
Geometric Streaming Algorithms with a Sorting Primitive
(TR CS-2007-17)

Eric Y. Chen

School of Computer Science
University of Waterloo

Waterloo, ON N2L 3G1, Canada,
y28chen@cs.uwaterloo.ca

Abstract. We solve several fundamental geometric problems under a new streaming model recently
proposed by Ruhl et al. [2, 12]. In this model, in one pass the input stream can be scanned to generate
an output stream or be sorted based on a user-defined comparator; all intermediate streams must be
of size O(n). We obtain the following geometric results for any fixed constant ε > 0:

– We can construct 2D convex hulls in O(1) passes with O(nε) extra space.

– We can construct 3D convex hulls in O(1) expected number of passes with O(nε) extra space.

– We can construct a triangulation of a simple polygon in O(1) expected number of passes with
O(nε) extra space, where n is the number of vertices on the polygon.

– We can report all k intersections of a set of 2D line segments in O(1) passes with O(nε) extra space,
if an intermediate stream of size O(n + k) is allowed.

We also consider a weaker model, where we do not have the sorting primitive but are allowed to choose
a scan direction for every scan pass. Here we can construct a 2D convex hull from an x-ordered point
set in O(1) passes with O(nε) extra space.

1 Introduction

Nowadays, applications with massive data sets are emerging rapidly in different areas, such as in-
ternet applications, geographic information systems, and sensor networks. Researchers have thus
proposed algorithms that use small amounts of memory space under different space-conscious mod-
els. In in-place algorithms (e.g. see [5]), all input data are stored in memory, and the extra amount
of memory used by the program is small or even constant. However, such algorithms are not suitable
for data sets, which are larger than the size of memory. These massive data sets are considered un-
der one-pass streaming models and multi-pass streaming models. In the one-pass streaming model,
all input data are accessed once sequentially by the program, and the amount of memory used
must be sublinear in the size of input or even constant. Algorithms under this model can process
data sets larger than the size of the memory, but most of them can only compute approximate
solutions. An alternative model is the multi-pass streaming model. In this model, the input data
can be accessed sequentially multiple times. Algorithms under this model can compute exact solu-
tions, but typically the number of passes taken by these algorithms grows when the size of input
gets larger. In computational geometry, fundamental problems have been considered in all these
models [5–7]. Not only efficient algorithms are proposed, but lower bounds [7] are also proved for
several problems.

Ruhl et al. [2, 12] recently proposed a practical streaming model augmented with a sorting
primitive, which will be defined precisely at the end of this section. Because sorting is a fully
optimized operation under most systems, sorting a stream can be considered an atomic operation.
In Ruhl et al.’s model, sorting the data stream once is counted as one pass on the data stream.



In this paper, we study several of the most fundamental problems in computational geometry [9–
11] in the streaming model augmented with a sorting primitive. For any fixed ε, all of the following
problems are solved with a constant number of passes and O(nε) space, where n is the size of input.
These are the first results for these problems that achieve simultaneously a small number of passes
and a reasonably small amount of space in a realistic streaming model. Specifically, these problems
are: 1. constructing the convex hull from a set of 2D points, 2. constructing the convex hull from a
set of 3D points, 3. constructing a triangulation of a simple polygon. Some of these problems have
been even proved unsolvable with a constant number of passes in the original multi-pass streaming
model [7]. If the size of the intermediate data stream is allowed to be larger, namely O(n+k), we can
solve a fourth problem: report all intersections of a set of 2D line segments with a constant number
of passes and O(nε) space in memory. In a weaker model, which will also be defined precisely at
the end of this section, we can still construct a 2D convex hull from an x-ordered point set in a
constant number of passes with O(nε) space in memory. This has also been proved unsolvable in
the multi-pass streaming model.

Note that, as Ruhl et al. [2, 12] showed, many parallel circuits, and consequently many parallel
algorithms, can be simulated in the streaming model augmented with a sorting primitive. Several
known geometric algorithms [1] can be simulated in this model directly. However, all of these
transformed algorithms take O(polylogn) passes. Our algorithms are the first solutions only taking
O(1) passes.

Some of the techniques we use are standard. For example, for the 3D convex hull and segment
intersection problems, we adapt standard random sampling techniques. To solve the triangulation
problem, however, we need to introduce some new geometric observations and use a combination
of several ideas.

