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Abstract. The intersection of large ordered sets is a common probleimeirtontext of the evaluation of boolean
queries to a search engine. In this paper we propose sewgmaivied algorithms for computing the intersection of
sorted arrays, and in particular for searching sorted atirashe intersection context. We perform an experimental
comparison with the algorithms from the previous studiesifbemaine, Lopez-Ortiz and Munro [ALENEX 2001],
and from Baeza-Yates and Salinger [SPIRE 2005]; in additimmimplement and test the intersection algorithm
from Barbay and Kenyon [SODA 2002] and its randomized vafi8AGA 2003]. We consider both the random
data-set from Baeza-Yates and Salinger, the Google quesesby Demainet al., a corpus provided by Google
and a larger corpus from the TREC Terabyte 2006 efficiencyygs&eam, along with its own query log. We
measure the performance both in terms of the number of casgparand searches performed, and in terms of the
CPU time on two different architectures. Our results confimmprove the results from both previous studies in
their respective context (comparison model on real dataCild measures on random data), and extend them to
new contexts. In particular we show that value-based sedgahithms perform well in posting lists in terms of the
number of comparisons performed.

1 Introduction

The intersection of large ordered sets is a common probletimercontext of the evaluation of relational queries to
databases as well as boolean queries to a search engineof$tease complexity of this problem has long been well
understood, dating back to the algorithm by Hwang and Limfaver three decades ago [12, 13], and the average
case has been studied in the case of the intersection of ta/ofeen the elements are uniformly distributed [8].

In 2000, Demainet al. [10] introduced a new intersection algorithm, terniehptive, which intersects all the
sets in parallel to find the shortest proof of the result. Inulasequent study [11], they compared its performance
in practice, relative to a straightforward implementatadran intersection algorithm, and proposed a new and better
adaptive algorithm which outperformed both in practiceefmeasured the number of comparisons performed, on
the index of a collection of plain text from web pages. In 2dB&rbay and Kenyon [4] introduced another intersection
algorithm, which adapts to the correlation between the sepfithe query, and one year later Barbay [3] introduced
a randomized variant. To the best of our knowledge, neithdrase algorithms were implemented before our study.
In 2004, Baeza-Yates [1] introduced an intersection atgorj based on an alternative technique. Baeza-Yates and
Salinger [2] measured the performance of the algorithmrimseof CPU time, on pairs of random arrays.

In this paper we consider the number of comparisons andtesamerformed, as well as the CPU time on two
different architectures (RISC and CISC), on three diffedarta sets: (i) a random data-set similar to the one coresider

* A preliminary version of this paper appeared in [5].



by Baeza-Yates and Salinger [2], (ii) the query log used by8iaeet al. [11] on a larger data-set provided by Google,
and (iii) and the GOV2 corpus, of sizé1G' B, with a larger query log, both from the TREC Terabgt#6 efficiency
query stream. This combines the previous studies and allmas compare all the aforementioned algorithms on
common platforms. We propose several variants for thegatgion and search in sorted arrays in the context of their
intersection:

— We propose a variant of the algorithm from Baeza-Yates [hictv performs the intersection of more than two
sorted arrays without sorting the intermediary resultss Variant is significantly faster than the original algbnit
on real instances, both in terms of the number of comparigerfsrmed and in terms of CPU time.

— We reduce the number of comparisons performed by eachéatéya algorithm by introducing value-based search
algorithms, and we further improve the performances byihicing an adaptive value-based search algorithm.

— We show that a variant of binary search optimizes the cactiertiban the original version, when the arrays are
too large to fit in memory.

The paper is structured as follows: in the next Section wertlesthe data-sets and the architectures on which we
evaluated the various algorithms discussed. In Section 8esgeribe in detail the intersection and search algorithms
studied. In Section 4 we present and analyze our experitner@asures in the various contexts. We conclude in
Section 5 with a summary of our experiments.

