with
any complex predicate, whether it involves access controls or not. However,
fine-grained access controls exacerbate the problem. In the presence of fine-
grained controls, all query predicates become more complex, because they must
incorporate the effects of the access controls.

In this paper, we consider estimation techniques based on sampling. Sam-
pling allows for direct estimation of the joint selectivity of PQ and PACi, without
resorting to independence assumptions. Furthermore, the sampling techniques
that we propose are able to exploit the fact that the access controls are query-
independent and relatively static. This paper makes the following contributions:

1. We propose a biased sampling technique called basic PSALM (Partitioned
SAmpLing for Multiple users) for estimating cardinality in the presence
of fine-grained access controls. We compare basic PSALM to estimation
based on simple uniform random sampling and show that basic PSALM
provides better estimation accuracy for users with few access rights, i.e.,
users with highly selective access control predicates.

2. We show how to improve on the basic PSALM algorithm by using bi-
ased sampling for low-privilege users and uniform random sampling for
high-privilege users. We show that this hybrid approach provides better
estimation accuracy than either uniform sampling or the basic PSALM
algorithm alone.

3. We show how to exploit correlation of access rights among different users

2

Table 1: Symbols used in this paper
U number of users in the system
PQ query selection predicate

PACi access control predicate for the ith user
N cardinality of the target relation
Ni number of tuples matching PACi

Ci number of tuples matching PQ ∧ PACi

C̃i estimate of Ci

ni number of tuples in ith user’s private sample
ci number of tuples in ith user’s private sample

that satisfy PQ ∧ PACi

εi estimation error for ith user
ε mean estimation error over all users
ε maximum estimation error over all users
ε̂i estimation error bound for ith user

ε̂mean mean estimation error bound over all users
ε̂max maximum estimation error bound over all users
∆ confidence level for estimation error bounds

to obtain higher estimation accuracy.

The remainder of the paper is organized as follows. Section 2 defines the
problem of selectivity estimation in the presence of fine-grained access con-
trols and introduces terminology and notation. Section 3 presents the basic
PSALM algorithm and compares it to simple random sampling. Section 4
presents the hybrid PSALM technique, and Section 5 describes a refinement
of hybrid PSALM that is able to exploit access rights correlations to reduce
estimation error. Section 7 describes related work, and Section 8 concludes and
summarizes our results.

2 Definitions and Notation

As discussed in Section 1, our problem is to estimate the selectivity of query
predicates in the presence of fine-grained user access controls. We will focus on
the problem of estimating the cardinality of the result of applying an arbitrary
query predicate, PQ, to a single access-controlled relation. When there are
multiple relations, our estimation techniques can be applied independently to
each relation.

We assume that each user’s access rights for the target relation are defined
by a user-specific access control predicate. We use PACi to denote the access
control predicate for the ith user on the target relation. Tuples are accessible to
user i if and only if they satisfy PACi. The form of PACi is not important. It may
be an actual SQL predicate, as in Oracle VPD [15], or it may be implemented
as an externally-defined function, as is the case in some fine-grained label-based
access control systems [10]. For the purposes of our work, it is only necessary
to be able to evaluate the predicate given a tuple from the target relation.

3

We will use N to denote the cardinality of the target relation, and Ni to
denote the number of tuples from the target relation that are accessible to the
ith user. That is, Ni is number of target relation tuples for which PACi is true.
Finally, we will use Ci to denote the number of tuples from the target relation
that satisfy PQ ∧ PACi. Ci is the cardinality we wish to estimate, for any given
user, target relation, and query predicate PQ. Table 1 summarizes the notation
that we will use in this paper.

Given a fixed space budget for cardinality estimation, our goal is to design
estimation techniques with low estimation error. Suppose that C̃i is a cardinality
estimate produced by one of the estimation techniques that we will present in
this paper. Following earlier work in this area [2, 3], we define εi, the estimation
error for the ith user, to be

εi =
|C̃i − Ci|

Ci

This metric characterizes the estimation error relative to the actual cardinal-
ity of the query result. Thus, for example, εi = 0.3 indicates that the estimate is
±30% of the actual cardinality. Unlike absolute error metrics such as |C̃i − Ci|
or |C̃i − Ci|/N , our relative error metric reflects the fact a large cardinality
estimation error may be much more significant to the query optimizer when the
true cardinality is small than when the true cardinality is large. For example, if
|C̃i − Ci| = 10000 and C̃i = 100000, the estimation error may have little effect
on the optimizer. However, if |C̃i − Ci| = 10000 and C̃i = 100, the optimizer
may significantly underestimate the cost of a candidate query plan. One disad-
vantage of our metric is that estimation error explodes as Ci → 0. Fortunately,
this is not a serious issue. Our cardinality estimation techniques do not require
calculating estimation error. Estimation error is used only for comparing the
estimation techniques. To avoid the blowup, we simply avoid scenarios in which
Ci is extremely small.

3 Two Basic Estimation Techniques

We begin by presenting two simple sampling-based estimation techniques. The
first uses a single uniform random sample to generate a cardinality estimate for
any user. That is, estimates for all users are based on the same tuple sample
from the target relation. The second technique is basic Partitioned SAmpling
for MuLtiple users, or basic PSALM. It partitions the available space and draws
a separate, smaller sample for each user. Each user’s cardinality estimations are
based on that user’s private sample. We determine bounds on the estimation
error resulting from each technique, and characterize situations in which basic
PSALM provides more accurate estimates than the single-sample approach. In
subsequent sections, we will present techniques that improve on both the single-
sample approach and basic PSALM.

4

3.1 Single Uniform Sample

We can estimate the cardinality of PQ ∧ PACi, for any user and any query
predicate, using a random sample of n tuples from the target relation. Such a
sample can be built by a single pass over the target relation, using a technique
such as reservoir sampling [18]. If desired, such a sample can be incrementally
maintained in the face of tuple insertions and deletions in the target relation [7].
Alternatively, the target relation can be periodically resampled as necessary to
account for changes.