1.1 The Streaming Model with a Sorting Primitive

In this subsection, we precisely define the streaming model with a sorting primitive (stream-sort
model for short), describe one divide-and-conquer technique that we will use throughout in this
paper, and also define a weaker model, which we call the direction-flexible streaming model.

In the stream-sort model, the input data are given in one data stream. There are two ways to
access these data. One is the scan pass. The input stream is scanned sequentially, and one output
stream is generated. The other is the sorting pass. The input stream is sorted based on a user-
defined comparator, and data are sorted in the output stream based on that order. The generated
output stream of data is called an intermediate stream. In the next scan, this intermediate stream
becomes the input stream, and another output stream is generated. All intermediate streams must
be of size O(n). At the end, we count how many passes are used in total, and how much space is
used in memory by the program in the scan passes.

Divide-and-conquer is a general strategy commonly used under this model. With this strategy,
the data set of the problem is divided into data sets for several subproblems. We describe a technique
that can help us solve all subproblems simultaneously in one pass.

This technique can be described as follows. Given a stream containing multiple independent
data sets and one data set per subproblem, if the elements of each data set are grouped together
in the stream, we can process these data sets one after another in a single pass. In the scan pass,
after scanning over the data set for one subproblem, we reset memory for the data set of the next
subproblem. Using a sorting pass, we can group the element for the same data set together. This
can be done by adding a field in each element to identify which data set it belongs to. (The layout
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of the stream after the sorting pass is shown as fig. 1.) Storing this extra field only lengthens the
stream by O(n).
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Fig. 1. The layout of the stream after a sorting pass

Now we treat the recursive calls in a divide-and-conquer algorithm as a tree structure. Each
node represents one subproblem we need to solve. We can solve all problems in the same level of
the recursion tree in the same pass. Therefore, we can bound the number of passes by the number
of levels in the recursion tree.

Since the sorting pass is the most expensive part, we define a simpler and self-contained model
in which the sorting pass is not allowed. Instead, we can only choose a direction to scan the stream
(forward or backward). We call this model the direction-flexible model. This model is weaker than
the stream-sort model. For example, it is impossible to sort data in order in a constant number of
passes in the direction-flexible model, if the extra space allowed is sublinear.

2 2D Convex Hulls

In this section we give an algorithm that constructs the convex hull of a set of 2D points in O(1)
passes with O(nε) extra space under the stream-sort model. Constructing the convex hull of a set
of 2D points in primal space is equivalent to constructing the lower envelope of a set of halfplanes
in dual space [9]. In the pseudocode below, the input H is the set of halfplanes and the output L
is the lower envelope of H. The parameter B in the pseudocode below will be determined later in
this section.

Algorithm 2D Envelope(H)
If |H| ≤ B

Solve the problem directly in memory and return L
Divide H in B disjoint sets of equal size
For each subset Hi

Li = 2D Envelopes(Hi)
Merge B lower envelopes Li to obtain the lower envelope L and return L

Merging B lower envelopes can be done in a constant number of passes in the stream-sort model
by a sweep from left to right as follows. We maintain all O(B) edges intersecting the sweepline
and a list of edges appearing in the merged lower envelope. Whenever the sweepline touches an
intersection of two edges in the merged lower envelope, we add the appearing edge to the list. We
sort all edges by the x-coordinates of their left endpoints in a sorting pass. We only keep the B
edges intersecting the sweepline in memory in the scan pass. The intersections between edges are
computed in memory, so the space needed is O(B).

We view the recursive calls of our algorithm as a tree structure. Applying the technique presented
in section 1.1, we preform all merges at the same level of the recursion tree in one round. In a sorting
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pass, we use the group identifier of each element as the primary key and the left x-coordinates of
edges in the same group as the secondary key. In the scan pass, we simply merge each group of
lower envelopes, one by one.

By setting B = O(nε), we ensure that there are O(1) levels of the recursion tree. Thus we have:

Theorem 1. The convex hull of a set of 2D points can be constructed in O(1) passes with O(nε)
extra space, for any fixed ε > 0.

