
University of Waterloo Technical Report CS-2007-14

An Approximation Algorithm for Shortest Descending

Paths

Mustaq Ahmed and Anna Lubiw
David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, ON, N2L 3G1, Canada
Email: {m6ahmed,alubiw}@uwaterloo.ca

May 9, 2007

Abstract

A path from s to t on a polyhedral terrain is descending if the height of
a point p never increases while we move p along the path from s to t. No
efficient algorithm is known to find a shortest descending path (SDP) from
s to t in a polyhedral terrain. We give a simple approximation algorithm
that solves the SDP problem on general terrains. Our algorithm discretizes
the terrain with O(n2X/ε) Steiner points so that after an O

(
n2X

ε log
(

nX
ε

))

-time preprocessing phase for a given vertex s, we can determine a (1 + ε)-
approximate SDP from s to any point v in O(n) time if v is either a vertex
of the terrain or a Steiner point, and in O(nX/ε) time otherwise. Here n is
the size of the terrain, and X is a parameter of the geometry of the terrain.

1 Introduction

Finding a shortest path between two points in a geometric domain is one of the
fundamental problems in computational geometry [12]. One extensively-studied
version of the problem is to compute a shortest path on a polyhedral terrain; this
has many applications in robotics, industrial automation, Geographic Information
Systems and wire routing. Our paper is about a variant of this problem for which
no efficient algorithm is known, the Shortest Descending Path (SDP) Problem:
given a polyhedral terrain, and points s and t on the surface, find a shortest path
on the surface from s to t such that, as a point travels along the path, its elevation,
or z-coordinate, never increases. We need to compute a shortest descending path,
for example, for laying a canal of minimum length from the source of water at
the top of a mountain to fields for irrigation purpose [16], and for skiing down a
mountain along a shortest route.

1

The SDP problem was introduced by De Berg and van Kreveld [8], who gave
an algorithm to preprocess a terrain in O(n log n) time so that it can be decided
in O(log n) time if there exists a descending path between any pair of vertices.
They did not consider the length of the path, and left open the problem of finding
the shortest such path. Roy, Das and Nandy [16] solved the SDP problem for
two special classes of terrains. For convex (or concave) terrains, they use the
continuous Dijkstra approach to preprocess the terrain in O(n2 log n) time and
O(n2) space so that an SDP of size k can be determined in O(k + log n) time.
For a terrain consisting of edges parallel to one another, they find an SDP in
O(n log n) time by transforming the faces of the terrain in a way that makes the
unfolded SDP a straight line segment. In our previous paper [1] we examined
some properties of SDPs, and gave an O(n3.5 log(1

ε)) time (1 + ε)-approximation
algorithm that finds an SDP through a given sequence of faces, by formulating
the problem as a convex optimization problem.

In this paper we present a (1 + ε)-approximation algorithm, which is the first
algorithm to solve the SDP problem on general terrains. Given a vertex s in
a triangulated terrain, and a constant ε ∈ (0, 1], we discretize the terrain with
O

(
n2X

ε

)
Steiner points so that after an O

(
n3

(
X
ε

)2
)

-time preprocessing phase
for a given vertex s, we can determine a (1 + ε)-approximate SDP from s to any
point v in O(n) time if v is either a vertex of the terrain or a Steiner point, and in
O

(
nX
ε

)
time otherwise, where n is the number of vertices of the terrain, and X is

a parameter of the geometry of the terrain. More precisely, X = L
h · 1

cos θ = L
h sec θ,

where L is the length of the longest edge, h is the smallest distance of a vertex
from a non-adjacent edge in the same face, and θ is the largest acute angle between
a non-level edge and a perpendicular line. We achieve this result by discretizing
the terrain with Steiner points along the edges—the main trick is to ensure the
existence of a descending path through the Steiner points that approximates the
SDP. The algorithm is very simple, and hence easy to implement.

