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Abstract

This thesis presents computational models for the design of mixed-initiative ar-
tificial intelligence systems that can make rational decisions about interaction with
potentially helpful users. Mixed-initiative systems are ones in which either the sys-
tem or the user can take the initiative to direct the dialogue or the problem solving.
These systems have been designed for such diverse applications as robotics, military
planning, intelligent tutoring and trip scheduling. One challenge in designing these
systems is to specify when the system should take the initiative to interact with the
user. The main contribution of the thesis is to provide designers of mixed-initiative
systems with a systematic approach for constructing systems that can reason in a
principled way about interaction with the user, regardless of the area of applica-
tion. Our approach is to model the user, the task and the dialogue simultaneously.
Specific factors are proposed that must be modeled, and methods are developed for
how to combine these factors in order to make rational decisions about interaction,
based on whether the perceived benefits of communication exceed the expected
costs. Some examples and experiments are described, to demonstrate the value
of the models and to justify decisions that were made in determining the role of
each factor in the computational models. In particular, we emphasize the value
of making decisions about interaction based on a careful evaluation of the needs,
preferences and abilities of the user, leading to mixed-initiative systems that are

user-specific and therefore result in greater overall user satisfaction.
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Chapter 1

Introduction

Research in artificial intelligence aims to produce computer systems with the ability
to make intelligent decisions — and with some amount of autonomy to make such
decisions. In designing artificial intelligence systems to operate autonomously, the
view of processing is generally as follows. The user first provides some input. The
system makes use of this input as it reasons autonomously and then returns its
output to the user. The topic of mixed-initiative systems, which has become a
subject of much discussion in the AI research community (Haller and McRoy, 1997;
Cox, 1999; Haller, Kobsa and McRoy, 1999), suggests a more flexible approach to
the reasoning process.

In a mixed-initiative system, both the computer and the user can play an active
role in a problem-solving session. At any given time, either party might take control
of a session. The primary goal behind a mixed-initiative system is to take advantage
of the fact that computers and people have very different strengths when it comes

to solving problems. While machines excel at performing calculations quickly and
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searching through large search spaces, humans often have a better intuitive sense
of how to solve a problem and a better feel for the higher-level goals of what they
are trying to achieve.

It is important to note that, in a true mixed-initiative system, the roles of
the two parties are not determined ahead of time. Control of the task or dialogue
might pass from one participant to the other frequently within a session, sometimes
in quite unpredictable ways (Chu-Carroll and Brown, 1997; Allen, 1994; Burstein
and McDermott, 1996). A well-designed system should be able to adjust to each
situation in an appropriate way: to take control when its own abilities are better
suited to a particular aspect of the task and to yield to the user when the latter’s
abilities and knowledge are deemed to be superior.

Several workshops and symposia have been held in recent years to bring together
researchers interested in mixed-initiative systems. In 1997, there was a AAAI spring
symposium on Computational Models for Mized Initiative Interactions (Haller and
McRoy, 1997). A 1998 AAAT spring symposium focused on Interactive and Mized-
Initiative Decision-Theoretic Systems (Haddawy and Hanks, 1998). In 1998-99,
the journal User Modeling and User-Adapted Interaction released a special double
issue on Computational Models for Mized Initiative Interaction, which was later
published as a book (Haller, Kobsa and McRoy, 1999). In 1999, AAAI held a
workshop on Mized-Initiative Intelligence (Cox, 1999). A workshop entitled Mized-
Initiative Intelligent Systems took place at the IJCAI conference in Acapulco in
August 2003.

Much of the existing work on mixed-initiative systems has been divided be-
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tween two main groups. One group involves natural language researchers focused
on mixed-initiative dialogue models and on managing the interaction which must
take place when multiple parties are working together on a task. The second group
is interested in looking at specific problem domains, and the ways in which mixed-
initiative techniques can lead to improvements over existing automated systems.
The most notable subgroup here is an offshoot of the Al planning community,
concerned with investigating the introduction of mixed-initiative techniques into
planning systems (Allen, 1994; Burstein and McDermott, 1996; Myers, 1998), and
the relevant issues which arise. Existing work from these two groups will be dis-
cussed in some detail in Chapter 2.

One ideal feature of a mixed-initiative system is the ability to make intelligent
decisions about whether or not it is appropriate to seek further assistance from
a user at any given time. In some situations, there might be no debate at all:
without additional input from the user, there is no way for the system to proceed
with the task at hand. For example, in the domain of planning a travel itinerary
for a user, it is unreasonable for the system to be expected to suggest appropriate
flights to the user without being aware of the departure and destination cities. In
other situations, there might be no advantage at all to asking the user for assistance.
Again, in the travel domain, if the system knows of a flight that satisfies all of the
user’s preferences, then there is no need for it to ask the user to indicate which
preference is more important.

The interesting cases arise when a system perceives that there might be some

advantage to obtaining more guidance from the user, but when there is some cost
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associated with this interaction as well. It is this observation that has motivated
our research into the problem of providing a principled approach to reasoning about
interacting with potentially helpful users. We propose that a system should solicit
further input from a user precisely when the perceived benefits of this interaction
exceed the expected costs.

In this thesis, a model will be presented for how to design a system that can
make exactly this type of decision. With this model clearly defined, it would then
be possible to design mixed-initiative systems, for any application area, that clearly

stipulate when the system should take the initiative to interact with the user.

1.1 Problem statement

The central problem addressed in this thesis can be summarized as follows:

e Artificial intelligence systems are often faced with situations in which their
ability to perform a task (or to collaborate with users on a task) could be im-
proved by soliciting further information from potentially helpful users. How-

ever, such user interactions also have costs associated with them.

e What is needed, and has been lacking in the literature so far, is a principled
and general method for systems to use in reasoning about whether or not
to initiate information-seeking dialogues with users. This decision should be

made by analyzing the benefits and costs of interactions with users.

Our principled solution to this problem will be dependent on the idea of model-

ing the user, the task and the dialogue simultaneously. We propose specific factors
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that must be modeled and mechanisms for how to combine these factors in or-
der to make rational decisions about interaction. This solution is best viewed as a
decision-theoretic approach, in which the benefits of interaction are weighed against
the perceived costs. The user model plays a critical role in this decision process.
Decisions about interaction must be made not only on the basis of the current
state of the problem solving, but also on whether, with this user, it is worthwhile
to interact and whether, at this point in the dialogue, interaction is likely to be

successful.

1.2 Organization

This thesis is organized as follows. In Chapter 2, some details are provided on
background research in mixed-initiative interaction, user modeling and intelligent
user interfaces. In Chapter 3, several models are introduced specifying how a system
can make rational decisions about whether or not to interact with a user in a given
situation. A concrete decision procedure is provided to guide system designers
in determining which of these models is appropriate for their application domain.
In Chapter 4, a few examples are described, to illustrate the decision procedure
and the models for different application areas. Some experiments are described in
Chapter 5, to help to validate the models. In Chapter 6, detailed discussion is
provided, including a summary of the significant contributions of this research and
a list of extensions that were not discussed in the core presentation of the model
in Chapter 3. Related work is presented in Chapter 7, while Chapter 8 contains a

summary of the research and a list of possible topics for future work.



Chapter 2

Background

In this chapter, some background work will be presented from two main subareas
of artificial intelligence research: mixed-initiative interaction and user modeling.
Throughout this discussion, we will clarify the important background concepts that
are central to the development of the problem-solving models in this thesis and we

will outline the main areas of research to which this thesis makes a contribution.

2.1 Mixed-Initiative Systems

As discussed in Chapter 1, much of the existing work on mixed-initiative systems
has been divided between two main subgroups. One group involves natural lan-
guage researchers focused on mixed-initiative dialogue models and on managing
the interaction which must take place when multiple parties are working together
on a task. The second group is interested in looking at specific problem domains,

and the ways in which mixed-initiative techniques can lead to improvements over
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existing systems. The most notable subgroup here is an offshoot of the AI planning
community, concerned with investigating the introduction of mixed-initiative tech-
niques into planning systems (Allen, 1994; Burstein and McDermott, 1996; Myers,

1998), and the relevant issues which arise.

2.1.1 Mixed-Initiative dialogue

One of the first papers to introduce the term “mixed-initiative” was by Walker and
Whittaker (1990). In this work, mixed-initiative human-human dialogue is modeled
by examining the different methods by which control can be transferred from one
conversant to another. The paper classifies natural language utterances into four
groups, and identifies whether or not the speaker or hearer has control after each

type of utterance has occurred:

assertion: speaker control, unless response to a question

e command: speaker control

e question: speaker control, unless response to a question or command

prompt: hearer control

Walker and Whittaker (1990) also discuss interruptions in dialogues, and inves-
tigate why dialogue participants might decide to interrupt a speaker. They present
two possibilities. If a listener interrupts because he is unsure about the truth of a
speaker’s statement or finds it ambiguous, he is said to have a problem with infor-

mation quality. On the other hand, an interruption occurs because of plan quality
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concerns when the listener believes that the speaker’s proposed goal is unclear or
presents an obstacle.

This distinction is somewhat related to the idea of separating dialogue and
task initiative, as presented by Chu-Carroll and Brown (1997). Prior to Chu-
Carroll and Brown’s work, researchers discussed the construction of mixed-initiative
systems (e.g., (Walker and Whittaker, 1990; Smith and Hipp, 1994; Guinn, 1996))
without making this distinction. Dialogue initiative involves control of the flow
of conversation by a participant, while task initiative refers to the control of the
current problem-solving process, with both participants working together to achieve
some goal. Chu-Carroll and Brown suggest that systems that model only a single
thread of control fail to account for the important difference between the case in
which a conversant is simply pointing out a flaw in the other conversant’s plans,
and the case in which the conversant is actively suggesting an alternative course of
action.

In Figure 2.1 (from Chu-Carroll and Brown (1997)), utterances (3b) and (3c)
illustrate this difference. In (3b), agent A is taking over only the dialogue initiative,

while in (3c), it has taken both the dialogue initiative and task initiative.

Even though there is still discussion within the field about the most appropri-
ate definition for initiative (Novick and Sutton, 1997; Cohen et al., 1998), many
systems are being built and labelled as mixed-initiative systems, as long as they
allow the user and system to take the initiative to control either the dialogue or the

problem solving during the processing.
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1) S: I want to take NLP to satisfy my seminar course requirement.

(1)
(2)  Who is teaching NLP?

(3a) A: Dr. Smith is teaching NLP.

(3b) A: You can’t take NLP this semester because you haven’t taken AI, which is
a prerequisite for the course.

(3c) A: You can’t take NLP this semester because you haven’t taken AI, which is
a prerequisite for the course.

I would suggest that you take some other seminar course to satisfy your
requirement, and sign us as a listener for NLP if you’re really interested in it.

Figure 2.1: Illustrating dialogue and task initiative

More recently, Walker, Litman and their colleagues (Walker et al., 1997b) have
designed the PARADISE system, a general framework for evaluating spoken dia-
logue agents. The basic idea is to measure task success and dialogue cost, under
the assumption that maximizing the former and minimizing the latter will lead to
a high level of user satisfaction.

One of the applications of this framework has been to empirically determine
the value of a mixed-initiative dialogue strategy, as compared to a system-initiative
design (Walker et al., 1997a). Their system-initiative strategy “acquires information
in small increments and constrains the user to single word utterances whose content
is explicitly prompted for,” while the mixed-initiative strategy “lets the user control
the dialog, doesn’t provide information unless the user asks for it, and allows the
user random access to all the application functionality with utterances that combine

a set of information requirements.”
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Figure 2.2 shows examples from ELVIS (Email Voice Interactive System) to
illustrate the difference between the two approaches (Walker et al., 1997a). In this
paper, experiments are described in which users are asked to perform three simple
tasks involving retrieving information from e-mail messages via the telephone. In
these experiments, the system-initiative strategy is actually found to be superior to
the mixed-initiative strategy, based on the performance function derived using the
PARADISE framework. The authors speculate that there are two main causes for
this (perhaps counter-intuitive) finding. First, current speech recognizers are not
perfect, and recognition errors are more common with the mixed-initiative strategy,
since the user is free to use a less restricted vocabulary. The second problem is that
users of the mixed-initiative strategy are often unsure of what they should say
at any given moment, since they are not aware of the system’s capabilities and
limitations.

Walker et al. (1997a) propose that the mixed-initiative strategy is a more ap-
propriate technique for experienced users. This is supported by their finding that,
on the last of the three tasks in the experiment, users of the mixed-initiative strat-
egy reported higher confidence when asked if they knew what to say to the agent.
General user satisfaction also improved over time.

More recent work from this group has moved toward the design of systems that
can adapt their dialogue strategies during the course of the dialogue. The system
can shift among system-initiative, user-initiative and mixed-initiative strategies,
and can also confirm what it has heard from a user’s utterance explicitly, implicitly,

or not at all. In a paper by Litman and Pan (1999), it was shown that the standard
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(SI) A:

BACKGROUND 11

Hi, Elvis here. You have 5 new and 0 unread messages in

your inbox. Say Repeat to repeat this message, or say Read,
Summarize, or I'm done here.

U:

=T =

Read.

: Select by Content or Position?
: Content.

: Select by Sender or Subject?

: Sender

: Which Sender?

Kim.

: The message from Kim is about Meeting Tomorrow. The

meeting tomorrow is at 10:30 in 2D-516.

(MI) A:
U:
A:

Hi, Elvis here. I've got your mail.
Read me my messages from Kim.

The message from Kim is about Meeting Tomorrow. The

meeting tomorrow is at 10:30 in 2D-516.

Figure 2.2: System-initiative and mixed-initiative dialogue strategies
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version of a train schedule retrieval system was outperformed by an adaptable ver-
sion in which users were able to adjust the initiative and confirmation strategies. In
a follow-up paper by Litman and Pan (2000), the system uses learning techniques
to anticipate speech recognition problems and to adjust the dialogue strategy ac-
cordingly. This system also achieves improved performance over a non-adaptive
system. In particular, the task success rate on a set of train schedule retrieval tasks
improved from 23% to 65%.

However, the overall approach in these papers is still to have the system behave
according to one of a fixed set of dialogue strategies, rather than treating each in-
dividual situation separately. In contrast, this thesis will present instead a strategy

for deciding whether to interact, at each decision point in the process.

2.1.2 Mixed-initiative Planning

The general goal of research in mixed-initiative planning is to develop systems that
will allow two or more planning agents (humans or computers) to work together
toward solving artificial intelligence planning problems: problems that involve the
construction of sequences of actions that will achieve a set of goals.

Throughout the planning process, there is a need for interaction between the
planning agents. The ideal situation would be one in which the interaction and
co-ordination of activities are not specified in advance, but are instead adapted to
the particular problem being solved and to the participants involved. Control of the
dialogue and of the task execution could flexibly pass from one party to another,

taking advantage of the specific strengths of the individual planning agents.
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Two specific position papers provide an in-depth investigation of mixed-initiative
planning issues (Allen, 1994; Burstein and McDermott, 1996). The latter states
that the “overall objective of research on mixed-initiative planning (MIP) is to ex-
plore productive syntheses of the complementary strengths of both humans and
machines to build effective plans more quickly and with greater reliability.” It goes
on to identify those complementary strengths. While humans are “better at for-
mulating the planning tasks,” machines are “better at systematic searches of the
spaces of possible plans.”

Both of these papers present a number of issues that arise in designing mixed-

initiative planning systems. Among these are the following points:

e specification of when exactly the system and user should communicate, and

what that communication should look like;
e registration of context when one party interrupts the other;

e ensuring that both parties share the responsibility involved in the task, and

are fully aware of the responsibilities of each party.

These issues and others are identified, but not resolved in these early papers.
These are crucial concerns, not only in the design of mixed-initiative planning
systems, but in any system using mixed-initiative techniques.

In addition to these mostly theoretical papers, there has been some work on im-
plementing specific mixed-initiative planning systems. One of the most notable of
these is the TRAINS project from the University of Rochester (Ferguson, Allen and

Miller, 1996). The aim of this endeavour is to produce a fully integrated planning
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system that is capable of understanding spoken and typed natural language, and of
managing interaction with a user through a graphical user interface. The applica-
tion domain involved has been that of scheduling transportation in a railroad freight
system. A later system, TRIPS: The Rochester Interactive Planning System (Fer-
guson and Allen, 1998), attempts to incorporate more realistic and more complex
planning tasks in the logistics domain. Figure 2.3 shows an actual dialogue from
the TRAINS-95 system (Ferguson, Allen and Miller, 1996). This work established
a dialogue-based approach as an effective technique for interactive planning and
emphasized the need for communication between automated and human planners
in an environment in which neither would be very successful alone.

Another relevant project is Cox and Veloso’s work on case-based military force
deployment planning (Cox and Veloso, 1997; Veloso, Mulvehill and Cox, 1997).
Much of the focus of this research has been on investigating, and attempting to
overcome, the differences between the way automated planners work and the man-
ner in which human planners tend to think about problems. In particular, humans
tend to think of goals in terms of actions that need to be performed, rather than
in terms of the state-based representation used by many planners. This prob-
lem is solved by having the system use a preprocessing step to translate actions
into states before execution. Users also tend to provide both top-level goals and
subgoals, whereas most automated planners expect only top-level goals. This is ad-
dressed by a set of control rules that “prefer top-level goals before lower-level goals
and then prefer bindings for operators that opportunistically solve user-provided

subgoals” (Cox and Veloso, 1997).
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I need to get to Detroit, Syracuse, and Montreal.

Ok. [highlights the three cities]

Let’s send the trains from Chicago to Detroit.

Ok. [draws route from Chicago to Detroit via Toledo]
But the terminal at Toledo is delaying traffic due to
bad weather. Trains will take an additional five hours
to move through there.

That’s ok. Now let’s go from Atlanta up to Syracuse.
Please tell me a route to use to get from Atlanta to
Syracuse. [highlight engine at Atlanta and city Syracuse]
Go via Charleston and Pittsburgh.

Ok. [draws route via Cincinnati] But traffic through
Cincinnati is being delayed due to construction.

0K, let’s go via Charleston and Buffalo instead.

No problem. [draws routel

That’s great.

I hope it was helpful.

Finally, I want to go to Montreal from Philadelphia.
OK. [draws route]

That’s great. I’m done.

Figure 2.3: Example dialogue from TRAINS-95
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Myers (2000) has been investigating the usability of planning systems and has
proposed that it is necessary for automated planners to be designed so that the user
is able to take some control of the planning process and to understand any progress
that the planning agent might be making on the problem. She develops a planning
model that accomplishes these goals by including three “user-centric” planning
capabilities: user directability of planning, generation of qualitatively different plans,
and plan summarization.

Myers and Morley (2001) describe a prototype multiagent system that uses
a framework built on this idea of agent directability. They point out that most
previous research on planning systems has focused on the automation of planning
tasks and on techniques for communication between agents. Meanwhile, very little
work has been done on allowing human users, who often wish to play an active role
in the planning process, to be involved. They advocate mixed-initiative control
of the planning process, and they emphasize the need for human planners to be
able to specify goals in a high-level language and to view the status of an agent’s
progress on its assigned tasks.

Recently, this work has evolved into the PASSAT (Plan-Authoring System based
on Sketches, Advice, and Templates) framework (Myers et al., 2001; Myers et al.,
2003). This system includes a mixed-initiative plan sketch facility, allowing the
human and agent to work together on incrementally refining plan outlines until a

satisfactory solution is reached.
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2.1.3 Other domains
Intelligent Tutoring Systems

Some work has also been done on mixed-initiative intelligent tutoring systems. For
example, Aist (1997) has looked at deciding when a task is complete and when to
intervene and provide assistance in an oral reading tutor, Carberry (1997) has used
the field of medical training to examine the consequences of allowing users to take
a more active role in the learning process, and Lester et al. (1997) have looked at
mixed-initiative problem solving using animated pedagogical agents.

Intelligent tutoring is one application that certainly seems to lend itself well to
mixed-initiative techniques. There are situations in which a tutor wishes to guide
the student along, presenting facts and examples, and asking specific questions to
test how well the student has understood the material being introduced. On the
other hand, it is often helpful for a tutor to step back and allow the student to
guide his own learning process, with the tutor interjecting only when the student
is in need of assistance or could benefit from some additional information which he
is not likely to discover on his own.

Intelligent tutoring turns out to be a particularly interesting application, since

certain issues arise in this domain that are not present in many others.

e With intelligent tutoring, the goal is not just to accomplish the task currently
in focus, but also includes a desire for one of the parties (the student) to learn,

to acquire knowledge that could be applied to future tasks as well.

e There can be some ambiguity as to whether or not a task is complete. While
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task completion can be quite clear in some domains, it is difficult to determine
in a tutoring dialogue when the student has satisfactorily learned the current
material. With this ambiguity, questions can arise as to which party should

be able to propose (or unilaterally decide) that the task has been completed.

e Some ITS researchers (e.g., (Carberry, 1997; Keim, Fulkerson and Biermann,
1997)) have proposed that there should be a connection between the level of
expertise of the student and the amount of control he should be given over

the task.

e Many factors must be considered when determining how to interpret silence
on the user’s part, and how long to wait before intervening (Aist, 1997). This
includes information about the particular student, the last action taken by

the student and the tutor, and the difficulty of the current task.

Robotics

Kortenkamp et al. (1997) describe the use of mixed initiative in the application
of “traded control” with an autonomous robot. This involves situations in which
a robot is sometimes autonomous, but is controlled by a human at other times.
Dangerous errors can occur when the human yields control back to the robot.
They describe a software architecture designed to deal with both robot control
and human control; this architecture includes a mixed-initiative planner. At the
recent AAAI Mobile Robot Competition panel at the AAAI-02 conference, it was

mentioned that robotics generally is moving to mixed-initiative designs for their
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systems.!

Other domains

Other research on the use of mixed-initiative systems has included work by Jackson
and Havens (1995) on mixed-initiative solving of constraint satisfaction problems,
by Tecuci et al. (1999) on mixed-initiative development of knowledge bases, and
by Rich and Sidner (1997a) on Collagen, an application-independent toolkit for
developing collaborative interface agents. Among other applications, the Collagen
project has included work on a mixed-initiative trip planning system. Collagen will

be discussed in more detail in Section 2.3.

2.1.4 Research Challenges for Mixed-Initiative Systems

The research described above demonstrates the range of applications for which
a mixed-initiative approach has been considered appropriate. Some researchers
have been investigating how to model initiative and how to manage the interaction
in a mixed-initiative dialogue; others have been developing specific systems that
attempt to take the initiative and to relinquish it at appropriate times, according
to the perceived strengths of the participants.

Essentially, however, all of these projects have been independent; what is needed
is a general, unifying framework for how to design mixed-initiative systems, one that

models both the problem solving and the underlying dialogue.

! The robot competition, in fact, featured a robot, Grace, that asked for directions from con-
ference attendees in order to find the registration desk.
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2.2 User Modeling

The models presented in this thesis will rely quite heavily on the idea of a user
model. User modeling is the representation of any information about a user that
might influence the system’s behaviour: her knowledge, preferences, beliefs, abili-
ties, goals and plans. This information is represented in a separate knowledge base
and is used by the system to adapt its behaviour to each individual user (Kobsa and
Wabhlster, 1989). This allows the system, for example, to adjust the presentation of
information to suit a user’s needs (Paris, 1991) or to better assist a user by taking
into account her abilities with respect to different aspects of a task (Chin, 1989).

User modeling techniques are evident in a wide range of application areas. Rec-
ommender systems (Kautz, 1998) suggest movies, music, books and other products
to users according to the profiles that they have built up for those users. Intelli-
gent tutoring systems adjust the manner in which tutorial information is presented,
according to information stored about the user’s expertise and about her previous
sessions with the system (Kass, 1989). Lieberman (1995) describes a system that
recommends web sites based on the user’s past viewing habits.

There are two main approaches to the acquisition of user modeling information:
explicit and implicit (Konstan et al., 1997; Billsus and Pazzani, 1999). In explicit
user model acquisition, information is provided directly by the user or is obtained
by asking her specific questions about his preferences, goals or knowledge. The
answers to these questions are then used by the system in determining how to
adjust its behaviour to each individual user. For example, a user might be asked to

rate her knowledge of the Unix operating system as novice, beginner, intermediate
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or expert (Chin, 1989). The system would then adjust its tendency to provide help
to the user according to this explicit information.

Implicit user model acquisition involves a more subtle approach to collecting
data. The system simply observes the user as he uses an application and records
relevant information. For example, if it is observed that a user has purchased the
music of a certain artist in the past, then the system might conclude that the
user would be very interested in a newly-released CD from that artist. Implicit
techniques often use heuristics (Kass, 1991) in order to draw conclusions from the
patterns that are detected.

It is in fact quite common to use a combination of explicit and implicit tech-
niques: for example, using explicit acquisition to get an initial rough model of the
user, and then using implicit techniques to refine this model without bothering the
user any further (Kass and Finin, 1988).

Another important concept in user modeling research is that of a stereotype. “A
stereotype represents a collection of attributes that often co-occur in people” (Rich,
1989). The idea is to use this type of information to allow systems to predict the
preferences or knowledge of a user based on general characteristics of a class of
users to which this user is believed to belong. In the Unix example mentioned
above (Chin, 1989), the system would adjust its behaviour according to whether
the user has identified himself as an expert, an intermediate user, a beginner or a
novice. Ardissono and Goy (2000) describe the use of stereotypes to personalize
the presentation of products in a web store.

Stereotypes are used as a mechanism to infer user modeling information about
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users, without the benefit of explicit acquisition or of implicitly inferring from the
user’s individual actions. They are particularly useful in situations where a user is
unknown to the system or where it is necessary to model a user quickly but not
necessarily with great accuracy.

An important subfield of user modeling research is that of plan recognition (Car-
berry, 1989). More specifically, the process of intended plan recognition tries to
identify the intentions of a user, based on their utterances and on knowledge ob-
tained throughout a dialogue, in order to provide helpful responses. Early efforts in
plan recognition research focused on determining a single plan based on the user’s
utterances (Kautz and Allen, 1986). Later research (van Beek, Cohen and Schmidst,
1993) investigated the idea of using clarification dialogues when there are ambigu-
ities in the system’s view of the user’s plan. By asking appropriate questions, a
system can resolve these ambiguities in order to establish the user’s true plan. This
latter research is particularly relevant to the work in this thesis. In some sense,
our topic of considering the idea of costs of interaction, and whether or not the
perceived benefits of interaction outweigh the costs, can be viewed as an extension

of the topic of determining when to engage in clarification dialogues.

2.2.1 Research Challenges for User Modeling

To summarize, there are many challenges in employing user modeling techniques
in artificial intelligence systems. There are the initial difficulties of acquiring infor-
mation in order to initialize the user model and of choosing an appropriate repre-

sentation for the user modeling information. The system must also make use of the
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user model to adapt its behaviour in an appropriate way for each user (e.g., (Ardis-
sono and Goy, 2000). Finally, the user model must be updated continually, as the
system continues to make new observations about a user’s knowledge, preferences
and goals (Kobsa and Wahlster, 1989). A system with a well-developed and well-
exploited user model can tailor its behaviour to the specific user involved and can
therefore perform collaborative tasks more effectively.

Of particular interest for the research described in this thesis will be the use of
user models in determining interaction strategies between the system and the user.
In particular, a representation of the user’s knowledge and willingness to interact
will be used to help a system to decide whether or not to initiate interaction at any

given time.

2.3 Intelligent User Interfaces

Collagen (Rich and Sidner, 1998) is an application-independent toolkit for devel-
oping collaborative interface agents. The collaborative interface agents that can
be constructed using this toolkit are meant to work alongside users, helping them
with a particular task. For example, in an earlier paper, Rich and Sidner (1997b)
describe the design of an agent that assists users in planning air travel itineraries.
Because both the human user and the agent can use the application’s program-
ming interface (API) to affect the state of the program, the Collagen agents can be
accurately described as mixed-initiative systems (Rich and Sidner, 1998).

One of the most interesting aspects of this research is that the agents always

maintain a segmented interaction history (Rich and Sidner, 1997b), keeping track
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of the various steps and substeps that have been achieved by the system-user team
so far in the collaborative dialogue. The user can review this history at any time,
to remind himself of what has been accomplished so far or to return to an earlier
point in the dialogue in order to redo a particular step in the problem solving.
The discourse processing in Collagen is based on the theory of discourse of Grosz
and Sidner (1986). There are three main components to this representation: the
linguistic structure of the discourse (grouping utterances into discourse segments),
the attentional state of the discourse (describing how the focus of attention of the
dialogue participants is shifting), and the intentional structure of the discourse (a
“recipe tree” representation showing which components of a shared plan have been
completed (Pollack, 1990; Lochbaum and Sidner, 1990; Grosz and Kraus, 1996)).
Acts within a dialogue are then classified by the discourse processing algorithm
according to how they contribute to the discourse segment currently in focus.
Although the work in this thesis does not employ the same type of discourse
model as the one used in Collagen — with a focus stack, natural language generation,
and so on — it does involve modeling the state of the dialogue with the user. This
is done by keeping a record of certain aspects of the dialogue thus far, including
the number of times that the system has requested help from the user, the times
at which those interactions took place, and the estimated cognitive effort that
those interactions required of the user. Based on this information about previous
instances of interrupting the user, the estimated cost associated with bothering the
user in the current situation is calculated. This bother cost then plays a significant

role in the system’s decisions about whether or not to initiate communication with
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the user.

2.4 Principled mixed-initiative design

Research on mixed-initiative systems has been growing in recent years and mixed-
initiative techniques have been incorporated into systems in various application
areas (Ferguson, Allen and Miller, 1996; Burstein and McDermott, 1996; Cox and
Veloso, 1997; Carberry, 1997; Walker et al., 1997a; Horvitz, 1999; Kortenkamp
et al., 1997). Most designers, however, have simply come up with their own domain-
specific mixed-initiative solutions to their particular problem of interest. What is
needed is a principled method for designing such systems: one that takes into
account information about the task, the user and the dialogue simultaneously.

In Chapter 3, we provide such a principled solution: one that relies on a system’s
ability to model the user, the task and the dialogue all at the same time. Systems
using our approach will be able to make rational decisions about interaction by
analyzing the benefits and costs of communication with the user. User modeling
research, introduced in Section 2.2, plays a key role in this decision process, as the
system’s beliefs about the user’s domain knowledge and willingness to interact with

the system are critical components of our design solution.



Chapter 3

A Model for Reasoning about

Interaction

As discussed in Chapter 1, in this thesis we address the problem of designing mixed-
initiative systems that can make reasonable decisions about when to solicit addi-
tional information from potentially helpful users. We propose that a system should
ask for further input precisely when the perceived benefits of this interaction ex-
ceed the expected costs. In this chapter, a set of guidelines will be presented for
how to design a system that can make exactly this type of decision. With these
guidelines clearly defined, it would then be possible for designers of mixed-initiative
systems to provide their systems with the ability to reason in a principled way about
interaction with the user.

As an example of an application for which users have widely varying prefer-
ences in terms of the frequency of interaction, consider the design of recommender

systems: programs that attempt to suggest items that users might enjoy, such as

26
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movies, music, books or television shows (Kautz, 1998). These recommendations
are usually based on some combination of explicit preference information that the
user has provided and implicit observations of the user’s tendencies. Different re-
searchers have investigated the use of content-based recommendations (Pazzani,
Muramatsu and Billsus, 1996) — analyzing how an item is similar to others that the
user likes — and collaborative filtering (Konstan et al., 1997) — looking at how an
item has been rated by users who are considered similar to this user.

One might expect that some users would prefer to have the system simply ob-
serve their habits and make recommendations accordingly, while other users would
be interested in having a higher level of involvement. In fact, Buczak, Zimmerman
and Kurapati (2002) have identified three classes of users in their work on television
recommender systems. Do it for me users prefer a completely automated system
that does not bother them at all, Let’s do it together users are interested in having
some moderate amount of control over the system’s behaviour, while Let me drive
users like to be totally in control of the system.