Remark: The above algorithm runs in O(n1+ε) time. We can reduce the time bound to
O(n polylogn) time as follows. In the merging procedure, the intersections between the sweepline
and envelopes are a set of points moving vertically with constant speeds. Merging B envelopes
is equivalent to keeping track of the lowest point among the set of moving points. This can be
maintained by a kinetic heap with O(B) space in memory [4]. Whenever a new edge is touched by
the sweepline, the velocity of the corresponding vertex is changed.

3 3D Convex Hulls

Given a set of 3D points, we show how to construct its 3D convex hull in O(1) expected number of
passes with O(nε) extra space in the stream-sort model. We follow a random sampling approach [8,
10].

We transform the problem into dual space. Each point in primal space maps to a halfspace in
dual space. Constructing the convex hull of a set of 3D points is equivalent to constructing the lower
envelope of a set of 3D halfspaces [9]. We first describe our algorithm in the traditional memory
model, and then modify it to fit in the stream-sort model. The notations are defined as follows.
The cell ∆f defined by a triangle f refers to the vertial prism underneath f . The set of planes
intersecting ∆f is denoted by Hf . In the algorithm, the input H is a set of n 3D halfspaces, and
the output E is the set of faces in the lower envelope. (See [10] for the definition of the canonical
triangulation.)

Algorithm: 3D Envelope(H)
Initialize an empty set R
If |H| ≤ B

Solve the problem directly in memory and return the answer
Repeat

Sample a random subset R of size B in H
Find the lower envelope ER of R
Build the canonical triangulation T for ER

Until
∑

f∈T |Hf | = O(n) and maxf∈T |Hf | = O((n/B) log B)
For each f ∈ T

Ef = 3D Envelope(Hf )
Merge all the Ef ’s to form E and return E

The set R is a randomly selected subset. By the analysis from Clarkson and Shor [8] for randomly
selected samples, it is known that the expected value of

∑
f∈T |Hf | is O(n). Therefore, we have∑

f∈T |Hf | ≤ cn with probability greater than a constant, for a sufficiently large constant c. It is
also known [10] that maxf∈T |Hf | ≤ c′(n/B) log B with probability greater than a constant, for a
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sufficiently large constant c′. Therefore, the expected number of iterations before both conditions
satisfied is constant.

We modify this algorithm to fit in the stream-sort model. We set B to nε. Thus, R and ER

takes O(nε) space in memory. The operation for choosing the set R can be done in one scan pass.
Constructing ER can be done in memory using O(nε) extra space.

By keeping T in memory, verifying the conditions to terminate the loop can be done by one
scan pass. One iteration of the first loop can be done in O(1) passes with O(nε) extra space.

For the second loop structure, we proceed as follows. We create a copy of h for each cell ∆f

intersected by the halfspace h. We also attach a label to each copy to identify the corresponding cell.
This operation can be done in one scan pass. In the following sorting pass, we use the attached label
as the key. All halfspaces are grouped together in the data stream. With the technique introduced
in section 1.1, all subproblems in the same level of the recursion tree are solved simultaneously in
one scan passes.

Because the total number of intersections between halfspaces and cells is O(n), the duplication
of halfspaces only lengthens the size of the intermediate stream by a constant factor times. The
size of any subproblem is O(n1−ε log n), since B = nε. The number of levels of the recursion tree
is constant, since the size of the intermediate stream increases by a constant factor every round.
Therefore, all intermediate streams are of size O(n).

Because the first loop in the above algorithm terminates in a constant expected number of iter-
ations, this algorithm takes O(1) expected number of passes in one round. Therefore, the expected
total number of passes is also O(1).

The merging step at the end of the algorithm can be done by a sorting pass and a scan pass.
In the sorting pass, we use the planes that facets as the key and group all facets in the same plane
together. In the scan pass, we merge these facets within the same plane.

Theorem 2. Given a set of 3D points, its convex hull can be constructed in O(1) expected number
of passes with O(nε) extra space, for any fixed ε > 0.

Remark: The algorithm can also be derandomized in the same bounds. Instead of making the
set R random, we can use a (1/B)-net to make the set, where B = O(nε). A streaming algorithm
by Bagchi et al. [3] can deterministically compute this (1/B)-net in one pass with O(polylogn)
space.