The paper is organized as follows. We define a few terms and discuss the
terrain parameter X in Sect. 1.1, and then mention related results in Sect. 1.2
and 1.3. Section 2 gives the details of our approximation algorithm. In Sect. 3 we
mention our ongoing work, and discuss the possibility of an exact solution using
the approach of Chen and Han [7].

1.1 Preliminaries

A terrain is a 2D surface in 3D space with the property that every vertical line
intersects it in a point [9]. For any point p in the terrain, h(p) denotes the height
of p, i.e., the z-coordinate of p. An isoline on a non-level face is a line through
two points of equal height on that face. We add s as a vertex of the terrain and
triangulate the terrain in O(n) time [6]. Since n is the number of vertices in the
terrain, it follows from Euler’s formula [9, Page 29] that the terrain has at most

2

3n edges, and at most 2n faces.
A path P from s to t on the terrain is descending if the z-coordinate of a

point p never increases while we move p along the path from s to t. A line
segment of a descending path in face f is called a free segment if moving either
of its endpoints by an arbitrarily small amount to a new position in f keeps the
segment descending. Otherwise, the segment is called a constrained segment. All
the points in a constrained segment are at the same height, though not all constant
height segments are constrained. For example, a segment in a level face is free,
although all its points are at the same height. Clearly, a constrained segment
can only appear in a non-level face, and it is an isoline in that face. A path
consisting solely of free [constrained] segments is called a free path [constrained
path, respectively].

We assume that all paths in our discussion are directed. Our discussion relies
on the following properties of an SDP [1]: a subpath of an SDP is an SDP; and
an SDP intersects a face at most once. Note that an unfolded SDP is not always
a straight line segment, see Figure 1.

We use the term “edge” to denote a line segment of the terrain, “vertex” to
denote an endpoint of an edge, “segment” to denote a line segment of a path and
“node” to denote an endpoint of a segment. We use “node” and “link” to mean the
corresponding entities in a graph or a tree. In our figures, we use dashed lines for
edges, possibly marking the upward direction with arrows. A solid arrow denotes
a path segment, which may be heavy to mark a constrained segment. Dotted lines
are used to show the isolines in a face.

We will now discuss the two geometric parameters L
h and θ. The first parameter

L
h is a 2D parameter, and captures how “skinny” the terrain faces are. A terrain
with a large value of L

h needs more Steiner points to approximate an SDP, which is
evident from the example in Fig. 1(a). In this figure, (u, v, w) is an SDP, and v′ is
the nearest Steiner point on edge e. By making u and w very close to e, and thus
making L

h large, the ratio of the lengths of the paths (u, v′, w) and (u, v, w) can be
made arbitrarily large, which necessitates more Steiner points on e to maintain a
desired approximation factor. Such effects of skinny triangles are well known [9],
and have been observed in the Steiner point approaches for other shortest path
problems, e.g., Aleksandrov et al. [4].

The second parameter θ captures the orientation of the terrain faces in 3D
space. When θ is close to π

2 radians, which means that there is an almost level
edge e, it is possible to construct a pair of SDPs from s that have their ending
nodes very close to each other, but cross e at points that are far apart. Figure 1(b)
shows two such SDPs on a terrain that is shown unfolded in Fig. 1(c) (The terrain
can be simplified though it becomes less intuitive). It can be shown that both
the paths are SDPs. Assuming that u′ is the closest Steiner point from u below
h(u) = h(s), the best feasible approximation of the path from s to v is the path
from s to v′. The approximation factor can be made arbitrarily large by making

3

v′

e

v w
u

(a)

us

u′

(b)

v v′

f

s
u

u′

(c)

Figure 1: The effect of L
h and θ on approximate SDPs

face f close to level position, and thus making θ close to π
2 radians, no matter how

small |uu′| is. Note that the “side triangles” become skinny, which can be avoided
by making the two edges through uu′ and vv′ longer by moving their lower vertices
further down along the lines uu′ and vv′ respectively.