To obtain a cardinality estimate for PQ for the ith user, we evaluate PQ∧PACi

for each sample tuple, and count the number of tuples for which the predicate
is true. An unbiased cardinality estimate can then be obtained by

C̃i = ci
N

n

where ci is the number of sample tuples matching PQ ∧ PACi.
Because C̃i is based on a random sample of tuples rather than the entire

relation, the estimate may not be accurate. Since each sample tuple satisfies
PQ ∧PACi with probability Ci

N , ci can be modeled as binomial random variable
with parameters n and Ci

N . Using the Chernoff inequality, we can bound the
estimation error as follows:

Prob[|C̃i−Ci|
Ci

≤ ε] = Prob[|
ciN

n −Ci|
Ci

| ≤ ε]

= Prob[(1− ε)nCi

N ≤ ci ≤ (1 + ε)nCi

N]

≥ 1− 2e(−nCiε
2)/(4N)

Thus, with probability (1 − ∆), the cardinality estimation error εi for the
ith user under the single random sample method is bounded by

εi ≤ ε̂i =
√

4N

nCi
log

2
∆

(1)

We will refer to ∆ as the confidence level of the error bound ε̂i. Note that
the estimation error bound is inversely related to Ci which is the number of
tuples that satisfy PQ ∧ PACi. Thus, as either the query predicate PQ or the
user’s access controls PACi become more highly selective, the estimation error
bound increases.

3.2 Basic PSALM

Another way to estimate the cardinality of PQ ∧PACi is to create and maintain
a separate sample for each user. Let ni denote the size of the sample for the ith

user, and let U represent the number of users. We can choose the ni such that∑U
i=1 ni = n to ensure that the basic PSALM technique uses the same amount

of space as the single-sample approach.

5

Under the basic PSALM approach, the sample for the ith user is a simple
uniform random sample of the tuples that are accessible to the ith user. As
was the case for the single-sample approach, we can draw all U such random
samples using a single pass over the target relation by maintaining Useparate
reservoir samples in parallel during the scan. Each tuple encountered in the
scan is considered separately and independently for inclusion in the sample for
each user. For the ith user, the tuple is first tested against PACi. If the tuple
satisfies the predicate, then it is considered for inclusion in the reservoir sample
for user i as usual. Otherwise, it is not included in the ith sample.

To estimation cardinality for PQ for the ith user, we evaluate PQ for each
tuple in the ith user’s sample, and count the number of tuples for which the
predicate is true. All other users’ samples are ignored. An unbiased cardinality
estimate can then be obtained by

C̃i = ci
Ni

ni

where ci is the number of sample tuples matching PQ in the ith user’s sample.
Notice that this estimator makes use of Ni, the total number of target relation
tuples that are accessible to the ith user. This value can be determined exactly
for every user during the same scan that is used to draw the tuple samples from
the target relation.

Using an analysis similar to the one in Section 3.1, we can bound, with
confidence level ∆, the estimation error that results from the basic PSALM
technique:

εi ≤ ε̂i =
√

4Ni

niCi
log

2
∆

(2)

Recall that under the single sample approach, the estimation error bound
is inversely related to the selectivity of the joint predicate PQ ∧ PACi. For
the basic PSALM technique, the estimation error is inversely related to Ci/Ni,
which is the conditional selectivity of the query predicate PQ, given that a tuple
is accessible to the ith user. Unlike the single sample approach, basic PSALM’s
estimation error is independent of the selectivity of the users’ access control
predicates. This makes sense, because the basic PSALM technique ensures that
it has a sample of size ni of tuples accessible to the ith user, regardless of how
many such tuples exist.

One question remains for the basic PSALM technique. How should we de-
termine the number of tuples, ni, to include in the sample for the ith user?
To answer this question, we use two metrics for evaluating the accuracy of a
multi-user sampling scheme.

The mean estimation error bound (ε̂mean) over all users:

ε̂mean =
∑U

i=1 ε̂i

U

6

The maximum estimation error bound (ε̂max) over all users

ε̂max =
maxU

i=1 ε̂i

U

For example, under uniform sampling of size n, each user ui has estimation
error

√
4N

n·Ci
log 2

∆ according to Formula 1. Therefore, the mean estimation error
bound is

1
U

U∑

i=1

√
4N

n · Ci
log

2
∆

(3)

and the maximum estimation error bound for uniform sampling is:

U
max
i=1

√
4N

n · Ci
log

2
∆

(4)

Ideally, we would like to distribute the available space among the users’
samples in the basic PSALM in such a way as to minimize either the mean
estimation error bound or the maximum estimation error bound. In general,
the best such distribution will be workload dependent, determined by the con-
ditional selectivities of the query predicates with respect to each user’s acces-
sible tuples. However, for the special case in which the query predicates PQ

in the workload are independent of the users’ access controls, there is a simple
workload-independent way to determine optimal per-user sample sizes for either
metric, as shown in Section 3.3 and Section 3.4 respectively. Note that we are
assuming independence of the query predicate and the access controls only for
the purpose of choosing the sizes of the per-user samples. The actual estimation
of cardinalities using those samples does not rely on the independence of query
predicates and access controls.

3.3 Minimizing the Mean Estimation Error Bound

We first have the following theorem:

Theorem 3.1. If the query predicate PQ is independent of the access control
predicates PACi of all users, then the expected ε̂mean is minimized by choosing
ni = n/U for every user.

Proof. Basic PSALM has a mean estimation error bound of

∑U
i=1 ε̂i

U
=

∑U
i=1

√
4Ni

niCi
log 2

∆

U

Because we assume PQ is independent of the access control predicates,
(Ni/Ci) is in expectation the same for all users, and we can rewrite the mean
estimation error as

7

α

U∑

i=1

√
1
ni

where α is a constant term independent of i. Our goal is to minimize this
quantity by adjusting {ni, i ∈ (1, . . . , U)} under the constraint that

∑U
i=1 ni =

n. We use the method of Lagrange multipliers. Adding the constraint to our
formula, we have:

Φ(X, λ) = α

U∑

i=1

√
1
ni

+ λ

(
U∑

i=1

ni − n

)

The critical value of Φ occurs when the gradients on {ni, i ∈ (1, . . . , U)} and
λ are all zero:

∂Φ
∂ni

=
∂ α√

ni

∂ni
+ λ = −αn

− 3
2

i + λ = 0, i ∈ {1, . . . , U}

∂Φ
∂λ

=
U∑

i=1

ni − n = 0

Solving the above, we have ni = n
U , i ∈ (1, . . . , U).