4 Triangulation of Simple Polygons

Triangulating a simple polygon reduces to triangulating a set of disjoint line segments. Given a set
L of n disjoint line segments in a plane, we show how to construct a triangulation of L (covering
the convex hull of the endpoints of L and not using extra vertices) in O(1) expected number of
passes with O(nε) extra space, for any fixed ε > 0.

Before we describe our algorithm, we define some terms. By a unimonotone polygon, we mean
an x-monotone polygon with one edge connecting its leftmost and rightmost vertex. We call this
edge the long edge of the polygon. See fig. 2.

Our algorithm consists of four major phases. In section 4.1, we explain the construction of a
trapezoidal decomposition of the line segments. In section 4.2, we describe the transformation of the
trapezoidal decomposition to a decomposition of unimonotone polygons. In section 4.3, we describe
the decomposition of each unimontone polygons to a set of special polygons. In section 4.4, we show
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Long edge


Fig. 2. A unimonotone polygon

how to triangulate a special polygon. In section 4.5, we put these four phases together to obtain
the overall algorithm.

4.1 Trapezoidal Decomposition of Line Segments

We present a recursive algorithm constructing the trapezoidal decomposition of a set of disjoint
line segments. The input L is a set of n disjoint line segments. The output T is the trapezoidal
decomposition for T . We denote the set of line segments intersecting a trapezoid t by Lt. The
parameter B will be determined later in this section. This algorithm uses a well-known random
sampling approach [8, 10].

Algorithm: Trap Decomp(L)
If |L| ≤ B

Solve directly in memory
Repeat

Randomly select a subset R of size B from L
Build the trapezoidal decomposition TR of R

Until
∑

t∈TR
|Lt| = O(n) and maxt∈TR

|Lt| = O((n/B) log B)
For each t ∈ TR

Tt = Trap Decomp(Lt)
Merge all the Tt’s together to form T and return T

The set R is a randomly selected subset. The analysis is similar to theorem 2. Therefore, we
have

∑
t∈TR

|Lt| ≤ cn with probability greater than a constant, for a sufficiently large constant c,
and maxt∈TR

|Lt| ≤ c′(n/B) log B with probability greater than a constant, for a sufficiently large
constant c′. Therefore, the first loop iterates only a constant expected number of times.

In the stream-sort model, we keep the set R and TR in memory. By setting B = nε, these two
structures only take O(nε) space in memory. With TR in memory, we can check the conditions to
terminate the first loop in O(1) passes.

We use the same the duplication idea used in section 3. To prepare for the recursive calls in the
second loop, in a scan pass, we create one copy of the segment for each trapezoid intersected and
attach a label to each copy to identify the intersected trapezoid. In the sorting pass, we use the
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attached label as the key and group segments by the trapezoids intersected. Because maxt∈TR
|Lt| =

O(n1−ε) log n, the number of levels of recursions is O(1). Because
∑

t∈TR
|Lt| = O(n), the interme-

diate stream for one level contains O(n) line segments. Since there are only O(1) levels of recursive
calls, any intermediate stream contains O(n) line segments.

The merging step can be done with one sorting pass and one scan pass. Each trapezoid is
bounded by an upper edge, a lower edge, and two walls. In the sorting pass, we use the line
segment of the upper edge as the primary key and the left-to-right order as the secondary key to
sort all trapezoids. In the scan pass, trapezoids bounded by the same walls are all merged together.

We simultaneously solve subproblems in the same level in the same pass using the technique
described in section 1.1. Our algorithm can build the trapezoid decomposition in O(1) rounds. Since
the expected number of pass to obtain a valid trapezoid is O(1), our algorithm takes O(1) expected
number of passes in total.

Thus we have:

Lemma 1. For any fixed ε > 0, the trapezoidal decomposition of a set of disjoint n 2D line segments
can be constructed in O(1) expected number of passes with O(nε) extra space.

4.2 Decomposition of Line Segments into Unimonotone Polygons

In this section, we show how to construct a decomposition of line segments into unimonotone
polygons. This is a well-known algorithm described in [9]. We only adapt it in the stream-sort
model. The input T is a set of trapezoids from the trapezoidal decomposition described in the
previous subsection. The output M is the set of unimonotone polygons from this decomposition.