1.2 Related Work

It was Papadimitriou [14] who first introduced the idea of discretizing space by
adding Steiner points and approximating a shortest path through the space by
a shortest path in the graph of Steiner points. He did this to find a shortest
obstacle-avoiding path in 3D—a problem for which computing an exact solution
is NP-hard [5]. On polyhedral surfaces, the Steiner point approach has been
used in approximation algorithms for many variants of the shortest path problem,
particularly those in which the shortest path does not unfold to a straight line
segment. One such variant is the Weighted Region Problem [13]. In this problem,
a set of constant weights is used to model the difference in costs of travel in different

4

regions on the surface, and the goal is to minimize the weighted length of a path.
Mitchell and Papadimitriou [13] used the continuous Dijkstra approach to get an
approximate solution in O

(
n8 log

(
n
ε

))
time. Following their result, several faster

approximation schemes [2, 3, 4, 20] have been devised, all using the Steiner point
approach. The Steiner points are placed along the edges of the terrain, except
that Aleksandrov et al. [4] place them along the bisectors of the face angles. A
comparison between these algorithms can be found in Aleksandrov et al. [4].

One generalization of the Weighted Region Problem is finding a shortest aniso-
tropic path [15], where the weight assigned to a region depends on the direction
of travel. The weights in this problem capture, for example, the effect the gravity
and friction on a vehicle moving on a slope. Lanthier et al. [11], Sun and Reif [19]
and Sun and Bu [17] solved this problem by placing Steiner points along the edges.

Note that all the above-mentioned Steiner point approaches place the Steiner
points in a face without considering the Steiner points in the neighboring faces.
This strategy works because we can travel in a face in any direction. For the
shortest anisotropic path problem, traveling in a “forbidden” direction within a
face is possible by following a zig-zag path. For the SDP problem, traveling in an
ascending direction is impossible—a fact that makes it a non-trivial work to place
the Steiner points.

1.3 The Bushwhack Algorithm

Our algorithm uses a variant of Dijkstra’s algorithm, called the Bushwhack algo-
rithm [18], to compute a shortest path in the graph of Steiner points in a terrain.
The Bushwhack algorithm achieves O(|V | log |V |) running time by utilizing cer-
tain geometric properties of the paths in such a graph. The algorithm has been
used in shortest path algorithms for the Weighted Region Problem [4, 20] and the
Shortest Anisotropic Path problem [19].

The Buskwhack algorithm relies on a simple, yet important, property of short-
est paths on terrains: two shortest paths through different face sequences do not
intersect each other at an interior point of a face. As a result, for any two con-
secutive Steiner points u1 and u2 on edge e for which the distances from s are
already known, the corresponding sets of “possible next nodes on the path” are
disjoint, as shown using shading in Figure 2(a). This property makes it possible
to consider only a subset of links at a Steiner point v when expanding the shortest
path tree onwards from v using Dijkstra’s algorithm. More precisely, Sun and
Reif maintain a dynamic list of intervals Ie,e′ for every pair of edges e and e′ of a
common face. Each point in an interval is reachable from s using a shortest path
through a common sequence of intermediate points. For every Steiner point v in e
with known distance from s, Ie,e′ contains an interval of Steiner points on e′ that
are likely to become the next node in the path from s through v. The intervals
in Ie,e′ are ordered in accordance with the ordering of the Steiner points v on e,

5

e

e′

s

u1u2u3u4

(a)

e

e′

s

u1u2u3u4

(b)

e

e′

s

u1u2u3u4

(c)

Figure 2: Maintaining the list Ie,e′ in the Bushwhack algorithm

which enables easy insertion of the interval for a Steiner point on e whose distance
from s is yet unknown. For example, right after the distance of u4 from s becomes
known (i.e., right after u4 gets dequeued in Dijkstra’s algorithm) as shown in Fig-
ure 2(b), the Steiner points on e′ that are closer to u4 than to any other Steiner
points on e with known distances from s can be located in time logarithmic in the
number of Steiner points on e′, using binary searches (Figure 2(c)). Within the
interval for each Steiner point u ∈ e, only the Steiner point that is the nearest one
from u is enqueued. Since the nearest Steiner point from u in its interval can be
determined in constant time, each iteration of the modified Dijkstra’s algorithm
(i.e., the Bushwhack algorithm) takes O(|V |) time, resulting in a total running
time of O(|V | log |V |).