Comparing Equations 1 and 2, we can see that the ith user will have a tighter
error bound under the basic PSALM technique under the condition:

ni

Ni
>

n

N

This condition states that basic PSALM will provide more accurate esti-
mates than the single-sample approach for the ith user if the sampling rate
from among the ith user’s accessible tuples is greater than the single sample’s
sampling rate from the whole target relation. Assuming that PSALM sample
sizes are chosen according to Theorem 3.1 (ni = n/U), then PSALM will have
a tighter estimation error bound for the ith user if

Ni <
N

U
(5)

Thus, users with very limited access rights, i.e., highly selective access control
predicates, will benefit from the basic PSALM technique. However, users with
broad access rights may experience larger estimation errors. Over all of the users
in the system, we have the following theorem concerning the mean estimation
error bound:

Theorem 3.2. Under the optimal sample quota assignment from Theorem 3.1,
basic PSALM has a lower mean estimation error bound ε̂mean than the single
sample approach if

8

U∑

i=1

√
N

Ni
> U

3
2

Proof. The mean estimation error bound reaches its minimum (αU
√

U
n) when

we assign equal sample quota to each user. On the other side, we have total
estimation error of uniform sampling as (α

∑U
i=1

√
N

nNi
). Comparing these two

values, we get the theorem.

3.4 Minimizing the Maximum Estimation Error

To minimize the maximum estimation error bound over all users, we have the
following theorem:

Theorem 3.3. If the query predicate PQ is independent of the access control
predicates PACi of all users, then the expected ε̂max is minimized for the basic
PSALM by choosing ni = n/U for every user. Under this sample size as-
signment, the basic PSALM has lower maximum estimation error bound than
uniform sampling whenever there is a user ui such that N

Ni
> U .

Proof. The maximum estimation error bound over all users is:

U
max
i=1

√
4Ni

ni · Ci
log

2
∆

Similar to the previous analysis on minimizing the mean estimation error
bound, we can rewrite the above into the following, where β is a constant
independent of i:

U
max
i=1

β

√
1
ni

We already know that the mean error bound is minimized when every user
has the same error estimation bound. Assume there is a scheme that gives
a lower maximum error estimation bound. Then this new scheme will give a
lower mean error estimation bound, which is a contradiction. Therefore, the
maximum estimation error bound can not be lower than the mean estimation
error bound when each user has the same size sample. This shows that the
maximum estimation error bound is achieved when each user has the same
sample size as well.

4 Exploiting Access Privilege Skew

As shown by Equation 5, the basic PSALM approach works well when users
have few access rights. The single-sample approach works best if users are able

9

to access most of the target relation’s tuples. In this section, we develop a
hybrid estimation technique that combines advantages of both approaches, and
we show that it always provides estimation accuracy that is at least as good
as that provided by either the single-sample approach or the basic PSALM
approach.

Under the hybrid approach, which we call hybrid PSALM, users are divided
into two groups; one group consisting of high-privilege users and the other con-
sisting of low privilege users. We will denote the high-privilege and low-privilege
groups by UH and UL, respectively. Later, we will show how to decide which
group each user should belong to.

Hybrid PSALM maintains a single shared sample for all users in UH , and
a separate private sample for each individual user in UL. We will use n0 to
represent the size of the shared sample for the users in UH . If the ith user is in
UL, we will use ni to represent the size of that user’s private sample.

To obtain a cardinality estimate for PQ for the ith user, hybrid PSALM
proceeds as follows:

• If the ith user is in UH , we evaluate PQ ∧ PACi against the tuples in the
shared sample. If ci is the number of matching tuples from the shared
sample, then the cardinality estimate for PQ is

C̃i = ci
N

n0
(6)

As was the case for the single-sample approach, we can show that the
estimation error for this estimate is bounded, with confidence level ∆, by

εi ≤
√

4N

n0Ci
log

2
∆

(7)

• If the ith user is in UL, evaluate PQ against the tuples in that user’s private
sample. If ci is the number of matching tuples from the private sample,
the cardinality estimate is

C̃i = ci
Ni

ni
(8)

and the estimation error for this estimates is bounded, with confidence
level ∆, by

εi ≤
√

4Ni

niCi
log

2
∆

(9)

To implement this hybrid approach, we must determine which users belong
in UL and which belong in UH . In addition, we must determine the sizes ni of
the private samples for users in UL and the size n0 of the shared sample for those
in UH . As was the case for the basic PSALM, our goal is to do this so as to
minimize the mean estimation error bound ε̂mean or the maximum estimation
error bound ε̂max over all of the users.

10

4.1 Minimizing the Mean Estimation Error Bound

The following theorem tells us how to choose sample sizes given a specific group
partition of the users.

Theorem 4.1. Suppose that the users are partitioned arbitrarily into two groups,
UL and UH , such that each user in UL is given a private sample for cardinality
estimation while all users in UH share a single common sample, and that the
sum of the sample sizes is n. If query predicates PQ are independent of the ac-
cess control predicates of all users, then the mean estimation error bound ε̂mean

for the hybrid PSALM algorithm is minimized when the sample sizes are chosen
as

n0 = n Y
2
3

Y
2
3 +|UL|

for UH

ni = nL = n 1

Y
2
3 +|UL|

for each user ui in UL

where Y =
∑

ui∈UH

√
N
Ni

.

Proof. Hybrid PSALM has mean estimation error bound of

1
U


 ∑

i∈(1,...,j)

√
4Ni

niCi
log

2
∆

+
∑

i∈(j+1,...,U)

√
4N

n0Ci
log

2
∆




Because the query predicate PQ is independent from the access control pred-
icates PAC, this can be rewritten as

β

(∑

ui∈UL

√
1
ni

+
∑

ui∈UH

√
N

n0Ni

)
(10)

where β is a constant independent of i. Our goal is to find n0 and ni to minimize
this expression under the constraint that n0 +

∑
ui∈UL

ni = n.
We use Lagrange multipliers to find the minimum, by adding the constraint

n = n0 +
∑

ui∈UL
ni as multiplier:

Φ(X, λ) = β

(∑

ui∈UL

√
1
ni

+
∑

ui∈UH

√
N

n0Ni

)
+

λ

(∑

ui∈UL

ni + n0 − n

)

The critical value of Φ occurs when the gradients on n0, ni, λ are all zero:

11

∂Φ
∂ni

= β
∂ 1√

ni

∂ni
+ λ = −β

2
n
− 3

2
i + λ = 0, ui ∈ UL

∂Φ
∂n0

= −β

2

∑

ui∈UL

√
N

Ni
n
− 3

2
0 + λ = 0

∂Φ
∂λ

=
∑

ui∈UL

ni + n0 − n = 0

We use Y to represent
(∑

ui∈UH

√
N
Ni

)
. The mean estimation bound reaches

its minimum when the following holds:

λ =
β

2
[
Y

2
3 + |UL|

n
]
3
2

n0 =
Y

2
3

Y
2
3 + |UL|

n

ni =
1

Y
2
3 + |UL|

n, ui ∈ UL

Algorithm 1
input: the number of accessible tuples (Ni) for each user
output: optimal user grouping {UL,UH}

1: Sort the users by their number of accessible tuples
in ascending order into list {ui i ∈ (1, . . . , U)};

2: min = ∞, Gopt = ∅;
3: for j = 0 to U
4: UL = {ui, i ∈ (1, . . . , j − 1)};

UH = {ui, i ∈ (j, . . . , U)};

5: val = j +

(∑

ui∈UH

√
N

Ni

) 2
3

6: if (val < min)
7: min = val;

Gopt = {UL,UH};
8: return Gopt;

With Theorem 4.1, we next consider how to partition the users so as to
minimize estimation error. To do this, we use Algorithm 1, which checks all
possible partitions having the property that no user in UL has access to more
tuples than any user in UH . There are (U + 1) such partitions to be checked.