(Case 1) (Case 2) (Case 3) (Case 4)

L
1


L
2


L
1


L
2


L
1


L
3


L
2


L
1


L
2


L
3
 L
4


Fig. 3. Different cases to split a trapezoid

Algorithm: Monotone-Decomposition(T )
Initialize S = ∅
/* step 1: split trapezoids */
Check for each t ∈ T

/* These three cases are shown in fig. 3 */
Case 1: the upper or lower edge of t is a whole segment

Put t into S
Case 2: two vertices are endpoints of line segments, but they are not from the same edge

Draw the diagonal between the two vertices
Split t into t↑ and t↓ and put t↑ and t↓ into S
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Case 3: one vertex p is an endpoint of a line segment
and another endpoint q of a line segment is on a vertical edge

Draw the edge pq
Split t into a triangle ∆t and trapezoid Qt and put ∆t and Qt into S

Case 4: no vertices are endpoints of line segments
and two endpoints, p1 and p2 are on the vertical edges

Draw the edge p1p2

Split t into two trapezoids T1 and T2 and put T1 and T2 into S

/*step 2: merge polygons in S to unimonotone polygons */
For each line segment l

Sort all polygons using l as the upper edge from left to right
Merge all these polygons to form a unimonotone polygon m and put m into M
Sort all polygons using l as the lower edge from left to right
Merge all these polygons to form a unimonotone polygon m and put m into M

Return M

Now we modify both steps of the algorithm for the stream-sort model. Step 1 can be simply
done by a scan pass. Instead of writing the results to a data structure S, we write them into the
output stream. For step 2, in a sorting pass, we use the segment of the upper edge as the primary
key and the left-to-right order as the secondary key to group and sort polygons. In a scan pass, we
merge the polygons, whose upper edges are of the same segment, to a unimonotone polygon and
write the polygon to the output stream. We do the same for the polygons whose lower edges are of
the same segment. Both of these two steps take O(1) passes with O(1) extra space.

4.3 Decomposition of a Unimonotone Polygon into Special Polygons

It is not obvious how to triangulate unimonotone polygons directly in the stream-sort model. In
this section and the next, we introduce nontrivial new ideas that differ from the approaches in
previous (sequential or parallel) polygon triangulation algorithms. The following definition is the
key:

Definition 1. Given a direction d, a unimonotone polygon is a special polygon at direction d, if
its chain of edges is monotone in direction d and both vertices of the long edge are higher than any
other vertices in the direction perpendicular to d.

The decomposition is built recursively. Given the unimonotone polygon P , we divide the mono-
tone chain into B parts with equal size, and build the upper hull for each part. Below the upper
hulls, the decomposition will be built recursively. Above the upper hulls, we obtain a new uni-
monotone polygon, whose monotone chain Q is formed by at most B concave chains. See fig. 4.
The following top-down sweeping algorithm decomposes Q into a set of special polygons. Interest-
ingly, this part is inspired by a well-known algorithm for constructing the 2D maxima of a set of
points [11]. The input Q is an x-monotone chain formed by B concave chains. The output C is the
set of edges of the special polygons. Without loss of generality, we assume the right end is higher
than the left end.
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Fig. 4. Decomposition of Q into special polygons

Algorithm: Special Decomp(Q)
Initialize v to the right end of the long edge and C empty
Put all vertices along the y-direction in a sorted list L in decreasing order
For each vertex vi in decreasing y-order

If vi is left of v
Add edge (vi, v) to C
v = vi

Return C

By this algorithm, we connect the right endpoint of the long edge to the left end with an
xy-monotone chain, and all regions below this chain are special polygons along the x-direction,
as one can easily see. Consider the region Q′ above the xy-monotone chain. (See fig. 4.) This is
also a special polygon, where, this time, the direction d is perpendicular to the long edge. In the
scan pass, we only need to keep v and vi in memory. Any created edge in C is written into the
output stream as scan proceeds. With a sorting pass, we use sort all edges using the x-coordinate
of the first point as the primary key and the x-coordinate of the second point as the secondary key.
Then, with another scan pass, we can obtain the xy-monotone chain in order. Therefore, in the
stream-sort model, the above algorithm takes O(1) passes with O(1) space in memory.