6

v
q′3

q2

p2q′1
s

p1
q3

q′′3

v′
q′2

q′′2
q′′1

q1

p3

Figure 3: Problems with independently-placed Steiner points

2 Approximation using Steiner Points

Our approximation algorithm works by first discretizing the terrain with many
Steiner points along the edges, and then determining a shortest path in a directed
graph in which each directed link connects a pair of vertices or Steiner points in
a face of the terrain in the descending (more accurately, in the non-ascending)
direction. Because of the nature of our problem, we determine the positions of
the Steiner points in a way completely different from the Steiner point approaches
discussed in Sect. 1.2. In particular, we cannot place Steiner points in an edge
without considering the heights of the Steiner points in other edges. We will now
elaborate on this issue before going through the details of our algorithm.

2.1 Placing the Steiner Points

For each Steiner point p in an edge, if there is no Steiner point with height h(p) in
other edges of the neighboring faces, it is possible that a descending path from s to
v through Steiner points does not exist, or is arbitrarily longer than the SDP. For
example, consider the SDP P = (s, p1, p2, p3, v) in Fig. 3, where for each i ∈ [1, 3],
qi, q′i and q′′i are three consecutive Steiner points with h(qi) > h(q′i) > h(q′′i) such
that qi is the nearest Steiner point above pi. Note that p1 and q′1 are the same
point in the figure. There is no descending path from s to v through the Steiner
points: we must cross the first edge at q′1 or lower, then cross the second edge at q′2
or lower, and cross the third edge at q′′3 or lower, which puts us at a height below
h(v). Another important observation is that even if a descending path exists, it
may not be a good approximation of P . In Fig. 3, for example, if we want to
reach instead a point v′ slightly below v, P ′ would be a feasible path, but the
last intermediate nodes of P and P ′ are not very close. We can easily extend
this example to an SDP P going through many edges such that the “nearest”
descending path P ′ gets further away from P at each step, and at one point, P ′

starts following a completely different sequence of edges. Clearly, we cannot ensure
a good approximation by just making the Steiner points on an edge close to each
other.

To guarantee the existence of a descending path through Steiner points that

7

approximates an SDP from s to any vertex, we have to be able to go through
the Steiner points in a sequence of faces without “losing height”, i.e., along a
constrained path. We achieve this by slicing the terrain with a set of horizontal
planes, and then putting Steiner points where the planes intersect the edges. The
set of horizontal planes includes one plane through each vertex of the terrain, and
other planes in between them so that two consecutive planes are within distance
δ of each other, where δ is a small constant that depends on the approximation
factor.

One important observation is that our scheme makes the distance between
consecutive Steiner points on an edge dependent on the slope of that edge. For in-
stance, the distance between consecutive Steiner points is more for an almost-level
edge than for an almost vertical edge. Since θ is the largest acute angle between
a non-level edge and a perpendicular line, it follows easily that the distance be-
tween consecutive Steiner points on a non-level edge is at most δ sec θ. Because of
the situation depicted in Fig. 3, we cannot place extra Steiner points only on the
edges that are almost level. Contrarily, we can put Steiner points on a level edge
without considering heights, since a level edge can never result in such a situation
(because all the points in such an edge have the same height).

2.2 Approximation Algorithm

Our algorithm has two phases. In the preprocessing phase, we place the Steiner
points, and then construct a shortest path tree in the corresponding graph. During
the query phase, the shortest path tree gives an approximate SDP in a straight-
forward manner.