2 Experimental Set-up

The practical studies of intersection algorithms from Deraat al. [11] and from Baeza-Yates and Salinger [2] com-
pare the performance of different algorithms in differemmtexts (random or practical) and using different measures
(CPU or number of comparisons), so these results are nattliomparable. In this paper we measure the perfor-
mance of these algorithms in the same setting as these stadiesell as in a larger corpus, on which the performance
of algorithms is more sensible to cache effects.

2.1 Data-sets

Random, uniformly distributed data: We compare the performance of the algorithms on pairs oédats gener-
ated in the same way as Baeza-Yates and Salinger [2]: seegiehimteger random numbers, uniformly distributed in
the rangéd1, 10°]. The lengthn of the longest sequence varies fran®00 to 22, 000 by steps of, 000. The lengthn
of the shortest sequence varies froff to 400 by steps ofl 00.

For each algorithm and each pair of sifesm), we generat@0 instances and measure the performance once for
the number of comparisons performed dnd00 times for the running time

Google Corpus and Query Log: We compare the performance of the intersection algoritlmasswer real queries
on a sample web corpus, both provided by Google. This is time spery log used by Demaimeal. [11], but on a
substantially larger and more recent data set.

The set of webpages contai6is’, 760 text documents .85 gigabytes of text. As the documents or web pages
of the corpus were not given a numerical identifigoriori, we numbered the documents as they were indexed, by
assigning a number indicating its order in the indexing pssc The resulting inverted word index Ha$04, 335
alphanumerical keywords with HTML markup removed.

The query log corresponds 50000 entries. For more details on the query log we refer the refmBemainest
al. [11], where its properties are discussed in detail.



TREC GOV2 Corpus and Query Log: We consider a larger web corpus and an associated query kogh form
the data-set TREC GOV2. This web corpus was collected by R competition in information retrieval, through
a partial crawl of US government websites.

The GOV2 web corpus corresponds to approximatélyGB of text, which once indexed associa?és 197, 524
references t88, 515, 138 keywords. Each document is on averdge37 KB long, most are in HTML but some are in
PDF. The document numbering scheme is such that certaipgafdocuments have numbers close to each other. As
a result, this creates gaps in the numbering scheme wheegceumbers between document groups do not appear.

The query log provided with the TREC GOV2 corpus correspaad80, 000 queries with click-through togov
domains. We randomly selected a sampl&,@00 queries for our simulations. There wei@ queries involving only
one keyword, and05 queries where a keyword didn’t exist in the inverted wordedThis leavesl590 non-trivial
queries, which corresponds to a query log of similar sizééodne used on the Google data-set. The average size of
a query ist.42 keywords. Table 2.1 shows the number of keywords distriloLiti the queries: most queries have less
than11 keywords.

#ofkeywordsg)|l |2 |3 |4 |5 |6 |7 |8 |9 |10 |11 |12 |13 |14 |15 |16 |17 |18
# of queries 105|778 126612171793 |414|198 |98 |53 |44 |14 |7 |4 |5 |2 |0 |1 |1
Table 1. The distribution of the sizes of TREC queries: on averdgg, keywords per query.

2.2 Machines and Compilers

We implemented the algorithms @++, and we ran our experiments on two architectures. For eadtfitecture,

we measured only the performance of the intersection oedantrays once they have been loaded in memory (and
eventually cached on the swap partition of the hard-driveparticular, we did not measure the performance of the
indexing structure, which retrieves those arrays from tigkex on the hard-drive.

The INTEL platform: For all data-sets we used a PC runnirighux ver si on 2. 4. 20- 31. 9 on a processor
Intel (R) Pentium R) 4, at2.66GH~z with a low level 1 cache oK, a level 2 cache 0512K, 1GB of
memory and a swap partition of sizel 6G'B. We measured the CPU time using theét scl function, specific to the
Pentium, which measures the number of processor cycledh@mek includes the time taken by hard-drive accesses
to the swapped partition, and by cache misses. The programescempiled on this machine usiggc 3. 2. 2 with
the optimization option O3.