This categorization illustrates a need that will be emphasized throughout this
thesis: a need to reason explicitly about the particular user involved before decid-
ing whether or not to initiate communication. A user who prefers a completely
autonomous system would likely be frustrated quickly by a system that asked fre-
quent questions in an effort to improve the accuracy of its preference model. On the
other hand, a user at the other end of the spectrum might be disappointed to learn
that the system had decided to pass up an opportunity to involve the user. If sys-

tems are going to make rational decisions about interaction, then issues such as the
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user’s willingness to interact and the user’s perceived knowledge about the domain
must be taken into account. As a result, our proposed model for reasoning about
interaction in mixed-initiative systems incorporates a user modeling component,

focusing on the model of the user’s knowledge and willingness to interact.

3.1 What to ask

Before presenting the details of our model, it is important to consider what types
of questions a system would want to ask of a user. In this section, we identify
several possible lines of inquiry that might come up during an intelligent system’s
reasoning process. The type of setting we are addressing is one in which the system
has been enlisted by the user to perform some task. Although the system is able
to make many decisions on its own, we are considering the situations that arise in
which it might benefit from additional information or guidance from the user.
The focus of this thesis is on the system taking the initiative to ask questions
of a user and on providing systems with a systematic way in which to make deci-
sions about this type of initiative. Using Chu-Carroll’s categorization of dialogue
initiative versus task initiative (Chu-Carroll and Brown, 1997), our focus is clearly
on the dialogue initiative interpretation. With respect to task initiative, it could
be argued that a system taking the initiative to ask the user a question is in fact
not taking the initiative, but relinquishing it by yielding control of the task to the
user. This is in fact similar to the view adopted by Brainov and Hexmoor (2003),
in which the autonomy of a system is defined as its ability to act efficiently without

a user’s help; this comparison is discussed further by Cohen and Fleming (2003).
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It should be noted that, in designing mixed-initiative systems, it is also impor-
tant to consider the fact that users will sometimes take control of the dialogue or
the problem-solving, possibly at unexpected times. Systems should be designed to
handle such events. Although we will discuss this aspect of the problem in Section
6.1.4, the focus of this thesis is on making decisions about system initiative: when
should the system initiate interaction with the user?

Providing systems with a systematic way to make decisions about asking ques-
tions of the user, although it is only a piece of the overall puzzle of designing
mixed-initiative systems, is a very important component. This section outlines
some of the different motivations that a primarily autonomous system might have

for interacting with a user.

e Uncertainty about the environment.

In many situations, the system might lack information about the problem-
solving environment or facts about the always-changing world, and it might
believe that the user has more current knowledge. If this information is
important and if the system is sufficiently uncertain (or completely ignorant),
then it will be worthwhile to ask the user (if the latter is believed to be

knowledgeable). Examples of questions of this type include:
— (In the domain of transportation planning...)

What is the current location of truck #5177

— (In the domain of travel planning...)

Is traffic currently heavy on route A?
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— (In the domain of sports predictions...)

Is Shaquille O’Neal expected to play tonight?

e User preferences and goals.

Another important class of questions involves user preferences. In many task-
oriented dialogues, it is the user’s goals that the system is trying to achieve.
Although many of the most important preferences can be expected to be
provided during the initial specification of the problem, it is quite possible that
certain preference information will be missing and will have to be obtained
by the system at run-time. Of course, these questions should only be asked
if it is believed that their answers will have an impact on the decisions that

the system will make.

A good example can be taken from the travel agent domain. A human travel
agent usually will not ask a client a barrage of questions at the very beginning
of a dialogue. Only the most important information (departure city, destina-
tion city, dates) will be gathered initially. More detailed preferences will only

be requested if they are believed to be relevant.

For example, there is no need to ask the user what city they would prefer
for a stop-over if it might turn out that there are flights with no stops at all.
As another example, it is probably safe to assume that a client will prefer
a cheaper flight, all other things being equal. However, suppose the travel
agent begins searching for flights and learns that the cheapest flight involves
two stop-overs while there is also a (more expensive) direct flight. At this

point, it would seem worthwhile to elicit the user’s preferences about such
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trade-offs, if the system has no reliable information already.

This class of questions differs from questions about the environment in that

the user can almost always be expected to know about his own preferences.!

In fact, questions about user preferences might be the most common questions

of all. They can be categorized into several different subclasses:

— General preferences about one single variable. For example, in the do-
main of travel planning,
*x Rank the airlines in order of preference.
*x Do you prefer Delta or United?
*x Indicate your restrictions on airline options.
— Trade-offs among different factors. These questions are closely related
to the utility elicitation questions of Chajewska, Koller and Parr (2000).
* Rank all possible combinations of factors. (Unlikely in practice.)

x Indicate a preference between two choices. For example, in the travel
domain, all other things being equal, would you prefer a $400 direct

flight or a $300 flight with one stop?

— Preferences about the dialogue itself. For example, the model proposed in

this chapter gives the user the option to modify a value that represents

!However, we should take care to account for the possibility that users might not care about
certain aspects of the problem. If this is believed to be likely, then the expected value of asking
a question should be quite low. Furthermore, although users might have a general sense of their
preferences, it might be quite difficult for them if they are asked to quantify something that they
are not used to thinking of in numerical terms.
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the degree to which he is willing to interact with the system. This
value, in turn, affects the frequency with which the system asks the user

questions and gets him involved in the problem solving.

As with all potential questions for the user, the key observation is that some
type of value-of-information analysis must be performed before asking a ques-
tion. If the system were to ask a question, how would it change the decisions
that would be made and how would it affect the expected success of these

decisions?

e User knowledge and abilities.

In some circumstances, it might be beneficial to ask the user to evaluate his
own knowledge or abilities with respect to a particular aspect of the task.
Although a user model might contain relevant information about users in
general or user-specific information that has been deduced from observing
the user in similar situations in the past, it might be quite useful to inquire
about the user’s own beliefs regarding his aptitudes. This could be beneficial
not only for the current problem-solving sessions, but also as background
knowledge for future interactions with this same user. Some examples of this

line of questioning might include:

— (In a math tutoring domain...)
How would you rate your general knowledge of trigonometry, on a scale

of 0 to 107

— (In the domain of providing the user with intelligent assistance with
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computer programming...)

Do you consider yourself an expert, intermediate or novice programmer?

e Domain-specific suggestions.

One of the main benefits of mixed-initiative interaction is that either the user
or the system can take charge of directing the problem solving at any given
time. If the system is involved in such a dialogue with a fully collaborative
human partner, there are situations in which the system’s best option is to
yield decision-making power to the user entirely. This is particularly appro-
priate in situations in which human intuition about high-level domain goals
has proven in the past to be superior to machine analysis. In such scenarios,
the system might allow the user to take control and direct the system toward
focusing its computational efforts on a certain subsection of the search space.
For example, Anderson et al. (2000) discuss an example where the perfor-
mance of a vehicle routing system can be improved when the user is allowed
to take actions like moving a particular customer onto the delivery route of a

particular truck.

Before concluding this section, it is important to point out that decisions about
interaction are not limited to decisions about whether or not to ask questions of a
user. Equally important in some domains is the question of whether or not to pro-
vide the user with additional information. Depending on its beliefs about the user’s
beliefs, the most beneficial action from the system’s perspective could very well be
to impart additional knowledge on the user, in order to bolster his knowledge about

the task and to improve the potential results of future collaboration. Gmytrasiewicz
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and Durfee (2001) discuss the analogue of this situation in a multi-agent setting.
They examine the expected utility of sending a message to another agent to inform
the other agent about some aspect of the world or about the “speaker” agent’s own
intentions.

An example of a scenario where it is important to tell a human user facts about
the domain or about the system’s current beliefs is the application of intelligent
tutoring (Freedman, 1997; Aist, 1997; Lester et al., 1997; Shah and Evens, 1997).
One of the constant challenges for a tutoring system is to make decisions about
when it is best to let a student learn on his own, when it is best to provide subtle
hints and when it is best to jump in and provide the student with information
explicitly.

In other domains, it might also be beneficial to provide the user with informa-
tion about the current state of the problem solving. If we are in a situation in which
the user has not been involved in the task for some time, it might be worthwhile
to communicate with the user solely for the purpose of establishing context and
keeping the user informed of the present situation. In fact, Burstein and McDer-
mott (1996) identified context registration as one of the key issues that needs to be
addressed in the design of mixed-initiative planning systems.

One final note is that communication about the problem solving itself might
be useful in certain contexts. For instance, in mixed-initiative settings, it could be
important to ensure that the system and user have properly negotiated the roles
of the two parties or that they have established a detailed plan for how the work

will be divided during the session. The Collagen system (Rich and Sidner, 1998)
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considers this by using a shared display for the user and agent, and by including a
diagram of the history of the dialogue.

Although our focus in this thesis is on the value of asking questions in a system-
user setting, it is important to emphasize that an interactive system in general must

be concerned about the value of all aspects of communication with the user.

3.2 Factors in decision-making

3.2.1 General architecture

We will now describe the general architecture of our model, identifying factors that
should play a role in a system’s decision about whether or not to interact with a
user. One of the main aims of the thesis is to provide a concrete characterization
of these factors, to enable decision making about interaction.

To begin, consider the general situation in which an artificial intelligence system
might find itself at any given time. It is common practice in artificial intelligence
to speak of the system’s current state. A state representation should capture ev-
erything that a system needs to know to distinguish its current situation from any
other situation in which it might find itself while performing a task.

It will be proposed here that the current state of any interactive system should
depend on a number of factors, each of which can be classified as belonging to one of
three general components of the system: the task model, user model, and dialogue
model. This is similar to the distinction made by Lambert and Carberry (1991)

in their tripartite plan-based model of dialogue. They distinguish between domain
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actions, problem-solving actions, and discourse or communicative actions. In our
model, we combine domain and problem-solving actions into a single task model,

and we add a user model as an additional component to the system.

1. The task model. This is a representation of the high-level tasks that the
system might be attempting to accomplish in a problem-solving session. This
model might include several “recipes” (Grosz and Sidner, 1990): specifica-
tions, for each task, of the subtasks that must be accomplished in order to
complete that task. The task model should also include information about
the current state of the problem-solving session - in a recipe, for instance,
which subtask is currently being worked on and which ones have already

been completed.

2. The user model. A user model is a system’s internal representation of a
user’s knowledge, abilities, preferences, goals and any other user-specific infor-
mation that helps a system to adapt its behaviour in a way that is appropriate
for each user (Kobsa and Wahlster, 1989; Kass and Finin, 1988). This is a
crucial component of any system that is designed to make rational decisions
about interaction. In many cases, the decision of whether or not to interact
will depend heavily on the specific user involved. For example, if the system
is trying to decide whether to ask the user for a piece of factual information
that is missing from its knowledge base, it should be much less likely to ask
a user for help if it has evidence in its user model that this particular per-
son is unlikely to have the required knowledge to answer the question. Most

decision-making algorithms do not bother to model this, but simply assume
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that a valuable answer will be returned, if the user is asked. We claim it is
critical to model the user’s knowledge, to get a more accurate evaluation of

the utility of trying to ask for information, at this point in the processing.

3. The dialogue model. A model of the ongoing dialogue between the system
and user is also a critical factor in decisions relating to interaction. With a
record of the exchanges that have already taken place between the system
and user during this session, the system has a view of what has already been
conveyed to the user. Perhaps more importantly, a dialogue model allows the
system to keep track of how frequently and how recently it has bothered the
user during a problem-solving session. Different users might have different
preferences about how involved they wish to be in the completion of a task.
If, in a problem-solving session, a system has already asked several questions
of a user who has indicated a generally low desire to be an active participant
in the task, it should be more careful about interrupting this user again in the
near future — perhaps initiating such an interaction only when the question

is perceived to be particularly critical (Fleming, 1998).

In this thesis, we will concentrate on modeling the general level of turn-taking,
to measure user willingness. We will not elaborate further on methods to ex-
plicitly model dialogue structure and focus. In Section 6.1.1, we comment on
the need to accommodate a richer model of dialogue, as part of the decision
making, for future work. In particular, we discuss how modeling the under-
standability of an interaction for a user is an important factor to determine

whether to interact. This factor will be influenced by the proper modeling of
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the user’s view of the current dialogue.

Overall architecture

Figure 3.1 shows the general architecture for this model. One of the key con-
tributions of this thesis will be to specify exactly what elements of a task model,
user model and dialogue model should contribute to decisions about interaction

and how each of these factors should affect such decisions.

User
Model )
Task Dialogue
Model Model
Decisions
about
Interaction

Figure 3.1: Influence of task, user and dialogue models

One way to view the system’s reasoning about its current situation is by using
the state-based representation that is common in artificial intelligence systems. In
its current state s, there could be several actions that a problem-solving system
might consider performing next. These include task-related actions that will help

to move the problem solving closer to completion, as well as communicative actions
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that are designed to garner more information from a user (or from some other
source) in order to better equip the system to make decisions later in the session.
In this thesis, the focus will be on communicative actions. In particular, we are
interested in providing the system with a framework for determining the inherent
value of asking a particular question at a specific time.

For the purposes of this thesis, we will assume that there is a module within the
system that is responsible for generating potentially appropriate questions for the
user, whether they be in the form of natural language utterances or menu selections
or in some other form. Since this is not the focus of the research, the exact workings
of this module will not be discussed, but it can be assumed that candidate questions
would be generated on the basis of the current state of the system, what it intends
to do next, and what information would be valuable to obtain.?

In many situations, there might be several potential questions at any given time.
In such cases, the system’s responsibility will be not only to determine whether or
not to ask the user a question, but also which question appears to have the most
value.

We also make some assumptions about the ability of the system to understand
the intentions of the user. We are not focusing on resolving ambiguities involv-
ing goals and plans, or involving what the user actually said. Several researchers
(e.g. (Paek and Horvitz, 1999a; Gmytrasiewicz and Durfee, 2001; McRoy and Ali,

1999)) have looked at the idea of possible miscommunications in dialogue; such

2Tf this module is not working well, or if there are errors in recognizing the plans of the user,
there will be additional challenges to making the right decisions about interaction. However, these
possibilities will not be considered in this thesis. This topic is discussed in Section 6.1.5.
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methods would have to be incorporated into any practical mixed-initiative system

making use of our model.

3.2.2 Specific factors

We will now elaborate on the general architecture presented in the previous subsec-
tion, listing a number of factors that should be considered by a system in attempting
to make optimal decisions about interaction with a user. Although a few of these
have been mentioned in passing already, it will be useful to establish a complete
list of the relevant factors.

In this section, the factors will be identified and discussed at the qualitative level
only. This is meant to provide the reader with an understanding of the intuition
behind the inclusion of each factor. Later in this chapter, various approaches will be
discussed for combining these factors into a quantitative decision-making framework

for the system.

User model

In order to make rational decisions in an interactive setting, it is crucial to take
into account the knowledge and preferences of the particular user involved in the
dialogue.

Although there might be some additional domain-specific variables to consider,

we have identified the following domain-independent user modeling factors:

e The user’s knowledge. How likely is it that the user will have the required

knowledge to answer the question? A system’s beliefs about user knowledge
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could span a wide range along each of two dimensions: the specificity of the

user being modeled and of the subject matter being considered.

Along the first dimension, the system might have information about this spe-

cific user, about users who belong to the same stereotype as this user and

about all users in general. Along the other dimension, it might have informa-

tion about the likelihood of a user knowing about a specific concept, about

concepts that are in a particular “class” or it might simply have a global value

representing the probability of a user knowing any fact in this domain. Figure

3.2 illustrates the entire spectrum of knowledge about users’ expertise.

General

Specific

What does this What do usersin What do users
user know about this stereotype in general know
the domainin know about the about the domain
general? domainin general? in general?
What does this What do usersin What do users
user know about this stereotype in general know
topics of type Y? know about topics about topics of
of typeY? typeY?
What does this What do usersin What do users
user know about this stereotype in general know
topic X? know about topic X? about topic X?
Specific Genera
< USERS >

Figure 3.2: Spectrum of knowledge about user expertise
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The manner in which these different types of user modeling information are
balanced for a particular application domain will be up to the system designer.
However, we provide in Section 3.8 a general model for how to make use of
these multiple types of modeling information. The most important concept
to mention at this point is that specific evidence should override general in-
formation. If a system knows (from previous interactions) that this user is
very knowledgeable on a particular subject, then this information should take
precedence over probabilistic evidence that users of this type are unlikely to
know about the particular class of subjects under which the current question

under consideration is categorized (Chin, 1989).

e The user’s willingness. How has the user rated his willingness to be an
active participant in this dialogue? All other things being equal, we should
be less likely to ask a question of a user who has indicated a preference to be
involved only in urgent situations than of a user who has requested a role as

an active collaborator.

This will often depend on the domain. In some cases (e.g., course advis-
ing (van Beek, Cohen and Schmidt, 1993; Cohen, Schmidt and van Beek,
1994)), any user should expect to be fully involved in the dialogue if they are
to anticipate anything useful coming out of the session. The more interesting
cases arise in domains where there might be a great deal of variation across

users in terms of their willingness to interact with the system. An example
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of such a domain is television personalization; see, for example, the work of

Buczak, Zimmerman and Kurapati (2002).

The notion of user willingness must be considered in conjunction with the sys-
tem’s record of previous interruptions to the user. This idea will be discussed

further in the upcoming section on the dialogue model.

e The user’s preferences. This point is actually relevant both to this User
model section and to the Task model section to follow. What do we know

about the user’s preferences regarding different outcomes in this domain?

In many situations, these preferences themselves might be the topic of the
proposed interaction. In the travel domain, asking a user if they prefer to
fly with Aiwr Canada or WestJet has very little usefulness if we have already
learned from previous sessions that this user has a strong dislike for one
airline or the other. However, this same question might be important to ask
a different user, when the only airline preference information available is a

summary of preferences from the general user population.

Dialogue model

A system must have an accurate record of how the dialogue has progressed so far.

Of particular interest are the following two points:

e Current context and understandability. What information has been
shared between the two parties up to this point? How aware is the user of the

current state of the problem-solving? When the system is deciding whether or
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not to ask the user a question, it must consider whether or not the user will
have enough background contextual information to be able to understand
the question and the system’s underlying goals for asking it (Fleming and
Cohen, 2000). In such a situation, the system must decide whether it is most
useful (1) to ask the question in the hope that the resulting dialogue will
go smoothly and that any necessary clarification dialogues will not be too
costly, (2) to present the user with additional contextual information before
proceeding with the interaction, or (3) to forgo interaction entirely, having
determined that the likelihood of the user understanding is too low or that

the expected cost of the interaction is too high.

e Previous interruptions. How many times has the user been bothered by
the system so far in the dialogue?” How recently have those interruptions
taken place?” Does the system have some estimate of the cost of the earlier
interruptions, according to its perception of the cognitive effort that would
have been required of the user to answer the questions and of what the user
was busy doing at the time of the disruption? All of this must be considered
along with the idea of user willingness, discussed above. The cost of bothering
a user who has identified himself as a willing collaborator should be much

lower than the cost of interrupting an unwilling user.

Task model

e System uncertainty. The task model is often what drives the system to

consider interacting with the user in the first place. The system must consider
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asking questions of the user only when it is not clear how it should proceed
with the problem solving on its own. For example, if the system is provided at
the outset with a detailed step-by-step procedure for how to solve a problem,
and if it has all the information that it will need in order to complete each of
the required steps, then there should be no need to communicate with the user.
The exceptions to this are: (1) communication in order to maintain the user’s
awareness of how the problem solving is progressing, and (2) communication
initiated by the user to provide additional information to the system or to

inquire about the status of the session.

e Task criticality. What do we know about the criticality of this task? Are
we necessarily looking for the best solution? Is it acceptable simply to find
a “good” solution (one that meets certain minimal criteria)? Is it our goal
to find any solution to the given problem? Phrased differently, what is the
expected tolerance for suboptimality in this domain? How serious are the

consequences if the problem is not solved perfectly?

e Utilities of states. In addition to the information about the possible high-
level tasks or goals and how they should be achieved, the task model must
contain information about the system’s perception of the desirability of being
in each of the possible states in which it might find itself over the course of
a problem-solving session. The idea of utility theory is discussed in Section

3.3.
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e Time. A key factor in reasoning about the value of interacting with a user
is an estimate of the amount of extra time that the interaction would take.
Included in this issue is the question of how time-critical the task is. Even if an
interaction with the user might take a significant amount of time, this might
not be a concern if the task is one for which there is no deadline or no clear
advantage to completing it quickly. However, if a task must be completed in
a timely manner, interaction will be advantageous only if it is expected to
improve the quality of the solution significantly and still allow the task to be

completed on time (Xuan, Lesser and Zilberstein, 2001).

e Other costs. In most domains, there will other costs that must be modeled.
For example, if certain domain actions consume resources, such as CPU time,
disk space, or access charges to commercial resources, then these costs must

be incorporated into the task model as well.

3.2.3 Summary

Table 3.1 provides a summary of the main factors identified in this section. The
factors included in this list will play a central role in the rest of this chapter,
as we develop a domain-independent model for reasoning about interaction with
users. The second column classifies each factor as being relevant to the user model,

dialogue model or task model.
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Factor Model

The user’s knowledge UM

The user’s willingness to interact UM
The user’s preferences/utility function UM, TM
Task criticality T™, UM

Current context and expected understandability | DM, UM
of system utterance

Previous interactions DM

The expected improvement of the system’s ™
task performance due to interaction

Time and time criticality ™

Resource costs and other task-specific costs ™

Table 3.1: Summary of factors to be used in model

3.3 Details of the Model

3.3.1 Utility theory

Our model will involve using the idea of expected utility to guide the system in its
decisions. A utility function U is a function that assigns a value to every state in
the state space for a problem.? This value is meant to represent the usefulness or
desirability of being in that state. If a decision-maker prefers to be in state s4 over
state sp, then U(s4) should be greater than U(sg).

When forced to decide from among multiple actions at a given time, the decision-
maker can consider the new states that would result from performing each of the
possible actions and then choose the action that will lead to the most desirable
state.

An agent in an uncertain environment will often face situations in which it is

3The state space is the set of all states that might possibly arise in the process of solving the
problem.
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unsure of the exact effects of its actions. For example, in a state sy, taking action
A might lead to any of several states si, sy, ---, s, with different probabilities.
The expected utility of an action can be calculated by summing the utilities of all
possible outcomes of the action, weighted by the probabilities of those outcomes.
More formally, let E represent the evidence that the agent has gathered about
the world and let Result;(A) represent the possible outcomes of performing an
action A. Then, the expected utility of action A given evidence E is computed as

follows (Russell and Norvig, 1995):

EU(A|E) =) P(Result;(A)|E, Do(A)) x U(Result;(A))

“The principle of maximum expected utility (MEU) says that a rational
agent should choose an action that maximizes the agent’s expected utility.” (Russell
and Norvig, 1995)

For example, suppose that a decision-maker has the choice of two possible tasks
to perform. If the first one is chosen, there is a guaranteed reward of $100. If the
second task is selected, there is a 20% chance of being rewarded with $1000 and an
80% chance of no reward at all. Which task should be chosen?

In the first case, the value of the reward is known to be $100. With the second
option, the ezpected reward is (0.20)($1000) + (0.80)($0) = $200. We will assume
for the sake of this simple example that the utility depends linearly on the amount
of money earned, although research (Grayson, 1960) has shown that this is not
generally the case for human decision-makers. If we do make this assumption, then

the second task above is the better choice because of its higher expected utility.
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3.3.2 Single-Decision Problems

Having discussed in Section 3.2 the intuition behind our model for reasoning about
interaction with users, we will now introduce the actual details of the model. We
will begin by examining the special case of a system working on a task during
which there will be only one opportunity to make a decision about interaction.
The general scenario faced by such systems is illustrated in Figure 3.3. The system
first makes a decision about interaction with the user. Whether or not it chooses
to interact, it then makes a decision about which action to perform and then takes

that action to complete the task.

o Decision Decision ]
Initial about | about Final
State Interaction Task State

Figure 3.3: A single-decision problem

As will be discussed in the next subsection, such a simple system will be rare in
practice. However, starting with a simple example will help to illustrate the basic
ideas behind our model and to motivate later discussion of more complex decision
problems.

Our general approach to reasoning about interaction is as follows. Given a

question that the system is considering asking the user, perform the following steps.

1. Determine the expected benefits of interacting with the user. More specif-
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ically, determine by how much the system’s performance on the task is ex-

pected to improve (if at all) after asking the user the question.*
2. Determine the expected costs of the interaction.

3. Proceed with the interaction only if the benefits exceed the costs.

Benefits

The following formula is used for computing the benefits of interaction. Let EU,q
represent the expected utility of the outcome(s) that would result if it did ask the
user the question and then chose an action based in part on the user’s response.
Let EU_4s represent the expected utility of the outcome(s) that would result from
the system making its decision without any additional interaction at this point.
Then, the benefits are computed simply by taking the difference between these two

values.

Benefits = EU s — EU- 41

When we mention utility in this context, we are referring to the expected value
of the problem solution that is reached in some final state. This does not take into
account any costs that might be involved in reaching the solution. As will be seen
soon, such costs are treated separately in our model.

EU, and EU_ . themselves are computed by summing over the possible out-

comes in each case, weighted by the probability of each outcome.

“This is essentially the expected value of information (Howard, 1966) associated with asking
the question.
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Let us begin with EU_,, the expected utility of the action that the system
would take without any further interaction. For each possible non-communicative
action in the set Actions that the system is able to perform, it computes the
expected utility of that action by summing over the utilities of all possible out-
comes of the action, weighted by the probabilities of each of those outcomes. The
rational action for the system to choose is then the action with the highest ex-
pected utility; EU_ .4 is equal to the expected utility of this best possible action.
Again, in the formula below, Result;(A) represents the possible outcomes of per-
forming the action A. Note that we have simplified the notation from the expected
utility formula in Section 3.3.1. In the equation below, P(Result;(A)) replaces
P(Result;(A)|E, Do(A)), the probability that Result;(A) would occur given that
the agent has gathered evidence F about the world and has performed action A.
This simplification is made to improve the readability of this formula and others to

follow in this section.

EU_,x = max FEU(A)

AcActions

= max (Z P(Resulti(A)) X U(RGSUlti(A)))

AcActions ¢

One issue that has been largely ignored in earlier work on utility-based reasoning
is the fact that attempts to gather more information, particularly when dealing with
human collaborators, are not guaranteed to be successful. To account for this, our
calculation for FU,,, the expected utility of the outcome that will result if we do

interact with the user includes a new variable. Let Pyg represent the probability
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that the user will actually have the knowledge required to answer the question.’
Also, let Resp represent the set of possible responses to the question.® Then EU,,

is computed as:

EU,sx = Pyg[EU(if user knows)| + (1 — Pyx)[EU(if user does not know)]
= Pyx >, P(Resp=r)EU(S’s action choice|Resp =)

rEResp

+(1 — Pyk)EU-gsk

In words, EU,, is the sum of two terms. The second of these terms captures
the case in which the user is unable to answer the question. In this case (occurring
with probability 1 — Py ), the system would simply fall back on what it would have
done without interacting (with expected utility EU_,s). The first term considers
the case in which the user is able to answer the question (probability Pyg). The
expected value of the system’s actions in this case is found by considering all the
possible responses that the user might give and the expected utility of the action
that the system would take in each of those cases.

In the formula above, EU(S’s action choice|Resp = r) is calculated by taking

the maximum of the expected utilities of all possible actions:’

max (Z P(Result;(A)) x U(Resum(A))>

A€ Actions

5As will be seen in Section 3.8, this is in fact a function that depends on the user and on the
questions being asked; however, we will treat it here as a single variable for the sake of readability.

6Section 6.1.6 will include a discussion of what can be done in situations where the system
might not know all the possible responses to every question.

"Again, the notation in this formula has been simplified, with P(Result;(A)) replacing
P(Result;(A)|E,Do(A)). The evidence E would now include the system’s observation of the
user’s response to the question.
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Considering Incorrect User Responses

In some cases, the expected utility of the system’s choice of action after receiving
a response r from the user will depend on the system’s prior beliefs about whether
or not the user’s response will in fact be correct. For example, it is possible that
the system might decide to take a particular action A if it receives response r from
the user. However, if the user’s response were actually incorrect, then A might not
turn out to be a very sensible action at all. If the system expects that there is a
significant risk of the user providing a misleading answer, it should incorporate this
into its reasoning.

This possibility can simply be weaved into EU(A|Resp = r), where A is the
system’s choice of action given that the user provided r as a response. For instance,
if there were two other possible responses, ' and r”, for the question, then the
expected utility of the system’s choice of action would be

P(Correct = r|Resp = r) x U(A|Correct = r)

+ P(Correct = r'|Resp = r) x U(A|Correct = ')

+ P(Correct = 7""|Resp = T) X U(A|Correct _ 7””)

In the general case,

EU(A|Resp = T) = Z P(CorreCt = T"|R€Sp = 7“) X U(A|Correct = 7-’)'

' €Resp

The formula above relies on the fact that the system would be able to estimate
the probability of every possible error the user might make: for example, if the
user says the answer to a multiple-choice question is A, what is the probability

that the correct answer is actually B, C, D or E? In most practical applications, it
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is unlikely that a system designer would be able to provide the system with such
detailed information. However, what would be realistic and useful to model is a
single value representing the probability that the user’s answer to a question will
actually be correct. If this value is known, then the other possible answers can
simply be given a probability based on the system’s prior beliefs. For example,
suppose the system initially had no information and believed that all answers were
equally likely. If the user gives a reply of A and if the system believes that the user
is correct 90% of the time, then the probabilities of B, C, D and E being the actual
correct answer would each be 2.5%.

In many domains, it might be reasonable to assume that users will always be
correct (or that the system should not take it upon itself to question the user’s
authority). However, the possibility exists to take this factor into account if a

system designer should choose to consider it.®

Adding understandability

In addition to the possibility that a user might not have the knowledge required to
answer the question, it is possible that a user might not be able to provide immediate
help to the system because he does not understand precisely what is being asked.
This might be due to a failure to understand the system’s terminology or due to
the fact that the user simply hasn’t been involved enough in the ongoing problem

solving to be able to fully appreciate what the system is asking. In Section 6.1.1, we

8Note that checking for possible inconsistencies between one response from a user and previous
responses from that same user may also lead the system to conclude that the user is incorrect.
This would require some consistency checking machinery.
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will discuss how understandability could be incorporated into our model in future

work.

Costs

The costs of interaction in our model are represented using a linear model: the total
cost is a weighted sum of any individual cost measures C; that have been identified
for the application domain.? Each of these factors is normalized so that the possible
values range from 0 to 100, with a cost of 0 indicating no cost at all and a cost of

100 representing the maximum possible cost in this application domain.

Costs = Z w; C;

Note that each of these cost measures C; is actually a cost function that might
depend on the current state, on the particular action or question being considered,
and/or on certain components of the user model.

In fact, as we did with benefits, we should be careful to represent not just how
much an interaction costs, but how much more it would cost than doing things

without asking the user. The actual formula for costs is

Costs = Costsggr, — Costs_ s

9We believe that, in general, the cost measures will be mutually preferentially independent,
and so an additive cost function is appropriate. (Russell and Norvig (1995) define mutually
preferentially independent as: “Two attributes X; and X, are preferentially independent of a
third attribute X3 if the preference between outcomes < z1, 22,23 > and < i, 24,23 > does not
depend on the particular attribute z3 for attribute X3.”)
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where Costs,s, represents the additional costs that will be incurred if the system
asks the user a question, and where Costs_,,, measures any additional costs that
will occur if the system does not ask the user. Each of the two terms is computed
as a weighted sum of the various component costs, as shown above.

However, to simplify our discussion throughout the thesis, we will combine
these two sums into one weighted sum of terms C;, to measure the additional cost
associated with asking the user. Any cost measures that will occur only if the user
is asked will carry positive weights in the equation, while costs that are incurred
only if the user is not asked will carry negative weights. For example, if the only
alternative to asking the user for help in a particular situation is to send a query
to a remote database, there will be some cost associated with this retrieval. Such
a cost would be represented as a cost of not asking the user for help and would be
incorporated into our sum with a negative weight attached to it.

In the subsequent example, the cost of interaction will be measured by a weighted
sum of only two cost factors: ¢, the cost associated with the estimated additional
time required for the interaction, and b, the cost associated with bothering the user
in the current situation. These are both costs associated with asking the user for
help and will have positive weights in our formula. We will discuss other poten-
tial cost measures and the specific details of how the time and bother costs are

computed in Section 3.4.3.