12

Theorem 4.2. The user groups returned by Algorithm 1 minimize the mean
estimation error bound ε̂mean over all possible user-groupings.

Proof. Using Theorem 4.1 and Equation 10, we can write the mean total esti-
mation error of a given user grouping as:

β

0
@ X

ui∈UL

s
Y

2
3 + |UL|

n
+
X

ui∈UH

r
N

Ni

s
Y

2
3 + |UL|
nY

2
3

1
A

= β

s
Y

2
3 + |UL|

n

0
@|UL|+

P
ui∈UH

q
N
Nip

Y
2
3

1
A

= β

s
Y

2
3 + |UL|

n

�
|UL|+ Y

Y
1
3

�

= β

�
|UL|+ Y

2
3

� 3
2

√
n

Because both n and β are constants and the function F (x) = x
3
2 is monotone,

minimizing the above expression is equivalent to minimizing

|UL|+
0
@ X

ui∈UH

r
N

Ni

1
A

2
3

(11)

Suppose the user-grouping returned by Algorithm 1 is:

UL = {u1, u2, . . . , uj}, UH = {uj+1, uj+2, . . . , uU}
We use E to denote the value of Formula 11 for this user-grouping. Now

suppose there is another user-grouping as follows:

U ′L = {up1 , up2 , . . . , upl
}, U ′H = {upl+1 , upl+2 , . . . , upU

}

We use E′ to denote the value of Formula 11 from this user-grouping. As-
sume E′ < E. We will show that this assumption leads to a contradiction.

From Equation 11, we have:

E = j +


 ∑

i∈(j+1,...,U)

√
N

Ni




2
3

E′ = l +


 ∑

i∈(pl+1,...,pU)

√
N

Ni




2
3

Now suppose that we sort all of the users in descending order of the num-
ber of tuples to which they have access, and we consider a configuration with

13

UHconsisting of the first l users, i.e., the users that can access the most tuples.
Let E′′ represent the value of Equation 11 under this configuration:

E′′ = l +


 ∑

i∈(l+1,...,U)

√
N

Ni




2
3

Because UH consists of the l users with access to the most tuples, we have
E′′ ≤ E′. We also have E ≤ E′′ because both of those configurations are
considered by Algorithm 1, which returns the configuration with the lowest error
bound among those that it considers. Therefore E ≤ E′, a contradiction.

By partitioning the users into groups according to Algorithm 1 and choosing
sample sizes according to Theorem 4.1, we can minimize the estimation error
from hybrid PSALM. Because both the single-sample estimation technique and
the basic PSALM technique from Section 3.2 are special cases of hybrid PSALM,
we have the following corollary:

Corollary 1. Hybrid PSALM under the optimal user-grouping from Algorithm 1
and the sample size assignment from Theorem 4.1 has a mean estimation error
bound no greater than the mean estimation error bound of single-sample esti-
mation and no greater than the mean estimation error bound of basic PSALM
estimation.

4.2 Evaluation of Hybrid PSALM Under Mean Estima-
tion Error Bound

Figure 1 illustrates the mean 95%-confidence estimation error bounds for the
single-sample, basic PSALM and hybrid PSALM approaches under a variety of
conditions. These curves are determined by Equations 1 and 2 for the single-
sample and basic PSALM approaches, and by Equations 7 and 9 for hybrid
PSALM. To obtain these curves, we varied the total number of users (U) and
the total sample size (n) as shown in the Figure. We chose the number of tu-
ples accessible to each user (Ni) by choosing some percentage of users as high-
privileged users (UH), and the remaining users as low-privileged users (UL).
The percentage of high-privileged users is denoted as high-fraction in the exper-
iments. Each high-privileged user has 50% of the data accessible to him while
each low-privileged user has 1% of the data accessible to him. Finally, we fixed
the selectivity of the query predicate PQ at 50%, and assumed independence
between PQ and the users’ access control predicates. Varying the selectivity of
PQ rescales the reported mean estimation error bounds, but does not affect the
shape of the curves.

Figure 1(a) shows the behavior of the sampling techniques as the percentage
of high-privileged users varies. The basic PSALM technique is insensitive to this
parameter, while the performance of the single-sample approach gets better as
we tend towards more high-privilege users and fewer low-privilege users. This
is because the single-sample technique is more effective for high-privilege users

14

 0

 0.5

 1

 1.5

 2

 2.5

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
ea

n
 e

st
im

at
io

n
 e

rr
o

r
b

o
u

n
d

percentage users being high-privileged (high-fraction)

#samples = 500

#users = 50

PSALM hybrid
PSALM basic

uniform

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 600 800 1000 1200 1400 1600 1800 2000 2200 2400

m
ea

n
 e

st
im

at
io

n
 e

rr
o

r
b

o
u

n
d

number of samples

high-fraction = 0.8
#users = 50

PSALM hybrid
PSALM basic

uniform

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 20 30 40 50 60 70 80

m
ea

n
 e

st
im

at
io

n
 e

rr
o

r
b

o
u

n
d

number of users

high-fraction = 0.8

#samples = 500

PSALM hybrid
PSALM basic

uniform

(c)

Figure 1: Mean estimation error bound between different sample techniques

15

than for low-privilege users. The hybrid PSALM approach outperforms both
of the simpler alternatives. Figure 1(b) shows that all of the techniques are
able to exploit an increasing sample space budget to improve accuracy. Finally,
Figure 1(c) shows estimation error as a function of the number of users, with
the sample budget fixed at 500 tuples. The single-sample technique is relatively
insensitive to the number of users, while both PSALM techniques do best when
the number of users is small. The basic PSALM and single-sample techniques
have a crossover point, as shown in Theorem 3.2. However, the hybrid PSALM
technique performs at least as well as either simpler technique regardless of the
number of users.