For the largest data-set, we also measured the CPU time tigng mes function, from thesys/ti mes. h
library, to allow the comparison with the equivalent measuon the other platform, which does not support the
rdtscl function.

The sSUN platform: For very large instances we ran additional simulationsguaimJl t r aSparc |11 server from
Sun running Unix org processors &100 MHz, with 16GB of RAM. As the largest sorted array usess M B, and
as each instance is composed of at nigsarrays, no instance uses more tHa&nB, hence all intersection instances
hold in main memory on this machine. This is a RISC architectwhich means in particular that multiplications and
divisions are not directly supported by the processor botmaed through function calls.

The CPU time was measured on this machine using theees function from thesys/ ti nes. h library, which
returns the elapsed real time, including time taken by camlsses. The programs were compiled on this machine
usinggcc 2. 95. 2 with the optimization option C3.



Algorithm 1 Pseudo-code f®vSs
SvS(set, k)
1: Sortthe sets by sizéset[0]]| < |set[1]] < ... < |set[k]]).
2: Letthe smallest se{0] be the candidate answer set.
3: for eachset[i], i = 1...k doinitialize ¢[k] = 0.
4: for eachset[i],i =1...kdo

5 for each element in the candidate answer st
6: search foe in s[] in the rang€/[7] to | s[:]],
7 and updaté[s] to the last position probed in the previous step.
8 if e was not foundhen
9: removee from candidate answer set,
10: and advanceto the next element in the answer set.
11: end if
12: endfor
13: end for
3 Algorithms

In this paper we define search and melding algorithms seggrab that we can study the impact of new search
algorithms on all melding algorithms, and find the best caration over all possible ones.

3.1 Melding Algorithms

Various algorithms for the intersection bfets have been introduced in the literature [1, 2, 3, 4, J0AMong those,

we do not consider the naive algorithm, which traverses @acly linearly, as both theoretical and experimental
analysis show that its performance in the comparison madsignificantly worse than the ones studied here. For
similar reasons we do not consider either tdeptive intersection algorithm, proposed by Demaatel. [10], nor

the algorithm proposed by Hware al. [11]. Instead we focus on four main algorithms, some of theith winor
variants.

SvS and Swapping SvS:Svs is a straightforward algorithm widely used, which intetsebe sets two at a time in
increasing order by size, starting with the two smallest &lgorithm 1). It performs a binary search to determine if
an element in the first set appears in the second set. We aisadeo variants of it which replace the binary search
with various other searches.

Demaineet al. considered the variarstwapping SvS, where the searched element is picked from the set with
the least remaining elements, instead of the first (initisthallest) set irsvS. This algorithm was first proposed by
Hwanget al. [12]: it performs better when the size of the second set istsuibially reduced after a search although
experiments show that this does not happen often.

Small Adaptive: Small Adaptive is a hybrid algorithm, which combines the best propertieswsfandAdaptive

(see Algorithm 2). For each element in the smallest set,rfop@s a galloping search on the second smallest set.

If a common element is found, a new search is performed ingh®miningk — 2 sets to determine if the element

is indeed in the intersection of all sets, otherwise a newcheia performed. Observe that the algorithm computes

the intersection from left to right, producing the answemicreasing order. After each step, each set has an already
examined range and an unexamined rasgell Adaptive selects the two sets with the smallest unexamined range
and repeats the process described above until there istzaséis been fully examined.



Algorithm 2 Pseudo-code fBmall Adaptive
Small_Adaptive(set, k)

1: while no set is emptygo

2:  Sortthe sets by increasing number of remaining elements.