By setting B to nε, the number of levels of the recursion is O(1). Then we simultaneously solve
all problems in the same level of the recursion tree in one round. Because any edge we write to the
output stream is an edge in the final triangulation and the size of the triangulation is O(n), the
size of all intermediate streams is O(n). Since the upper hulls are computed by our algorithm in
section 2, it takes O(B) space in memory with O(1) passes.

4.4 Triangulation of a Special Polygon

We build a triangulation for a special polygon, say in the direction of the x-axis, by a top-down
sweeping procedure. In this algorithm, we maintain a tree structure bridges in memory. It stores a
set of pairs (left, right). Each pair corresponds to one portion of the chain intersecting the sweepline.
They are ordered left to right in direction y. For p, which is a query point or a pair in bridges, its
predecessor and successor in bridges refer to the bridge immediately left of and right of p, denoted
as p− and p+, respectively. There are two types of events: 1. the sweepline touches a vertex which
does not belong to an edge already intersecting the sweepline and 2. the sweepline touches a vertex
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which belongs to an edge already intersecting the sweepline. The input p is a special polygon whose
monotone chain is monotone in x direction without loss of generality. For any other special polygon
in other directions, we can rotate the coordinate plane, so that the polygon is a special polygon in
direction of y-axis. The triangulated region constructed by the algorithm is illustrated in fig. 5.
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Fig. 5. Triangulating a special polygon

Algorithm: SpecialTriangulate(P )
Put all vertices on the monotone chain top-down in direction y in a sorted list L
Let the left end point of the vertex be El and the right one be Er

Initialize bridges with two pairs (−∞, El) and (Er,∞)
While L is not empty

Pick the next vertex v from L
Add triangle (v−.right, v, v+.left) to T
Case 1: v causes an event of the type 1 // see fig. 6 (right)

Add (v, v) to bridges
Case 2: v causes an event of the type 2 // see fig. 6 (left)

If the left side of v along the sweepline is inside P
v+.left = v

Else if the right side of v along the sweepline is inside P
v−.right = v

Else
Merge v− and v+ to (v−.left, v+.right)

End of cases
End of loop

In the stream-sort model, we use a sorting pass to prepare L. Then we perform the loop part
of the algorithm and write all triangles into the output stream in one scan pass, and store only
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bridges in memory. Therefore the extra space used in memory is linear to the maximum number of
edges intersecting the sweepline.

Lemma 2. Given a special polygon at direction d, it can be triangulated in O(1) passes with O(m)
extra space, where m is the maximum number of edges of the polygon intersected by a line in
direction d.
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Fig. 6. Adding a new triangle into the triangulated area

Proof. We prove the following invariant: at any time, the portion of the polygon above the bridges
is triangulated and lies above the sweepline. Initially, after the first two vertices v1 and v2 are read,
the invariant holds, since v1 and v2 must be the vertices of the long edge by definition of special
polygons, and so v1v2 lies above the sweepline. (See fig. 5.)

As the sweeping algorithm proceeds, the newly added vertices can be connected to the two
adjacent vertices in the bridges without intersecting polygon edges (see fig. 6). Therefore, the
invariant holds after the new vertex is added. ¤

Remark: It is easy to find an example of a non-special unimonotone polygon where the above
algorithm fails.

4.5 Triangulation of Line Segments

By solving multiple subproblems in one round, we simultaneously construct the triangulation of
all special polygons decomposed from the same level of the recursive calls in the monotone decom-
position algorithm described in section 4.3. Recall that the special polygons are decomposed from
a unimonotone polygon whose monotone chain is composed of nε upper hulls. We conclude that
the special polygon Q′ above the xy-monotone chain and all obtained special polygons below the
xy-monotone chain (see fig. 4) have O(nε) edges intersecting its sweepline. The extra space used
to triangulate one special polygon is O(nε). Note that all of the four phases take O(1) passes with
O(nε) space. Thus, we have:

Theorem 3. A triangulation of a set of disjoint line segments can be constructed in O(1) expected
number of passes with O(nε) extra space, for any fixed ε > 0.

Remark: The merging procedure used in sections 4.1 and 4.2 can be done in the same sorting
pass, to minimize the number of expensive sorting passes in practice. This algorithm can also be
derandomized by using the same (1/B)-net algorithm [3] mentioned in section 3.