We also used simulation analysis to study the actual mean total estimation
error (ε) achieved by the hybrid PSALM and single-sample approaches. In our
simulations, we assumed N = 100, 000 tuples in the target relation, U = 100
users, and a total sample cardinality of n = 500 tuples. We first assigned a target
access control cardinality (Ni) for each user according to a Zipfian distribution
with parameter z = 1.2. We then randomly and independently determined the
accessibility of each tuple to each user such that the expected number of tuples
accessible to each user would be Ni. Finally, we drew samples of these tuples for
cardinality estimation as prescribed by the single-sample and hybrid PSALM
techniques.

We then simulated a series of queries. For each query, we assumed a query
predicate selectivity of 50%, plus or minus a small, normally-distributed pertur-
bation. Based on this selectivity, we randomly and independently determined
which tuples satisfied the query predicate. Once the qualifying tuples were de-
termined, we calculated the actual query result cardinality (Ci) as well as the
sample-based estimated cardinality (C̃i) under each of the two estimation tech-
niques for each user. We then calculated the mean estimation error (ε) for each
technique using

ε =
∑U

i=1 εi

U

Each point in Figure 2 shows the mean estimation error of a single query
under hybrid PSALM as a function of the mean estimation error under the
single-sample approach. In almost all cases, hybrid PSALM resulted in a lower
mean estimation error than the single-sample approach.

4.3 Minimize the Maximum Estimation Error Bound

Now we are trying to find the user-grouping and sample quota assignment to
minimize the maximum estimation error bound among all users. We do this
using a different approach. Instead of minimizing the error bound, we try to
minimize the size of all samples required such that the maximum estimation
error is bounded by a given ε̂. For example, a single uniform sampling requires
at least the following sample size to bound its maximum estimation error under
ε̂:

16

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

m
ea

n
es

tim
at

io
n

er
ro

r
of

 h
yb

rid
 P

S
A

LM

mean estimation error of single-sample
Figure 2: Mean estimation error between hybrid PSALM and single uniform
sampling

U
max
i=1

4N

ε̂2 · Ci

log
2

∆

We first have the following on the sample size requirement for users in UH

and users in UL such that their maximum estimation errors are all bounded by
ε̂.

n0 ≥ max
ui∈UH

(
4N

ε̂2 · Ci

· log 2

∆
), ui ∈ UH

ni ≥ 4Ni

ε̂2 · Ci

· log 2

∆
, ui ∈ UL

Similar to the analysis in minimizing the mean estimation error bound, as-
suming PQ is independent of the access control predicates PAC, the minimal
sample size to bound the maximum estimation error from all users under ε̂ is:

n0 +
X

ui∈UL

ni =
γ

ε̂2 · (max
ui∈UH

(
N

Ni

) + |UL|) (12)

Here γ is a constant. To minimize the total sample space as Formula 12, we
sort all users by their number of accessible tuples in ascending order into a list
{u1, u2, . . . , uU}. Then we segment the sorted list at different position ranging
from 0 to U . The segmentation {u1, . . . , uj} and {uj+1, . . . , uU} corresponds to
a user-grouping into UL and UH . At each user-grouping there is a corresponding
total sample space computed from Formula 12. We pick the segmentation that
minimizes Formula 12, and this segmentation corresponds to the grouping of

17

users that has the smallest total sample size to have the maximum estimation
error bound under ε̂. The proof is very similar to the one in Section 4.1, and is
omitted.

Under the optimal user grouping, the optimal sample quota assignment
among all users is the following (we use Z to represent max

ui∈UH

N

Ni

for brevity):

n0 =
Z

|UL|+ Z
· n,

ni =
1

|UL|+ Z
· n, ui ∈ UL

Under this optimal user-grouping and sample quota assignment, the maxi-
mum estimation error bound will be:

r
4 · log 2

∆
· (max (max

ui∈UL

s
Ni · (|UL|+ Z)

n · Ci

, max
ui∈UH

s
N · (|UL|+ Z)

n · Ci · Z
))

The 95%-confidence maximum estimation error bounds for the single-sample,
the optimal basic PSALM and the optimal hybrid PSALM are depicted in Figure
3 under the same settings as in Section 4.2. The optimal hybrid PSALM always
performs at least as well as either simpler technique regardless of the parameters.
Please note that in Figure 3(c) that hybrid PSALM degrade to basic PSALM
once the number of users exceeds 150, and thus the two schemes are in fact
identical at this point.

5 Exploiting Access Privilege Correlation

In previous work [9] involving access control data, we observed strong correla-
tions in access privileges among different users. The existence of such correla-
tions is not surprising. For example, in the common situation in which there
are “private” tuples that are accessible to only a single user, or to a few users,
all of the remaining users will agree that such tuples are inaccessible. In this
section, we explore an enhancement to the hybrid PSALM technique described
in Section 4 that exploits such correlations.

Suppose that we use the hybrid PSALM algorithm to partition users into
UL and UH and to assign sample sizes nL for users in UL and n0 for users
in UH . The enhancement improves the accuracy of cardinality estimates by
exploiting access privilege correlations among the users in UL. The approach is
to identify groups of low-privilege users that have correlated access privileges,
using a technique that will be described shortly. Suppose that G ⊆ UL is such
a group. Instead of creating a separate, private sample for each user in G, we
create a single, combined sample of size |G|nL that is shared by all users in G.
Here nL is the private sample size for the users in UL, and is a consistent value
for all such users in G according to Theorem 4.1.

This shared sample is a simple random sample drawn from among all tuples
that satisfy PACG, defined as

18

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
ax

 e
st

im
at

io
n

er
ro

r
bo

un
d

percentage users being high-privileged (high-fraction)

#samples = 500

#users = 50

PSALM hybrid
PSALM basic

uniform

(a)

 0

 0.5

 1

 1.5

 2

 600 800 1000 1200 1400 1600 1800 2000 2200 2400

m
ax

 e
st

im
at

io
n

er
ro

r
bo

un
d

number of samples

high-fraction = 0.8
#users = 50

PSALM hybrid
PSALM basic

uniform

(b)

 0

 1

 2

 3

 4

 5

 6

 50 100 150 200 250 300 350 400 450 500

m
ax

 e
st

im
at

io
n

er
ro

r
bo

un
d

number of users

high-fraction = 0.8

#samples = 500

PSALM hybrid
PSALM basic

uniform

(c)

Figure 3: Maximum estimation error bound between the different techniques

19

∨

i∈G

PACi

That is, we sample from among those tuples that are accessible to at least one
user in the group. To compute an unbiased cardinality estimate for predicate
PQ for user ui ∈ G, we use