3:  Pick an eliminatoe = set[0][0] from the smallest set.
4: elimset « 1.
5: repeat
6: search foe in set[elimset].
7: incremenelimset;
8: until s =k oreisnotfoundinset[elimset]
9: if s =k then
10: adde to answer.
11: endif
12: end while

Sequential and Random Sequential:Barbay and Kenyon [4] introduced a fourth algorithm, calfediuential,
which is optimal for a different measure of difficulty, basal the non-deterministic complexity of the instance. It
cycles through the sets performing one entire gallop seatrehtime in each (as opposed to a single gallogteg

in Adaptive), so that it performs at mostsearches for each comparison performed by an optimal ntamrdimistic
algorithm: its pseudo-code is given in Algorithm 3.

A randomized variant [3[RSequential, performs less comparisons theequential on average on instances
where the searched elements are present in roughly haleddrthys, rather than in almost all or almost none of the
arrays. . The difference witBequential corresponds to a single line, the choice of the next set wioesearch for
the “eliminator” (line12 in Algorithm 3): Sequential takes the next set available whilsequential chooses one
at random among all the sets not yet known to contain the editor.

Algorithm 3 Pseudo-code fBequential
Sequential(set, k)
1: Choose an eliminater= set[0][0], in the seklimset «+ 0.
2: Consider the first set,« 1.
3: while the eliminatore # oo do

4: searchimset[i] fore

5 if the search foundthen

6: increase the occurrence counter.

7 if the value of occurrence counterighen outpute end if

8 end if

9: if the value of the occurrence countekisor e was not foundhen
10: update the eliminator © + set[:][succ(e)].
11: endif

12:  Considerthe next setin cyclic ordes ¢ + 1 modk.
13: end while




Baeza-Yates and Baeza-Yates SortedBaezaYates algorithm was originally intended for the intersection wbt
sorted lists. It takes the median element of the smalleatistsearches for it in the larger list. The element is added
to the result set if present in the larger list. The mediarhefdmaller list and the rank insertion of the median in the
larger set divide the problem into two sub-problems. Themllgm solves recursively the instances formed by each
pair of subsets, always taking the median of the smalleresudrsd searching for it in the larger subset. If any of the
subsets is empty, it does nothing. In order to use this dlgoron instances with more than two lists, Baeza-Yates [1]
suggests to intersect the lists two-by-two, intersectirgggmallest lists first. As the intersection algorithm wdides
sorted lists and the result of the intersection may not beedpthe result set needs to be sorted before intersecting it
with the next list. The pseudo-code fesezaYates algorithm is shown in Algorithm 4.

We introduceso_BaezaYates, a minor variant oBaezaYates which avoids the cost of sorting each intermediate
result set to produce the result set in order. The only diffee withBaezaYates algorithm is that it does not add the
found elements to the result set as it finds them, but it onfisadem when the median of the smaller list is in the first
position of the subset, that is, in each last recursion stefhé left subsets. This ensures that the elements are &olded
the result set in order and saves the cost of explicitly sgtthe result, but the algorithm performs more comparisons
than the originaBaezaYates algorithm since&Sso_BaezaYates considers the elements found for more recursive calls
thanBaezaYates.

Algorithm 4 Pseudo-code f@aezaYates

BaezaYates(set, k)

. Sort the sets by sizéset[0]]| < |set[1]| < ... < |set[k]]).

2: Letthe smallest setet[0] be the candidate answer set.

3: for eachseset[i],i = 1...k do

4: candidate « BYintersect(candidate, set[i],0, |candidate| — 1,0, [set[i]| — 1)
5

6

A

sort the candidate set.
. end for

BYintersect(setA, setB, minA maxA, minB, maxB)

. if setd or setB are emptythen return® endif.
: Letm = (minA + max4)/2 and letmedianA be the element atet A[m].
. Search fomedianh in setB.
. if mediand was foundthen
addmedianA tO result.
end if
. Letr be the insertion rank afediani in setB.
. Solve the intersection recursively on both sides ahdm in each set.