A single-decision example

We will now present a simple example to illustrate the application of our model to

decision-making about interaction.
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In this example, the system has been asked to plan a travel route for the user to
get from City A to City B. It determines that it has the choice between two different
paths. According to the system’s knowledge, path 1 is shorter but is congested (due
to heavy traffic) about 50% of the time. Path 2 is significantly longer, but it is never

busy.

Benefits of interaction

In this example, the system has access to a utility function for this type of situation.
The utility function assigns a value to each possible outcome in the domain, where
an outcome consists of the decision that was made by the system (which route did it
choose to take?) and the actual state of the world (was path 1 in fact congested?).
For example, one outcome would be that the system opted to take path 1, but
found that it turned out to be busy and, therefore, slow.

The values assigned by the utility function in this example are meant to capture
the attitudes of the average user toward different possible outcomes in this domain,
and are shown in Table 3.2.10

The ideal outcome in this example would be if we were to choose path 1 and if
it were to turn out to be clear. The worst outcome would involve choosing path 1
and then finding out that it is congested. In between these two extremes, choosing

path 2 is a fairly safe decision, but we would be somewhat less pleased if we were

10The range used for utility values varies across the literature, but it is fairly common to use
a scale of 0 to 1 or 0 to 100. The latter will be used in our examples. It is also common to
assign the minimum and maximum values in the range to the least and most desirable outcomes,
respectively, and to use these initial assignments to guide the assessment of intermediate utility
values (Keeney and Raiffa, 1976). The actual scale used is irrelevant as long as the chosen values
are consistent with the preferences being represented.
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to choose path 2 when, in fact, the shorter path had been available.

System’s choice | Actual state of path 1 | Utility
Path 1 Path 1 clear 100
Path 1 Path 1 busy 0
Path 2 Path 1 clear 50
Path 2 Path 1 busy 70

Table 3.2: Utility function for path example

Now, suppose that we have reason to believe that the user might have access to
recent traffic information and could therefore help with the decision-making. We
believe that there is a 60% chance that the user has accurate traffic information.

To make the problem slightly more interesting, we will assume that there is an
additional 10% chance that the user has traffic information that turns out to be
wncorrect.

The remaining 30% is assigned to the case in which the user states that he has
no additional traffic information. In this case, the system should fall back on what
it would have done without asking the user.

Let us first consider the decision that the system would make in the absence of
any further information from the user. In other words, we want to compute the
value of EU_,4, the expected utility of the best action the system could take if it
did not ask the user the question.

There are two possible actions in this simple example: choose path 1 or choose

path 2. According to the problem description above, there is a 50% chance that
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path 1 will be congested. The expected utility of choosing path 1 is computed as

follows:

EU(A =path 1) =Y. P(Result;(A)) x U(Result;(A))
= P(path 1 clear) x U(A =path 1 | path 1 clear)
+P(path 1 busy) x U(A =path 1 | path 1 busy)
= 0.5 (100) + 0.5 (0)
= 50

Similarly, the expected utility of path 2 depends on the system’s current beliefs

about the state of path 1.

EU(A =path 2) = P(path 1 clear) x U(A =path 2 | path 1 clear)
+P(path 1 busy) x U(A =path 2 | path 1 busy)
= 0.5 (50) + 0.5 (70)
= 60

EU-usx = max EU(A) = max(50,60) = 60.

A€ Actions

Therefore, with no additional information, it appears that the best solution for
the system is to play it safe and choose path 2, since the expected utility of path 2
is higher than the expected utility of path 1.

Now that we know the expected utility of what the system could do on its own,
let us consider the possible outcomes if the system were to ask the user for further

information. Table 3.3 summarizes the possible scenarios that might arise.
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User response | Actual state of path 1 | Probability | System’s choice | Utility
Path 1 clear Path 1 clear 0.30 Path 1 100
Path 1 clear Path 1 busy 0.05 Path 1 0
Path 1 busy Path 1 clear 0.05 Path 2 50
Path 1 busy Path 1 busy 0.30 Path 2 70

No answer Path 1 clear 0.15 Path 2 50
No answer Path 1 busy 0.15 Path 2 70
Overall expected utility of system choice after asking 71.5

Table 3.3: Possible scenarios in path-choosing example

The probabilities in Table 3.3 are computed by considering both the system’s
beliefs about whether or not the user will have the knowledge and the system’s prior
beliefs about the actual state of the path. For example, the system believes that
the user will know the correct answer with a probability of 0.6. Since the system
initially believed that path 1 was equally likely to be clear or congested, there is a
probability of 0.3 of the user correctly saying that the path is clear (Row 1) and a
probability of 0.3 of the user correctly saying that it is busy (Row 4).

The overall expected utility (71.5) shown in the final row of Table 3.3 is com-
puted by summing over all the possible outcomes, weighted by their probabilities.
This tells us that, in the average case, interacting with the user will lead the system
to a choice with an expected utility of 71.5. Recall that, without asking the user,
the expected utility of the system’s best action — simply choosing path 2 as a safe
route — was 60.

Our conclusion is that, despite the fact that the user might not know the answer
or might even mislead the system, there is a clear expected benefit to requesting the

additional information from the user. We represent this benefit by looking at the
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expected gain in performance on the task if we were to interact — in other words, by
taking the difference between the expected utility after interaction and the expected
utility of the system’s default action in the absence of further interaction.

In this example,

Benefits = EU,g, — EU_ 45 = 71.5 — 60 = 11.5

Costs of interaction

It is important now to consider the fact that there are also costs involved in inter-
acting with the user.
As presented earlier, costs are calculated with a weighted sum over all cost

measures C; that have been identified for the domain.

Costs = Z w; C;

In this example, the cost of interaction will be measured by a weighted sum of
two cost factors: t, the cost associated with the extra time required for the inter-
action, and b, the cost associated with bothering the user in the current situation.
We will discuss other potential cost measures in Section 3.4.3.

Also in Section 3.4.3, we will discuss in more detail how a system would deter-
mine the actual values for each of the cost measures and for the weights attached
to each factor. However, to keep this example straightforward, we will simply state
that the time cost is 10 on a scale of 0 to 100 (the interaction will not take long at

all), the bother cost is 10 (the communication will not be perceived by the user as
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being very bothersome), and the weights associated with time and bother are 0.2
and 0.3, respectively.

With these values, the total cost associated with the interaction is:

Costs = w;t + wpb
= 0.2(10) + 0.3(10)
=5

Since the benefits of interaction were computed earlier to be 11.5, the benefits
outweigh the costs and our system’s optimal decision would be to proceed with the
interaction with the user.

Table 3.4 shows some variations on the above example, demonstrating how the
system’s decisions about interaction are affected by modifying the values of the
relevant factors. For example, while the first row summarizes the earlier example,
the second row shows that if the system had believed that the user was not very
likely at all to be able to answer the question (with all other factors remaining
unchanged), the ultimate decision would have been instead to forgo interaction.
The third and fourth rows show that if the scenario had been changed so that the
system is initially almost certain that Path 1 is clear or almost certain that it is
congested, then interacting would not be beneficial at all.'* The fifth row shows a
case where, despite the fact that the system was initially quite sure about the state

of path 1, it still decides to interact because it is certain that the user will know

1 The negative value for benefits in fact demonstrates that the system would likely decrease its
performance on the task if it were to ask the user, since the likelihood of obtaining new information
is quite low and since there is a chance of actually being misled by the user’s response.
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the answer. The final two rows demonstrate the effects of modifying the values of
the two cost factors.

The graphs in Figure 3.4 provide a different way of looking at two of these
variations. In part (a), the probability of the user knowing the answer is varied
while all other factors are kept constant at the values shown in row 1 of Table 3.4.
The benefits exceed the costs only when Py is greater than 0.34. In part (b), the
system’s belief about the probability of path 1 being clear is varied while all other
factors are kept constant. In this case, the benefits exceed the costs only when this
probability is roughly between 0.26 and 0.68.

The utilities of the possible outcomes are assumed to be the same in all cases.

P(U knows) | P(Path 1 clear) | ¢t | b | EUss | EU-qsi | Benefits | Costs | Ask?
0.6 0.5 10 | 10 | 71.5 60 11.5 5 Yes
0.2 0.5 10 | 10 61.5 60 1.5 5 No
0.6 0.9 10 | 10 | 89.7 90 -0.3 5 No
0.6 0.1 10 | 10 64.7 68 -3.3 5 No
1.0 0.9 10 | 10 97 90 7 ) Yes
0.6 0.5 50 | 10 71.5 60 11.5 13 No
0.6 0.5 10 | 40 | 71.5 60 11.5 14 No

Table 3.4: Variations on path-choosing example

3.3.3 Sequential Decision Problems

Examples as simple as the one presented in the previous section are unlikely to arise
in practice. One of the reasons for this is that this example involved a system that

was trying to perform a task involving only one decision. Once this decision was
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Figure 3.4: Variations on the path-choosing example

made, the task was complete and the system was able to observe the consequences
immediately. In practical problems, a system will normally be faced with many de-
cisions, one after another. The reward associated with performing an action might
not be immediate. The full implications of a decision made at some point early in
the process might not be observed until the entire task has been completed. In or-
der to determine the true value of an action, we would have to project very far into
the future to see what might happen along the way, and what solutions and rewards
might be reached. This is referred to as a sequential decision problem (Russell and
Norvig, 1995).

If computation time were not an issue, and if the task were guaranteed to
finish after a finite number of steps, then the model in Section 3.3.2 could be
applied directly to the sequential decision case by using a dynamic programming
algorithm (Bellman, 1957). If utilities are known for final states (at a final time ¢),
then these could be used to calculate the utilities of states at time ¢ — 1, and so on

until a utility value is attached to every possible state in the state space.
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However, if a system is to be making decisions about interaction at run-time,
this type of reasoning is computationally infeasible for anything but the smallest
of problems.

One potential solution to this is to try approaching the problem of reasoning
about interaction as a Markov decision process (MDP) (Puterman, 1994). This for-
malism is a natural extension of the ideas presented in this section, and is discussed
in Section 3.5. It allows a policy to be generated before the system runs, specifying
the optimal action for every possible state that might arise.

Before discussing the MDP approach, however, it is important to investigate in
more detail how the benefits and costs from this section are computed, and how

these calculations would be extended to the case of a sequential decision problem.

3.4 Benefits and Costs

In this section, we provide some further discussion about the benefits and costs of

interacting with users.

3.4.1 Benefits

We begin this section by repeating the formula for benefits in the model described
in Section 3.3. Let EU,qz represent the expected utility of the outcome(s) that
would result from the system choosing an action if it did ask the user the question.
Let EU_4s represent the expected utility of the outcome(s) that would result from

the system making its decision without any further interaction. Then,
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Benefits = EUaslc - EUﬁask

EU,, and EU_., themselves are computed by summing over the possible out-
comes in each case, weighted by the probability of each outcome. As mentioned
earlier, one of the main concerns in trying to model the benefits of interaction is in
determining utilities for the different possible outcomes that might arise. In any-
thing but the simplest possible domains, it might be difficult to elicit utility values
for every possible state in the state space, even if it is possible to devise an additive
utility function that can be used to evaluate a state on the basis of a number of
subutility functions.

In Section 3.6, we address the issue of how to estimate the value of asking a
question heuristically, without knowing a full utility function. Prior to that section,
however, we will assume that the system has access to a utility function that assigns
a value to every state in the state space, or one that assigns a reward to every final
state and can be used to compute expected utilities for non-final states. This
function is meant to represent how good a particular solution is, irrespective of any

costs involved in reaching this solution.

3.4.2 Possible Extensions

In addition to reflecting expected improvements in the system’s problem solving for
the current session, the designer of a system might also choose for the value of a
solution to include long-term benefits: expected changes in the system’s knowledge

or user model that are likely to help with future sessions that might occur. For
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example, if the system is likely to be working with this user on similar problems in
the future, then an outcome in which the system has solved the problem but has
also learned a great deal about the user’s preferences should be considered more
valuable than accomplishing the same task without learning for the future. This
idea is related to the work of Sullivan, Grosz and Kraus (2000), in which agents
in a multi-agent system take into account both the immediate reward they can
expect from performing an action and the expected future income associated with
the action.

On a related note, a system should not only consider the effect of an interaction
on its own knowledge, but also on the knowledge that a user possesses. There should
be significant benefits to an interaction that will result in the user having improved
expertise on a topic, either if this knowledge is likely to come into play in future
problem-solving sessions or simply if it is believed that the user will value having
had the opportunity to learn from the experience. This is particularly relevant in
domains such as intelligent tutoring, where one of the primary goals of the system
is indeed to help the user to acquire new knowledge or abilities.

Throughout this thesis, it is assumed that the system designer will ensure that
such concerns are incorporated into the utility values that are assigned to different
states in the state space for the particular application domain.

Another relevant concern is that of incorporating future likely interaction load
into the decision of whether or not to ask a question (Shifroni and Shanon, 1992;
Raskutti and Zukerman, 1997). If asking or not asking a question at the present

time will result in the need to ask other questions at a later time, then this should
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be considered when computing the value of asking the question currently being
considered. Similarly, if the system expects to require the user’s assistance for very
crucial matters at a later time, then it might be best to forgo interaction on a
less critical topic now. If a system is, in fact, fully examining all possible future
actions and interactions, then this will be incorporated. The difficulties associated
with doing a complete analysis of all future events are discussed in more detail in

Section 3.5.

3.4.3 Costs

Again, the costs of interaction in our model are represented using a linear model:
the total cost is a weighted sum of any individual cost measures C; that have been
identified for the application domain. Each of these factors is normalized so that
the possible values range from 0 to 100, with a cost of 0 indicating no cost at all and

a cost of 100 representing the maximum possible cost in this application domain.

Costs = Z w; C;

Two major cost factors that will apply in any application domain are time and
bother. Although costs related to time have been modeled in decision-theoretic
systems (Horvitz and Rutledge, 1991), the factor of bother has been modeled by
relatively few researchers (Bauer et al., 2000; Raskutti and Zukerman, 1994; God-
den, 2000; Fleming, 1998). The “bother factor” in this thesis is meant to represent

the degree to which a user would be annoyed, disrupted or inconvenienced by any
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interaction with the system.!?

The exact role of this particular factor will depend on the domain. For some
domains, users will almost always enter the collaboration with the understanding
that they will be expected to play a major role in the problem solving. In other
systems, which will be of greater interest from the perspective of our model, the
possibility exists for a wide range of participation levels for users. This latter case
arises in applications that are not necessarily meant to be interactive, but where the
system has been charged with the responsibility to perform some task and might
occasionally benefit from obtaining more information from the user at certain points
in its reasoning. This is related to work on adjustable autonomy (Hexmoor, Falcone
and Castelfranchi, 2003), in which systems can adapt the degree of autonomy they
exhibit in different situations. The connection between our work and research in
adjustable autonomy will be discussed further in Section 6.2.5.

More importantly, the role of the bother factor will depend on the individual
user. While some users will prefer to be very actively involved with these systems,
doing everything in their power to help the system achieve the best possible results,
others will prefer not to be bothered and will be happy with the best solution the
system is able to find on its own.

It should be pointed out, however, that even systems that are meant to be
completely interactive must take care not to bother a user unnecessarily. Consider

again the idea of a system that is intended to help a user with planning a vacation.

2Note that Raskutti and Zukerman (1994) model the annoyance due to asking irrelevant ques-
tions, ones that do not pertain to the user’s actual goal. In this thesis, we are assuming that
a separate module is determining which question to ask. Only if this module is functioning
improperly will irrelevant questions arise. This topic is discussed further in Section 6.1.5.
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The number of questions that might be useful for a system to ask is quite large.
However, if the system were to ask every one of these questions at the beginning
of a planning session, even the most patient user would very quickly become over-
whelmed and frustrated. Instead, it seems reasonable for a system to ask only
those questions that are absolutely necessary at the outset. From that point on,
decisions should be made about the value of asking a question. The expected cost
of bothering the particular user involved should be an important factor in such
decisions.

The specific details of how to represent time and bother costs, as well as other

potential costs of interaction, are presented in the upcoming subsections.

Time Cost

Two primary methods have been used for incorporating time into utility-based
decision-making in the past (Horvitz and Rutledge, 1991).

In the first, there is simply a constant penalty for each time step that is executed.
The utility of performing action a in state s at time step ¢t is U(a, s,t) = U(a, s, to) —
ct, where t; is time 0 and where ¢ is some constant penalty for each time step that
elapses.

In the second method, there is an exponential decrease in the value of performing
an action as time elapses: U(a, s,t) = U(a, s,ty) 3", where 0 < 3 < 1.

Although the precise form of the time-dependent utility function should be up
to the system designer, the first approach will be used in the examples discussed in

this thesis.



CHAPTER 3. A MODEL FOR REASONING ABOUT INTERACTION 71

The system designer might opt to give the user an important role in specifying
the time cost: that of providing the parameter ¢ or 5. In some circumstances, only
the user could estimate what the tradeoff is between time and solution quality. The
value of this constant can be interpreted as a measure of the time criticality of the
problem. If time is critical, then the constant ¢ should be high (or 3 should be low)
— the cost of delaying action is higher for more time-critical situations. If time is
completely irrelevant, as long as a solution is obtained eventually, then ¢ could be
set to 0 in the first approach or 3 to 1 in the second.

An additional possibility is that of a deadline. In some applications, a solution
might have no value at all if it is not found before some cut-off time 7T". This is fairly
simple to incorporate. If the task must be completed by time 7', then anything done

after time 7" has utility 0.

Bother Cost

A very important component of our model is the consideration of the user’s will-
ingness to collaborate with the system and the frustration that might result from
bothering the user excessively.

To make things as easy as possible for the user, the idea of willingness to interact
should be set up on a simple scale such as 0 to 10. We describe later in this section
how this willingness value is used to estimate the cost of bothering the user. Any
future adjustments to the willingness value would be made by the user according
to intuition. If he feels like he is being bothered too much, then he should move
the level down to indicate that he is less willing to interact than he had indicated

earlier.
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Since it is often difficult for humans to view such subjective matters on a numer-
ical scale, some guidelines should always be available to the user to help with the
initial selection of an appropriate willingness value. In fact, we recommend that
the system ask the user a series of questions when the system is first employed.
The responses to those questions could be used to show the user where he falls
on that scale of 0 to 10. This could be done by asking questions similar to the
utility elicitation questions of Chajewska, Koller and Parr (2000). The user could
be presented with a series of hypothetical situations, where he is asked to assume
that every possible outcome in the problem domain can be rated on a scale of 0
to 100. The questions would then take the form of “If the system could achieve a
performance of z without asking you any questions or a performance of y by asking
you n questions, which alternative would you prefer?” After asking a small number
of these questions, with different values of =,y and n, the system could use the
responses to find the best fit between the user’s attitude toward disruptions and
the bother functions we will develop later in this section.

Again, the actual cost associated with bothering the user with a particular
question will then depend on the user-defined willingness factor. In the single-
decision example of Section 3.3.2, this willingness factor is the only concern when
it comes to estimating the cost of bothering the user. However, in a sequential
decision problem, the bother cost should also incorporate a measure of how much
the user has been bothered in the dialogue so far.

In their work on programming by demonstration, Bauer et al. (2000) used a

scheme in which the shape of an annoyance function is determined by the esti-
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mated level of patience that a user has: a very patient user would have a log-like
penalty function for disruptions, while an impatient user would have an exponential

function.'® This is illustrated in Figure 3.5.

Bother cost
Bother cost

o

Number of disruptions Number of disruptions

(a) Patient user (b) Impatient user

Figure 3.5: Typical shapes of bother functions

We adopt a similar approach of having the shape of the annoyance function
determined by the user’s self-reported willingness level, but extend it by determining
where we are on the x-axis of that annoyance function at a given point in the
dialogue not solely by the number of disruptions so far, but also on information
about when those interruptions took place and on an estimate of how bothersome
each interaction was. In essence, recent interruptions and difficult questions should
carry more weight than interruptions in the distant past and very straightforward

questions. Further research effort must be devoted to determining an appropriate

13This information is based on personal correspondence in 2002 with M. Bauer (German Re-
search Center for Artificial Intelligence (DFKI), Saarbriicken, Germany). No published record of
the exact method has been found.
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function for the cost of bothering the user. However, according to the desired
behaviour just described, we propose the following function for the bother cost.
For every past interaction I with the user, let ¢(I) be the amount of time that has
elapsed since that interaction. The specific implementation assumed in this thesis
involves dividing time into discrete time steps and using the number of steps as the
value for ¢(I).}* Let c¢(I) be an estimate of how bothersome the interaction actually
was, in terms of the cognitive effort required of the user to answer the questions.

Then, we use the following formula estimating the “bother so far” (BSF).

BSF =Y ¢(I)p""
I

to give us an idea of how bothersome the dialogue has been so far. The term [ is a
discount factor, 0 < 8 < 1, that is used to accomplish the goal of diminishing the
impact of interactions that took place a long time ago.

Suppose we bothered the user 2 time steps ago, 7 time steps ago and 13 time
steps ago. Assuming that each interaction had a cost'® of ¢(I) = 1 and that
B = 0.95, our estimate of “bother so far” is 1 + 0.95% + 0.95” + 0.95'% = 3.11.

The willingness of the user to interact (the variable w, on a scale of 0 to 10,
introduced earlier) is then incorporated as follows. We define two new terms o =

1.26 — 0.05w and Init = 10 — w. '® The bother cost is then computed as bother =

!4Tn domains where time is better treated as a continuous variable, the system designer can
adjust the formula so that ¢(I) is the actual time elapsed divided by some pre-determined constant.

15Tn this example, we assume that all interactions are equally costly; for some domains, system
designers might choose to make certain types of questions more or less costly.

6These are simply suggested values; the system designer might consider doing some empirical
research to determine the most appropriate values for a given domain. The proposed formula for
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BSF

Init + =% Figure 3.6 shows the graphs for the bother functions of willing and

l—a

unwilling users.'”
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Cost of bothering
Cost of bothering

Bother so far Bother so far

(a) Willing users (b) Unwilling users

Figure 3.6: Bother functions for willing and unwilling users

Suppose, for example, that the user is a very willing one, with w = 9. Then «
would be 1.26 — 0.05w = 0.81. If the bother so far is computed to be 3.11 as shown

above, then the cost of bothering would be

a is intended to give a nearly linear bother curve for users with moderate willingness values and
bother curves with more exponential and logarithmic appearances, respectively, for more unwilling
and willing users (see Figure 3.6). The value of Init is intended to reflect the cost of bothering
a user for the first time. Our choice for Init assumes that this cost will be negligible for a very
willing user (w = 10) and quite high for an unwilling user (w = 0).

17The intuition for this formula is as follows: If BSF happens to be an integer (0,1,2,3,---),
then the formula for bother will work out to be Init, Init + 1, Init+ 1+ o, Init + 1+ a + o2, etc..
The more the user has been bothered in the past, the most bothersome this potential interaction
would be. If o is greater than 1 (willingness w < 5), then each additional increment to BSF
results in more bother cost than the previous increment; this is done to yield an exponential
bother function for unwilling users. If a is less than 1 (willingness w > 5), then each additional
increment to BSF results in less bother cost than the previous increment, yielding the more
logarithmic graph shape for willing users. The function is continuous so that non-integral values
for BSF can be handled as well.
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If we had bothered the user more frequently and more recently, say at 1,4,6,9
and 15 time steps ago, then the bother so far would be 4.73 and the cost of bothering
would be 3.32.

For a less willing user (one with w = 1), the bother costs for the same two

situations described above would work out to be 3.85 and 6.97, respectively.

Task criticality

We also recommend that the criticality of the task be modeled as a potential cost of
not interacting. As stated earlier, utilities of different outcomes are often assigned
so that the best possible outcome has a utility of 100, while the worst possible
outcome has a utility of 0. However, this fails to account for the fact that the worst
possible outcome in some domains might be far more disastrous than the worst
possible outcome in other domains.

Suppose, for example, that a system has been set up to order lunch automati-
cally for employees in an office. If the system makes an error and orders an undesir-
able meal for a particular person, then this outcome would be quite unsatisfactory
for that employee and would be assigned a utility of 0 for the task. However, the
negative impact of this decision pales in comparison to the consequences that might
be observed in a military domain, for example, where failure to gather sufficient
information might cause a system’s poor decision to lead to the loss of human lives.

Let Taskcrit represent the criticality of the task, on a scale of 0 to 100. Again,
this variable would be assigned a default value by the system designer, but individ-

ual users would be free to adjust this value in most application domains. Suppose
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the system were to take an action leading to an unsatisfactory solution, and that
this outcome could have been avoided if the user had been asked for help. We view
this possibility as a potential cost of not interacting with the user. As discussed
in Section 3.3.2, such a cost is incorporated into the cost formula with a negative
weight.

This concept of task criticality is closely related to the idea of tolerance for
suboptimality. If a domain is one where users will only be satisfied with optimal
behaviour on the part of the system, then the task criticality should be set to
be extremely high. Subsequently, the system will be more likely to ask for user
assistance before making decisions on such a critical task. On the other hand, the
task criticality can be set to a low default value for domains in which users are

willing to accept any solution that satisfies a given set of constraints.

Resource Costs

Another important aspect to the consideration of costs of interaction is the con-
sumption of system resources. For example, in some domains, the system (1) might
have to perform several database queries (which might come at some cost), (2) might
have to communicate with other agents if information cannot be obtained from a
user (bother cost analogous to the user bother, plus cost of communication channel,
etc.), (3) might have to use CPU time, memory, disk space and other computational
resources.

These costs will be domain-specific, but any that are deemed to be relevant

should be incorporated as a factor C; in the costs formula introduced earlier:
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Costs = Z w;C;

This is especially important when comparing the value of asking the user a
question and the value of performing other actions to try to obtain this information.
Interaction with the user might take some time and might inconvenience the user.
However, if the information involved is essential for the system, and if the only
alternative to asking the user is an extremely expensive query to a remote database,

then the interaction with the user should turn out to be the better choice.

Other costs

In some domains, system designers might identify certain task-specific costs that
should be modeled. For instance, in the work of Walker et al. (1997a), it is impor-
tant for the spoken dialogue agents to minimize dialogue costs such as the number
of automatic speech recognition errors and the number of help requests from the
user. Such costs can be incorporated into the weighted sum formula presented at

the beginning of this section.

3.4.4 Determining Weights

The cost formula in the model includes weights on the various component cost
factors. The intention is for these weights to be assigned initially by the system
designer, most likely in consultation with a domain expert. These initial weights
should reflect the relative contribution that the designer believes is appropriate for

each of the component costs with a typical user. However, in most or all domains,
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it should be possible for these weights to be adjusted by the system as it learns
more about the domain and about the user — or by the user himself.!8

In this section, we present some ideas on how the initial weight assignments
should be determined and on how to allow weight adjustments once the system is

deployed.

Initial Weight Assignments

The cost values C; are intended to be normalized on a scale of 0 to 100, with a cost
of 0 indicating no cost at all with respect to that particular factor and a cost of 100
being the maximum possible cost. Since all costs are then on the same scale, the
weights w; should simply reflect the relative importance of each of the cost factors.
If the cost of bothering the user is considered to be twice as important as the cost
associated with elapsed time, then the weight attached to the bother cost should
be twice as high.

Care must be taken as well to ensure that the weights are assigned so that
benefits and costs can be reasonably compared. If, for example, the weights on the
costs were all set to be too high, the system would seldom decide to interact since
the computed costs would almost always exceed the expected benefits.

The amount of effort that is invested into choosing appropriate values for these
weights is up to the system designer. Some designers might be comfortable simply

establishing values for the weights based on their own intuition about the im-

18 A possible exception to this is in highly critical domains in which system designers do not be-
lieve that the user should be provided with much autonomy in controlling the system’s behaviour.
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portance of each cost factor. Other designers might prefer to determine appro-
priate weights experimentally. For this, we would recommend an approach very
similar to that used in the PARADISE framework for evaluating spoken dialogue
agents (Walker et al., 1997b). In this framework, it is proposed that a system’s per-
formance on a task can be measured by correlating it with user satisfaction. After
using a system, users are asked a series of questions (shown in Figure 3.7) to deter-
mine their overall satisfaction with the experience. By using these user satisfaction
values as an indicator of overall task performance, the PARADISE framework then
determines the weights on task success and on various dialogue-based cost measures
by using linear regression. The learned linear function is then used as an evalua-
tion function, approximating the expected user satisfaction, in later sessions. More

detail about this work can be found in Section 7.2.

Weight Adjustments

For most applications, it will be reasonable to allow users to adjust the weights on
the cost factors whenever they desire. For instance, a user who notices that the
system is asking too many time-consuming questions in situations where time is
somewhat pressing might consider increasing the weight associated with the time
cost. A system should include a straightforward interface through which the user
can inspect and adjust the weights on the cost factors.

Another possibility is to have the system learn from its experience and from
user feedback when it makes incorrect choices. The system can then make small
adjustments to the weights to improve its future decision-making. Since this is

not the focus of this thesis, we will not discuss it any further here. We will as-
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The following questions comprised the user satisfaction survey presented to users
after interacting with the Elvis e-mail agent (Walker et al., 1997a):

Was Elvis easy to understand in this conversation?

In this conversation, did Elvis understand what you said?

In this conversation, was it easy to find the message you wanted?

Was the pace of interaction with Elvis appropriate in this conversation?

In this conversation, did you know what you could say at each point of the
dialog?

How often was Elvis sluggish and slow to reply to you in this conversation?
Did Elvis work the way you expected him to in this conversation?

In this conversation, how did Elvis’s voice interface compare to the touch-tone
interface to voice mail?

From your current experience with using Elvis to get your email, do you think
you’d use Elvis regularly to access your mail when you are away from your
desk?

Figure 3.7: User satisfaction questions from PARADISE

sume throughout the thesis that reasonable weights have been chosen and that any

necessary adjustments will be made as needed.

3.5 Dialogues as Markov Decision Processes

We view the process of a system and user working together on solving a problem

as a dialogue between the two parties. It has been suggested (Levin, Pieraccini

and Eckert, 1998; Litman et al., 2000) that dialogues can be represented as Markov
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decision processes (MDPs). In this section, we will investigate the MDP formalism

as an extension of the model presented in Section 3.3.

3.5.1 Definitions

The Markov decision process (MDP) formalism is often very useful for intelligent

“problem

agents that are faced with sequential decision problems. An MDP is the
of calculating an optimal policy in an accessible, stochastic environment with a
known transition model” (Russell and Norvig, 1995). A policy is a mapping from
states to actions: a complete specification of the best action to take in every possible

state that might arise. Boutilier (1999) provides the following formal definition of

a Markov decision process:

A fully observable MDP M = < S, A, Pr, R > comprises the following
components. S is a finite set of states of the system being controlled.
The agent has a finite set of actions A with which to influence the system
state. Dynamics are given by Pr: S x A x S — [0, 1]; here Pr(s;, a, s;)
denotes the probability that action a, when executed at state s; induces

a transition to s;. R : S — R is a real-valued, bounded reward function.

Other sources (e.g., (Xuan, Lesser and Zilberstein, 2001)) define the reward
function as operating on S x A instead of on S only; that is, there is a reward
associated with performing an action in a given state instead of for simply being in
a particular state.

Once an agent’s decision-making situation has been represented in the MDP

framework, there are straightforward algorithms (e.g., value iteration (Puterman,
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1994)) for determining the optimal policy for that agent. Such a policy specifies, for
each state in the agent’s state space, the best action to perform in that state. This
is computed by determining which action will have the highest expected long-term
reward in each possible state. Once the policy has been computed, the agent only

needs to know its current state in order to look up the best possible action quickly.

3.5.2 MDPs for Dialogue: an example

In limited domains, the MDP formalism does indeed seem appropriate for dialogues.
For example, Levin, Pieraccini and Eckert (1998) discuss an example where the goal
of the system is simply to acquire the correct day and month from the user, while
minimizing the length of the interaction. There are 411 states in their system,
representing the different possible values that the system might have for the month
and day (including the empty value). For example, one possible state is the one in
which the system knows that it is March, but does not know the day. They consider
four possible actions: asking the user for the day, asking for the month, asking an
open-ended question for the date, and closing the dialogue. In their paper, they
demonstrate how reinforcement learning can be used to learn an optimal dialogue
strategy for this problem and for a small air travel information system.