C̃i = ci
NG

|G|nL
(13)

where ci is the number of sample tuples matching PQ ∧PACi and NG is the
number of tuples in the target relation that satisfy PACG. This results in a
∆-confidence estimation error bound of

εi ≤
√

4NG

|G|nLCi
log

2
∆

(14)

for all users in G.
Grouping users in this way does not change the cardinality estimates of users

outside the group, nor does it affect the accuracy of those estimates. Thus, any
change in the total estimation error bound from all users is from the change
of the estimation error bound of the users in G. By combining Equations 2
and 14, we can see that user grouping will result in lower total estimation error
bound among the users in the group if

∑

i∈G

√
4NG

|G|nLCi
log

2
∆

<
∑

i∈G

√
4Ni

niCi
log

2
∆

Simplifying, we find that this inequality holds provided that

∑

i∈G

√
NG

|G|Ci
<

∑

i∈G

√
Ni

Ci

Similarly, user grouping will reduce the maximum estimation error bound
from all users in the group if

max
i∈G

√
NG

|G|Ci
< max

i∈G

√
Ni

Ci

When there is little overlap among the accessible tuples of the grouped users,
then NG approaches

∑
i∈G Ni and there is no benefit to grouping users to re-

duce the total estimation error bound or the maximum estimation error bound.
However, if the grouped users have most of their accessible tuples in common,
then NG is much smaller and grouping will result in improved estimates for all
users in the group because of the larger size of the group’s sample. Thus, to
form groups of users we should identify users that have correlated access rights
and group them together. In the following, we describe how we group the users
together.

20

00111t7

01110t
8

10010t
6

10000t
5

01111t
4

01111t
3

11000t
2

00111t
1

u
5

u
4

u
3

u
2

u
1

SAMPLECLUSTER

t
2
t
5

u
5

t
2
t
3

u
4

t
1
t
4
t
7

u
1
u
2
u
3

u1

u2 u3

u4 u5

Graph with similarity thresh-hold set as 3

and one of its cluster partition

Figure 4: An example of user grouping
5.1 Grouping Correlated Users

To determine which users to group together, we first define a pairwise similarity
function, SIM , over the users in UL. The similarity between the ith and jth

users is defined as follows

SIM(i, j) = min
(

Ni,j

Ni
,
Ni,j

Nj

)
(15)

Here Ni,j is defined as the number of tuples from the target relation that are
accessible to both user i and user j. Using this function SIM , we can define
a similarity graph as an undirected graph with one node for each user in UL.
There is an edge between user i and user j if and only if SIM(i, j) ≥ θ, where
θ is a tunable parameter of the grouping algorithm.

To place the users into groups, we attempt to find a minimum clique par-
tition [16] of the user similarity graph. This identifies a set of non-overlapping
cliques that, together, cover the entire user similarity graph. Each such clique
becomes one of the user groups for which we will create a sample. By using
cliques as sampling groups, we ensure that all users in a group have pairwise-
similar access rights. By minimizing the number of cliques we minimize the
number of separate samples that are required, thus allowing us to use larger
samples while remaining within the space budget.

The problem of finding a minimum clique partition is NP-complete [16].
Thus, we use a fast greedy algorithm to partition the graph. The algorithm
produces a set of non-overlapping cliques that cover the user similarity graph,
but the set is not guaranteed to have minimum cardinality. The greedy algo-
rithm first finds a maximal clique in the graph by starting from a random node,
finding the clique around the node, and removing all nodes in the clique and all
edges induced by these nodes. This process continues until there are no more
nodes. We repeat this greedy algorithm several times from different initial nodes
and record the smallest clique partition at all iterations of this algorithm.

The example in Figure 4 illustrates the process of identifying user groups.

21

The example illustrates a scenario in which there are five users (u1, u2, . . . , u5)
and eight tuples (t1, t2, . . . , t8). The large matrix indicates which tuples are
accessible to each user, with a 1 indicating accessibility. Using a similarity
threshold θ of 0.5, we obtain the user similarity graph with pairwise connections
among u1, u2 and u3, as shown in Figure 4. A minimum clique partition for
this graph is illustrated using dashed lines.

5.2 Cost of Exploiting Correlation

Once user groups have been defined and the corresponding samples have been
drawn, the cost of estimating query cardinalities is essentially the same whether
low-privilege users are grouped or not. In either case, a predicate is evaluated
against each tuple in the appropriate sample and an estimate is computed using
either Equation 8 or Equation 13. Similarly, all of the necessary samples can be
drawn in a single pass over the target relation, regardless of whether grouping
is used.

There is an additional cost associated with determining how users should be
grouped together. Since grouping depends only the access rights of the various
users, and not on the query predicates, user groups will not need to change
unless access privileges are redefined. We assume that this will occur rarely
with respect to query evaluation.

To group users, it is necessary to obtain the value of Ni,j for all pairs of users
in UL, for use in determining SIM(i, j) (Equation 15). This can be accomplished
in one scan of the target relation. In addition, once the SIM function is known
and user groups have been selected, it is necessary to obtain the value of NG for
each selected user group G. This is necessary for obtaining cardinality estimates
for users in G using Equation 14. However, NG can be computed during the
same scan used by the PSALM algorithm to determine Ni for users that are
not part of any group. Thus, exploiting access privileges increases the cost of
PSALM from one scan of each target relation to two scans, one for determining
Ni,j of all user pairs, and one for drawing samples and determining NG or Ni

for each individual user or user group for which a sample is drawn.

5.3 Effectiveness of User-Grouping

As a test of the procedure for forming user groups, we applied the procedure to
a snapshot of the access control data from a production instance of a multi-user
content management system. The system had approximately 370000 access-
controlled objects and a total of 1584 users.

We applied our procedure to these data to determine user groups, using a
similarity threshold θ of 0.7. We randomly selected sets of users from among all
1584 users, and we applied our user grouping algorithm to the selected users.
We experiment with different number of users in UL. Figure 5 shows the num-
ber of groups (or individual samples) required after applying the user-grouping
on similar access controls. These data show that the user grouping algorithm
reduces the number of samples significantly.

22

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160

n
u

m
b

er
 o

f
g

ro
u

p
s

number of users

User-Groups

Figure 5: Effect of grouping on the number of samples required for low-privilege
users
6 Cardinality Estimation Under Role-based Ac-

cess Control

Fine-grained access controls are often not explicitly specified for each user in
the system. Instead, an administrator defines a number of roles, and assigns
access rights to these roles.1 Roles, in turn, are assigned to users, in which case
all access rights of the role are granted to the user. Roles can also be assigned to
other roles. This defines a hierarchy of users and roles, as illustrated in Figure 6,
where each user obtains access rights from all the roles to which he is directly
or indirectly assigned. In other words, the set of accessible tuples for a user is
the union of the tuples that are accessible to that user’s ancestors in the role
hierarchy. For example, the user in Figure 6 obtains access rights from three
roles R0, R1, R2.