Preprocessing phase. Let δ = εh cos θ
4n . We subdivide every non-level edge e of

the terrain by putting Steiner points at the points where e intersects each of the
following planes: z = jδ for all positive integers j, and z = h(x) for all vertices x
of the terrain. We subdivide every level edge e by putting enough Steiner points
so that the length of each part of e is at most δ sec θ. Let V be the set of all
vertices and all Steiner points in the terrain. We then construct a weighted graph
G = (V, E) as follows, starting with E = ∅. For every pair (x, y) of points in V
adjacent to a face f of the terrain, we add to E a directed link from x to y if and
only if h(x) ≥ h(y) and xy is either an edge of the terrain or a segment through
the interior of f . Note that we do not add a link between two points on the same
edge unless both of them are vertices. Each link in E is assigned a weight equal to
the length of the corresponding line segment in the terrain. Finally we construct
a shortest path tree T rooted at s in G using the Bushwhack algorithm.

Note that we are mentioning set E only to make the discussion easy. In
practice, we do not construct E explicitly because the neighbors of a node x ∈ V
in the graph is determined during the execution of the Bushwhack algorithm.

8

Query phase. When the query point v is a node of G, we return the path from
s to v in T as an approximate SDP. Otherwise, we locate the node u among those
in V lying in the face(s) containing v such that h(u) ≥ h(v), and the sum of the
length of the path from s to u in T and the length of the segment uv is minimum.
We return the corresponding path from s to v as an approximate SDP.

2.3 Correctness and Analysis

For the proof of correctness, it is sufficient to show that an SDP P from s to any
point v in the terrain is approximated by a descending path P ′ such that all the
segments, except the last one, of P ′ exist in G. We show this by constructing a
path P ′ from P in the following way. Note that P ′ might not be the path returned
by our algorithm, but it provides an upper bound on the length of the returned
path.

Let P = (s = p0, p1, p2, . . . , pk, v = pk+1) be an SDP from s to v such that pi

and pi+1 are two different boundary points of a common face for all i ∈ [0, k − 1],
and pk and pk+1 are two points of a common face. For ease of discussion, let ei

be an edge of the terrain through pi for all i ∈ [1, k] (ei can be any edge through
pi if pi is a vertex). Intuitively, we construct P ′ by moving all the intermediate
nodes of P upward to the nearest Steiner point. More precisely, we define a path
P ′ = (s = p′0, p

′
1, p

′
2, . . . , p

′
k, v = p′k+1) as follows. For each i ∈ [1, k], let p′i = pi

if pi is a vertex of the terrain. Otherwise, let p′i be the nearest point from pi in
V ∩ ei such that h(p′i) ≥ h(pi). Such a point always exists in V because pi is an
interior point of ei in this case, and it has two neighbors x and y in V ∩ ei such
that h(x) ≥ h(pi) ≥ h(y).

Lemma 2.1. Path P ′ is descending, and the part of P ′ from s to p′k exists in G.

Proof. We prove that P ′ is descending by showing that h(p′i) ≥ h(p′i+1) for every
i ∈ [0, k]. We have: h(p′i) ≥ h(pi+1), because h(p′i) ≥ h(pi) by the definition of p′i,
and h(pi) ≥ h(pi+1) as P is descending. Now consider the following two cases:

Case 1: p′i+1 = pi+1 or ei+1 is a level edge. In this case, h(p′i+1) = h(pi+1). It
follows from the inequality h(p′i) ≥ h(pi+1) that h(p′i) ≥ h(p′i+1).

Case 2: p′i+1 6= pi+1 and ei+1 is a non-level edge. In this case, there is either
one or no point in ei+1 at any particular height. Let p′′i+1 be the point in
ei+1 such that h(p′′i+1) = h(p′i), or if no such point exists, let p′′i+1 be the
upper vertex of ei+1. In the latter case, we can infer from the inequality
h(p′i) ≥ h(pi+1) that h(p′i) > h(p′′i+1). Therefore we have h(p′i) ≥ h(p′′i+1)
in both cases. Since p′′i+1 ∈ V ∩ ei+1, the definition of p′i+1 implies that
h(p′′i+1) ≥ h(p′i+1). So, h(p′i) ≥ h(p′i+1).