In this section, we will present an example illustrating how such MDPs should
be set up in general for problems involving human-computer dialogue, emphasizing
the role of the factors that we have identified earlier in this chapter. In particular,
we propose that factors such as the probability of the user being able to answer

a question and the estimated cost of bothering the user with such an interaction
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should be key factors in setting up an MDP for this type of problem.

As an example, consider the following toy problem, a modification on the Wum-
pus world problem presented by Russell and Norvig (1995), with the addition of
the possibility of interaction with a user.

The idea is that we have an agent moving around in a grid, trying to get to
a reward (gold) while simultaneously attempting to avoid running into a creature
known as the Wumpus. In our version, we know the initial location of the Wumpus
and we know that, at each time step, it stays where it is or moves in any of the
four possible directions with equal probability. (If any of the four directions would
involve hitting a wall, it stays where it is instead of moving in that direction.) Our
agent, meanwhile, can choose to move in any direction, to stay where it is or to ask
the user for the Wumpus’s current location. If the agent does ask, there is some
chance that the user will not know the answer.

The agent’s current state is represented as a tuple < A/ T, W,E.N,D >. A
represents the agent’s current location (always known), 7' the current time step,
W the Wumpus’s location when we last knew it for certain, £ the number of time
steps elapsed since we last knew W'’s location, N the number of times the user has
been asked so far, and D whether or not the agent is dead.'

The “world” in this example is a 3-by-3 grid. Positions are labelled:

19We make an assumption that if we do run into the Wumpus, we will be alerted immediately
and the task will end in failure. The reason D has to be included in the state representation is
for cases like this: suppose the first five elements of the current state are <0,3,2,2,0>. We are in
position 0 at time 2, the Wumpus was in position 2, but we have not asked in 2 time steps. If
this were all that we represented, we could be alive or dead in this state, depending on what the
Wumpus had done since we last asked. We have to include D to distinguish between these two
possibilities — to determine whether or not the agent can still continue.
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One possible initial arrangement would have the agent at position 0, the gold
at 8 and the Wumpus at 7.

The agent’s possible actions are: moving left, moving right, moving up, moving
down, staying still, and asking the user for the Wumpus’s current location.

In Section 3.3.3, we discussed the fact that one challenge to extending our single-
decision model to the case of sequential decision problems was that it is difficult
to evaluate the expected utility of every state without projecting into the future
to consider all possible sequences of events. In the MDP framework, this work is
done entirely by the value iteration algorithm (Puterman, 1994). Once the system
designer has specified the state space, the set of possible actions, the reward function
and the transition model, the value iteration algorithm generates an optimal policy
mapping every state to the best possible action in that state.

In this modified Wumpus World example, the reward for getting to the gold is
R =1000— Bt, where t is the time when the gold is reached and /3 is a time discount
factor which can be varied. We impose a time limit (in this example, ¢t = 7) after
which the agent must stop and therefore receives no reward.

We also impose a cost associated with bothering the user by asking for the
Wumpus’s location. In this example, we assume a constant cost for each instance

of bothering.?* We will discuss below how choosing different values for this constant

20The possibility of non-linear bother functions was discussed in Section 3.4.3.
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affects the system’s behaviour.

Now, the overall value of a final state s is specified by the reward R(s) associated
with that state. The time and bother costs are represented as negative rewards
when performing actions involving interaction with the user. Once the state space,
set, of actions, transition model and reward functions are established, the MDP can
be solved using the value iteration algorithm (Puterman, 1994). This will provide
values for all non-final states in the state space. Once the MDP has been solved,
we will have an optimal policy for the agent: a specification of the best action for
each state that might arise.

Consider, for example, the state <4,4,8,1,0,0>: the agent is in square 4 at
time 4, the Wumpus was in square 8 one time step ago, the user has not yet been
bothered, and the agent is not dead.

In Table 3.5, we can see how the optimal action in the policy changes if we vary
the cost of bothering the user and the probability of the user being able to answer
the system’s question. The expected long-term utilities of actions are computed by
running the value iteration algorithm, and the time cost is set at a constant penalty

of 30 for each time step.

Bother Prob. EXPECTED UTILITY Optimal
cost user knows | Ask | Up | Down | Left | Right | Stay | action
10 0.8 326 | 322 0 0 322 318 Ask
0 0.8 336 | 322 0 0 322 318 Ask
20 0.8 316 | 322 0 0 322 318 | Up/Right

10 1.0 330 | 322 0 0 322 318 Ask
10 0.6 321 | 322 0 0 322 318 | Up/Right

Table 3.5: Optimal actions in the modified Wumpus World
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These examples demonstrate that things behave intuitively. As the bother cost
is increased, the value of asking decreases to the point that it is overtaken as the
optimal action. Similarly, as the user becomes less knowledgeable, the expected
value of asking decreases.

Note that there is an apparent difference between the decision procedure being
used in the MDP model and that being used in the earlier model of Section 3.3.2.
In the MDP model, instead of looking at whether the benefits of interaction exceed
the costs, we are simply concerned with choosing the best possible action, whether
that action involves interaction or not.

However, these two interpretations are in fact equivalent. In the model pre-
sented in Section 3.3.2, the benefits represented the degree by which the system’s
performance on the task was expected to improve if it did interact with the user.
Specifically, benefits were computed by taking the difference between EU,s, and
EU_,4, respectively the expected utility of the outcome(s) that would result from
the system choosing an action if it did ask the user the question and the expected
utility of the outcome(s) that would result from the system making its decision
without any further interaction.

The costs represented the degree to which interaction introduced extra cost
to those costs that would be incurred anyway without interaction. As discussed
in Section 3.3.2, costs are essentially computed as Costs,s, — Costs_qs,. S0, if the
benefits of interacting exceed the costs, then EU, g — EU_ 5 > Costsgsp—CoStS_ gk

This can be rearranged as EUyg, — Costsgsy > EU_qsp — CoStS—gsk-
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Now, we can define the overall value of an action as the difference between its
expected benefits and costs. With this approach, the final inequality above indi-
cates that the value of asking exceeds the value of not asking. Since the value of
not asking is in fact the value of the best action the system could take without
asking, we can conclude that Benefits > Costs implies that asking is in fact the

best action. The reverse implication can be argued in a similar way.

As a further illustration of the effect of modifying either the probability of the
user knowing the answer to a question or the cost of interaction, consider Table
3.6. This table shows the number of states (out of 9856 in the modified Wumpus
problem) for which asking is the action with the highest expected utility. Pyg
represents the probability that the user will have the knowledge required to help.
Again, the results are intuitive. As the cost of communication increases and as the
user becomes less knowledgeable, we can see from the table that it makes less sense

to interact.

Pyg | 1.0/0.80.6 | 0.4 0.2|0.0
Cost
0 239 | 217 | 217 | 204 | 158 | 0
10 49 | 29 | 15 1 0 0
20 6 0 0 0 0 0
30 0 0 0 0 0 0

Table 3.6: Asking as the optimal action in the modified Wumpus World

The above discussion demonstrates that the MDP formalism can be used to

model a situation where asking is one of the possible actions. By using expected
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utilities, we can decide what is the best action for any possible state we might end
up in. This leads to a policy that can be used by the agent to look up the best
action just by knowing its current state.

The problem is that most domains are not as simple as this one. Very often,
we might not be able to describe a state as easily, we might not be able to assign
utility values to every possible situation that might come up, or we might not be
able to predict the possible outcomes of each action (especially when the action
involves asking the user). Also, the questions that we might ask the user might not
be as straightforward and there might be ambiguity in the user’s responses.

The MDP framework is in some sense an ideal model. If we had all of these
things available, then we could reason in a rational way using theoretical techniques
that have been well-studied and proven to work. However, in domains that are more

complex, we will need to look at approximating the MDP approach.

3.5.3 MDPs for Dialogue: shortcomings

We maintain that, in a more complex, more practical dialogue situation, optimal
decisions will often not only depend on the current state of the problem-solving,
but also will rely heavily on the identity of the user that is involved in the session.
While it might be ideal to ask user A a particular question when we find ourselves in
state s, user B might find this same question intrusive, inappropriate or impossible
to answer in the same context.

In order for an optimal policy in the MDP framework to accommodate this,

the agent’s state representation must include information from the user model and
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from the dialogue history. Being in a particular problem-solving situation with
user A, who has a particular set of knowledge and preferences and with whom the
agent has a particular dialogue history, must be represented as an entirely different
state than being in that same situation with user B, who has a different profile
and dialogue history. In the previous example, this problem was avoided because
Py was simply treated as a constant for the entire domain and because the bother
factor was considered the same for any question at any time in the dialogue. In
fact, these factors should depend on the current state and on the particular question
that the system is considering asking the user.

With all the different factors that must be tracked for each user (willingness to
interact, probability of knowledge, etc.), this is going to make the difficult problem
of explosive state spaces in Markov decision processes even more serious.

Furthermore, a user model will rarely be a complete description of the user’s
current state of knowledge, preferences, etc. Rather, it will contain estimates of
various characteristics of the user, based on observations that the system has made.
This will often take the form of probabilistic information about the user.

One way to characterize the statements in the preceding paragraph is to say
that such an agent is working in an inaccessible environment: the current state will
not be known exactly at any given time. Partially observable MDPs (POMDPs) are
designed to deal with this type of scenario. In POMDPs, decisions must be made
when the agent does not have complete knowledge of its current state. Rather, de-
cisions must be based on the observations the agent has made about the world (and

its perceived likelihood of being in each of the possible states) (White, 1993). Un-
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fortunately, exact algorithms for POMDPs are computationally intractable (Zhou
and Hansen, 2001).

In addition to the issues of partial observability and computational intractabil-
ity, we have identified three significant problems with the use of Markov processes

as models of dialogue:

1. Throughout a dialogue, the task model and user model will change frequently
as the system learns more about the domain and about the user’s knowledge,
abilities, preferences and goals. Since MDP methods involve the computation
of an optimal policy ahead of time, such a policy would have to be recomputed
regularly in order to properly reflect changes in the system’s domain knowl-
edge and user model. For anything but the simplest domains, recomputing

the policy would be a computationally expensive exercise.

2. MDPs rely on all variables in the domain being discrete. In practice, many
relevant variables will be naturally represented as continuous. Although val-
ues for such variables could always be broken up into discrete ranges, it would

seem more appropriate to reason with the real-valued data itself.

3. Also related to the question of computing an optimal policy, we would suggest
that a large majority of “possible states” in the representation of a particular
domain will come up very rarely, if ever, in practice. The process of computing
an optimal policy — a mapping from every state in the domain to its optimal
action — wastes a great deal of time since much of the computed information

will not be useful in practice.
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3.5.4 Approximating MDPs

Exact solving of MDPs is rarely done anymore because it is far too expensive for
practical problems (Schuurmans and Patrascu, 2001). A substantial amount of
work has been published on methods for approximating Markov decision processes.
These methods deal primarily with the problems concerning the explosive state
space and the computational cost of the algorithms.

Dynamic decision networks (DDNs), for example, have been described (Russell
and Norvig, 1995) as approximations to partially observable MDPs. Systems using
a DDN representation are better able to deal with the fact that decision processes
in dialogue are often made on the basis of partial information. They do not use an
explicit state space like the one seen in MDPs; instead, a set of state variables is
used to represent the current state. At any given time, a system might know values
for some of these variables, but might only have probabilistic information about
the values of other variables. Decisions can be made based on whatever partial
information is available at the time of the decision.

Horvitz and Paek (2001) and Murray and Van Lehn (2000) demonstrate how
dynamic decision networks can be used for specific tasks, such as modeling the
uncertainty in a user’s goals and providing intelligent tutoring.

Other approaches to approximating MDPs include the work of Schuurmans and
Patrascu (2001). In this research, the nearest linear fit is found for the optimal
value function for an MDP. Linear programming techniques are then used to solve
the approximate problem. This approach has provided excellent speed improve-

ments over earlier approximation methods, but has resulted in about twice the
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approximation error.

However, despite advances in research on compact representations for MDPs,
some of the problems cited earlier still remain, such as the need for discrete variables
and the constantly changing user model.

A system that is able to make decisions “on the fly” by reasoning with the most
up-to-date information, without having to recompute an optimal policy, seems more
appropriate. Our model in Section 3.6 presents formulas for the system to use at
run-time to make decisions about interaction according to its current information

about several relevant factors.

3.6 An information-theoretic approach

In many practical application areas, it will be infeasible for a system to project
ahead to all possible sequences of events that might arise in the future and to
consider the probabilities and utilities of the possible outcomes.

In this section, we present an alternative approach to quantifying the benefits
of an interaction. Instead of performing detailed reasoning about the decisions
that the system might make, the possible consequences of those decisions and the
probabilities of each of those outcomes, we propose a model that makes use of
current information that any system might have available, without having to project

into the future.?!

21 Please note that MDP researchers might object to the fact that, in using this approximation,
we lose the Markov property because decisions are no longer based only on the current state of
the system. We acknowledge this shortcoming and intend to consider it in future work.
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3.6.1 Quantifying benefits

As discussed earlier, it will be possible in some applications to represent any situa-
tion that might arise as being one of a finite set of states, to determine probabilities
of actions leading to transitions among those states, and to establish rewards for
all outcomes that might arise. In such cases, the benefits of an interaction can
be determined simply by computing the expected gain in performance that would
result from the interaction.

This was the case in the path-choosing example in Section 3.3.2. Without
asking the user for help, the system believed that Path 2 looked like a slightly
better option. However, because there was a significant amount of uncertainty in
the system’s beliefs, the expected utility of choosing this path was only 60 on a
scale of 0 to 100. By soliciting additional information from the user, the system
knew it could then change its decision according to the response it received from
the user, choosing the most appropriate path in either case. This would result in
an expected utility of 71.5, representing a significant improvement.

In the absence of complete information about utilities and probabilities, we must
resort to some sort, of heuristic estimate. In this section, we consider a model that
attaches a value to the actual process of asking a particular question. We begin
with two major factors that should influence such an estimate: (1) the system’s
uncertainty about its current knowledge and (2) the perceived importance of the
information.

The intuition behind the first point is that the system should be more likely

to ask a question if it has no idea which of several possible facts is true in the
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real world than, for example, if it believes that one of the facts is almost certainly
true. With the second point, the idea is that a system should be far more likely to
ask questions that have been identified as important than it should be to ask less

crucial questions.

Uncertainty

What is needed is some means by which the system’s uncertainty can be quanti-
fied. Let us first consider the case in which the system is fully aware of the possible
answers that a user might give in response to a question. Information theory (Shan-
non and Weaver, 1949) provides a framework that deals very well with this type
of scenario. The general idea is that, the less a system initially knows about the
actual value of a particular variable, the more benefit there is to inquiring about
that variable.

If a question has possible answers v;, and if the probability of each of these
answers is represented by P(v;), then (according to Russell and Norvig (1995)) the

information-theoretic value of obtaining the answer is

I(P(v1),...,P(v,)) = Z —P(v;) log, P(v;)

The information content is measured in bits. For example, suppose we are
considering asking a question with six possible answers. If we have no information
about the likelihood of each of these answers, we would assign a probability of 1/6

to each. By actually asking the question, the information value is
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However, if we believed ahead of time that one of the answers had a probability
of 2/3, while each of the other five answers had probability 1/15, the information

value of the question would be only
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There is less of an information gain than in the previous example because we
already had a good idea of what the response would be, before we even asked the
question. As a more extreme example, if we believed answer A to have a probability
of 0.99, and each of the other five answers 0.002, the information value would be
only 0.104 bits.

If probabilities are not available, but if the system still has a finite set of possible
answers, then it can simply assume equal probability for all answers until further
evidence is obtained.

Information theory is used quite often in decision tree learning for deciding
which attribute to choose at each step when trying to classify a set of examples.
For our purposes, the idea behind using information theory is to give us a measure

of the system’s uncertainty about a particular variable, by measuring how much
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information would be gained by obtaining the definite value of that variable.

In applications where systems do not have information about the possible an-
swers, or where the set of possible answers is infinite, an alternative to this information-
theoretic measure of uncertainty will be needed.

In determining what they would do next without further user assistance, some
systems (e.g., (Kozierok, 1993)) might return a confidence level in the success of
the proposed action. If available, this confidence value can be used to measure
the system’s uncertainty directly. If CONF is the system’s confidence in its next
action, then the uncertainty level can be set to 1 — CONF-.

In the absence of such a confidence value, the system will have to resort to
using a heuristic capturing its general uncertainty about its domain knowledge.
Such a heuristic should take into account the system’s experience with working in
the domain (the number of problems it has solved in this domain, the number of
“similar” instances it has seen), the system’s knowledge of this user (how many
times it has interacted with this user, along with a sense of how many times it
should have interacted, in order to really be sure of its user model), as well as
any information the system has about its performance on similar tasks in the past
(based on user feedback or the ability to observe directly the success of a task).
We discuss this idea further in Section 6.1.6, but for now, we will focus on the
information-theoretic case, where the possible answers to a question are known in

advance.



CHAPTER 3. A MODEL FOR REASONING ABOUT INTERACTION 98

Importance

Even if a system has a great deal of uncertainty about a particular topic in its
domain of interest, however, it is quite possible that this information could turn
out to be irrelevant in the system’s decision-making process. For example, a system
might have no idea about the user’s preference between the movies being shown on
two different flights, but if it is believed that acquiring this knowledge would have
little or no impact on the user’s ultimate choice of flight, then there is no need to
ask for the information.

To deal with this issue, we introduce the idea of the importance or criticality
of a particular variable or question in the domain. It would be up to the system
designer to assign criticality values to each of the possible topics and subtopics.

In many domains, the value of a problem solution might be measured by means
of a formula that includes weights on a number of criteria. For example, in a
travel domain, the value of a final travel plan might be measured by a weighted
combination of measures of how well the plan satisfies the user’s preferences on
issues such as the preferred airline, preferred time of day, etc.

In such a scenario, these weights could be used as guidance in representing the
importance of each component part. The importance of asking the user about his
airline preference, for example, is directly related to the weight associated with that
topic in the evaluation function.

When such an evaluation function is not available, system designers will have
to assign importance values to each topic by hand. One argument against this

approach is that these criticality values are very subjective. However, we would
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argue that these values are no more subjective than utilities that would be elicited
from users or system designers in a full-fledged utility-based system. In fact, it
should be easier for people to assign single criticality values to specific classes of
information than to assign abstract utility values to complex outcomes whose worth
depends on a large number of attributes. Using the travel domain as an example
again, a system designer would have a fairly good sense that, for most users, certain
aspects of a flight description (cost, time of day, airline, etc.) are going to be more
important than others. The importance values could be specified without knowing
the exact preferences of any given user, but knowing only that certain attributes
are more likely to influence these preferences.

We advocate that importance values be elicited on a qualitative scale (from very
high to very low) and then converted to an appropriate numerical scale.

The level of granularity at which these criticality values are assigned is again up
to the system designer, as part of the process of deciding on a task representation.
We would recommend that classes of topics be assigned an overall criticality level,
but that it should be possible to override this value by specifying importance values
for particular questions that might arise within those classes.

In most domains, although the initial importance values would be set by the
system designer, users should have the opportunity to adjust these values as they

deem appropriate.
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User knowledge

The preceding discussion leads to the following preliminary formula for a heuristic

for the value of interaction:

Value of question = Importance x Uncertainty

However, as in our earlier models, this value must be tempered by the fact that
the user might be unable to provide an answer to the question. This is where
Py, the probability of the user having the knowledge to respond to a question,
comes into play. A particular fact could be important and a system could be highly
uncertain about it, but there is little point in asking the user about this fact if we
believe that he is almost certain not to know the answer.

Finally, we must introduce a constant term k to the formula, to ensure that
benefits and costs are on the same scale. The value of k must be determined

experimentally. The formula then becomes

Value of question = k x Py x Importance x Uncertainty

We will talk in more detail about Pyx and how its value should be extracted

from a user model in Section 3.8.

To illustrate this alternative model, consider again the simple path-choosing
example from Section 3.3.2. The question that was being considered in that ex-

ample was a simple question with only two possible answers and with the system
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believing that those two answers were equally likely. Therefore, we can use the
information-theoretic approach to measuring uncertainty. The information content
of the question is:

11 1.1 1. 1
I(=,2) =—Zlogy= — ~log, = =1 bit
(2’2) 9 0825 T 5 %23 '

As specified in the original description of the example, the probability of the
user actually knowing the correct answer to the question is 0.6.

The final components of the formula are the importance of the question and the
constant value k. In this case, the answer to the question is fairly important, but
it is definitely possible for the system to proceed without the user’s help. Suppose
that the importance of this question has been set at 40 out of 100. Suppose also

that the system has learned that an appropriate value of k if 0.4. Then,

Value of question = k X Py x Importance x Uncertainty
=04x0.6x40x1
=096

Table 3.7 shows the same variations on the path-choosing example that were
included in Table 3.4. Costs are computed in exactly the same way as in Section
3.3.2, and so the cost values are simply copied from the earlier table. However, the
benefits are now computed by using the above formula for the value of asking the
question, rather than by considering the expected utilities of the course of action

that would be taken if the system did or did not interact. If the two tables are
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compared, it can be seen that the decisions made by the two agents are identical.

However, the agent described in this section accomplishes this without expensive

reasoning about future sequences of events.

P(U knows) | P(Path 1 clear) | ¢t | b | Inf. content | Benefits | Costs | Ask?
0.6 0.5 10 | 10 1 9.6 5 Yes
0.2 0.5 10 | 10 1 3.2 5 No
0.6 0.9 10 | 10 0.47 4.5 5 No
0.6 0.1 10 | 10 0.47 4.5 5 No
1.0 0.9 10 | 10 0.47 7.5 5 Yes
0.6 0.5 50 | 10 1 12 13 No
0.6 0.5 10 | 40 1 12 14 No

Table 3.7: Variations on path-choosing example revisited

3.6.2 Examples

We will now consider two examples from the travel domain to demonstrate how the

heuristic model works.

Example 1: Suppose we are trying to decide whether or not to ask the user

for the preferred time of day for a flight (assuming it was not specified initially).

This is an example of the case where we know the possible answers (and their

probabilities), so we can use the information-theoretic approach to measuring un-

certainty.

Suppose that flight times are divided into four time segments (morning, after-

noon, evening, overnight), and that we expect the following probability distribu-

tion for the user’s preferred time segment: P(Morning) = 0.15, P(A fternoon) =
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0.50, P(Evening) = 0.30, P(Overnight) = 0.05. In this case, uncertainty is com-
puted using the formula for information gain as 7(0.15,0.50,0.30,0.05) = 1.65.
The importance of this question is quite high (75). Since almost all questions

in the travel domain will be about the user’s own preferences, we will assume that

Benefits = k x Pyx x Importance x Uncertainty
=04x1.0x75x1.65
=49.5

This is very high, but this is intuitive: we should be very likely to ask this
question.

For costs, we will assume low cost values for time (20) and for bother (5), since
the question is quite straightforward and should be understood by the user to be
highly relevant.?? Assume w; = 0.4, wy = 0.3. Then Costs = 0.4(20) + 0.3(5) =

9.5. Benefits outweigh costs, so we will ask the question.

Example 2: Instead of asking about preferred time of day, suppose we are
considering asking about the selection of magazines available on the flight. The
importance for this specific topic should be very low. Suppose it is set at 5 (out of
100).

For the possible answers, let us assume that we are asking users to choose their

22Note that we are assuming that the question will actually be reasonable — for example, that the
system would not present the user with a certain time range as an option if there are not actually
flights available at that time. If this type of question were possible, then the “bother” experienced
by the user upon discovering that an irrelevant question was asked might be significantly higher.
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two favourite “types” of magazines from a list of ten. Only some subset of these
types are available on each airline. There are 45 possible combinations of two
magazine types; suppose we have a prior probability distribution such that the

information value for the question is 2.65.23 Py is still 1.0.

Benefits = 0.4 x 1.0 x 5 x 2.65
= 5.30

Costs: Suppose the time and bother costs are estimated as being 30 and 5,
respectively, with the same weights as above.
Costs = 0.4(30) + 0.3(5) = 13.5.

Costs are higher than benefits, and we would not bother asking this question.

This section has provided an alternate approach to computing the benefits of
interacting with a user, without projecting ahead to consider all possible future
sequences of actions, their consequences and utilities. Instead, it uses information
about the system’s current uncertainty about its knowledge, the perceived impor-
tance of the type of question being considered and the probability of the user being
able to provide assistance.

Once these benefits are computed, the decision procedure is the same as it was
in earlier models. The costs are computed in exactly the same way as shown in

Section 3.3.2, and the system will decide to interact if the benefits exceed the costs.

23This comes from an example distribution where most of the combinations of magazine types
have probability 0, but 8 of the 45 combinations have some positive probability.
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3.7 A design procedure

In this section, we will provide a systematic approach for the design of a mixed-
initiative system that makes use of the models presented in this thesis for reasoning
about interacting with users. We will first discuss the conditions under which
each of the different models is appropriate. We will then provide a procedure for
designing such a mixed-initiative system. This procedure will include a list of all
the factors that must be modeled and when each should be provided by the system

designer or obtained from the user.

3.7.1 Choosing the appropriate model

Figure 3.8 illustrates a decision process for choosing the appropriate model for a
given application area. The details of this process will be discussed in the following
paragraphs.

The single-decision model presented in Section 3.3.2 is applicable only when
the domain is one in which all decisions are one-shot decisions: the system has to
choose an action to perform, will complete the entire task after making that single
choice, and must decide whether to gather more information from the user before
making the decision. This single-decision model can be extended to deal with simple
sequential decision situations using the dynamic programming approach discussed
briefly in Section 3.3.3. However, this applies only when all possible state sequences
are of finite length.

For the case of infinite possible sequences of events, a well-known extension to

dynamic programming uses the Markov decision process. This approach, discussed
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Figure 3.8: A decision procedure for choosing the appropriate model

in Section 3.5, provides an exact and systematic technique that has been shown to
be effective for rational decision-making in many different domains (Feinberg and
Shwartz, 2001).

When it comes to applying the MDP approach to dialogue with users, however,
there are a few obstacles. We suggest the following checklist for system designers
to use in determining whether an MDP approach is appropriate for their problem
of interest. If all of the statements below are true, then such an approach should be
successful. Otherwise, an alternative model, such as the one presented in Section

3.6, will be required.
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1. It is possible to construct a reasonably-sized state space, possibly by repre-

senting the current state with a small set of finite variables.

2. A finite set of actions can be specified, including actions involving interaction

with the user.

3. It is possible to determine, for each state/action pair, the probabilities of

transitions to each possible next state.

4. It is possible to identify all final outcomes to problem-solving sessions and
to specify rewards for all of them, as well as rewards (possibly negative)
associated with every state or state/action pair. (This might come in the
form of a utility function that assigns utility values to states by evaluating

the states on the basis of a number of subutility functions.)

5. The state is accessible. The system will always know exactly what state it is

in at any time.

6. It is reasonable to recompute the optimal policy frequently, OR the models
of the user and domain are not expected to change significantly or frequently

as the system gains experience.

If all of these points are satisfied, then the designer should refer to a standard
MDP reference (e.g., (Puterman, 1994)) in order to build the appropriate system:
establishing the state space, the set of actions, the transition model and the reward
model. The main contribution of our work in this case is the identification of

dialogue-specific factors such as the user’s willingness to interact and the user’s



CHAPTER 3. A MODEL FOR REASONING ABOUT INTERACTION 108

perceived knowledge of the domain to be used in building the transition model and
reward (cost) model.

If item #5 on the list above (the accessibility of the state) is the only obstacle,
then it will be possible to represent the problem as a partially-observable MDP,
which can then be approximated by a dynamic decision network (DDN). If the
DDN approach is chosen, then an explicit state space will not be required; however,
a set of state variables (as described in Section 3.5.4) will have to be established.
These state variables will allow the system to use whatever evidence it has available
to determine a probability distribution on the current state. The dynamic decision
network method is appropriate as long as the designer is comfortable assigning
conditional probabilities to the nodes representing the state variables and assigning
utilities to the different situations that might arise.

If neither the MDP approach nor the dynamic decision network approach is
deemed appropriate, then the heuristic model discussed in Section 3.6 will be use-
ful. In this model, information about the possible consequences of every action
and the utilities of possible outcomes many steps in the future are not required.
This analysis is instead approximated by considering how uncertain the system is
about the question it is considering asking the user, how important that question is
considered to be, and how likely it is that the user will be able to provide a helpful
response.

Table 3.8 shows a list of all of the numerical factors discussed in this chapter
and whether each one is necessary for each of the possible models that have been

considered.



CHAPTER 3. A MODEL FOR REASONING ABOUT INTERACTION 109

Factor

Single-decision

MDP

Heuristic

Utilities U(s) for all s

X

Importance of questions I'mp

Overall Task criticality Taskcrit

Pyk

Initial beliefs about the world

Time required for each type of interaction

Time cost function ¢

Bother cost function b

Other cost functions C;

Weights on cost factors w;

LR R R R AR AR AR

LSRR R R AR AR A R

Function for measuring uncertainty Unc

User willingness (w)

»

~

User preference information

R R R AR A R A R N R R

Table 3.8: Numerical factors included in models of Chapter 3

3.7.2 Steps in System Design

Below is a list of important steps that must be followed by a system designer

wanting to use the models presented in this thesis. The steps are divided into three

categories: (1) issues that must be addressed when the designer is first implementing

the system, (2) steps that must be taken when each user first uses the system, (3)

updates that must occur as the system interacts with users.

For several of the steps mentioned below, we have made suggestions throughout

the thesis as to how exactly the issues might be modeled. However, the overall

model is flexible enough to allow alternative methods or algorithms to be substi-

tuted for our own recommendations.

Unless otherwise indicated, all steps are relevant for all models discussed in this
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chapter. We first present a summary of the steps involved in constructing the sys-
tem, to be followed as a checklist for the design procedure. This is followed by a

detailed discussion of each point in the checklist.

Summary

Initial system design:

e Establish the problem representation.
e Design the user interface.

e Establish utility /reward functions. (For the information-theoretic heuristic
model, establish importance values for different questions in the domain in-

stead.)
e Specify the task criticality value for the domain.

e Determine the exact role of specific user knowledge, stereotypical user knowl-

edge and knowledge expected of all users.
e Incorporate understandability.

e Provide the system with an initial set of beliefs about the application domain.
Establish how those beliefs will change according to new information that the

system gathers (from the user or otherwise).
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e Determine the role of time and time criticality. Provide initial estimates for
the amount of time that each action will take, and specify how those estimates

will change as the system gains experience.

e Address the issue of bother cost, specifying how the bother will be measured as
a function of the user’s willingness. and establishing how the bother function
depends on the number of interactions so far in the dialogue and on the

recency and estimated cognitive load associated with each.

e Determine if any other cost factors are relevant for the domain of interest.

Establish initial weights for the cost factors.
e If desired, establish a set of user stereotypes.
When user first employs system:
e Assign the user to a stereotype.
e Establish the user’s willingness to interact.
e Elicit any needed preference information from the user.
Updates during/after user sessions:
e Update the system’s beliefs about the world, as new information is observed.
e Update the representations of various types of user knowledge information.
e Adjust the user’s willingness to interact, via learning or explicit user feedback.

e Maintain the dialogue history.



CHAPTER 3. A MODEL FOR REASONING ABOUT INTERACTION 112

e Adjust the weights on cost factors, via learning or explicit user feedback.

Detailed discussion

We now discuss each of the points in the above list in more detail.

Initial system design

e Establish the representation that will be used for the problem(s) involved in
the application domain. How is the task represented? How is a state of the
world represented? What actions can the system take? What is the transition
model between states? (If a particular action is taken in a particular state,
what new state(s) will result and with what probability?) What constitutes

a solution to the problem? How are tasks broken down into subtasks?

e Design the user interface for the system. This is not our focus in this thesis,
but it is still an important concern. Particularly relevant to our work is the
issue of how the user is able to take control of the application. What mecha-
nisms will exist to allow the user to take an action? Are there restrictions on

which user actions are allowed in different situations?

e Establish how the utilities of states (or the rewards associated with solutions
to the task) will be computed. This involves specifying values U(s) for all
possible states s, or a function that allows these utilities to be computed by
evaluating each state according to a set of criteria. This will be a domain-
dependent exercise: to decide what factors will be combined to determine the

value of a solution. For example, in a scheduling domain, a schedule might
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be evaluated according to the constraints that are violated by the schedule

and the penalties associated with violating each of those constraints.