Suppose a user is authorized with k roles directly or indirectly from the
role hierarchy, and each role Ri has access control predicate PACi on a target
relation I. The user’s access control predicates on the target relation is thus
(
∨

i∈{1,...,k} PACi). Given query selection predicate PQ, we are trying to estimate
the cardinality of tuples matching PQ∧(

∨
i∈{1,...,k}ACi) from the target relation.

A straightforward approaches to compute the estimated cardinality is to
compute the effective access controls for each user from all his roles, and apply
PSALM sampling scheme for all the users. However, if there are many users
with distinct access controls, the individual samples may become extremely
small. On the other hand, the users have different effective access controls

1User-groups are similar to roles and we only use the term role here to denote similar
implementation using user groups.

23

user

R
2

R
0

R
1

accessible tuples to roles

R0: t1, t4, t6

R1: t2, t4, t5

R2: t1, t3, t4

user’s accessible tuples:

t1, t2, t3, t4, t5, t6
Figure 6: A user gets access to tuples from his roles

simply because they are granted with different combinations of roles. If we build
PSALM samples based on roles, we will have fewer, larger individual samples.
Therefore, our goal is to accurately estimate the number of accessible tuples
satisfying a given query predicate by applying the PSALM sampling scheme to
the roles.

We first apply the distributive law to rewrite the cardinality of matching
tuples:

PQ ∧ (
∨

i∈{1,...,k}
PACi) ≡

∨

i∈{1,...,k}
(PQ ∧ PACi) (16)

We are able to apply PSALM sampling on the roles to estimate the cardinal-
ity of each PQ ∧ PACi(I) accurately. To the best of our knowledge, there is no
effective approach to directly estimate the cardinality of disjunctive predicates
on a relation. One approach used in PostgreSQL is to estimate cardinality of
disjuncts by rewriting them into a conjunctive form. For example, the cardinal-
ity of the disjunctive predicate (P1 ∨P2 ∨P3) on relation I can be estimated as
follows:

|(P1 ∨ P2 ∨ P3)(I)|
= |P1(I)|+ |P2(I)|+ |P3(I)| −

|(P1 ∧ P2)(I)| − |(P1 ∧ P3)(I)| − |(P2 ∧ P3)(I)|+
|(P1 ∧ P2 ∧ P3)(I)|

where the cardinality of each conjunct is estimating separately. However,
one significant disadvantage of this approach is that the number of terms in the
formula is exponential in the size of the disjunctions. In the next section, we
present an alternative approach that solves this problem.

6.1 Coverage Algorithm for Union of Sets

We use the Coverage Algorithm [13] to estimate cardinality of disjunctive pred-
icates. This approach takes time polynomial in the number of conjunctions in

24

a disjunctive formulae, has more accurate estimates than the approach used in
PostgreSQL, and can be built on top of PSALM. Coverage Algorithm is able to
accurately estimate the size of union

⋃
i∈(1,...,k) Ci, provided that [13]:

1. we can accurately estimate the cardinality of each set Ci, and
2. we can sample uniformly at random from each Ci, and
3. we can determine in polynomial time whether a given tuple belongs to Ci.

The Coverage Algorithm takes as input the sets C = {Ci, i ∈ {1, . . . , k}} and
proceeds as in Algorithm 2. The algorithm starts with a counter W with value
zero, and a total sample size n. It then samples from each of the sets Ci, where
the number of samples taken from Ci is proportional to |Ci|. For each sample
from Ci, we examine if it belongs to any Cj such that j ∈ {1, . . . , i − 1}. If it
does not belong to any of these sets, we increment the counter W by one.

Algorithm 2 Coverage Algorithm [13]

Coverage(C, n)
1: set counter W = 0;
2: sort sets in C by their sizes in descending order
3: for each Ci ∈ C
4: sample n|Ci|P

C∈C |C| tuples uniformly from Ci

5: for each tuple t sampled
6: if t 6∈ Cj , j ∈ {1, . . . , i− 1}
7: W + +;
8: return W ;

After checking all the samples from C1, C2 . . . , Ck, we take the counter W
from this routine and compute estimated cardinality |C| = |⋃i∈(1,...,k) Ci| as
follows:

|C| =
∑

i∈{1,...,k}
|Ci|W

N
(17)

Theorem 6.1. [13] The sampling procedure in Algorithm 2 and Formula 17
yields an ε-approximation to |C| with (1 −∆) probability, provided sample size
n ≥ 4k

ε2 ln 2
∆ .

6.2 Applying The Coverage Algorithm

We now show how to apply the Coverage Algorithm for estimating cardinality
of disjunctive predicates in the form shown in Equation 16. For a given target
relation I, we need to show that we are able to:

1. estimate the size of each PQ ∧ PACi(I), and

25

2. sample uniformly from each PQ ∧ PACi(I), and

3. decide whether a given tuple satisfies PQ ∧ PACi in polynomial time.

The first requirement is already fulfilled by PSALM . The third requirement
can be satisfied if the predicate does not involve exponential computation. For
access control predicates, this requirement is easily satisfied. For the second
requirement, we only need to sample uniformly from the sample tuples of role
Ri that satisfy PQ. One way to accomplish this by a single scan through the
sample tuples of role Ri, and reservoir-sampling those tuples that satisfy PQ.
We have the following Lemma:

Lemma 6.1. Reservoir-sampling on the sample tuples of role Ri that satisfy
PQgenerates a uniform sampling of PQ ∧ PACi.

Proof. We use Di to denote the reservoir from role Ri. We first have that each
tuple in PQ(Di) is also in PQ ∧ PACi. We also know that a tuple in PQ ∧ PACi

has probability |PQ∧PACi|
Ni

to appear in Di, and this probability is independent
of other tuples in PQ ∧ PACi. Hence the proof.

6.3 Evaluating the Coverage Algorithm

To evaluate the Coverage Algorithm, we used a data set that describes ex-
penditures of American families 2. The data include 127931 tuples, with each
tuple representing a family’ expenses on insurance, property tax, electricity,
gas, water, and fuel (six attributes). We choose this data set since there is some
correlation between the different attributes, and we can model access controls
and queries as being predicates on different attributes.