Therefore, P ′ is a descending path.

9

To show that the part of P ′ from s to p′k exists in G, it is sufficient to prove that
p′ip

′
i+1 ∈ E for all i ∈ [0, k − 1], because both p′i and p′i+1 are in V by definition.

We have already proved that h(p′i) ≥ h(p′i+1). Since p′i and p′i+1 are boundary
points of a common face by definition, p′ip

′
i+1 6∈ E only in the case that both of p′i

and p′i+1 lie on a common edge, and at most one of them is a vertex. We show as
follows that this is impossible. When both pi and pi+1 are vertices of the terrain,
both p′i and p′i+1 are vertices. When at least one of pi and pi+1 is an interior point
of an edge, they cannot lie on a common edge [1, Lemma 3]; therefore, both of p′i
and p′i+1 cannot lie on a common edge unless both of p′i and p′i+1 are vertices. So,
this is impossible that both p′i and p′i+1 lie on a common edge, and at most one
of them is a vertex. Therefore, p′ip

′
i+1 ∈ E.

Lemma 2.2. Path P ′ is a (1 + ε)-approximation of P .

Proof. We first show that
∑k

i=1 |pip
′
i| < εh

2 . When pi 6= p′i, and ei is a non-level

edge, we have: |h(pi) − h(p′i)| ≤ δ by construction, and |h(pi)−h(p′i)|
|pip′i| ≥ cos θ using

elementary trigonometry, which implies that |pip
′
i| ≤ δ sec θ. When pi 6= p′i, and

ei is a level edge, |pip
′
i| ≤ δ sec θ by construction. When pi = p′i, |pip

′
i| = 0.

Therefore,
∑k

i=1 |pip
′
i| ≤ kδ sec θ. Because the number of faces in the terrain is at

most 2n, k ≤ 2n− 1, and hence,
∑k

i=1 |pip
′
i| < 2nδ sec θ = εh

2 .
Now, the length of P ′ is equal to:

k∑

i=0

|p′ip′i+1| ≤
k∑

i=0

(|p′ipi|+ |pipi+1|+ |pi+1p
′
i+1|

)

= <
k∑

i=0

|pipi+1|+ εh .

Assuming that P crosses at least one edge of the terrain (otherwise, P ′ = (s, v) =
P),

∑k
i=0 |pipi+1| ≥ h, and therefore,

k∑

i=0

|p′ip′i+1| < (1 + ε)
k∑

i=0

|pipi+1| .

Because P ′ is descending (Lemma 2.1), it follows that P ′ is a (1+ε)-approximation
of P .

Theorem 1. Let X =
(

L
h

)
sec θ. Given a vertex s in the terrain, and a constant

ε ∈ (0, 1], we can discretize the terrain with O
(

n2X
ε

)
Steiner points so that after an

O
(

n2X
ε log

(
nX
ε

))
-time preprocessing phase for a given vertex s, we can determine

a (1 + ε)-approximate SDP from s to any point v in:

10

(i) O(n) time if v is a vertex of the terrain or a Steiner point, and

(ii) O
(

nX
ε

)
time otherwise.

Proof. We first show that the path P ′′ returned by our algorithm is a (1 + ε)-
approximation of P . Path P ′′ is descending because any path in G is a descending
path in the terrain, and the last segment of P ′′ is descending. It follows from
Lemma 2.2, and from the construction of P ′′ that the length of P ′′ is at most that
of P ′, and hence, P ′′ is a (1 + ε)-approximation of P .