In many cases, utility functions will be user-dependent: the exact utilities of
each outcome will depend on the preferences of an individual user. This issue
will be addressed in a later step; however, at this step, the system designer

should specify how the utility function will depend on any user-specific factors.

For the information-theoretic heuristic model of Section 3.6, information should
be specified not about the utilities of states, but instead about the importance
Imp of different questions or classes of questions that might come up in the
problem solving. This importance value is intended to reflect how crucial a
role this particular aspect of the task is expected to play in evaluating the

overall quality of a problem solution.

e Establish the task criticality value T'askcrit for the domain as a whole. For
example, a domain such as military planning would have a far higher task
criticality value than a problem in which a system is recommending menu

items at a restaurant.

e Determine the role of modeling user knowledge information. There are several
options available to the system designer, as shown in Figure 3.2. The designer
must decide, for example, whether she wishes to model information about how
strong each specific user’s knowledge is perceived to be in each specific area
of expertise within the domain, or more general knowledge about what all

users (or all users of a particular “type”) might be expected to know about



CHAPTER 3. A MODEL FOR REASONING ABOUT INTERACTION 114

the domain in general.

Most likely, a system designer will want to use some combination of the various
types of user knowledge modeling mentioned in Figure 3.2. In this case,
there must be some mechanism in place for managing the different types
of information and for updating values as new information is obtained. In
particular, how is the value of Py generated at any given time, based on
the system’s user modeling information? For example, how is stereotypical
information about the expectation of the general user’s knowledge merged
with specific information about this user’s knowledge? Similarly, what is the
role of the system’s model of users’ knowledge about the domain in general and
about specific topics? We provide some suggestions for how to manage these
different models in Section 3.8, but the model allows for alternate approaches

to be substituted.

e Provide a mechanism for the system to use to keep a record of the dialogue so
far — either a dialogue history (as seen in Collagen (Rich and Sidner, 1998)) or,
at the very least, an itemized list of interactions with the user, their perceived

“cost” and when they happened.

e Provide the system with an initial set of beliefs about the world. If the task
representation consists of a set of random variables that can take on any of a
set of possible values, then the system’s beliefs are represented as probability
distributions over the possible values for each random variable. For example,
in the path-choosing example, the status of path 1 would be a variable (with

possible values ‘clear’ and ‘busy’). If the system initially has no knowledge of
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the status of path 1, then it would assign a probability of 0.5 to each of those

values.

Determine how these values should be updated when the system observes
new information or when the user provides information about a variable. For
example, if the user says that x = 5, then what should the system do if
it previously believed that x = 4 with probability 0.8 and z = 5 with a
probability of only 0.27 Does it take the user’s word and make z = 5 a

“known” fact? Does it revise its beliefs according to some standard formula?

e Establish the role of time. What is the penalty function associated with time
elapsing? In other words, how does the value of finding a solution decrease — if
at all — as time elapses? This involves specifying a function t(s, a) indicating
how the time penalty depends on the current state and on the particular

action (e.g., question for the user) being considered.

As mentioned in Section 3.4.3, this time cost function will likely require values
for two variables: ¢ (or ), indicating how time-critical the problem is, and T,
an optional specification of a deadline after which no solution will have any
value. Defaults should be provided for these values by the system designer,

with the option available for subsequent adjustment by users.

Also related to time, the designer must provide initial estimates for the
amount of time that each type of action (including interaction) will take.
This information does not necessarily have to be provided as an exact num-
ber of seconds or minutes, but can be specified on a qualitative scale. For

example, in the travel domain, the time requirement for asking the user to
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rank all available airlines might be listed as very high, whereas the time re-
quirement would be low for a simple question about the user’s preference
between aisle and window seats. These qualitative descriptions can then be
converted to a normalized 0-100 scale, in order to obtain a time cost penalty

to be used in the formulas.

The system designer might also want to specify how these estimates could be
revised as new observations are made during problem-solving sessions with a
user. If the designer proves to be wrong with her initial guess at the length
of time required to interact with a user, it is important for the system to be

able to adjust this estimate through learning techniques.

e Specify the bother cost function . Determine how the bother will be mea-
sured as a function of the user’s willingness as suggested in Section 3.4.3.
Establish also how the bother function depends on the number of interac-
tions so far in the dialogue and on the recency and estimated cognitive load
associated with each. Again, we provide recommendations in Section 3.4.3,
but system designers are free to use any function for estimating the cost of

bothering the user.

Provide a mechanism that allows for the user to adjust the willingness level

(which will be set when the user first employs the system, as discussed below).
e Determine if there are any other cost factors C; involved in the domain of

interest: resource costs, etc.

Assign initial weights w; to the various cost factors, based on the system
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designer’s intuition or on empirical results about the role of each relevant cost
factor. Provide a mechanism by which the user — and possibly the system
(through learning and user feedback) — can adjust the weights. Ensure that

weights are chosen so that Benefits and Costs end up on the same scale.

e [f using the heuristic model of Section 3.6, determine how uncertainty will be

measured from among the alternatives discussed.

o If desired, develop a set of user stereotypes and a set of criteria to be used
in determining to which stereotype each user belongs, based on an initial

interview.

When user first employs system

e Assign the user to a stereotype, based on an initial interview. For instance,
a user’s general expertise might be expert, intermediate or novice, according

to his own self-evaluation or according to his responses to a questionnaire.

e Establish the user’s willingness to interact with the system. Have the user
estimate this value on a quantitative or qualitative scale. This process could
be assisted by asking the user a standard set of questions to establish how

active he wishes his role to be in the problem solving.

e Elicit any preference information from the user that is needed to solidify the

system’s model of the utilities of different possible outcomes in the domain.
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Updates during/after user sessions

As the system interacts with users, many components of the system’s user model

and task model will have to be adjusted.

e The system’s beliefs about the world might change, based on new observa-
tions. This is not our focus in this work, but there is an entire body of research

on belief revision and nonmonotonic reasoning (e.g. (Bacchus et al., 1994)).

e As the system observes whether or not the user was able to answer a particular

question, it will have to adjust its representation of the user’s knowledge.

e The user’s willingness to interact might be adjusted explicitly by the user,
or automatically by the system as it receives feedback on the actual bother

experienced by the user.

e The dialogue history will have to be maintained. This includes storing infor-
mation about each interaction with the user, the time at which it occurred,

and the perceived cognitive cost of the question involved.

e The weights on cost factors might be adjusted. Again, this could be done
explicitly by the user or automatically by the system, as it learns from its

performance.

This section has provided a systematic procedure for designers to use in de-

veloping mixed-initiative systems that make rational decisions about interacting
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with users. The process has been broken down into steps to follow during the ini-
tial design stage, during the first interactions with each individual user and during

subsequent typical user sessions.

3.8 User modeling

As mentioned in Section 3.2, a user model is a system’s internal representation of
a user’s knowledge, abilities, preferences, goals and any other user-specific infor-
mation that helps a system to adapt its behaviour in a way that is appropriate
for each user. The user model is a crucial component of our model for reasoning
about interaction with users. In particular, we have emphasized the importance of
reasoning about the user’s perceived knowledge and about the user’s willingness to
interact with the system over the course of a session.

As a system interacts with different users, it will often have to update its user
models to reflect the new evidence that it has acquired. For example, a system
that initially believed a user to be knowledgeable about a particular topic, but
discovered that the user was twice unable to answer questions about that topic,

should update its beliefs about that user to reflect this new information.

3.8.1 User Willingness

For the most part, the user should be primarily responsible for updating the variable
representing his willingness to be an active participant in dialogues with the system.
The user will be able to rely on his intuitive sense of how satisfied he has been with

dialogues with the system in order to gauge whether or not the system is too
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bothersome. For example, a user who believes that the system is interrupting him
far too often to ask mundane questions can access his profile and adjust the bother
parameter to indicate that he wishes to be consulted less frequently.

This introduces an issue that is an important ethical one in all user modeling
research: should users always have the ability to view and/or edit the information
that the system stores about them (Cook and Kay, 1994)7 With the possible
exception of highly critical applications where user modeling data is extremely
reliable and has been carefully collected, we believe that users should always have
this ability. However, users should be made aware of how the changes they are
making will affect the system’s behaviour.

Depending on the sophistication of the system, it might be possible for it to use
certain cues to initiate a change to the bother factor. For example, in the unlikely
case that the system is equipped with vision capabilities and enough intelligence to
detect frustration on a user’s face, this might be used to recognize that the user’s
bother level should be adjusted. Similarly, a system that is able to detect that
the user is particularly busy at a given time might take the initiative to adjust the

user’s bother level temporarily.

3.8.2 User Knowledge

The aspect of the user model that is more important for the system to maintain is
that of user knowledge. As mentioned in Section 3.2.2, in determining the likelihood
of a user knowing the answer to a particular question, a system might want to

incorporate different types of information about user knowledge. This includes
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information about the specific user’s knowledge, about the knowledge expected of
users in the same stereotype, and about the general knowledge expected of all users.
For each of those classes of information, a system might have expectations about
the probability of getting an answer to the specific question being considered, about
a particular class of questions, or about any question at all in the domain.

In this section, we provide a matrix-based framework that can be used to deter-
mine, at any moment in time, a single Py value representing the probability of the
user being able to answer a particular question. This is done by considering all of
the types of information described in the previous paragraph, weighted according
to the amount of experience the system has with particular users and topics and
according to initial weights specified by the system designer.? We will describe
how information about user knowledge is stored, how it is used to compute Py,

and how it is updated as the system makes new observations.

Storing user knowledge information

Suppose that a system is aware of m distinct users and n stereotypes to which
users might belong. Suppose also that we are able to enumerate ¢ possible questions
or topics that a system might want to ask of a user, and j classes into which these
questions can be categorized.

Our framework then requires the following data structures:

24The idea of considering a single user, user stereotypes and all users is in the same vein as
the concept of weighted combinations, used in statistical natural language processing (Chi et al.,
2001).
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e For each user, construct a 1 x (m + n + 1) vector u. The first m entries
are used to identify the user as one of the m users about which the system
has a profile. These m entries include a single 1 and m — 1 zeroes. In the
example vector below, the user is the second of four known users. The next n
entries classify the user into one or more stereotypes. If the system designer
wishes for each user to belong to only one stereotype, then these n entries will
include a single 1 as the only non-zero number. However, it is also possible to
indicate that a user possesses some characteristics of more than one stereotype
by including multiple non-zero entries that sum to 1. In the example below,
there are three stereotypes; the user is primarily identified as belonging to
the first stereotype, but has some properties of the third as well. The final
entry of this vector is always 1 and indicates that the user is a member of the

class of “all users” of the system.

(0100|0.900.1|1)

Also for each user, construct a second 1 X (m + n + 1) vector uw. This vec-
tor stores weights to indicate how much impact each type of user-knowledge
information should have in computing Pyg. Initially, the system might have
no information at all about individual users, in which case the weight on
the user-specific information should be zero.?® In these early situations, pre-

dictions about the knowledge of a user will be based entirely (or mostly)

25In some systems, initial interviews might be used to gather some concrete information about
individual users, in which case some weight would be placed on the user-specific information that
is gathered.
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on stereotypical information and estimates of the knowledge expected of any
user. The actual weights for stereotypes and for the “all-users” entry should
be set up according to the desired contribution of each. For instance, if the
system designer is confident that a user’s stereotype will be a very accurate
predictor of the user’s behaviour, then she might set the initial weight on
the stereotypical information to be quite high relative to the weight of the
“all-users” entry (say, 0.9 vs. 0.1), as shown in the example vector below. If,
on the other hand, there are no stereotypes defined or there is low confidence
in their relevance to any given user, the information about all users should

carry most of the weight.

(0 000 09 09 09 | 0.1)

The weights in this vector will be updated as the system makes its own ob-
servations about the knowledge of users, again according to the specifications
of the system designer. For example, once the system has observed the user’s
expertise on a particular topic on a few occasions, this user-specific infor-
mation should be the primary predictor of whether the user will be helpful
on this topic in the future. In other words, the weight of the contribution
from the user-specific information should increase gradually until it eventu-
ally overwhelms the weight on the stereotype and “all-users” contributions.
An example of this, and further discussion on how to update the weights, will

appear later in this section.

e For each possible topic or question, construct two (i + j + 1) x 1 vectors t
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and tw. These are analogous to the user vectors described above. In the first
vector, the first 7 entries will uniquely identify the question, the next j entries
will classify it into one or more classes of questions, and the final entry will
always be one. The example below shows the topic vector for the third of five

questions, classified as belonging to the second of two question types.

[ o

0

\ 1)

The second vector tw will indicate the desired weights on specific questions,

general topic areas, and the domain as a whole.

e Construct a large (m +n + 1) x (i + j + 1) matrix PK. This matrix stores
probability values: each entry represents the likelihood that a specific user, a
class of users, or any user at all would know the answer to a specific question,
a question of a certain type, or any question in the domain. The rows identify
the user or user stereotype, while the columns represent questions or topic

areas. In the matrix below, for example, the bold entries indicate that the
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first user has a probability of 0.8 of being able to answer the first question,
and that users belonging to the third stereotype have a probability of 0.7 of

answering questions of the second type.

(08 06 05 02 0.0 | 0.7 0.3 | 07 )
0.7 0.6 07 02 00 | 0.7 03 | 0.6
0.7 0.6 07 02 00 | 06 03 | 05
0.7 0.6 0.7 02 00 | 06 03 | 0.6

\0.8 0.7 08 02 00 | 06 06 | 0.6

Now, if the system is considering whether or not to ask a user a question, it
can use matrix multiplication to determine a single Py, value, based on a weighted
combination of the above information.

This is done by multiplying u by uw element-wise, to yield a new vector uytq,
multiplying t by tw element-wise, to yield a new vector tytq, and then using matrix

multiplication to obtain Pyg = uwtq PK twia-

In practice, when the vectors and matrices are very large, it will make sense to
perform these multiplications not with the entire matrices, but by selecting only the

rows and columns that are relevant to the current user and the current question.
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This is demonstrated in the following example.

Example 1. Suppose we have three different users, two stereotypes, and four
different possible questions that are classified into two topic areas. For this example,
we are considering asking user 1 (who belongs to stereotype 2) the third question

in the list (belonging to topic area 2). The vectors u and t are therefore set as

u:<100|o1|1>

T
t=(0010|01\1>

We have no evidence about the specific user’s knowledge, so the uw vector below

follows:

shows that we are relying primarily on estimates of all users’ knowledge, to a lesser
extent on stereotype information, and not at all on specific user knowledge. Note
that the probabilities within each segment of the vector are replicated, and the
representative probabilities (0, 0.2 and 0.8, in this case) always sum to 1. Similarly,
the tw vector below shows that our estimates are based heavily on what the system
knows about the general knowledge domain of users, as opposed to their abilities

to deal with specific questions.
11W=<0 0 0 | 02 02 | 0.8)
T
tVV:(O.l 0.1 0.1 0.1 | 0.2 0.2 | 0.7>

Finally, the probability matrix PK is as follows. The entries with question

marks in the first row reflect the fact that we have made no observations about this
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particular user, and therefore we have no corresponding probabilities.

\ 0.8 0.7 08 0.2 | 0.6 06 | 0.6/

To perform the matrix multiplication, in order to obtain an overall Pyg value,
we would select only the nonzero entries from the vector u and the corresponding
weight vector uw. This yields new vectors u = (1 1 1) and uw = (0 0.2 0.8).
Performing the element-wise multiplication of these two vectors gives the result
Uwta = (0 0.2 0.8). Similarly, we would shrink the vectors t and tw by selecting
only the nonzero entries in t and the corresponding entries in tw: t = (111)", tw =
(0.1 0.2 0.7)T. Performing element-wise multiplication yields tywta = (0.1 0.2 0.7).

Finally, from the large probability matrix PK, we will use only rows 1, 5 and
6 (corresponding to the nonzero entries in u) and only columns 3, 6 and 7 (corre-
sponding to the nonzero entries in t).

Performing the matrix multiplication yields an overall Py value of
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[ S ¢ 0.1
( 0 02 08 > 0.8 0.6 0.7 0.2 | =0.634
0.8 0.6 0.6 0.7

Example 2. As a second example, consider the situation where the system is
considering asking the same question of the same user at a later time. Because the
system has now had more experience in dealing with this user and in asking this
question of different users, the weight vectors have changed so that more weight
is placed on specific knowledge information. In particular, suppose that uw has
changed from (000 | 0.2 0.2 | 0.8) to (0.75 0.75 0.75 | 0.05 0.05 | 0.2), and that tw
has changed from (0.1 0.1 0.1 0.1 | 0.2 0.2 | 0.7)" to (0.6 0.6 0.6 0.6 | 0.1 0.1 | 0.3)".

Also, since the system has now observed the user’s ability to answer certain
questions, the first row of the PK matrix (which contained only question marks
before) will now contain actual values: say, (0.8 0.8 0.9 0.9 | 0.8 0.9 | 0.85).

The matrix multiplication will now yield a Pyg value of 0.797. This is a sig-
nificant change from the value 0.634 that was found before. The increase is due to
the fact that the system has now observed specific information about this user and

has found him to be quite knowledgeable.

Updating probability values

The actual probabilities of different users being able to answer different questions
are also stored in a set of matrices. One matrix N,g maintains a record of the
number of times each question or type of question has been asked of each user or

type of user. An example matrix is shown below, where there are five different
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users, three different stereotypes, six different questions and two different “types”
of questions. For instance, row four shows that User #4 has been asked the first
question 3 times and the fifth and six questions once each. All of these questions
fall under the second question type. The final entry in the row shows the total
number of questions that have been asked of the user.

Similarly, column 4 shows that question #4 has been asked once of user #1
and twice of user #3, once of users in the first stereotype and twice of users in the

second stereotype, and 3 times in total.

Nk = | - - ________

6 3 6 3 1 7 | 12 14 | 26

A second matrix, Nans, contains information about the number of times that

each user actually provided an answer to each question.
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(123100 6 1| 7 )
000000 ] 00/ 0
1012011 3 2] 5
300011 1] 05/ 5
001000 ] 1 0] 1

Nope = | - - - - ________

The values in the matrices N,gx and Naps are used to compute the individual
values stored in the matrix PK. For example, the first user has been asked the first
question twice and has answered only once. Therefore, the corresponding entry in

the PK matrix would be 1/2 = 0.5.

Updating weights

A final set of vectors is used to maintain the weights on the various components of
the model (stored in the vectors tw and uw discussed earlier). These vectors are
constructed as follows.

Initially, assuming that no information is available about specific users, the

system designer must make a decision on how much weight should be placed on
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information about a user’s stereotype and how much weight on information about
all users in general. The idea is to decide how many interactions with a single user
will put us in a situation where we wish to attribute equal weight to the observed
user-specific information and to the prior beliefs about stereotypes or about all
users.

For example, we might decide that, once we have interacted with a user 20
times, we have learned enough about that user to put the same weight on user-
specific information as we have on information about all users. In this case, the
initial weight assigned to information about all users is 20.2¢ The same would be
done to assign an initial weight to information about the user’s stereotype. Let us
assume an initial weight of 5.

These decisions are then used to construct a weight vector for each user. Using
the example above, this initial vector would be (0 5 20). The 0 in the first entry
represents the number of questions that have been asked of this user, and only this
entry will change as the vector is updated over time. This vector is used directly
in computing the values of the vector uw described earlier. First, the vector is
normalized so that the values sum to 1; for example, (0 5 20) becomes (0 0.2
0.8). Then, to construct the uw vector, the first entry is repeated m times (for the
m users known to the system), and the second entry is repeated n times (for the
n known stereotypes). Referring back to Example 1 from earlier in this section,

the situation with three known users and two known stereotypes would yield a uw

26 The number of interactions that determines when we have learned enough about a user should
really depend on the variance in the user’s performance; however, setting a fixed number is a
practical solution for the purposes of this thesis.
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vector of (0 0 0 | 0.2 0.2 | 0.8).

The idea is for the weights on the more general information to be high initially,
but as more information is gathered about the specific user, the value in the first
entry will begin to overwhelm the pre-defined weights in the second and third
entries. For example, once the system has interacted with the user 25 times, the
three-valued vector would become (25 5 20), which would yield a uw vector of
(0.5 0.1 0.4). After 75 interactions with the user, uw would be (0.75 0.05 0.20).

Exactly the same type of process applies to maintaining weight matrices for

questions instead of users.

Closing comments on modeling knowledge

We argued earlier in this chapter that it is very important for a mixed-initiative
system to maintain a model of the likelihood that users will possess certain types of
knowledge. In this section, we have provided a concrete quantitative approach to
merging information that the system has available about the knowledge of specific
users, of different classes of users and of all users in general, as well as about different
classes of questions that might be asked. This type of a hybrid method is a novel
approach to modelling knowledge about users and will be of interest to the user

modeling community.



Chapter 4

Examples

In this chapter, some examples will be presented to illustrate the use of the models
in Chapter 3. In Section 4.1, a simple example application is traced through all
of the steps in the design process of Section 3.7 and then through a few sample
interactions with users. In Sections 4.2-4.4, we focus on specific parts of the models,

and illustrate their applicability to some more realistic, complex problems.

4.1 Example of the Design Procedure

The discussion in this section will illustrate the design process of Section 3.7. Be-
fore beginning the example, it should be pointed out that the problem described
in this first section is quite simple and straightforward. This choice was made in
order to make the illustration of the process clearer and to prevent the reader from
being overwhelmed by details. Also, some readers might believe that, in the ex-

ample application described in this section, it would make sense for the system to

133
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ask for the user’s help all the time. The questions that the system might consider
asking the user are simple, not time-consuming, and should not cause very much
inconvenience to the user at all. Again, the choice of domain was made for the sake

of simplicity and readability, and not to illustrate the full power of the models.

This section deals with the following example. An intelligent agent is trying
to decide whether to buy one of a set of used books on a user’s behalf. In order
to make this decision easier, the system is considering the possibility of asking the
user one or more of a set of questions. These include such questions as: (A) Do
you own book X7 (B) How would you rate book Y'? (C) Do you prefer mysteries
or biographies? (D) What is the most you are willing to let me spend on a book
without explicit consultation?

Based on the system’s beliefs about the domain, it tries to make a somewhat
informed decision about the optimal action to choose for a particular user. However,
by asking questions, the system could improve its knowledge and therefore increase
its certainty in its decision.

We will first describe the variables in our model that must be set by the system
designer before any users are interacting with the system at all, as described in

Section 3.7.

4.1.1 Initial system design

Problem representation: Generally speaking, we are talking about the idea of

purchasing items that are up for sale. Each available item would be represented
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by a series of features. In the case of the books described in our example, these
features would include details such as the title, the author, the genre, the price, the
condition of the book, the original price of the (new) book, the specific edition and

the time at which the sale will be over. Figure 4.1 shows an example of how one

particular item would be stored.

New Sale

Item # Title Author Genre | Price | Cond. | price | Ed. ends
2304291 | The Game | Ken Dryden | Sports | 10.00 | Exc. | 19.95 | 3 | 2003-06-10

17:30

Figure 4.1: Sample entry for used book example

The system would also maintain a database that contains any ratings that have
been assigned to books, genres or authors by each user. This database would be
consulted by the system to estimate how popular a particular book is with the
general user population or with a particular subset (stereotype) of users. All of
this would be done to help the system predict how likely it is that a particular user
would want to purchase the book.

To represent the problem, the system designer must decide exactly what fea-
tures will be used to represent each item that is for sale. If the system involves more
than one type of item, then this becomes significantly more complicated; however,

we will focus on the sale of books in our example.

User interface: As mentioned earlier, although it is not the focus of this thesis,
a good user interface is often crucial for mixed-initiative systems. In this particular

example, however, it is not an important detail; a simple text-based interface will
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suffice.

Utilities: The system designer must also decide on how to represent the utility
of purchasing a specific book for a particular user. For this example, suppose that
the utility function is as follows. Consider the situation in which a book has been
purchased for a user and the user has had a chance to read and rate the book.
Looking back on the purchase, the utility should depend on the user’s eventual
rating of the book and on the price that was paid for the book. Also, we shall
assume that the utility of a purchase is zero if the user already owned the book
(although this might not be the case if the user is a collector of rare editions, for
example).

Such a utility function could take on many forms, but for the purpose of our

example, the utility of purchasing a book b for a person p will be calculated as:

U(b, p) = R(b, p) — peny (b, cost(b))

where R(b, p) is the system’s guess at the rating from 0 to 100 that person p would
assign to book b and where pen, (b, cost(b)) is a function assigning a penalty to
paying price cost(b) for book b for person p. For example, if maz(b,p) is the
maximum that a person is willing to spend for book b, then one possible penalty

function would be:

R(b, p), if cost(b) > max (b, p)

cost(b,p) XIn(R(b,p)) .
e maz(p) — 1 otherwise

peny (b, cost(b)) =
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The idea is for this penalty function to be exponential in the cost of the book
and to range from a penalty of 0 for acquiring the book for free to a penalty of
R(b,p) — 1 for paying the maximum acceptable price.

Of course, prior to purchasing a book, the system will probably not know the
user’s rating of that book. However, it will use its domain knowledge to predict the

user’s rating in order to get an estimated utility of the purchase.

The utility of not purchasing a book will depend on the person’s “indifference
threshold” IT(p). The idea is that, if the utility of buying a book is IT(p), then the
utility of not buying the book has the same value. The user is indifferent to buying
the book or not buying it. Using this threshold, the utility of not purchasing a
book is defined as

U(—b, p) = min(100, maz (0, 2IT(p) — U(b, p)))

For example, suppose a person’s indifference threshold is 75. If the utility of
buying a book is 90, then the utility of not buying it is 60. If the utility of buying
the book is 70, the utility of not buying it is 80. If the utility of buying it is 50 or

lower, the utility of not buying it is 100.

Task criticality: In this example, the task criticality should be quite low. We
are not talking about major purchases. If we choose incorrectly, the user has not
spent huge sums anyway. (If we are talking about a domain where the user has

the ability to return any unsatisfactory purchases, then the task criticality should
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be even lower — although, of course, it is still desirable to avoid causing the user
to have to do this.) For our examples, we will set the task criticality of the book-

purchasing domain to 20 on a scale from 0 to 100.

User knowledge: As outlined in Section 3.8, the system will make use of
information about the knowledge of specific users, about stereotypes of users, and
about the general user population to determine the likelihood of a user knowing
the answer to a particular type of question.

However, in this particular domain, almost every question will be about the
user’s own preferences. For a domain of this type, it is safe to assume that the
probability of a user knowing about her own preferences is 1. The Pyg variable
introduced in our model is designed more for domains where the system’s knowledge
base will sometimes lack certain factual information that users might be able to
provide. It is possible that such questions could come up in the book-purchasing
domain — for instance, the system might not know how to classify a particular book
into one of the designated genres. In such a situation, it is possible that the user
might be able to help to classify the book. Again, it is the responsibility of the
system designer using our model to think of the different possible types of questions
that could come up in a given domain, and to determine the appropriate role for
information about user knowledge.

Another possible use for the Py variable in this domain is to think of it not as
a measure of the likelihood of the user having the required knowledge to answer a

question, but as the likelihood that the user will care about the answer. It is entirely
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feasible that certain questions might come up where a user’s natural response is
simply “I don’t care.” If this is truly what the user thinks, then it would make
sense for this to be an acceptable response that the system is able to deal with. On
the other hand, it is not a particularly useful response for the system and should be
treated essentially the same way as an “I don’t know” response. If such a response
is considered to be likely, then the value of asking this question should diminish,
just as it does when the system believes that the user is unlikely to know something.

Note that a user response of “I don’t care” is not the same as that user being
unwilling to interact. Generally speaking, a user might be very willing to commu-
nicate with the system; however, there might be certain aspects of a domain that

are just not important to that user.!

World beliefs: The system’s database must be initialized with information
about available books, specifying values for as many of the features as possible.
Knowledge can also be provided to the system about the general preferences of
users, in terms of genres, authors and specific books. This will be very helpful in
early interactions with users, when there is very little information available in the
form of explicit user ratings. For example, the data shown in Table 4.1 might be
provided to the system. This table indicates, for instance, that the average rating
expected for mystery books will be 70 across all users. However, for users in specific

stereotypical groups, the average expected rating for mystery books might be higher

IFor this example, we are not discussing the solution in terms of the alternative, information-
theoretic model. Note that with this approach, the extent to which a user “doesn’t care” should
influence the values assigned for the importance of questions.
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or lower.

Average expected rating

Stereotypes

Genre Allusers | 1 | 2 | --- | n
Mystery 70 90 | 65 40
Biography 60 65 | 90 50
Romance 40 20 | 20 90
Author All users | 1 | 2 n
John Grisham 80 95 | 60 30
Danielle Steel 45 15| 30 95

Table 4.1: Initial beliefs about preferences of average users

140

Time and time criticality: In our examples, we will assume a highly compet-

itive environment. If decisions are not made fairly quickly about a book purchase,

then the book will likely be bought rapidly by another customer. More specifically,

we will define the following role for time.

Each available book will have a starting time 7 and an ending time 7T associated

with it. The utility of purchasing the book for the user after the ending time should

be 0. Prior to the end of the sale, there should be a cost associated with delaying

the purchase of a book, since long delays will increase the possibility of the item

being bought by another user. If ¢ is the length of a delay (in our case, we're

interested in delays associated with communicating with the user), and if 7 is the

current time, then the cost associated with that delay is defined as



CHAPTER 4. EXAMPLES 141

U(b,p), if t>T,—T,

Cy =

TEETS x U(b,p), otherwise

Bother cost: In this domain, the cost of bothering a user is quite low. The
questions that will be asked of the user are not difficult, not very time-consuming
and, in moderation, not likely to frustrate most users. Presumably, any user that
is making use of such a system is interested in having the system purchase books
on her behalf and would be open to the idea of being asked an occasional question.
We will use the bother cost function presented in Chapter 3, using a willingness

value of w = 9 out of 10. The bother so far is

BSF =Y c(I)g"")

I

where the different values of I represent all the interactions that have taken place
so far in this session, where #(I) is the number of time steps that have elapsed since
interaction I, and where ¢(I) is an estimate of the cognitive cost or difficulty of the

question asked in interaction /. The actual cost of bothering is

aBSF

b= INIT+ 1%
1—«

where the formulas for INIT and « are as suggested in Chapter 3: INIT =
100—w=10—-9=1and a = 1.26 — 0.05w = 1.26 — 0.05(9) = 0.81. We assume

that all interactions I will have a cognitive cost of ¢(I) = 1 associated with them.
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Other costs; weights on costs: We will assume that only time and bother
are considered as cost factors. Suppose the weights are initially set to w; = 0.3 and
wy = 0.2 to reflect the designer’s beliefs about the relative importance of the time

cost and the bother cost.

Stereotypes: At this point, the system designer should also establish a set of
stereotypes into which users will be roughly classified. For our examples, suppose
that a stereotype has been created to correspond to each of the book genres in our
system (mystery, biography, romance, entertainment, sports, cooking, business,
technical, science-fiction). Users will be placed in a class if they read books from
the corresponding genre and very little else. In a full-fledged system, it would not
be possible to categorize all users very effectively with this system, and in fact
it should be possible for users to belong to several different stereotypes at once,
so real-life stereotypical classes would be more detailed than this. However, this

simple categorization will be sufficient for demonstrating the model.

4.1.2 First interaction with a user

Once the system has been designed and implemented, it will begin to interact with
users. At first, every user will be new to the system. Whenever a new user is

encountered, the following variables must be determined.
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Willingness to interact: The process of determining how willing the user is
to interact with the system can be as simple or as complicated as desired by the
designer. Probably the simplest approach is to ask the user to rate their willingness
to interact, either on a quantitative scale (e.g., 0-10) or in qualitative terms that
could then be converted to a numerical scale.

For our examples, we will be looking at three different users. User 1 is very
willing to interact with the system (rating of 9), user 2 is not very willing at all

(rating of 1), and user 3 is in between (rating of 5).