11



5 Intersection Reporting for Line Segments

As another application of the trapezoidal decomposition algorithm, we can report all k intersections
of a set of line segments with intersections in O(1) expected number of passes with O(nε) extra
space, if intermediate streams of size O(n + k) are allowed, where k is the number of intersections.

We adapt the trapezoidal decomposition algorithm (section 4.1) to report intersections for a
set of line segments with intersections. We modify the random sampling verification step used in
the algorithm in section 4.1. Here we use

∑
t∈TR

|Lt| ≤ c(n + kB/n) [8], where k is the number of
intersections detected so far. If this is a valid random sample, we build the trapezoidal decomposition
on this sample, break the segment intersecting the boundary of the trapezoidal decomposition into
two segments, one above the boundary and one below the boundary.

Corollary 1. For any fixed constant ε > 0, all intersections of a set of 2D line segments can be
reported in O(1) expected number of passes with O(nε) extra space, if size O(n + k) intermediate
streams are allowed, where k is the number of intersections between line segments.

6 Constructing the 2D Convex Hull of x-Ordered Points in a Weaker
Streaming Model

The sorting operation is expensive in the stream-sort model. We here describe how to construct the
2D convex hull of a set of x-ordered points in O(1) passes with O(nε) extra space, in the direction-
flexible model. This result also contrasts with the near-

√
n lower bound result for the same problem

given by Chan and Chen [7] in the original multi-pass stream model.
We only describe how to construct the upper hull, because constructing the lower hull is sym-

metric. Computing the lower hull simultaneously at most doubles the size of the intermediate
stream.

Given a set P of 2D points and a vertical line h, we define the bridge at h as the edge of the
upper hull of P intersecting h. To compute the bridge at h, we transform the problem in dual space.
In dual space, each point becomes a halfplane and a bridge corresponds to an extreme point in
the intersection of halfplanes. This point can be computed using linear programming. With O(nε)
extra space in memory, this linear programming problem can be solved under the multi-pass model
in O(1) passes by the results of Chan and Chen [7].

We find all points not on the upper hull by divide-and-conquer. The input is a set P of 2D
points sorted in x-order. In the output, all points not on the upper hull are marked. In the final
pass, we scan this output, and report all unmarked points in x-order, which form the upper hull of
P .

Algorithm: MarkUH(P )
If |P | = O(Bnε)

Solve the problem directly in memory
Else

Divide P into B groups: P1, P2, ..., PB

Find the set H of vertical lines between any two adjacent groups
For P , compute the bridges at each h ∈ H.
Mark any p ∈ P if p is under one of these bridges
For each Pi
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MarkUH(Pi)

Again, we solve all subproblems in one level simultaneously. For each subproblem, we need
to compute B − 1 bridges. The computation for each bridge corresponds one linear-programming
problem. We use the multi-pass linear-programming algorithm mentioned above. This algorithm
scans an array of data sequentially multiple times without modifying it, and the order of the scan
does not affect the algorithm. However, between scans, addition information must be kept by the
algorithm in memory.

In each subproblem, we compute all B−1 bridges by simulating this multi-pass linear program-
ming algorithm. The memory contents of these simulations are kept in memory. After all data of
one subproblem are scanned, we write all memory contents to the output stream after the data
of that subproblem. Then the memory is reset for the next subproblem in the stream. Thus, in
intermediate streams, data and memory contents of the multi-pass algorithm are interleaved. For
the next scan, this output stream becomes the input stream. We start from the other end of the
stream, so that we can reload the memory content of each subproblem back in memory, before any
data point of that subproblem is accessed. After the final pass, all bridges are determined. They
are written into the stream after the corresponding data set. To mark points under a bridge, we
start from the other end. All bridges are loaded into memory, before the corresponding data set
is accessed. This step takes O(1) passes. By setting B = O(nε), the height of the tree is constant.
Therefore, the total number of passes is O(1) and the memory required is O(n2ε).

Besides one mark for each item, all extra information written into the stream consists of the
memory contents produced by the multi-pass algorithm. At each level, the total number of bridges
to compute is at most O( n

Bnε ). The total extra space is O(n/B) = o(n).
By setting 2ε = δ, we have:

Theorem 4. Given a set of x-ordered 2D points, its convex hull can be constructed in O(1) passes
with O(nδ) extra space in the direction-flexible streaming model, for any fixed δ > 0.
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