We now prove the bound on the number of Steiner points. For each edge e of
the terrain, the number of Steiner points corresponding to the planes z = jδ is at
most L

δ −1, and the number of Steiner points corresponding to the planes z = h(x)
is at most n−2. So, |V ∩e| ≤ (

L
δ − 1

)
+(n−2)+2 < L

δ +n = 4n
(

L
h

) (
1
ε

)
sec θ + n,

because δ = εh cos θ
4n . Let

c = 5n

(
L

h

)(
1
ε

)
sec θ .

Since
(

L
h

) (
1
ε

)
sec θ ≥ 1, we have: |V ∩ e| < c. Using the fact that the number of

edges is at most 3n, we have: |V | ≤ 3nc = O
(
n2

(
L
h

) (
1
ε

)
sec θ

)
= O

(
n2X

ε

)
. This

proves the bound on the number of Steiner points.
It follows from the running time of the Bushwhack algorithm (discussed in

Sect. 1.3) that the preprocessing time of our algorithm is:

O(|V | log |V |) = O

(
n2X

ε
log

(
nX

ε

))
.

During the query phase, if v is a vertex of the terrain or a Steiner point, the
approximate path is in the tree T . Because the tree has height O(n), it takes
O(n) time to trace the path. Otherwise, v is an interior point of a face or an edge
of the terrain. The last intermediate node u on the path to v is a vertex or a
Steiner point that lies on the boundary of a face containing v. If v is interior to a
face [an edge], there are 3 [respectively 4] edges of the terrain on which u can lie.
Thus there are O(c) choices for u, and to find the best approximate path we need
O(c + n) = O

(
n

(
L
h

) (
1
ε

)
sec θ

)
= O

(
nX
ε

)
time.

Note that the space requirement of our algorithm is O(|V |) = O
(

n2X
ε

)
since

we are not storing E explicitly.
Also note that using Dijkstra’s algorithm with a Fibonacci heap [10] instead of

the Bushwhack algorithm yields an even simpler algorithm with a preprocessing
time of

O(|V | log |V |+ |E|) = O

(
n3

(
X

ε

)2
)

.

11

When v is neither a vertex of the terrain nor a Steiner point, the query phase
can be made faster by using a point location data structure on each face. But it
can be shown that the Voronoi diagram on each face consists of hyperbolic arcs,
which makes this approach complicated.

3 Future Work

We are currently working on an approximation algorithm that has less dependence
on the geometric parameters of the terrain. Although the dependence on these
parameters is natural, both the parameters L

h and sec θ appear in quadratic form
in the running time of our algorithm. Moreover, they appear as a factor of n2 in
both the space requirement and the time requirement. Both these points make
our algorithm inefficient for a terrain with very thin triangular faces and/or faces
arbitrarily close to a horizontal plane. Our goal is to devise an algorithm with
linear or even logarithmic dependence on L

h and sec θ.
We are also investigating a possible direction for an exact solution using an

approach similar to Chen and Han [7]. Like other approaches for shortest paths
on polyhedral surfaces, the approach of Chen and Han depends heavily on the fact
that a (locally) shortest path unfolds to a straight line. To adapt their approach
for our problem, we need to solve two subproblems: extending an SDP into a new
face, and computing an SDP through a given sequence of faces. We have already
derived a full characterization of the bend angles of an SDP (more precisely, of a
locally shortest descending path), which allows us to extend any such path into a
new face, and thus reduces the problem of finding an SDP from s to t on a terrain
to the problem of finding an SDP through a given sequence of faces. We hope
that this result will lead us to an exact algorithm for the problem.

References

[1] Mustaq Ahmed and Anna Lubiw. Shortest descending paths through given
faces. In Proceedings of the 18th Canadian Conference on Computational
Geometry, pages 35–38, 2006.