Stereotypes: We will now assign each new user to one of our user stereotypes.
In the book-purchasing domain, this could be done by asking the user to rate her
preference for each genre of book that might be purchased. This constitutes a fairly
small set of questions and would probably not be seen as unreasonable by very many
users. The results of this survey would then be used to find the stereotype that
most closely matches the user’s tendencies. Again, in our simple examples, we are
only defining stereotypes by the one book genre that interests a reader the most.

For our examples, we will place user 1 in the mystery stereotype, user 2 in the

sports group and user 3 in the romance class.

Preference information: The system will also want to know a few other
details of the user’s preference profile. For example, a rough model of the user’s
spending profile would be desirable. If a book is in condition x and the original

sale price was y, what is the maximum that she would be willing to spend for this
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book? What is the maximum amount of money that the user would ever be willing
to have the system spend on a book without explicit consultation?

The table below shows how much each user is willing to have spent on their
behalf, as well as the maximum they are willing to spend on books in each possible

condition (where y is the original sale price of a book).

Max. $ to spend on a book Condition
User | without explicit permission | Poor | Fair | Good | VG | Excellent
1 20 0.3y | 0.5y | 0.7y | 0.8y 0.9y
2 50 0 0 0 0.4y 0.8y
3 50 0.5y | 0.7y | 0.8y | 0.9y Y

4.1.3 Sample interactions with a user

As specified in Section 3.7, a system that follows our model should be set up so
that its knowledge can be updated as it interacts with different users. This section
describes a few sample interactions with users, to illustrate how such updates would

take place. Again, the types of updates that will be necessary are the following:

Update beliefs about the world
Update user knowledge information
Update willingness information

Maintain dialogue history

In the following examples, S represents the system and U represents the user. The
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comments in brackets show the actions of the system involving updating its stored

information.

Example 1: The system is considering automatically purchasing a book for the
user, but because of prior knowledge about the types of books the user owns, it
believes that there is some probability that the user already owns the book. It is
trying to determine whether to ask the user if he owns the book or to go ahead and
make a decision without asking.

Suppose we have the following expected utilities for the different possible out-
comes. For example, if the system buys the book when the user does already own

it, the expected utility is 0.

(

(buy | — own) =90
U(— buy | own) = 100

(

= buy | —own) =60

If the system does not ask, the two possible actions available are to buy the book
or not buy the book. The expected utility of buying the book is P(own) U(buy
| own) + P(— own) U(buy | — own) = 0.5 (0) + 0.5 (90) = 45. The expected
utility of not buying the book is P(own) U(— buy | own) + P(— own) U(— buy
| = own) = 0.5 (100) + 0.5 (60) = 80. The best course of action then, without
acquiring any further information, is to forgo buying the book. EU_, = 80.

If the system does ask the user, there are two possible responses that could be
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obtained. With probability 0.5, the user will say that he does already own the book.
In this case, the system would not buy the book, with utility 100. With probability
0.5, the user will say that he does not own the book. In this case, the system would
go ahead and buy the book, with utility 90. Therefore, the overall expected utility
of the system’s course of action after asking the question is EU,z = 0.5(100) +
0.5(90) = 95.

The benefits of asking are EU, s, — EU_ 5, = 95—80 = 15, but we must compare
these benefits to the expected costs.

Suppose that the book is available for only one hour and that the expected
time to receive an answer from the user is 5 minutes. Based on the time penalty
function described earlier, the time cost would work out to %(90) = 7.5. Suppose
also that the user has not yet been bothered, and has indicated a willingness value
of w =9. The bother so far is then BSF = 0 and the cost of bothering the user is
b= INIT + =2

1—

=1+ 11_—06.88110 = 1. If the weights are w; = 0.8 and w;, = 0.3,
then the total costs are 0.8(7.5) + 0.3(1) = 6.3. The benefits exceed the costs, and
so the system would decide to ask the question. The full interaction might look like

this:

S: Do you already own “The Game” by Ken Dryden?
U: Yes.

< S records that U owns book #2304291.>

< S automatically asks a follow-up question. >

S: What is your rating of this book (0-100)?
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U: 75.
< S records the new rating and adjusts the user’s rating for books of the same genre

as book #2304291.>

Also, for each question that the system asks, it records an instance of interac-
tion in its dialogue history with the user. This information captures what questions

were asked of the user and at what times.

[Time: 2003-05-19 14:15:23 own(user 003712, book 2304291)]

[Time: 2003-05-19 14:15:30 rate(user 003712, book 2304291)]

Example 2: As a variation on the first example, consider a case where the system
is in fact quite sure that the user does not already own the book. Suppose the
probability that the user owns the book is only 0.05.

In this case, the system’s best choice if it does not ask the user is to go ahead
and buy the book, with an expected utility of 85.5. If it does ask the user, the
expected utility is 90.5. The benefits of asking therefore have a value of 5; this does
not exceed the costs, and so the system would decide to forgo asking the user and

would automatically purchase the book on the user’s behalf.
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4.2 Scheduling examples

In this section, we will present a few examples from the domain of sports scheduling.
In this domain, a system is given the task of scheduling games that are to take place
between a set of teams, along with a number of hard and soft constraints. Hard
constraints are not allowed to be violated. Any candidate schedule that fails to
satisfy all hard constraints is unacceptable. Soft constraints are only preferences;
if a schedule fails to satisfy a soft constraint, then it is not perfect, but might still
be acceptable. In fact, it might be the best possible schedule if no perfect schedule
can exist under the given constraints.

Suppose that a schedule is evaluated as follows. A perfect schedule — one that
satisfies all hard and soft constraints — is given a score of 100. If any hard constraints
are violated, the score is 0. For each time that soft constraint ¢ is violated, p;
points are subtracted from the perfect score, where p; is the penalty associated

with constraint z.

4.2.1 Example 1.

In this example, the system has been provided with a list of six teams (A-F) and
has been asked to schedule a round-robin schedule, meaning that each team must
play one game against each of the other five teams. There are thus 15 games to
schedule in total. Suppose we have exactly 15 time slots available — 7:30, 8:30 and
9:30 on each of five days — and that only one game can be played in each time slot.

The system is also given the following hard constraints.
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Hard constraints:

H1. No team can play twice on the same day. H3. B cannot play at 7:30.

H2. A cannot play at 9:30. H4. C cannot play on Day 1.

There is no way to satisfy all of these constraints, because of H1 and H4. Team
C must play five games, but cannot play on Day 1, as stated in H4. Therefore, C
must play five games in four days, but H1 states that no team can play more than
one game on any given day.

Let us first assume that EU_,s = 0, since there is no way for the system to
provide an acceptable schedule.

There are a few possible things that the system might learn by asking the user
for help: (1) It might be possible to add a new time slot that fixes the problem;
(2) H1 might remain a hard constraint, but might be relaxed to say that no team
should play two games in a row on the same day; (3) H1 might be turned into a
soft, constraint with some associated penalty.

The question is: how can we assign a value to FU,y, the expected utility of the
system’s course of action if it does ask the user for help? (The question in this case
would consist of the system describing the problem to the user and asking the user
to edit the problem description.)

One approach is to determine this value by reasoning about which of the three
possibilities the user is likely to choose, and also about what penalty would likely
be associated with the new soft constraint mentioned in the third option.

Suppose that we can estimate that there is a 20% chance that the user will add

a new time slot that will solve everything, a 30% chance that he will modify H1 so
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that no team can play twice in a row, and a 50% chance that he will turn H1 into a
soft constraint with a penalty of 10. In the first two cases, it is possible to come up
with a perfect schedule (score = 100), while in the third case, the soft constraint
would have to be violated for two teams, giving a score of 80. Now, EU,s would
be (0.2)(100) + (0.3)(100) + (0.5)(80) = 90.

Assume that we are certain that the user will have the required knowledge to
help. Also, suppose that the time cost and bother cost have been set to values of

10 and 8, respectively, and that the weights are w; = w, = 0.3. Then:

Benefits =90 - 0 = 90
Costs = 0.3(10) + 0.3(8) = 5.4

Benefits > Costs, so the system will ask the user.

Until now we have assumed that EU_,5 = 0. Yet the system should be able
to reason about some default course of action. Suppose the agent’s default action
is to design the best schedule it can, assuming that H1 has been turned into a soft
constraint with some penalty p;. It can come up with a schedule in which two
teams play twice in one day, resulting in a score of 1 — 2p;. With an expected value
of 10 for such a penalty, the utility of the expected outcome if we do not ask would
be 1 —2(10) = 80.2 Since EU,,; was computed earlier to be 90, the benefits (90 -
80 = 10) would still outweigh the costs (5.4), and the user would still be consulted.

Let us now consider a scenario where the system may decide not to interact.

2 Alternatively, the system might have a probability distribution on its belief about p; — e.g.,
10 with 60% probability, 20 with 30% probability and 30 with 10% probability. This would mean
that the expected value of p; would be 15, and the utility of the expected outcome would be
1 —2(15) = 70.
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4.2.2 Example 2.

Round-robin schedule; teams A-F; 15 available time slots (7:30, 8:30, 9:30; Days
1-5).

Hard constraints:

H1. No team can play 2 games in a row. H4. A cannot play at 9:30 on Day 4.
H2. A cannot play at 8:30. H5. B cannot play at 9:30 on Days 1-3.

H3. B cannot play at 7:30.

Soft constraints:

S1. A should play F on Day 5. S2. No team should play twice on the same day.

No perfect schedule exists. By the hard constraints, A must play against B on
Day 5. By S1, A should also play against F on Day 5, which would violate S2. The
question is: should we violate S1 and move A-F to another day, or violate S2 and
have A (and at least one other team) play twice in a day?

Suppose that the user has specified a penalty of 10 for violating S2, but we do
not know what the penalty is for S1. However, from similar scheduling scenarios
from the past, the system believes that S1 will have a penalty of 10 with probability
0.6 and a penalty of 50 with probability 0.4. The system has come up with two
potential solutions, one that violates S1 and one that violates S2 twice (two teams

have one day each on which they play twice).
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Schedule 1

Time 1 2 3 4 5

730 | A-E | A-D | A-C | A-F | C-D

8:30 | B-C | B-E | B-F | C-E | E-F

9:30 | D-F | C-F | D-E | B-D | A-B

Schedule 2

Time 1 2 3 4 5

730 | A-E | A-D | A-C | C-D | A-F

8:30 | B-C | B-E | B-F | E-F | C-E

9:30 | D-F | C-F | D-E | B-D | A-B

The utility of the second schedule is known to be 80. The expected utility of the
first is 0.6(90) + 0.4(50) = 74, so the system might make its best guess and choose
the second one. The utility of this is FU_ ., = 80.

The alternative is to ask the user to specify the correct penalty for violating
constraint S1. Suppose the system does ask. With probability 0.6, it expects that
the user will give the low penalty (10) for violating S1. In this case, it can come
up with a schedule with utility 90. With probability 0.4, it expects the higher
penalty for violating S1, in which case the other schedule (the one which violates
S2 twice and has a score of 80) would be chosen in the end. Therefore, if we ask
the user, we would expect a 60% chance of choosing a schedule with utility 90 and
a 40% chance of a schedule with utility 80. The utility of the expected outcome is
therefore (0.6)(90) + (0.4)(80) = 86.

Again, assuming the same costs as above, and assuming that we are sure that
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the user will have the needed knowledge, the computations are as follows.

Benefits = 86 - 80 = 6
Costs = 0.3(10) + 0.3(8) = 5.4

Benefits > Costs, so the system will ask the user.

However, if the value of Py were even slightly lower, the benefits would no longer
exceed the costs. For example, if Pyg = 0.8, the benefits would drop to 4.8, and

the system would decide not to ask.

4.3 Translation

In this section, we will discuss another potential application area: interactive trans-
lation. In the examples discussed in this section, a system has been asked to trans-
late a document for the user and must make decisions on when to interact with
that user to obtain more information. The examples in this section will focus on

the heuristic model presented in Section 3.6.

Example 1: In this first example, the system is translating a document from
English to Japanese. The user is the author of the original English document, but
does not know Japanese at all.

Consider the situation in which the system is unsure of how to translate a
particular sentence in the user’s source document into Japanese. There are at least

two possible approaches here.
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e One approach is to try to disambiguate the original sentence in English: to
provide the user with possible interpretations of the original sentence and to

ask what the intended meaning was. Figure 4.2 shows an example.

Original sentence: “I saw her duck.”?

1. “I saw her when she ducked.”
2. “I saw a duck that belongs to her.”
3. Other

Choose 1-3.

Figure 4.2: Clarifying an ambiguous sentence

In this example, the number of possible answers is 3. If the system believes
that interpretations 1 and 2 are equally likely and that there is only a 10%
chance that the user will choose to provide a third interpretation, then its
information-theoretic uncertainty about the answer is 1(0.45,0.45,0.10) =
1.37. Suppose the importance of the question is quite low (25 out of 100).
We can assume that the user who wrote the original sentence is very likely
(Pyk = 0.99) to know how to choose from a list of possible intended meanings.

The constant x has been learned to be x = 0.27.

The expected benefits of asking are then:

Benefits = k X Pyg X Imp x Uncertainty
= 0.27 x 0.99 x 25 x 1.38
= 0.22

3This example of an ambiguous sentence was taken from
http://www.ohiou.edu/ linguist/soemarmo/1270/Exercises/ambigs/ambigs.htm.
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The expected costs are a weighted linear combination of all costs that have
been identified for the given domain. In this case, suppose the time cost for
asking the user for help is quite low (25). The task criticality is moderate (50)
because the user is trying to translate a summary of her research interests, to
be published on her web page. The user has indicated a very high willingness

to be bothered (w=9) and so the bother cost function is:

1_oBSF

b=INIT +

l-a

1—(1.26—0.05x9)BSF
= (10-9)+ 1(—(1.26—0.(>)<5>29)

_ 1-0.81B5F
=1+ 1—0.81

If the user has been bothered twice so far, at 3 and 7 time steps in the past,
then the bother so far is

BSF =Y c(I)a®
T

= (1)0.95% + (1)0.95”
= 1.56

The overall cost of bothering the user is then 1 + 1_123_18?6 = 2.47. Finally, if

the weights on time, bother and task criticality are w; = 0.2, wp, = 0.5 and

w. = 0.1, then the total costs of interacting are

Costs = wit + wyb — w T askerit
= (0.2)(25) 4+ 0.5(2.47) — (0.1)(50)
=124
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The benefits exceed the costs, and so the system will ask the user for help.

e A second approach to this same situation would be to provide several possible
Japanese translations and to ask the user which one would be preferable. Of
course, if the system knows that the user does not know Japanese, then this
seems like an unwise choice. However, we will demonstrate here how our

heuristic model would deal with this situation.

Everything would be identical to the previous case except that Py, would be
zero. In this case, the costs would remain the same, but the benefits would

become

Benefits = k X Pyg X Imp x Uncertainty

=027Tx0x25x1.38=0

Now, the costs are greater than the benefits and the system would correctly

decide not to interact with the user.

Example 2: As a variation on the first example, consider the second situation
described above (asking the user to choose the most appropriate Japanese transla-
tion), but now with a user who does have some knowledge of Japanese. Suppose
Py is set to 0.7 in this case. Again, all of the computations would remain identical

except for the benefits calculation, which would become

Benefits = k X Pyg X Imp X Uncertainty

=0.27x 0.7 x 25 x 1.38 = 6.52

Benefits exceed costs, and the system would choose to interact.
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4.4 Military planning

A very common application area for research on mixed-initiative interaction has
been military planning (e.g., (Cox and Veloso, 1997)). Although we have not inves-
tigated this domain in detail, we present two very brief examples here to demon-

strate the importance of task criticality and time criticality in our model.

Example 1. Suppose that, in a particular military scenario, a system has deter-
mined that the benefits of interacting with the user will be quite small (EU,s = 85
vs. EU_ g5, = 82).

However, the system’s evaluation of the costs of interaction reveals that the
criticality of the task is so high that it overrides the contribution of the time cost

and bother cost, to the point that the total overall costs end up being negative.

Taskerit = 100

Wy = 0.2
Wy = 0.5
w, = 0.1

Costs = wit + wpb — w.Taskerit = 0.2(25) + 0.5(5) — 0.1(100) = —2.5.

Although the idea of negative costs might seem somewhat counter-intuitive, re-
call that the costs in our model represent the additional costs involved in interacting

with the user, as opposed to having the system act without further consultation.
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In this example, the negative costs represent the fact that it is in fact less costly
to interact, because of the potential cost of a critical error if we do not take the
opportunity to ask the user for assistance. In the end, the decision in this case
would be to interact with the user; even though the benefits appear to be quite
small, the high criticality of the task leads the system to conclude that the benefits

outweigh the costs.

Example 2. Now consider a similar military scenario, but where the system has
the additional constraint that the problem is highly time-critical. This could be
represented in the system’s knowledge by assigning a utility of 0 to any course of
action that will cause the system to complete its task after a specific time 7. If any
interaction with the user is expected to take longer than 7', then any sequence of
actions involving asking the user for help will be guaranteed to have a utility of 0.

The result is that the benefits of interacting would actually turn out to be
highly negative. For instance, if the system can achieve an expected utility of
EU_,s = 60 by choosing an action on its own without consulting the user, but
any interaction with the user is guaranteed to yield EU,s = 0, the result is that
Benefits = BEU,s, — FU_45, = 0 — 60 = —60.

In this case, the benefits will almost certainly be exceeded by the costs, and the
system would correctly determine that it should do the best it can, as quickly as it

can, without consulting the user.



Chapter 5

Experimentation and Results

It has been suggested (Chin and Crosby, 2002) that, historically, user modeling
research has been lacking when it comes to the defence of models through empirical
evaluation. In this chapter, we provide a modest but still significant attempt to
defend the model presented in this thesis through experimentation.

The experiments in this chapter consist of simulations of user-system interac-
tions in a generic problem-solving setting. For future work, we will extend this
work by measuring the performance of our systems on real-world tasks, working
with real users. However, the simulations presented in this chapter represent a
solid first step in defending the usefulness of our model.

In this chapter, we demonstrate that improved performance can be achieved by
modeling the user’s knowledge about different topics and by estimating the degree
to which a user will be bothered by an interaction. We also provide a validation
of the information-theoretic model of Section 3.6 by showing that it can perform

quite well despite not doing a complete analysis of all possible future events and

159
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interactions.

5.1 Defense of Factors

5.1.1 User Knowledge

The results presented in this section serve two purposes: (1) to illustrate the fact
that systems that model the probability of the user being knowledgeable will out-
perform systems that do not, and (2) to demonstrate that, even if the system’s
estimate of this probability is not perfectly accurate, it is still advantageous to
model this factor.

In this experiment, different agents using a dynamic programming approach®
were presented with a generic task to perform. The agents differed only in their
modeling of the user’s knowledge; this will be discussed further after the problem

description.

Problem description

The task involves selecting one of three possible actions (labelled 1, 2, and 3). The
reward associated with performing each of these three actions depends on the actual
values of three independent variables (A, B, and C). All of the variables are binary

(either 0 or 1). At the beginning of the task, the agent is presented with the reward

'Recall that, in Chapter 3, it was discussed that dynamic programming is the simplest way
of extending our “single-decision” model to deal with sequential decision problems. Dynamic
programming allows for the expected utility of every state to be computed simply by working
backwards from the known utilities of final states. It is a reasonable approach for situations, such
as the ones described in this chapter, in which the agent’s action sequences are finite. When
infinite sequences are possible, the Markov decision process approach becomes necessary.
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function, and so it is aware of exactly how the rewards depend on A, B, and C.
However, it does not have any information about the actual values of A, B, and
C. Initially, it believes that each variable is equally likely to have the value 0 or 1.
The only way to obtain more accurate information is by asking the user.

There are two costs associated with interacting with the user: it uses up time
and it inconveniences the user. The costs associated with each of these factors are
subtracted from the agent’s eventual reward according to a function that is known
to the agent. The actual performance of the agent is determined according to the
formula below, where R(s,a) is the reward for performing action a in state s, ¢ is
the elapsed time, b is the cost of bothering the user, and w, and w, are the weights

indicating the relative importance of these costs.

Performance = R(s,a) —w; X t —wp X b

To complicate the situation, there is no guarantee that the user would, in fact,
have the knowledge required to answer a question when asked. The user’s ability
to answer a question is determined by a parameter that is set at the beginning of
each trial. There is also a possibility that, even if the user does provide a response,
there is a chance that the user’s answer will turn out to be incorrect.?

At each time step, the agent has to decide whether to ask the user about variable
A, B, or C, or to commit to choosing one of the three actions (1, 2, or 3). Once it has

committed to an action, the task is complete and it receives its reward. Intuitively,

2In the experiments described in this section, the probability of the user answering incorrectly
is set to 0.25.
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the rational way for such an agent to behave is to make the choice with the highest
expected utility, given its current knowledge. Basically, it should continue to ask the
user questions until there is no question for which the expected benefit of acquiring
that knowledge would outweigh the costs of bothering the user and wasting time.
The benefit is determined by considering how much it would improve its expected
performance on the task if it were able to reduce its uncertainty about A, B, or C.
Again, since this is a small problem with a finite number of time steps, the expected

utilities were computed using a dynamic programming approach.

Experimental set-up

For each trial, the values for the reward function were chosen as follows.

1. Each of the three variables A, B and C was first assigned a random weight
so that the three weights summed to 1. For example, variable A might have

weight 0.32, variable B 0.55, and C 0.13.

2. For each possible value of each variable, a score was then assigned for each
possible action 1, 2 and 3. These scores were then scaled so that the best
action would receive a score of 100 and the worst would receive a score of
0. For example, if variable A is equal to 0, then the score associated with

performing actions 1, 2 and 3 might be 43, 100 and 0.

3. Rewards were then computed for each possible action under every possible
combination of values for the three variables A, B and C. This was done using

the weights from part 1 and the scores from part 2. An example appears in
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Table 5.1.

\ weight(A) = 0.32 \ weight(B) = 0.55 \ weight(C) = 0.13

score(A=0,action=1) = 43 | score(B=0,action=1) = 100 | score(C=0,action=1) = 0

score(A=0,action=2) = 100 | score(B=0,action=2) =0 | score(C=0,action=2) = 87

score(A=0,action=3) = 0 | score(B=0,action=3) = 23 | score(C=0,action=3) = 100

score(A=1,action=1) = 0 | score(B=1,action=1) = 12 | score(C=1,action=1) = 100

score(A=1,action=2) = 59 | score(B=1,action=2) = 100 | score(C=1,action=2) = 0

score(A=1,action=3) = 100 | score(B=1,action=3) = 0 | score(C=1,action=3) = 37

reward(A=0,B=0,C=0, action 1) = 0.32 x 43 4+ 0.55 x 100 + 0.13 x 0 = 68.76

reward(A=0,B=0,C=0, action 2) = 0.32 x 100 4+ 0.55 x 0 + 0.13 x 87 = 43.31

Table 5.1: Computing rewards for experimental trials

The complete reward function was then made available to the agent. The actual
values for A, B, and C were chosen randomly, but this information was not made
available to the agent. The (simulated) user, however, might know each of these
pieces of information with some probability. The weights, w; and w,, associated
with the time and bother penalties were also set at the beginning of each trial. The
cost of time was simply a linear function: for each time step that elapsed before
the completion of the task, a cost of w; was subtracted from the total reward. The
bother function was as described in Section 3.4.3, with the willingness value set to

8.

Results

In this section, we will look closely at a typical set of trials. In this example, the

actual probability of the user providing an answer to each question was set at 0.7.
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The time and bother weights were set to 5 and 1, respectively.

Eleven different agents were presented with exactly the same situations. There
were 1000 trials in total. The first seven agents modeled the probability of the user
knowing the answer to a question. Only agent 4 had the correct value for Pyx
(0.7); the values of Py used by agents 1-7 were, respectively, 0, 0.5, 0.6, 0.7, 0.8,
0.9 and 1.0.

Figures 5.1 and 5.2 show the average performance by each of agents 1-7, where
the performance is calculated by taking the reward earned by an agent and sub-
tracting the time and bother costs incurred. As expected, the agent that models
Pyx correctly has the best performance. Also, we can see that, as we approach the
actual Pyg value from either direction, the agents’ performance improves. This il-
lustrates the second point that was mentioned at the beginning of this section: that
even if the system’s estimate of Py is not perfectly accurate, it is still advantageous
to model this factor.

The worst results were achieved by Agent 1, which assumes that the user will
never know the answer to any question and by Agent 2 (Pyx = 0.5). Agent 7, which
assumes that the user will always know the answer, also performs relatively poorly.
It is this last agent that is the most relevant comparison point for our model. If
a system assumes that the user will always know the answer to a question, then
essentially it is not modelling Py at all. The agent that is able to model Pyg
correctly outperforms this system.

Figure 5.3 shows the agents’ performance in terms of the percentage of trials in

which the best possible choice was made, given the actual values of variables A, B
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Agent # | Assumed Pyi | Average performance
1 0.0 68.99
2 0.5 70.50
3 0.6 70.80
4 0.7 71.41
5 0.8 71.33
6 0.9 71.07
7 1.0 70.87

Figure 5.1: Performance of agents assuming different Py values
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Figure 5.2: Graph of performance of agents assuming different Py values
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and C. Not surprisingly, agent 7 had the best results; because it believed that the

user was certain to know the answer, it would ask questions more often. Because of

this, it gathered more information from the user and made correct decisions more

often. However, this gain in decision accuracy was not enough to counteract the

additional cost incurred, as shown in Figure 5.1 where the costs of communication

were also incorporated into the overall measure of success.

Agents 8-11 are used to illustrate the value of using our model as opposed to

problem-solving approaches that do not use intelligent techniques. Agent 8 does not
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Figure 5.3: Percentage of correct action choices by agents assuming different Pyg
values

consider Py at all, nor does it use any of the information it is given about how the
rewards depend on the values of variables A, B and C. It simply chooses an action at
random on the first time step. Agent 9 chooses a random action (including possibly
asking about A, asking about B or asking about C) at every time step. It will not
ask a question that it has already asked, but otherwise its decisions about actions
are completely random. Agent 10, meanwhile, tries to gather as much as possible
without regard to the cost of asking. In every trial, it will ask about variables A,
B and C, and then choose the action with the highest reward. Finally, Agent 11
chooses one question (asking about A, B or C) randomly and asks this question. It
then chooses the action that has the highest expected utility, given its knowledge
after asking the question.

The average performances achieved by agents 8-11 were 52.65, 42.95 and 48.24
and 61.17, respectively. These are well below the results obtained by the systematic

approaches. Of these four agents, the most meaningful basis for comparison is Agent
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10. It can be viewed as a sensible, deliberative agent, but one that does no user
modeling. The fact that our agents outperform this agent gives evidence that our
approach is beneficial.

Note that Agent 1 can also be viewed as an agent that does no user modeling.
In this case, however, instead of asking every possible question (as Agent 10 does),
Agent 1 will never decide to ask the user a question. It will always choose the
action that has the best expected utility with the information currently available
to the agent. Again, Agent 4 (the agent that models Py correctly) outperforms
Agent 1, demonstrating that agents that do not employ any user modeling at all
are indeed inferior to our agents.

The fact that Agent 4 achieved the best results of all the agents is a positive
result. However, the margin by which this correct agent has the best average
performance is narrower than expected. This is likely due in part to the reward
functions being chosen randomly, rather than reflecting the patterns that would be
exhibited by reward functions in a more realistic domain. For future work, more
elaborate experiments must be performed, using actual reward functions elicited

from real users.

Specific examples

In this section, we present two specific examples from our experimental trials of how
agents can go wrong if they incorrectly model the probability of the user knowing

the answer to questions.
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Example 1. In the first example, the agent’s reward function was as shown in

Table 5.2. The actual values of A, B and C in this trial were 1, 1 and 0, respectively.

Actual values | Action choice / reward
AlB| C 1 2 3

010 0 47.84 | 49.91 | 51.25
00 1 0.00 | 99.91 | 11.32
01 0 96.84 | 16.69 | 51.00
01 1 49.00 | 66.69 | 11.08
110 0 47.84 | 50.00 | 50.83
110 1 0.00 | 100.00 | 10.91
111 0 96.84 | 16.78 | 50.59
1]1 1 49.00 | 66.78 | 10.66

Table 5.2: Reward function for example 1

The agent that correctly modeled the probability of the user knowing (Pyx =

0.7) chose to ask the user about variable C. Upon receiving the correct answer

(C = 0), it chose to perform action #1 and achieved a performance of 89.84 (reward

of 96.84, minus 7 for time and bother costs).

The agent that assumed that the user had a Py of 0.0 did not perform as well.

It chose to perform action #2 without any interaction with the user, due to the

perception that the user would be unlikely to know the answer. Although action

2 looked like the best possible action, it turned out to be a poor choice because of

the actual values of A, B and C, and the performance achieved by the agent was

only 16.78.

Example 2. In this example, the agent’s actual reward function was as shown

in Table 5.3. The actual values for the variables A, B and C' in this trial were 1, 0

and 0, respectively.
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Actual values | Action choice / reward
B C 1 2 3

34.69 | 90.00 | 28.68
31.30 | 90.00 | 37.03
68.69 | 56.00 | 12.77
65.30 | 56.00 | 21.12
66.00 | 79.47 | 28.68
62.61 | 79.47 | 37.03
100.00 | 45.47 | 12.77
96.61 | 45.47 | 21.12

e el B i R=l E=1 R =] R =1 s =

= OO = OO
k=l k=l =l -]

Table 5.3: Reward function for example 2

The agent that correctly modeled the probability of the user knowing (Pyx =
0.7) chose to perform action #2 without any interaction with the user. It achieved
a performance of 79.47.

The agent that assumed that the user had a very high probability of knowing
the answer (Pyx = 1.0) chose to ask the user about variable B. After asking this
question, it actually received the wrong answer (B = 1) from the user and ended
up choosing action #1 and achieving a low performance of 59.00 (66.00, minus 7

for time and bother costs).

5.1.2 Varying Pyx for each question

In another set of trials, the experimental set-up was changed so that the simulated
user did not have exactly the same Py value for every question (e.g., 0.7 in the
example described above). Instead, at the beginning of each trial, a value was
chosen randomly for each question from the possible values 0.5, 0.6, 0.7, 0.8, 0.9

and 1.0. This is closer to a real-life situation, where a user might be quite likely to



CHAPTER 5. EXPERIMENTATION AND RESULTS 170

be able to answer some questions, but not others.

Four different agents were tested in this situation: one that correctly estimates
the Pyg value for each question, one that averages the actual Py values for the
three questions and uses this average as an estimate of Py across all of the ques-
tions, one that uses Pyg = 0 for all questions, and one that uses Pyx = 1 for all
questions.

The average performances achieved by these agents were 73.13, 72.97, 71.03 and
72.54, respectively. Again, the agent that models the real world correctly (Agent
1) achieves the best performance. Agent 2 does almost as well by using an average
Pyg value across all questions, while Agents 3 and 4 do not perform as well by

assuming that the user will never/always be able to answer.

Specific examples

In this section, we present two specific examples from our experimental trials of how
agents can go wrong if they incorrectly model the probability of the user knowing

the answer to questions.

Example 1. In this example, the agent’s reward function was as shown in Table
5.4. The actual values of A, B and C in this trial were 1, 1 and 0, respectively.
The actual probabilities of the user knowing the answer to questions A, B and C
were 0.6, 0.9 and 0.9, respectively.

The agent that correctly modeled the probabilities of the user knowing (0.6, 0.9, 0.9
for questions A, B and C) chose to ask the user about variable B. Upon receiving the

correct answer (B = 1), it chose to perform action #1 and achieved a performance
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Actual values | Action choice / reward
B C 1 2 3
0.00 | 44.00 | 96.52
0.00 | 42.82 | 96.52
81.00 | 75.89 | 15.52
81.00 | 74.70 | 15.52
17.00 | 27.00 | 96.24
17.00 | 25.82 | 96.24
98.00 | 58.89 | 15.24
98.00 | 57.70 | 15.24

e el B i R=l E=1 R =] R =1 s =

= OO = OO
k=l k=l =l -]

Table 5.4: Reward function for example 1

of 91.00 (reward of 98.00, minus 7 for time and bother costs).

The agent that assumed that the user had a Py of 0.0 did not perform as well.
It chose to perform action #3 without any interaction with the user, due to the
perception that the user would be unlikely to know the answer. Although action
3 looked like the best possible action, it turned out to be a poor choice because of

the actual values of A, B and C', and the performance achieved by the agent was

only 15.24.