To model access controls, we first create a number of roles. The access
control of each role is a single predicate PAC on one of the six attributes with
selectivity of 0.25, i.e., each role corresponds to a predicate that selects a quarter
of the total tuples. For each database user, we assign him with four roles, thus
his accessible tuples are the disjunctions of the corresponding four predicates
from the roles. The query is another single attribute predicate PQ with the
same selectivity (0.25) on one of the six attributes.

We then compare the Coverage Algorithm and a single uniform sampling
for estimating the cardinality of tuples matching both the query and the access
controls for each user, i.e., (PQ ∧ ∨

i∈{1,...,4} PACi). The Coverage Algorithm
is applied on PSALM basic scheme which has the same total size as the single
uniform sampling.

Figure 7 shows the estimation error of the Coverage Algorithm and the uni-
form sampling, where both techniques use a sample size of 60 tuple. In another
word, the Coverage Algorithm is applied on four individual samples with 15 tu-
ples each. Each dot in the figure represents a query. The x-coordinate denotes
the estimation error of the uniform sampling and the y-coordinate denotes the
estimation error of the Coverage Algorithm. We see that the Coverage Algo-
rithm out-performs the uniform approach significantly.

2available from http://www.ipums.org

26

 0.001

 0.01

 0.1

 1

 0.001 0.01 0.1 1

er
ro

r
fr

o
m

 c
o

v
er

ag
e

al
g

o
ri

th
m

error from uniform sampling

Figure 7: Performance of Coverage Algorithm versus uniform sampling
7 Related Work

While there exists a broad literature on cardinality estimation for query op-
timization, we focus our attention on sampling-based techniques. Sampling is
widely used for estimating the cardinality of intermediate query results from
joins and selection queries. Because we view access controls as predicates, we
are primarily interested in the latter.

There are two main approaches to sampling data for cardinality estimation.
One is to sample for each query at runtime, either proactively before executing
the query [5], or reactively after executing the query [1]. The alternative is to
sample off-line without prior knowledge of the queries. Although PSALM takes
advantage of prior knowledge access controls, it is closer to the off-line sampling
category since it does not make any assumptions about the users’ queries.

Kolmogorov’s statistics show that a moderately-sized sample gives accurate
selectivity estimation for queries, and that the sample size does not depend on
the size of the underlying dataset [6]. However, that evaluation is based on the
relative error of selectivity, rather than the relative error of cardinality. It is
well-known that uniform random sampling does not provide accurate cardinality
estimation when data distribution is highly skewed or the queries results are
very small. Therefore, instead of specifying a fixed sample size for all queries,
adaptive sampling [11](known as sequential sampling [8]) iteratively samples
from data until the accuracy of the estimation satisfies a stopping rule. This
approach falls into the runtime sampling category.

Another approach to skewed data or highly selective queries is to sample
without uniformity. This includes biased sampling [4] or stratified sampling [3],
whose idea is to partition data into non-overlapping clusters of different density,
and then assign different weights to the sample tuples from clusters of different

27

density. The density distributions are either estimated through a pilot sampling
phase, or from prior knowledge of the queries together with some statistics on
the data.

The work by Acharya, Gibbons and Poosala [2] is the most similar to
PSALM. Their sampling mechanism is intended for efficient approximate an-
swering of aggregation queries, and their approach is to partition data accord-
ing to the prior knowledge of grouping attributes, and judiciously assign sample
quota among all the partitions to minimize estimation variance. However, their
approach, like those of other biased or stratified sampling techniques, assumes
that the data are partitioned into non-overlapping sets for sampling. In our
setting, the set of tuples accessible to different users may overlap.

8 Conclusion

In this paper we propose a several novel multi-user sampling schemes for esti-
mating query result cardinalities in the presence of fine-grained access controls.
These schemes leverage prior knowledge of users’ access controls, which a rel-
atively static. Compared with simple uniform sampling, our hybrid PSALM
approach provides more accurate cardinality estimates.

References

[1] Ashraf Aboulnaga, Peter J. Haas, Sam Lightstone, Guy M. Lohman, Volker
Markl, Ivan Popivanov, and Vijashankar Raman. Automated Statistics
Collection in DB2 Stinger. In Proc. 33th Int. Conf. on Very Large Data
Bases, 2007.

[2] Swarup Acharya, Phillip B. Gibbons, and Viswanath Poosala. Congres-
sional Samples for Approximate Answering of Group-by Queries. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 487–498, 2000.

[3] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. A Robust,
Optimization-Based Approach for Approximate Answering of Aggregate
Queries. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
2001.

[4] Christopher R. Palmer and Christos Faloutsos. Density Biased Sampling:
An Improved Method for Data Mining and Clustering. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 82–92, 2000.

[5] Amr El-Helw, Ihab F. Ilyas, Wing Lau, Volker Markl, and Calisto Zuzarte.
Collecting and Maintaining Just-in-Time Statistics. In Proc. 23st Int. Conf.
on Data Engineering, pages 516–525, 2007.

[6] Benjamin Epstein. Introduction to Statistical Analysis. SIAM Review,
1(1):75–77, 1959.

28

[7] Rainer Gemulla, Wolfgang Lehner, and Peter J. Haas. A Dip in the Reser-
voir: Maintaining Sample Synopses of Evolving Datasets. In Proc. 32th
Int. Conf. on Very Large Data Bases, pages 595–606, 2006.

[8] Peter J. Haas and Arun N. Swami. Sequential Sampling Procedures for
Query Size Estimation. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 341–350, 1992.

[9] Huaxin Zhang and Ning Zhang and Ken. Salem and Donghui Zhuo. Com-
pact Access Control Labeling for Efficient Secure XML Query Evaluation.
Journal of Data and Knowledge Engineering, 60(2):326–344, 2007.

[10] IBM. DB2 Administration Guide: Implementation, 2006.

[11] Richard J. Lipton and Jeffrey F. Naughton. Query Size Estimation by
Adaptive Sampling. In Proc. 9th ACM SIGACT-SIGMOD-SIGART Symp.
Principles of Database Systems, pages 40–46, 1990.

[12] Microsoft. Implementing Row- and Cell-Level Security in Classified
Databases Using SQL Server 2005, 2005.

[13] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cam-
bridge University Press, New York, NY, USA, 1995.

[14] Oracle. Data Classification with Oracle Label Security: A White Paper.

[15] Oracle. The Virtual Private Database in Oracle9ir2.

[16] P. Crescenzi and V. Kann. A Compendium of NP Optimization Problems,
page 13. Springer Verlag, 1999.

[17] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Extend-
ing Query Rewriting Techniques Fine-Grained Access Control. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, 2004.

[18] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math.
Softw., 11(1):37–57, 1985.

29