[2] Lyudmil Aleksandrov, Mark Lanthier, Anil Maheshwari, and Jörg-Rüdiger
Sack. An ε-approximation algorithm for weighted shortest paths on poly-
hedral surfaces. In Proceedings of the Sixth Scandinavian Workshop on Al-
gorithm Theory, volume 1432 of Lecture Notes in Computer Science, pages
11–22, Berlin, Germany, 1998. Springer-Verlag.

[3] Lyudmil Aleksandrov, Anil Maheshwari, and Jörg-Rüdiger Sack. Approxi-
mation algorithms for geometric shortest path problems. In Proceedings of

12

the 32nd Annual ACM Symposium on Theory of Computing, pages 286–295,
New York, NY, USA, 2000. ACM Press.

[4] Lyudmil Aleksandrov, Anil Maheshwari, and Jörg-Rüdiger Sack. Determin-
ing approximate shortest paths on weighted polyhedral surfaces. J. ACM,
52(1):25–53, 2005.

[5] John F. Canny and John H. Reif. New lower bound techniques for robot
motion planning problems. In Proceedings of the 28th Annual Symposium on
Foundations of Computer Science, pages 49–60, 1987.

[6] Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete
Comput. Geom., 6(5):485–524, 1991.

[7] Jindong Chen and Yijie Han. Shortest paths on a polyhedron. I. Computing
shortest paths. Internat. J. Comput. Geom. Appl., 6(2):127–144, 1996.

[8] Mark de Berg and Marc J. van Kreveld. Trekking in the Alps without freezing
or getting tired. Algorithmica, 18(3):306–323, 1997.

[9] Mark de Berg, Marc J. van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Applications.
Springer-Verlag, Berlin, Germany, 2nd edition, 2000.

[10] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses
in improved network optimization algorithms. J. ACM, 34(3):596–615, 1987.

[11] Mark Lanthier, Anil Maheshwari, and Jörg-Rüdiger Sack. Shortest
anisotropic paths on terrains. In Proceedings of the 26th International Collo-
quium on Automata, Languages and Programming (ICALP), pages 524–533,
London, UK, 1999. Springer-Verlag.

[12] Joseph S. B. Mitchell. Geometric shortest paths and network optimization.
In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational
Geometry, pages 633–701. Elsevier Science Publishers B.V. North-Holland,
Amsterdam, 2000.

[13] Joseph S. B. Mitchell and Christos H. Papadimitriou. The weighted region
problem: finding shortest paths through a weighted planar subdivision. J.
Assoc. Comput. Mach., 38(1):18–73, 1991.

[14] Christos H. Papadimitriou. An algorithm for shortest-path motion in three
dimensions. Inform. Process. Lett., 20:259–263, 1985.

[15] Neil C. Rowe and Ron S. Ross. Optimal grid-free path planning across
arbitrarily-contoured terrain with anisotropic friction and gravity effects.
IEEE Trans. Robot. Autom., 6(5):540–553, 1990.

13

[16] Sasanka Roy, Sandip Das, and Subhas C. Nandy. Shortest monotone descent
path problem in polyhedral terrain. In Proceedings of the 22nd Annual Sym-
posium on Theoretical Aspects of Computer Science, volume 3404 of Lecture
Notes in Computer Science, pages 281–292, Berlin, 2005. Springer-Verlag.

[17] Zheng Sun and Tian-Ming Bu. On discretization methods for approximating
optimal paths in regions with direction-dependent costs. Inform. Process.
Lett., 97(4):146–152, 2006.

[18] Zheng Sun and John H. Reif. Bushwhack: An approximation algorithm for
minimal paths through pseudo-euclidean spaces. In Proceedings of the 12th
International Symposium on Algorithms and Computation, pages 160–171,
London, UK, 2001. Springer-Verlag.

[19] Zheng Sun and John H. Reif. On finding energy-minimizing paths on terrains.
IEEE Transactions on Robotics, 21(1):102–114, 2005.

[20] Zheng Sun and John H. Reif. On finding approximate optimal paths in
weighted regions. J. Algorithms, 58(1):1–32, 2006.

14