Example 2. In the second example, the agent’s reward function was as shown
in Table 5.5. The actual values of A, B and C' in this trial were 1, 0 and 0,
respectively. The actual probabilities of the user knowing the answer to questions
A, B and C were 0.7, 0.6 and 0.8, respectively.

The agent that correctly modeled the probability of the user knowing (0.7, 0.6, 0.8
for questions A, B and C) chose to perform action #1 without any interaction with
the user. It achieved a performance of 100.00.

Both the agent that assumed that the user had a very high probability of know-
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Actual values | Action choice / reward
B C 1 2 3
80.00 | 28.92 | 32.80
68.92 | 43.92 | 20.00
27.79 | 75.09 | 32.80
16.71 | 90.09 | 20.00
100.00 | 18.84 | 18.93
88.92 | 33.84 | 6.13
47.79 1 65.00 | 18.93
36.71 | 80.00 | 6.13

e el B i R=l E=1 R =] R =1 s =

= OO = OO
k=l k=l =l -]

Table 5.5: Reward function for example 2

ing the answer (Pyx = 1.0) and the agent that used the average Pyg of 0.7 chose
to ask the user about variable B. After asking this question, they actually received
the wrong answer (B = 1) from the user and ended up choosing action #2 and

achieving a low performance of 11.84 (18.84, minus 7 for time and bother costs).

5.1.3 Bother Factor

Similar experiments were performed to measure the usefulness of modeling the
user’s willingness factor as part of computing the cost of bothering the user. Again,
a number of agents were tested on sets of 1000 trials. Each agent had a different
assumption about the willingness level of the user.

For example, tests were run with a simulated user having an actual willingness
level of 6, but with different agents assuming willingness levels of 0, 5, 6, 7, 8, 9
and 10. The average performances of these agents are shown in Table 5.6. As with
the experiments devoted to modeling user knowledge, the trials demonstrate that

better results are obtained as the system’s model of the user’s willingness level gets
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closer and closer to the actual value.

Agent # | Assumed w | Average performance
1 0 72.32
2 5 73.20
3 6 73.39
4 7 72.64
d 8 72.42
6 9 70.99
7 10 70.91

Table 5.6: Results from bother factor experiments

Specific examples

In this section, we present two specific examples from our experimental trials of

how agents can go wrong if they incorrectly model the user’s willingness to interact.

Example 1. In the first example, the agent’s reward function was as shown in

Table 5.7. The actual values of A, B and C in this trial were 1, 0 and 0, respectively.

Actual values | Action choice / reward
B| C 1 2 3
32.40 | 61.00 | 39.00
25.33 | 72.00 | 34.55
28.99 | 4.56 | 100.00
21.92 | 15.56 | 95.55
28.87 | 89.00 | 11.00
21.80 | 100.00 | 6.55
25.46 | 32.56 | 72.00
18.39 | 43.56 | 67.55

e ) Bl B R=l K=l R =] R ==) s~

== OO =IO
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Table 5.7: Reward function for example 1

The agent that correctly modeled the user’s willingness level (w = 6) chose
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to ask the user about variable B. Upon receiving the correct answer (B = 0), it
chose to perform action #2 and achieved an overall performance of 82.00 (reward
of 89.00, minus 7 for time and bother costs).

The agent that assumed that the user had a willingness level of 0 did not per-
form as well. It chose to perform action #3 without any interaction with the user,
due to the high perceived cost of the communication. Although action 3 looked
like the best possible action, it turned out to be a poor choice because of the actual

values of A, B and C, and the performance of the agent was only 11.00.

Example 2. In this example, the agent’s actual reward function was as shown
in Table 5.8. The actual values for the variables A, B and C in this trial were 0, 1

and 1, respectively.

Actual values | Action choice / reward
B| C 1 2 3
37.69 | 79.00 | 42.16
23.96 | 79.00 | 42.16
60.61 | 27.00 | 68.46
46.87 | 27.00 | 68.46
16.69 | 81.04 | 46.69
2.96 | 81.04 | 46.69
39.61 | 29.04 | 73.00
25.87 1 29.04 | 73.00

e i i i =l E=] K=l K=Y s~

=l Bad K=l K=l Rl N Y N en) Nan)
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Table 5.8: Reward function for example 2

The agent that correctly modeled the user’s willingness level (w = 6) chose to
perform action #3 without any interaction with the user. In doing so, it achieved
a performance of 68.46.

The agent that assumed that the user had a very high willingness level (w = 10)
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chose to ask the user about variable B. After asking this question, it actually
received the wrong answer (B = 0) from the user and ended up choosing action #2
and achieving a low performance of 20.00 (27.00, minus 7 for time and bother costs).
Even if it had received the correct answer from the user in this case, however, it
would have made the same decision as the w = 6 agent (action #3) but achieved a

lower performance of 61.46 (reward of 68.46, minus 7 for time and bother costs).

5.2 Validating the information-theoretic model

To demonstrate the value of the information-theoretic model presented in Section
3.6, agents were implemented that did not project into the future at all. They
simply used the information-theoretic model to estimate the value of asking each
question, using their uncertainty about the possible answers to the question, the
perceived importance of the question and the probability of a successful interaction
with the user.

Several different information-theoretic agents were implemented, using different
values for the constant k. The results showed that, by properly choosing k, it is
possible for an information-theoretic agent to perform almost as well on this task
as the agents using the full-fledged dynamic programming approach, despite the
fact that no reasoning is being done about how the user’s answer might actually
impact the choice of action that the system would make and the possible sequences
of states that might be visited as the problem execution continues.

On the same 1000 trials used for the user knowledge experiments, a heuristic

agent with k set to 11 achieved an average performance of 70.51, which is quite
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close to the performance of the best agent (average 71.41) and is in fact better than

the performance of the agent that assumed Pygx = 0.5 instead of the correct value

of 0.7.



Chapter 6

Discussion

6.1 Extensions to the Model

6.1.1 Understandability

As mentioned in Section 3.3.2, it is possible for our model to take into account the
idea of the understandability of a potential question for a user. When the system
is deciding whether or not to ask the user a question, it could consider whether
or not the user will have enough background contextual information to be able to
understand the question and the system’s underlying goals for asking it (Fleming
and Cohen, 2000).

This can be accomplished by replacing the variable Pyg in the model with a
new variable that represents the probability that the user both has the knowledge
and will understand the question. We make the assumption that the interaction

will only be successful if both of those conditions hold. Even if the user has the

177
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required knowledge but does not understand, or understands the situation but does
not have the required knowledge, he will still be unable to help the system.

In fact, we can generalize this idea even further by talking about a general
variable to represent the probability of successful communication. If designers of
particular systems can think of relevant factors other than the knowledge of the
user and the ability of the user to understand the question, then the definition of
this variable would simply need to be adjusted, to incorporate those factors.

A very simple formula for this variable would be Py X Py, where Py is simply
the probability that the user would be able to understand the question, given the
current context and dialogue history. This formula includes an implicit assump-
tion of independence between the user’s knowledge and the understandability of
the question. In fact, we would expect some connection between these two factors:
users who are more likely to understand are probably more likely to be knowledge-
able users as well, and vice versa. If understandability is to be incorporated as a
full-fledged component of our model, then dealing with this interdependence is an
important avenue for future work.

In the case that a system does determine that a question is likely to be difficult to
understand, one possibility is to initiate a clarification subdialogue with the user.
The purpose of this subdialogue would be to familiarize the user with difficult
terminology or to bring the user up to date with the current state of the problem
solving, in order to make the question more understandable. In our model, the
initiation of such a dialogue can simply be treated as another action available to

the system. If it is decided that a particular question should not be asked, because
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its benefits do not outweigh its costs, then a clarification dialogue should be initiated

if the expected benefits of the clarification exceed the expected costs.

6.1.2 Predictability

Another interesting extension is the idea of incorporating the predictability of a
system’s actions into its decision-making procedure.! What role should the user’s
expectations play in dictating the best course of action for a system at any given
time?

Consider a situation in which the system has determined that the rational action
is not to interact with the user at that particular time. However, it believes that the
user will expect to be asked a question in this situation, based on the way previous
dialogues have progressed. How can the decision-making procedure be altered so
that this additional factor is taken into account?

If Markov decision processes are being used to model the dialogue, as in Section
3.5, then a small reward could be added for performing actions that have been
performed successfully in similar situations in the past. Metrics such as those used
by Kozierok (1993) would be used to measure the similarity between the current
situation and situations encountered in the past, and to compute a score for each
possible action based solely on what was done in the past. This score would then
be multiplied by a weight factor determined by the importance that the user has
attributed to system predictability. This would yield the additional predictability-

based reward that would be associated with performing this action.

!The author acknowledges Anthony Jameson (German Research Center for Artificial Intelli-
gence (DFKI)) for suggesting the idea of modeling the predictability of a system’s actions.
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For the information-theoretic model of Section 3.6, the formula for the value of
asking a question would remain the same as it was before, but with an extra term
added to the end. This term would be the same small weighted reward described
in the previous paragraph.

In either case, the result would be that, in some situations in which the system
would have decided not to ask the user for help, it would now decide to ask (or vice
versa). If the weight attributed to predictability is very low (or zero), then this
would rarely (or never) occur. However, if it is decided that the user’s expectations
of system behaviour are in fact quite important, then such situations would arise

more frequently.

6.1.3 User Availability and User Attention

The models developed in this thesis required a user model. Decisions made by the
system about whether or not to interact relied on user-specific information such
as the user’s perceived ability to answer questions, the user’s preferences among
different possible outcomes, and the user’s willingness to interact with the system.
Two considerations that could also be incorporated into a decision-making model

are user availability and user attention.

User availability

In some cases, the system might have reliable information about whether or not
the user is even available to answer a question if needed. This would be possible,

for example, if the system were equipped with a camera able to detect the user’s
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presence in the room, or if the system had information indicating that the user was
scheduled to be in a meeting at that time.

Such information could be incorporated into the model as follows. If the system
believes that the user is unavailable, then the benefit of interacting should be scaled
according to the probability of the user being available. For example, if the system
is certain that the user is not available, then the benefit of interacting right now
should be zero. Of course, it is possible that the system might be totally incapable
of proceeding without the user’s help, in which case it will just have to wait until
the user returns and then ask for help.

The costs of asking a question should also be adjusted when the user might be
unavailable. Suppose the user is believed to be available with probability P,q:. If
the standard formula for bother cost (from Section 3.4.3) yields a value b, then we
should adjust this cost to be P,,q;b. This accounts for the fact that, if the user is in
fact unavailable (with probability 1 — P,4i), then there will be no cost associated
with bothering the user.

However, the time cost would increase in this situation since the system might
end up waiting a very long time for a reply from the user. If the expected time
associated with getting a response from an available user is ¢, then we should adjust
the expected time value to Pyyeut + (1 — Payai)T, where T is a built-in deadline

after which the system will stop waiting for a response from an unavailable user.

User attention

Even if the user is available to answer a question, his attention might be focused

elsewhere, causing him to be less willing to interact with this system at a given
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moment than he would be in general. Horvitz, Jacobs and Hovel (1999) consid-
ered the idea of probabilistically modeling the user’s focus of attention and using
this information to determine the cost of alerting the user about e-mail. Such an
approach would be a useful extension to our work.

The cost of bothering should be higher if the user is currently busy with other
important things. If we could somehow estimate the user’s current cognitive load,
then this could be used as a factor. One possible mechanism for this is simply to
tweak the current value for the user’s willingness; if the user rated their willingness
to interact as a 7 out of 10, but the system knows he is very busy right now, then
this value could be lowered temporarily to 6 or 5. The degree of change would
depend on the estimated cognitive load (exactly how busy/distracted is the user?).

Of course, if no such information is available to the system, one possibility is to

leave it up to the user entirely to adjust the willingness level when appropriate.

6.1.4 User Initiative

The focus of this thesis has been on providing a framework for systems to use in
deciding when they should take the initiative to solicit further information from the
user. However, a mixed-initiative system must also be able to deal with the fact
that, in many domains, users will want to take control of the dialogue themselves,
possibly at unexpected times.

The models in this thesis rely on a view of problem solving in which the cur-
rent situation is always represented as a state. The state representation captures

everything about the current situation that is needed to distinguish it from other
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possible situations. This includes information about the current status of the prob-
lem solving and of the dialogue between the two parties. Any actions initiated
by the user, whether they involve advancing the problem solving process or sim-
ply communicating with the system, will directly influence the current state of the
system. Once the user has taken the initiative to take an action, the system will
determine the new state that it finds itself in, and will use this new state to make
decisions about further actions and interactions.

One important point that is not the focus of this thesis, but is crucial to the
effective design of mixed-initiative systems, is the idea that systems should be
designed so that the computer is able to determine the intentions of the user as
much as possible. There is thus a delicate balance between empowering the user
and ensuring a smooth dialogue. If the system is not equipped with sophisticated
natural language understanding capabilities, then the user should be limited in the
types of utterances that he can make, perhaps by restricting user initiative to a
finite set of menu commands, so that the system can understand without excessive
clarification dialogues. However, if the user’s options are too limited, then the
difficulty of using the system will frustrate users to the point that it will not be

considered a worthwhile system to use.

6.1.5 Deeper analysis of questions being asked

In this thesis, we have factored out the consideration of generating appropriate
questions for the user (assming that a module will provide this information). A few

important research challenges arise, as follows.
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Improper questions

If the question-providing module proposes questions that turn out to be irrele-
vant to the user’s task, this will result in more bother and cost to the user. The
topic of considering the cost of irrelevant questions is addressed by Raskutti and
Zukerman (1997).

In addition, if there are difficulties with the actual plan recognition that de-
termines the user’s task, therefore influencing the questions to be selected, this
will also result in costly interaction. We have not explored the case of faulty plan
recognition, but this topic is discussed by Wu (1991), in the context of a decision
procedure for generating dialogue.

For future work, we could assume that the question generating module may
be faulty, incorporating probabilities that irrelevant or improper questions may be

generated and adjusting the calculations accordingly.

Follow-up questions

Certain questions to be asked of the user will necessarily lead to further, follow-up
questions, all as one dialogue between the system and user.

Although much more complex modeling would be possible, we view such follow-
up questions in this thesis simply as an extension of the initial question. If such
follow-up questions are believed to be likely, then the expected cost of the interac-
tion will reflect this belief. For instance, if the expected cost of a primary interaction
is calculated to be 10 and if a follow-up question with an estimated cost of 5 is ex-

pected to be necessary with probability 0.7, then the overall expected cost of the
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original question would be 10+0.7(5) = 13.5. We assume that such follow-up ques-
tions will be asked automatically if they are deemed necessary, and that no further
reasoning will be done to decide on whether or not to ask the follow-up question.
Similary, the expected benefits of an interaction are meant to reflect the benefits
that would be achieved if a question (and any necessary follow-up questions) were
asked of the user.

To effectively calculate the long-term benefits and costs of interacting, it is ideal
to reflect all the ensuing work throughout the follow-up dialogue in the calculations.
For future work, we could tease apart these calculations more precisely and examine
more examples that explicitly require follow-up questions.

Raskutti and Zukerman (1994; 1997) provide further discussion on the issue of

follow-up questions.

6.1.6 Heuristic functions for system uncertainty

In Section 3.6, an information-theoretic approach to designing mixed-initiative sys-
tems was developed. However, it was pointed out that a system that lacks the ability
to predict the different possible answers to a question and the expected probabilities
of each of those answers will not be able to use such an approach. Such a system
will be forced to use a heuristic measure to capture its general uncertainty about
its domain knowledge.

In this subsection, we propose that such a heuristic should take into account the
system’s experience with working in the domain, the system’s experience working

with this particular user, as well as any information that the system has about its
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performance on similar tasks in the past.
To measure a system’s overall experience in the domain, we use the following

formula;:

EXPERIENCE = wuse’rhuser + wcla,sshclass + wtotalhtotal

Each of the h terms represents a heuristic evaluation of the system’s historical
performance in interacting with, respectively, the specific user involved, the stereo-
typical class of users to which the user belongs, and all users in the domain. The
details of the computation of these heuristic values are presented below. Again,
the weights in the formula are determined by the system designer, according to the
estimated importance of each of the component terms.

To compute each of the h terms in the above formula, we measure the system’s
past performance on previous tasks using the formula below. This formula is com-
puted three times, once for the specific user, once for the stereotypical user class,
and once for all users.

In each case, the situations s; in the formula are the k situations from the
system’s history that are deemed to be the most similar to the current situa-
tion s, according to a distance metric distance(s,s;) such as the one proposed
by Kozierok (1993). The variable &, the number of past situations examined by the
system, is specified by the designer of the system. Success(s;) is a measure of how

well the system performed when it encountered situation s;.

B Z Success(s;)
k + distance(s, s;)
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If, in a particular system, it is impossible to measure the similarity between two
situations, then the distance(s, s;) should be replaced in the formula by a constant
k' chosen by the system designer. This formula will, of course, be less informative
than the original one. However, because of the success rating in the numerator,
a system will be more confident in its domain knowledge if it knows that it has
performed well in the past than if it has performed poorly.

Similarly, the success rating in the numerator can be replaced by a constant
k" if no information is available about the system’s past performance. Again, this
formula will be less informative than the original one. However, it will do the
best with the information it has available: because of the distance metric in the
denominator, a system that has seen very similar situations in the past will be more
confident in its domain knowledge than a system that has not encountered similar
situations.

Once we have completed the heuristic evaluation of the system’s experience, we
interpret this as a measure of the system’s confidence in its domain knowledge. The
formulas presented in Section 3.6 relied on a measure of the system’s uncertainty in
its abilities. We compute this uncertainty simply by taking 1 — EXPERIENCE.
A system that has a great deal of experience should have a low uncertainty value,

and vice versa.

6.1.7 Multiple users

A very interesting possibility is to extend the models to cases where more than

one human user is available as a potential collaborator for the system. Such a
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system would model the expertise and willingness to interact for each of these
users. In any situation in which user assistance is a possibility, the system would
then perform a costs-benefits analysis for interacting with each of these possible
sources of information, in order to determine whom to ask.

After receiving new information from a user, the system would then reevaluate
its situation, determining the benefits and costs of additional interactions. It might
turn out to be advantageous to ask another user the same question, in order to
reinforce the system’s belief that the information acquired from the first user was
accurate.

Another interesting twist presented by the case of multiple users is the need
to balance the preferences of different users in situations in which the goals and
plans of the various users involved might conflict. For example, consider a system
being used to design a teaching schedule for a large academic department. All other
things being equal, the preferences and constraints of a permanent faculty member
might hold more weight than those of a temporary instructor when trying to resolve

conflicts.

6.1.8 A Qualitative Approach

In this section, we provide a more conservative approach to making decisions about
interaction with users. Up to this point, we have used probabilistic reasoning to
estimate whether or not the benefits of interacting are likely to outweigh the costs.
The procedure presented in this section is a qualitative recasting of this decision

problem. Some system designers might consider this a more appropriate approach
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for certain application domains — or in general, depending on their opinions regard-
ing logical and probabilistic reasoning.

Also, for certain applications, there may be insufficient data on which to make
reasonable estimates of the values required by the quantitative model. Our quali-
tative decision process, which is dependent on evaluating certain binary conditions
about the user, is a liberal strategy proposing that the system initiate interac-
tion unless it has reason to believe that interaction with this user would not be
successful.

Included in our decision process are some factors employed in the quantitative
calculation: whether the user has the knowledge required and whether the user can
understand the interaction. Since there is no independent calculation of expected
benefits and costs, we incorporate two important conditions which are tied to these
factors: whether the user is willing to interact and how important is the task to be
performed by the system. We also allow for clarification, in cases where the system
feels it is important to interact but the user would not be able to understand without
further explanation. The overall algorithm is shown in Figure 6.1.

Although there are no numeric values to reason with during this deliberation
process, information about the user still needs to be used. The system might deter-
mine that the user does not have the knowledge it is seeking during the interaction,
by stereotyping the user and labelling certain classes of facts as unknown to this
user class. Alternatively, the system can decide that it does believe the user has
the knowledge it seeks, either from a stereotyping of the user or by examining the

past history of interactions with this user, to conclude that this user knows facts
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If not (System Believes not (User-Knows-About(p)) then
If not (System Believes not (User-is-Willing-to-Interact-about(p)) then
If System Believes (User-Can-Understand-Interaction-about(p))then
System Asks User (p)
Else
If System Believes (User-can-be-made-to-understand(p)) then
System initiates learning phase for User
System Asks User (p)
Else
System Acts without Asking User
Else
If System Believes (Very-Important(p)) then
/* interact even if User unwilling */
System Asks User (p)
Else
System Acts without Asking User
Else
System Acts Without Asking User

Figure 6.1: Algorithm for qualitative model

of this type. Stereotypes and past history could also be used in the evaluation of
the system’s beliefs about the user’s willingness and ability to understand. As for
determining that the task at hand is “very important,” this would be done on the
basis of the system’s view of the problem solving task.

The kind of reasoning required to determine the values for conditions in the
qualitative model could also be employed in coming up with strategies for calcu-
lating the numeric values required in the quantitative formulation. For example, a
user who has been unwilling to interact a certain number of times in the past could

be assessed as having a certain bother cost in the cost calculation.
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6.1.9 When do we reason about interaction?

An important consideration in designing mixed-initiative systems that reason about
the benefits and costs of interaction is the question of when, and how often, to
perform that reasoning. In most artificial intelligence applications, the system’s
behaviour over the course of a problem-solving session can be viewed as a sequence
of steps. The system performs one action after another as it works its way towards
completing the task. In many systems, particularly the mixed-initiative systems
that are the focus of this thesis, the system’s actions will be intertwined with
actions performed by the user as they cooperate on performing the task.

In the MDP model presented in Section 3.5, the system does not have to reason
about interaction at run-time. Such a system will have at its disposal an optimal
policy that has been computed ahead of time. This policy will provide the system
with information about the best action to take in any state that might arise over
the course of a session.

With the dynamic decision network approach mentioned in Section 3.5.4, time
is broken down into discrete time steps. At each such time step, the system can
determine the best decision to take by considering each possible action it might
take and using Bayesian inference techniques to determine which action has the
highest expected utility.

For the heuristic model of Section 3.6, we propose that the system take a similar
approach. It should reason about interaction before every action it takes. Since the
calculations in these models are fairly straightforward, the amount of time required

for these computations will be minor — and certainly much smaller than the time



CHAPTER 6. DISCUSSION 192

required for Bayesian inference.

Furthermore, in many cases, the reasoning of the system will not even involve
resorting to the quantitative reasoning provided in our models. If a system knows
of a step-by-step plan to achieve a particular subgoal within a domain and knows
that it has all the information it will need as it executes that plan, it can determine
that there is no need to consider interacting with a user until that subgoal has been
completed. Similarly, in other situations, a system might not be able to proceed at
all without getting more information from a user. In this case, there is no need to
reason about the benefits and costs of asking the question; the system should just

go ahead and ask the question immediately.

6.1.10 Reasoning about Reasoning

An important point that has not yet been raised is the fact that reasoning about
interaction can itself be costly. In some cases, a system might spend a significant
amount of time and computational effort weighing the pros and cons of interacting
with the user. It will certainly be true in some situations that the system would
have been better off simply to make a decision based on very rough guidelines rather
than undertaking full-fledged reasoning about the interaction decision.

An extreme example of this was mentioned earlier. In cases where a system sim-
ply cannot make any progress in its problem solving without garnering additional
information from the user, then it must certainly try to obtain this information.
Utility-based reasoning about whether the interaction’s benefits will outweigh its

costs is pointless; it will be beneficial — unless the system is absolutely certain that
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the user will be unable to help.

If a system designer believes that this is almost always the case in his application
of interest, then the qualitative model presented in Section 6.1.8 might prove to be
superior to the quantitative models developed in Chapter 3. If this is not always
the case in a domain, but if it is expected to be a concern sometimes, then a hybrid
technique might be required. An important future research question is how to

effectively develop such a hybrid system.

6.2 Research Contributions

The work described in this thesis has contributions to make to several different
research areas. Those contributions will be discussed under separate headings in

this section.

6.2.1 Mixed-initiative systems

Past research efforts in mixed-initiative interaction have been largely independent
of one another; system designers have primarily come up with their own mixed-
initiative solutions to suit their domain of interest. What is needed is a principled,
domain-independent framework for designing mixed-initiative systems.

One of the important components of such a framework is a decision procedure
to be used by mixed-initiative systems in determining whether or not to interact
with a user in a given situation. Such systems will often be faced with situations in
which it is believed that the user might be helpful, but in which there is also some

cost associated with such an interaction.
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We have developed a model in which such decisions can be made by weighing
the perceived benefits and costs of the interaction. We have elucidated the factors
that must be used in determining those benefits and costs. Such decisions must be
made not only on the basis of the system’s current problem-solving state, but also
according to the history of the system’s dialogue with the user and according to
the system’s model of the user’s knowledge, preferences and abilities.

As mixed-initiative interaction becomes more prominent in an increasing vari-
ety of application areas, including robotics (Kortenkamp et al., 1997), intelligent
tutoring (Carberry, 1997; Lester et al., 1997; Shah and Evens, 1997) and plan-
ning (Burstein and McDermott, 1996; Allen, 1994), it is important for developers
to avoid the pitfalls of designing ad hoc systems without a solid, principled, theo-
retical set of guidelines. The research described in this thesis lays the groundwork
for the development of such application-independent guidelines.

The model we have developed is general and does not rely on assumptions about
any specific application area. Our work uses existing techniques from decision the-
ory, but focuses on specific factors relevant to system-user interaction that should
be incorporated into decision-theoretic reasoning. We have provided initial sug-
gestions for how certain factors could be implemented in our model, but yet the
framework remains flexible enough to accommodate the application-specific needs

of system designers.
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6.2.2 User modeling

We have described how to make use of a user model in decisions about interaction
by mixed-initiative systems. In particular, in our model, we have specified the role
that should be played by the user’s knowledge, by the user’s preferences among
possible outcomes in a domain, and by the user’s willingness to interact with the
system.

The idea of using a user model to determine whether a system should interact
with a user, as opposed to how to interact, or how to modify the text generated by
an automated system, is an interesting question for the user modeling community
and a novel contribution of this work.

In Section 3.8, a method was described for combining information about the
knowledge of a specific user, of users of a certain stereotype, and of all users in gen-
eral. Techniques for incorporating both general and specific user modeling informa-
tion are lacking in the literature. The framework proposed in this thesis represents
a solid step toward establishing methods for weighing the relative contributions
of these different types of user model, and for designing systems that adjust the
importance of specific and general information as the system gains experience.

Adaptable systems are becoming more common in our society, particularly in
the form of adaptable hypermedia systems on the World Wide Web (Brusilovsky
and Maybury, 2002); user models play a crucial role in such systems. The research
described in this thesis has a strong connection to the user modeling community,
and is therefore highly relevant in the development of intelligent systems in the

near future.
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6.2.3 Discourse

Although it has not been a primary focus of the work, the research described in this
thesis will be of interest to the discourse research community. We are addressing a
discourse problem: one in which a collaborative problem-solving session between a
system and a user is treated as a dialogue between the two parties. This dialogue
is one in which either party might take control of directing the task at any time.

Although we do not have a discourse model, in the way that a system like Colla-
gen (Rich and Sidner, 1998) has — with a focus stack, natural language generation,
and so on — we do incorporate a very basic discourse model into our overall model,
by keeping a record of certain aspects of the dialogue thus far. This includes a
record of the number of times that the system has requested help from the user,
the times at which those interactions took place, and the estimated cognitive effort
that these interactions required of the user. Based on this information about pre-
vious instances of interrupting the user, we compute the estimated cost associated
with bothering the user in the current situation.

Our view of initiative is primarily one that fits under Chu-Carroll and Brown’s
definition of dialogue initiative (Chu-Carroll and Brown, 1997). Although a general
mixed-initiative system will have to adopt a broader view, our focus has been on
situations in which the system is attempting to decide whether or not it should take
the dialogue initiative to ask a question of the user. In essence, a system that takes
this type of dialogue initiative is in fact actively relinquishing the task initiative,
by suggesting that the user should take more control of the task by guiding the

system.
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6.2.4 Decision Theory

Our work continues a recent trend of using decision-theoretic techniques to model
dialogue (e.g., (Haddawy and Hanks, 1998; Paek and Horvitz, 1999b; Murray and
Lehn, 2000)). We propose that a Markov decision process model of dialogue will
be appropriate for dialogue situations that satisfy certain criteria (see Section 3.5).
However, we also identify certain limitations of these techniques for modeling dia-
logues. In situations in which these limitations prove to be problematic, we suggest
an alternative, information-theoretic approach to modeling the benefits and costs

of interacting with a user in a cooperative problem-solving session.

6.2.5 Multi-Agent Systems

The main message to be taken away from this thesis, with respect to multi-agent
systems, is that we are calling for more synergy between the multi-agent research
community and the mixed-initiative research community. In our research, we have
hopefully helped to elucidate why that synergy is needed.

The two areas are in fact very similar in many ways. Work such as that of
Gmytrasiewicz and Durfee (2001) and Xuan, Lesser and Zilberstein (2001) has a lot
to offer to researchers attempting to design systems that make intelligent decisions
about interacting with human users. Essentially, whether the other participant(s)
in a dialogue are humans or other artificial agents, many of the same techniques
can be used. The benefits and costs of initiating an interaction should be analyzed,
and communication should be initiated only if the benefits exceed the costs.

We have also suggested one major difference between communication in multi-
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agent systems and in mixed-initiative systems: the cost associated with bothering
the user. In Section 3.4.3, we discussed the crucial role that this bother factor
should play in a mixed-initiative system, and we provided some ideas on how such
a factor should be computed.

Closely related to the area of multi-agent systems is the research field of ad-
justable autonomy (Hexmoor, Falcone and Castelfranchi, 2003). Systems with ad-
justable autonomy are able to behave differently in different situations, in terms
of how proactive they are in accomplishing a task or in terms of the amount of
decision-making control or authority they adopt. Although adjustable autonomy
is often studied in the context of a community of intelligent agents, our work fo-
cuses on the case of only one intelligent system working in tandem with one human
user. Although, in some sense, this situation is simpler because there are only two
decision-makers involved, it is made more complex by the psychological aspects of
human-computer interaction, including the bother factor discussed in the previous

paragraph.

In this chapter, we have briefly described some of the possible extensions to our
work that could lead to valuable future projects in mixed-initiative system design.
We have also identified several important contributions of our work to research in
mixed-initiative systems, user modeling, discourse, decision theory and multi-agent
systems.

In Chapter 7, some of the related work in these fields will be described, and

compared and contrasted with our research.
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Related Work

This chapter includes descriptions of several examples of related work, drawn from
the research areas of mixed-initiative systems, decision-theoretic reasoning, spoken
dialogue agents, multi-agent systems, clarification dialogues, collaborative interface
agents, intelligent tutoring, and user modeling. Each section includes some discus-

sion about the relationship between our work and the research being described.

7.1 Horvitz et al.

Horvitz (1999) discusses the debate among Al researchers between the need to de-
sign better automated services (interface agents) and the need to improve direct
manipulation capabilities for users. His view is that the idea of mixed-initiative in-
teraction provides a nice middle ground between these two extremes. In particular,
he identifies factors that he believes are essential for the “effective integration of

automated services with direct manipulation interfaces.”

199
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Horvitz (1999) also looks at the idea of systems making decisions about in-
teraction based on the expected utility of actions. In this particular paper, the
application domain is that of meeting scheduling. As a new e-mail message is being
read by the user, the agent tries to decide whether or not it should assist the user
by beginning the process of scheduling a meeting in the user’s electronic appoint-
ment book. If so, it brings up the appointment book in a new window, filling in
information as specifically as it can. It is also able to identify conflicts with existing
appointments and propose possible alternatives.

Here, the decisions being made by the system are relatively straightforward.
Should it (a) do nothing at all, (b) begin the scheduling process, or (c) initiate a
dialogue with the user to ask about her goals?

The decisions are made based on the simple idea of expected utility, according

to the following information that is available to the system:

e the probability that the user has the goal of scheduling a meeting

e the six utilities associated with the system {performing the scheduling action,
initiating a dialogue, doing nothing} when the user {does, does not} have the

goal of scheduling a meeting

In this domain, the probability of the user wishing to schedule a meeting is
computed by looking at patterns in the text of the message and by considering
previous habits of the user.

Default utilities are provided by the system designers, but they can be altered

by the user if desired.
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Using this information, along with ideas from basic decision theory, the system
can compute two threshold probabilities p* 4 , and pp, 4" Using these thresholds,
the system can immediately decide what to do in any new situation. If the prob-
ability p of the user wanting to schedule a meeting is below p* , 5, then the agent
will do nothing. If p > p7, 4, the system will invoke the automated service. If p is
between the two thresholds, the system will ask the user about their goals.

This particular paper deals with a different type of problem from what we are
considering in this thesis. Horvitz (1999) is looking at situations where the system
is trying to decide whether or not it should invoke an automated service to help
the user. If the system did not do so, it would be the user’s responsibility to
manually invoke the service if there were indeed anything to be done. In our work,
we have been considering situations where the system has already been asked to
work on some type of problem for the user. Our decisions about interaction have
been focused mostly on questions of whether or not the system could benefit from
additional help from the user.

However, Paek and Horvitz (1999b) do consider cases that are somewhat closer
to our work. In this paper, the Bayesian Receptionist is described. It is a system
that deals with tasks that are commonly encountered by receptionists at the Mi-
crosoft corporate campus. It is the system’s responsibility to try to infer the user’s
goals and to fulfill the request. In one example shown in that paper, the system is
uncertain about its understanding of the user’s utterance and, after some reasoning

about the costs and benefits of different types of questions, decides that it is best

! These two variables represent the threshold probabilities between total inaction and initiating
dialogue (—A, D), and between initiating dialogue and taking an action autonomously (D, A).
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to ask the user a question about his goals.

The ideas used by Horvitz are very similar to ours. The actions of the system
are dictated by the expected utilities of the possible courses of action. In Horvitz’s
work, however, the availability of the different probabilities and utilities is more
realistic. In this specific instance, a system might be able to reason about the
likelihood of a particular message being one that involves a potential meeting to
be scheduled. Also, it is reasonable that someone might be able to come up with
utilities for the six possible outcomes. For example, how irritating would it be for
a user if the system were to pop up a scheduling window when he had no intention
of scheduling a meeting?

However, in a general setting, there are far too many utilities to be specified
and the probabilities of the user’s goals are harder to predict. In our work, we
are specifying a framework that can be used for any general application in which a
system might decide to interact with the user.

One observation about the relationship between our work and Horvitz’s is that
our model makes the computation of utilities somewhat more explicit. In Horvitz’s
work, costs such as time and bother are simply incorporated into the utility values.
For example, the utility of the system invoking the automated service when, in fact,
the user did not want that done is simply set to be low if the expectation is that this
user will be greatly bothered by such an outcome. We have identified the factors
that might go into an assessment of such a utility value, so that designers or users
can use a systematic approach to assigning those numbers. While Horvitz mentions

that he is considering costs and benefits of different actions (Horvitz, 1999), we do
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not see that explicitly. We only see utility values that, in theory, incorporate those
costs and benefits.

Furthermore, our work addresses the possibility of applications where utility
values would not be readily available. In particular, the model presented in Sec-
tion 3.6 discusses an information-theoretic approach to reasoning about interaction

without projecting ahead to possible future outcomes and their expected utilities.

7.1.1 Focus of Attention

Horvitz, Jacobs and Hovel (1999) focus more on the idea of when to present infor-
mation to a user, as opposed to our goal of deciding when to request information
from a user. They try to infer the expected criticality of an e-mail message (based
on its content) and “balance the context-sensitive costs of deferring alerts with the
cost of interruption.” They look at different costs of interruption for different types
of alerts and for the different possible tasks that the user might be focused on.

They provide formulas for the following ideas:

e expected cost of interruption
e expected cost of deferring alerts (cost of delayed action)

e expected value of transmitting an alert

The discussion about costs of delayed action includes a few comments about
dividing e-mail messages into different “criticality classes.” The cost of delayed

review of a message depends on its criticality.
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Although we have not really considered the idea of alerting the user about
information in this thesis, this would be an important part of the larger picture
of how mixed-initiative systems should work. Furthermore, the formalism used by
Horvitz, Jacobs and Hovel (1999) for alerting the user would probably also apply
to the case of when to ask the user. In particular, as discussed in Section 6.1.3, the
idea of using information about the user’s focus of attention is a possibility for an

extension to our model presented in Chapter 3.

7.2 Litman, Walker et al.

The Spoken Dialogue Agents group at AT&T has produced some research that is
closely related to our work. PARADISE (PARAdigm for DIalogue System Evalua-
tion) is “a general framework for evaluating spoken dialogue agents” (Walker et al.,
1997b). This framework provides a means by which the performance of different
agents can be compared. In PARADISE, the idea of an agent’s overall performance
is “modeled as a weighted function of a task-based success measure and dialogue-
based cost measures, where weights are computed by correlating user satisfaction
with performance” (Walker et al., 1997b). The underlying assumption is that the
ultimate goal of such a system is to maximize user satisfaction, and that this ob-
jective can be broken down into two sub-objectives: maximizing task success and
minimizing the costs associated with inefficient dialogues.

Task success is measured by using the Kappa coefficient (Carletta, 1996; Siegel
and Castellan, 1988). Many different cost measures have been identified by the

AT&T group, including the number of system and user turns, the number of help
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requests and the total elapsed time of the dialogue. By performing regression
analysis on a set of data from sample dialogues, they are able to identify which
factors are statistically significant in predicting user satisfaction and to determine
the relative contribution of each of these relevant factors.

The PARADISE framework has been shown to be very useful for evaluating
different versions of the same spoken dialogue system, in order to determine the
overall dialogue strategy that appears to be best for a given domain. Some of the
AT&T experiments have involved using PARADISE to compare mixed-initiative
versus system-initiative dialogue strategies (Walker et al., 1997a), to compare literal
versus cooperative responses (Litman, Pan and Walker, 1998), and to investigate
the value of a tutorial dialogue to familiarize users with a system before using
it (Kamm, Litman and Walker, 1998).

Although there are similarities between the goals of this research and of ours
— most notably, the aim to produce dialogues that maximize task success while
minimizing dialogue costs — our approaches are significantly different. The AT&T
group has looked at techniques for choosing an optimal overall dialogue strategy for
systems. We, on the other hand, are focused on designing systems that can make
decisions about the value of interaction at some step in the middle of a problem-
solving session. Rather than acting according to a pre-defined dialogue strategy,
our agents are able to evaluate situations as they arise and to make appropriate
decisions “on the fly.”

More recent AT&T research has moved towards the design of systems that can

adapt their dialogue strategies during the course of the dialogue: first by allowing
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the user to manually adjust the system’s strategy during problematic sessions (Lit-
man and Pan, 1999) and then by allowing the system to use learning techniques to
anticipate speech recognition problems and to adjust the dialogue strategy accord-
ingly (Litman and Pan, 2000). However, the overall approach is still to have the
system behaving according to one of a fixed set of dialogue strategies, rather than

treating each individual situation separately.

7.3 Gmytrasiewicz and Durfee

Gmytrasiewicz and Durfee have looked at the problem of rational communication in
multi-agent environments (Gmytrasiewicz and Durfee, 2001). The decisions being
made by their agents are very similar to those being discussed in this thesis, in
that they involve decisions about the value of communication with another agent.
Their approach also involves the use of expected utilities to guide the system in
its decisions about communication. As in our work, they are looking at different
possible actions that could be taken by the agent and attempting to choose the
one that will have the maximum benefit. Like us, they deal with decisions about
interaction just like decisions about task-related actions.

They look at several different types of communication: messages informing other
agents about certain aspects of the world, messages about the “speaker” agent’s
own intentions, acknowledgment messages, questions, and commands. Their discus-
sion of questions is particularly relevant to our research. However, the multi-agent
setting is quite different from the mixed-initiative scenario in this regard. In Gmy-

trasiewicz and Durfee’s work, the agents are assumed to be self-interested, whereas
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we make the assumption that the human user is likely to help the system as much as
possible, since it is often the human user’s own goals that the system is trying to ful-
fill. Gmytrasiewicz and Durfee provide some interesting discussion about the value
of representing questions as declarations of ignorance in multi-agent environments.

Another interesting aspect of their research is their use of the Recursive Mod-
eling Method (Gmytrasiewicz and Durfee, 1995) as a representation for the agent’s
reasoning. This method involves representing not only the agent’s beliefs about the
world, but its beliefs about other agents in the system, about those other agents’
beliefs, and so on. Although it would be an interesting idea for future research to
apply this recursive modeling representation to systems using our reasoning model,
this has not been in our focus thus far.

The primary difference between their work and ours is the fact that we are deal-
ing with systems where the other agent is assumed to be a human user. As a result,
our concern with issues such as the user’s probability of being a helpful collabo-
rator and the cost associated with bothering the user are not primary concerns in
Gmytrasiewicz and Durfee’s work. There are, however, some interesting parallels.
In their research, for example, they consider the possibility of communicative acts
being unsuccessful due to unreliable communication channels or misunderstand-
ings on the part of the other agent; these ideas are strongly related to our initial
discussion about the understandability of system utterances in Section 6.1.1.

Although Gmytrasiewicz and Durfee do consider that there is a cost to com-
munication, these costs are just presented in their work as given values, with no

discussion of where cost information would come from. One of the main contribu-
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tions of our work is to specify how communication costs, particularly for interaction
with human users, should be computed.

One final difference is that their work considers the value of communication
in a “myopic” way: only the immediate effects of interactions are considered in
computing the utilities; there is no concern for how an interaction might affect the
long-term success of the overall communication. In our work, we extend this idea by
providing models for incorporating the long-term benefits and costs of interactions.
This is addressed in our model by projecting ahead, looking at sequences of actions
and interactions that might be taking place in the future, and considering the
utility of the eventual solution that could be reached after each possible sequence

of decisions.?

7.4 Sullivan et al.

Sullivan et al. (2000) apply utility-based reasoning to the following multi-agent
problem. There is a team of agents and a set of tasks that have been distributed
among the various agents in the group. When an agent is presented with an “outside
offer” (a potentially rewarding job that is not part of its commitment to the team),
should it default on its task(s) within the team framework in order to accept the

outside offer?

e One or more agents from the group might be able to perform the defaulting

agent’s tasks, but those tasks might also go undone.

2Note that our treatment of long-term benefits and costs still factors out the topic of a possibly
faulty question generating module. This is discussed further in Section 6.1.5.
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e The team incurs a cost (divided equally among the agents) whenever an agent

defaults on a task.

e Future decisions about the assignment of tasks will be made according to the
agent’s “score,” which is based on its reliability in the past. In other words, an
agent that defaults on its assigned tasks now will be assigned less important

(and therefore less rewarding) jobs in the future.

e In determining whether to accept an outside offer, each agent determines the

utility of the various options. This calculation can include three factors:

— current income - takes into account the income from the outside offer

and the cost of defaulting

— future expected income - estimate of income from future weeks, according

to the likely effect of defaulting on the agent’s “score”

— brownie points - gained or lost according to whether an agent does or
does not choose to default on its tasks; considers the values of the offered
task and of the defaulted task. This is only used internally by an agent
as a measure of social consciousness; it does not actually affect future

task assignments.

The utility of defaulting is computed as indicated below, where T'E'] is the total
estimated income (a combination of current income and future expected income),

where BP refers to brownie points, and where the weights sum to 1.

Ugey = TEIweight x normT Elges + BPweight x normBPyes
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A similar calculation is then done for not defaulting. Agents default when

Udef > Unofdef .

The basic ideas of their work and ours are the same. Their agents decide to
do something (default on their assigned tasks in order to accept a new task) if the
expected utility of the new task outweighs the expected utility of the old ones. We
decide to do something (interact with the user) if the expected benefits outweigh
the expected costs. In fact, the Sullivan approach could very well be applied to our
problem of interest. The question of whether or not to default on a task would be
replaced by the question of whether or not to ask the user a question. Also, the

following interpretations would apply to the terminology used in Sullivan’s work.

e The current income could represent an estimate of how well the current task

will be done if the agent does (or does not) ask the user for help.

e The future expected income might try to estimate how well the user or system
would be able to perform future tasks if the system does (or does not) interrupt
in this instance. For example, if a system interrupts and expects that what
it learns from the user could improve its ability to handle future situations,
this would add to the utility of interrupting. Similarly, in a different type of
domain, the utility might be increased if there is some expectation that an
interaction will improve the user’s future ability to perform actions without

any further help from the system.

e The brownie point model could correspond to user satisfaction. It would be

necessary to incorporate some kind of user feedback here. An agent would
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gain brownie points if it chose to interrupt the user and if that interaction
proved valuable, or if it chose not to interrupt and if such a situation was
later evaluated by the user as being one where interaction was indeed unnec-
essary. Similarly, an agent would lose brownie points if it incorrectly chose to
interrupt or to keep quiet. Unfortunately, this analogy is not likely to work
very well. If we really want it to correspond to the brownie point model,
then the agent needs to be able evaluate things at the moment at which it is
making the decision. If there were some way to compute how “similar” the
current situation is to past situations (Kozierok, 1993), then it could use past

feedback to evaluate the current situation.

e Another possibility is to use some penalty for bothering the user, instead of
a brownie-point system. This could just be some constant value, or could
depend on how much the user had been bothered recently, or could try to
consider the user’s focus of attention. The calculations would then look more
like those below, where the bother factor is incorporated only into the utility

calculation for interrupting.

Uinterrupt = TEIweightinteMupt X nOTmTEIinterrupt

— BotherWeight x normBotherV alue
Uno—int = TETweight,o_ins X normT El,_in:
Again, the agent would interrupt if Uspterrupt > Uno—int-

One important distinction between our work and that of Sullivan et al. is

that we must also take into account the cost of the interaction, which does
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not have an analogue in their work.

In some sense, our problem is a more difficult one to look at in a concrete way.
Their agents are dealing with ezplicit rewards that are available for perform-
ing certain actions in the domain. In a general mixed-initiative system, the
system’s goal will be to attempt to perform a task as well as possible and to
please the user as much as possible. Often, there will not be a concrete way
to evaluate the possible actions, especially not before the task has actually
been performed. This is precisely the problem of the availability of utility

functions discussed in Section 3.6.

7.5 Xuan et al.

Xuan, Lesser and Zilberstein (2001) also look at the problem of communication
decisions for multi-agent systems. They are concerned with the fact that agents
are often in uncertain environments and are unable to observe the states of the
other agents with which they are working. The agents have complete knowledge
of their local state, but not of the global state of the multi-agent system. The
framework that Xuan et al. develop for dealing with this situation is similar to a
multi-agent Markov decision process (Boutilier, 1999), but one in which individual
agents have to make decisions about whether or not to try to observe the global
state.

This work is very much related to ours, in that Xuan et al. are interested
in developing systems that will treat interaction as a decision-theoretic problem,

choosing to initiate communication only if the expected gain outweighs the expected
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cost.

Although Xuan et al. address the fact that communication should have a cost
associated with it, and although their model allows for this cost to vary according
to time and the agent’s current state, there is no discussion about how this com-
munication cost would be calculated. As stated in the discussion of Gmytrasiewicz
and Durfee’s work in Section 7.3, we specify how the cost of communication should
be computed for the case in which the other agent is a specific human user, focusing
specifically on the cost associated with bothering this user.

The agent’s decisions about whether or not to try to observe the local state
of another agent is very similar to our problem of deciding whether or not to ask
questions of a user. However, in our case, the questions would have to be much
more specific, in order to try to access particular pieces of information about the
user’s knowledge or preferences. In many situations, it is difficult to ask a human
to provide a complete report on their “current state”; there simply would be too

much information involved.

7.6 van Beek, Cohen and Schmidt

Cohen et al. (1994) and van Beek et al. (1993) looked at the use of plan recognition
in generating appropriate responses from advice-giving systems. In particular, they
discussed the problem of when to initiate a clarification dialogue with users. This
was done by examining the possible plans that the user might have and by identify-
ing faults with each possible plan. By grouping together plans with the same fault,

they were able to make decisions about whether any ambiguities in the system’s
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view of the user’s plan were in fact relevant to the task of generating a cooperative
response.

In the work by Cohen et al. (1994), the system would ask the user a clarifying
question whenever it was determined that there was ambiguity in the user’s plan
and that this ambiguity would make a difference to the system’s response. Such a
clarification dialogue was always assumed to be beneficial. We have extended this
work by introducing the idea of costs of interaction, and by considering whether or
not the benefits outweigh the costs.

We have also extended their work by considering issues such as the perceived
knowledge and willingness of the user. In the applications considered by Cohen
et al. (1994) and van Beek et al. (1993), users could always be assumed to be
knowledgeable about their own goals and preferences. Furthermore, it was assumed
(quite naturally) that users of their advice-giving systems would always be willing
to be fully collaborative participants in the dialogues. In our more general setting,
users might be asked questions about the state of the world — questions that some
users might be more or less likely to be able to answer. Also, in many applications,
the system might have been enlisted by the user to perform some task on his behalf,
with some users being more or less willing to provide assistance to the system. The
expected value of asking a clarifying question should depend on how likely we are
to get a helpful response and on how bothersome the dialogue will be for the user.

Another extension of the work by Cohen, van Beek and Schmidt is in our in-
troduction of probabilistic information into many aspects of the decision-making

situation, particularly in the system’s view of its own confidence about what to do
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in a problem-solving setting. In Cohen et al.’s work, the algorithms relied on the
system being able to determine the user’s plan to the point that there was no ambi-
guity or that any ambiguity would be irrelevant to the system’s eventual response.
However, building on recent work on decision-theoretic approaches to artificial in-
telligence (Horvitz, 1988), we allow for the possibility of a system making decisions
without resolving ambiguities, if it is confident enough in its best guess and if the

expected benefit of resolving the ambiguity is sufficiently low.

7.7 Chajewska et al.

Chajewska et al. (2000) have done some interesting work on adaptive utility elic-
itation. They suggest, as we do, that in many situations, acquiring full utility
functions for all users will not be feasible. As a result, intelligent systems must al-
ways make decisions with partial utility functions. Although many researchers have
looked at the problem of incomplete probabilistic information about the effects of
actions, very few have dealt with uncertainty about utilities themselves. Chajewska
et al. treat the user’s utility value for a given outcome as a “random variable that
is drawn from a known distribution” (Chajewska, Koller and Parr, 2000).

The result is an adaptive utility elicitation process that selects the best questions
to ask according to their expected relevance (via a value-of-information analysis).
The system stops asking questions when the value drops below a given threshold.

This is very similar to our work, except that our reasoning has focused on asking
the user questions about the environment, rather than about their utility functions.

Extensions to our model incorporating ideas from Chajewska’s work are a definite
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possibility for future work.

7.8 Murray and van Lehn

Murray and van Lehn’s DT-Tutor (Murray and Lehn, 2000) uses a decision-theoretic
method for designing an intelligent tutoring system. Actions within the tutorial di-
alogue are selected by the tutor, by choosing the available action with the highest
expected utility. Utilities are determined by considering such factors as the “stu-
dent’s problem-related knowledge, focus of attention, independence, and morale, as
well as action relevance and dialog coherence.”

The tutoring system is implemented using a dynamic decision network. They
introduce the idea of tutor action cycle networks (TACNs), which consist of “de-
ciding a tutorial action and carrying it out, observing the next student action, and
updating the student model based on these two actions” (Murray and Lehn, 2000).

This work is quite closely related to the work in this thesis. The main differences
are that they have committed to the dynamic decision network framework and
that they focus on one particular application area (intelligent tutoring). In our
work, we have described an alternative to standard decision-theoretic approaches
in situations where they will not work due to the unavailability of utility functions,

and we have also developed a framework that is application-independent.
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7.9 Bohnenberger and Jameson

Bohnenberger and Jameson have done significant work on modeling system-user
interactions as Markov decision processes. In their recent article (Bohnenberger
et al., 2002), they look at the problem of presenting personalized navigation advice
to users as they carry out a shopping task in a simulated shopping mall. In an earlier
paper (Jameson et al., 2001), they consider the problem of presenting instructions
to a user on how to select options from a printing dialog box. This system attempts
to model time pressure and the user’s cognitive load, in order to make decisions
about the trade-off between task performance and efficiency. They also discuss
the fact that their problems are more accurately modeled as partially observable
MDPs (Bohnenberger, 2002) and that much of their future work will focus on trying
to deal with the computational intractability of the POMDP approach.

This work is quite closely related to the research described in this thesis. We
also model the importance of time pressure, in an effort to balance task performance
and efficiency. Their consideration of the user’s cognitive load is also related to our
bother factor, but we focus on the user’s general attitudes toward interaction, as
well as the system’s perception of the user’s knowledge, rather than focusing on the
user’s current activities. Again, the Bohnenberger and Jameson work is committed
to the MDP framework, whereas we consider situations in which this methodology

might not be the most appropriate.
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7.10 Anderson et al.

For applications such as scheduling and routing tasks, Anderson et al. (2000) have
investigated the concept of human-guided simple search. As with mixed-initiative
systems, the idea behind this work is that the computer and a human user are
working together on a task. However, they do not characterize their system as
exhibiting mixed initiative, since the “user is always in control, and the computer
has no representation of the user’s intentions and abilities.”

In human-guided simple search, the idea is that the roles of the system and
user are clearly divided. The system is responsible for navigating through a search
space, looking for local minima using a standard hill-climbing algorithm. The user,
meanwhile, is responsible for identifying regions of the search space that look to
be the most promising and for helping the system to avoid local, but non-global,
minima.

For example, Anderson et al. (2000) describe a vehicle routing problem in which
the goal is to minimize the number of trucks needed to deliver items to customers
in different locations, within a certain time limit. If the system provides the user
with a visual representation of the problem, then the user might be able to suggest
moves such as assigning certain customers to certain trucks.

This work is relevant primarily because the authors have stated that their system
does not qualify as a mixed-initiative system, but that they would be interested in
investigating this possibility in the future. The models presented in this thesis
would be a strong starting point for developing decision procedures for when to

bring the user on board in such a system, beyond the clearly-defined role that is



CHAPTER 7. RELATED WORK 219

currently specified for users.

7.11 Related user modeling work

In addressing the problem of specifying when a system should take the initiative,
in a mixed-initiative artificial intelligence system, we are advocating a particular
strategy for employing user models. Our algorithm clearly relies on having a user
model which indicates information about a user’s knowledge and attitudes. Other
research in user modeling has studied how to employ user modeling information
such as this for the purpose of tailoring output to users. Moreover, this related
work has gone beyond simply suggesting a change in vocabulary, depending on the
user’s background. Paris (1991), for instance, examines how an entire scenario of
explanation may differ, depending on whether the user is novice or expert. Carberry
et al. (1999) highlight the difference between preferences and goals in the variation
of output to a user. Ardissono and Sestero (1996) study when to issue clarifying
questions for a particular user, based on an evaluation of the user and the current
task. Raskutti and Zukerman (1994) examine what to say in light of a nuisance
factor for the user. We are advocating a novel use for user models, namely to
determine whether or not to interact with a user, depending on the perception of
the user as indicated in the user model. This is distinctly different from altering

the form or content of the generation based on information about the user.
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Conclusions

8.1 Thesis Summary

This thesis has presented computational models for the design of mixed-initiative
artificial intelligence systems that are able to make rational decisions about in-
teraction with potentially helpful users. One of the key challenges in designing
mixed-initiative systems is providing the system with a decision procedure for de-
termining if and when it should take the opportunity to solicit additional assistance
from a potentially helpful user. The thesis provides designers of mixed-initiative
systems with a systematic approach for constructing systems that can reason in a
principled way about interaction with the user, regardless of the area of application
of the system.

The approach was to integrate modeling of the user, the task and the dialogue
simultaneously. Decisions about interaction were based on whether the perceived

benefits of communication exceed the expected costs. Benefits are computed by
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estimating by how much the system’s performance on a task would improve if it
were to obtain further information from a user. Cost factors include the time that
will be required for the interaction and the degree to which the user is expected to
be bothered by the system’s interruption.

In particular, this thesis has emphasized the value of user modeling in mixed-
initiative systems. Decisions about interaction should be based on a careful evalua-
tion of the needs, preferences and abilities of the individual user, leading to mixed-
initiative systems that are user-specific and therefore result in greater overall user

satisfaction.

8.1.1 Summary of Contributions
The main contributions of this thesis are listed below.

e A systematic decision procedure was described for designers of mixed-initiative
systems to use in determining what model would be most appropriate for a
given application domain. Detailed models were presented for simple decision-
theoretic agents, agents using Markov decision processes and agents using
information-theoretic measures when certain information is unavailable. Con-
ditions were identified under which each of these models would be suitable. In
particular, we discussed the limitations of the Markov decision process model

as a technique for modeling human-computer dialogues.

e Various factors were identified that must be modeled in any application do-
main in order for mixed-initiative systems to make rational decisions about

interacting with users. Of particular importance were user modeling factors
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such as the probability that a user will be able to answer a particular question
and the willingness of a user to participate actively in a problem-solving pro-
cess. Both of these factors have been neglected in earlier decision-theoretic

research.

e An important contribution of this work was the careful study of the bother
factor and its role in decisions about interaction with users. Different users
have different preferences for the degree to which they wish to be involved
in collaborative problem solving with a system. By considering the user’s
willingness to interact in estimating the expected bother that will result from
an interaction, we allow for the development of systems that can better tailor

their decisions about interaction to each individual user.

e In Section 3.8, a matrix-based model was developed to aid systems in deter-
mining the likelihood of users knowing the answer to a particular question.
The approach was based on the idea of modeling not only the system’s beliefs
about a specific user’s knowledge on a specific topic, but about that user’s
knowledge in more general topic areas and about the domain in general, as
well as the perceived knowledge of users in the same class as the current user
and of all users of the system. The method incorporates evidence from all
of those different categories of knowledge and relies on the maintenance of
several matrices containing weights. This is an important contribution to the
user modeling community, as such a method has not been fully developed in

the past.
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e This thesis has also helped to emphasize the need for user modeling in the
design of mixed-initiative systems. An effective mixed-initiative system must
be flexible enough to keep control in certain situations and to yield control to
the user at other times. It is essential that such a system be user-specific: the
distribution of responsibilities that works best with one user might be inap-
propriate for another user. User modeling techniques must be incorporated

into any system that can adapt its behaviour to each individual user.

8.2 Future Work

Several possibilities for future research were raised in Section 6.1. These and a few

others are summarized below.

e Understandability: In this thesis, we emphasized the importance of model-
ing the probability that an interaction with a user would in fact be successful.
One important reason that an interaction might not be successful is the possi-
bility that the user might not be able to understand the question. This might
be because of the terminology being used or simply because the user has not
been involved enough in the problem-solving process and does not have the
necessary contextual information to understand what is being asked. This
topic was discussed only briefly in Section 6.1.1 and must be studied more

extensively before being incorporated into the model.

e User Availability and User Attention: Also of possible interest to some

designers are the ideas of user availability and user attention. If a system has
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reliable information that a user is not currently available, or has reason to
believe that the user is very unlikely to be present, then the expected benefit
of interacting with this user is significantly decreased. Similarly, if the user is
known to be distracted or involved in important unrelated work, the cost of
interrupting the user should increase. These topics will also be investigated

in more depth in future work.

e Predictability: Another interesting topic for future work is the idea of pre-
dictability mentioned in Section 6.1.2. The idea again is that, all other things
being approximately equal, a system should have a tendency to do what the
user might expect it to do, based on previous interactions. Research must
be done to determine if users really do prefer to have systems behave in a
consistent manner, even if it might mean that the system is not behaving

rationally in some cases.

e Further developing the heuristic functions: As discussed in Section
6.1.6, it will often be necessary for systems to use heuristics when it is not
possible to estimate the utilities of possible future states or even to enumerate
the possible answers that might be provided by users when asked questions
by the system. These heuristics are based on the amount of experience that
the system has in working with individual users and in the problem-solving
domain in general, as well as on any information that the system might have
received about its previous performance on the task. The preliminary heuris-
tics provided in Section 6.1.6 must be further developed before they can be

implemented in a full-fledged mixed-initiative system.
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e Multiple users: A very interesting future extension of this work is to gen-
eralize the model so that it will deal with systems that have the option of
interacting with many different users. The goal of deciding which user to
choose would be accomplished by considering the benefits and costs involved
in interacting with each available user. This extension makes the overall re-

search problem richer and more challenging.

e Practical applications: Another very important area for future work is
to develop more significant implementations of the model and to test the
resulting systems on practical applications with real users. Of particular
importance here is the idea of getting a more reliable measure of the cost
of bothering the user. The bother models presented in this thesis are useful
guides for programmers wishing to design systems that take bother cost into
account when deciding about interaction. However, performing surveys with
actual users to elicit their true opinions about the trade-off between task

success and the costs of interruption will be beneficial.

¢ Extended experimentation:

Additional experimentation with the existing models would also be very use-
ful. For the short term, it would be useful to conduct further experiments
in which different users have different actual probabilities of providing wrong
answers, beyond the cases presented in Chapter 5. Also, experiments in which
agents modify their Py value as the interaction progresses, rather than as-
suming the same Pyg throughout the session, would be a valuable variation

to explore.
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For the long term, experiments should be modified to deal with one of the
real-world domains discussed in this thesis, such as scheduling, translation
or book purchasing, compared to the tasks presented in Chapter 5, which
were generic. This would involve implementing several agents using different
values for the various parameters in the model and testing their performance,

in terms of overall task performance and user satisfaction.

Also, agents working on real-world tasks will have more than three actions to
consider at any one time and more than three possible questions to ask the
user, as was the case with the experiments in Chapter 5. It will be important

to investigate how well this model will scale up to larger problems.

Furthermore, the utility functions presented in Chapter 5 were chosen ran-
domly. In real-world situations, actual users will have utility functions with

more structure.

Other useful future experimentation would involve comparing our systems to
existing mixed-initiative systems that have been designed without our mod-
els. Appropriate criteria for evaluation would include task success and user

satisfaction.

e The question-generating module: As acknowledged in Section 6.1.5, the
current models do not provide very complex modeling of situations in which
follow-up questions might be necessary after asking users certain questions.
This will be an important consideration in future versions of these models. In
addition, future work may involve admitting possible faults in the questions

being generated and adjusting calculations accordingly. As a starting point,
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we would explore detailed examples of such cases.

e Intelligent tutoring applications: One particular domain of interest for
the potential application of our models is that of intelligent tutoring systems.
As mentioned in Section 2.1.3, there are several properties that make this ap-
plication domain a unique one. Most notably, in intelligent tutoring systems,
the overall evaluation of a course of action taken by the system must include
an evaluation of how well the user has actually learned from the experience.
This can be difficult to judge and makes the overall problem of assigning util-
ities to outcomes much more challenging. For future work, it would be useful
to provide additional insights into how to develop these utility functions, in

order to employ our model in this application area.

e Adjustable autonomy research: Further work must be devoted to ex-
amining the connection between the work in this thesis and research in the
adjustable autonomy community. Adjustable autonomy research involves sys-
tems that can modify the degree to which they will act autonomously on a
particular task. Essentially, the idea of giving up autonomy is equivalent to
the idea of asking for additional help, whether it be from a human user or from
another artificial agent. In the case of adjustable autonomy systems, the help
might not come in the form of additional information, but rather in the form
of guidance as to what steps to perform next in a problem-solving process.
There is a definite need for researchers in adjustable autonomy and mixed-
initiative interaction to work together in the future, as the two problems are

quite closely related, and the role of communication among the collaborating
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parties is crucial in both areas.

8.3 Final comments

Mixed-initiative interaction is gaining recognition in artificial intelligence research
as an important component of systems designed for use in application areas as di-
verse as robotics, military planning, intelligent tutoring and trip scheduling. An
important challenge in designing these systems is to specify when the system should
take the initiative to interact with the user, in order to optimize both the perfor-
mance of the system and the satisfaction of the user. By providing system designers
with a systematic approach for constructing systems that can reason in a princi-
pled way about interaction with the user, regardless of the area of application of the

system, this thesis has made a substantial contribution to mixed-initiative research.
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