ONO TS WNR

Each of those algorithms has linear time worst case behavitrte sum of the sizes of the arrays, and each
performs better than the others on a set of instances. NatBdbzaYates, So_BaezaYates, Small_ Adaptive and
SvS take active advantage of the difference of sizes of the aatbthatSmall_Adaptive is the only one that takes
advantage of how this size varies as the algorithm elimigeliements, whilSequential andRSequential ignore
this information.



3.2 Search Algorithms

We extend the set of search algorithms tested to value-tedgedthms, such asnterpolation, Extrapolation
orExtrapol_Ahead; and to some cache oblivious search algorithms, su@e@sded Binary.

Binary Search and variants: Binary search is well known in the literature. The adequatglémentatiohfinds the
insertion rankp of a keyz in a sorted setl of sizen in 1 4 log, n comparisons. In the context of the intersection of
sorted arrays, several elements are searched in eacharthy) many applications those elements are of increasing
size, so that the position of the last lookup during the mesisearch is a lower bound for the position of the currently
searched element. While using this lower bound reducesttindar of comparison (we call thislaptive Binary),

it yields a slower CPU performance when the array is verydamd partially cachedotal Binary ignores this
lower bound and uses the cache more efficiently.

We test a third variantRounded Binary, which represents a trade-off betwee@daptive Binary and
Total Binary: it performs the same comparisons thartal Binary so long as the compared elements are larger
than the lower bound obtained from the previous search, eEthywoint it switches to a more sophisticated mode taking
advantage both of the positions of the previous comparjsams of the lower bound. This variant always performs
more comparisons thatdaptive Binary and less thamotal Binary, but it performs better in terms of CPU on
instances where the array searched is very large, due te edfects.

Galloping Search: Originally introduced by Bentley and Yao [6Jinbounded search is the problem of searching
for the insertion ranlp of a key« in a sorted sett of unbounded size. The algorithm probes tHeays with index
{1,3,7,15,...,2" — 1} in sequence till it finds a keyi[2’ — 1] larger thane, and then performs a binary search4n
between positiong’~! — 1 and2’ — 1. This technique is sometimes callede sided binary search [14], exponential
search [7], doubling search [4], or galloping [10, 11]: we will use this last name for our implementatiGalloping
search. It solves the unbounded search probleidn, (p+1) comparisons.

Interpolation and Extrapolation Search: Interpolation Search has long been known to perform significantly
better in terms of comparisons over binary search on datdoraty drawn from a uniform distribution, and recent
developments suggest that interpolation search is alsasamable technique for non-uniform data [9]. Searching for
an element of value in an arrayset[i] on the range to b, the algorithm probes positidii«, b, ) defined as follows:

e — set[i][a]

Tabye) = Letm[b] ~setla] " “)J e

We propose a varianExtrapolation search, which involves extrapolating on the current andipus positions
in set[¢]. Specifically, the extrapolation step probes the intlex, p;, ¢), wherep! is the previous extrapolation probe.
This has the advantage of using “explored data” as the baisgafculating the expected index: this strategy is similar
to galloping, which uses the previous jump value as the asthe next jump (i.e. the value of the next jump is the
double of the value of the current jump).

L1t can be implemented in two different ways, each of themriging a different performance measure, the number of two-
way comparisons, closer to CPU time, and the number of tw@eeomparisons, closer to the running time in the context of
hierarchical memory. As the other implementation perfatipeorly on all contexts, we discuss here only the one optirgithe
number of two-way comparisons.



Extrapolation Look Ahead Search: We propose another search algorittBrtrapol_Ahead, which is similar to
extrapolation, but rather than basing the extrapolatiothercurrent and previous positions, we base it on the current
position and a position that is further ahead. Thus, our@iotex is calculated b¥(p;, p;+!, ¢) wherel is a positive
integer that essentially measures the degree to which tinepexation uses local information. The algorithm uses
the local distribution as a representative sample of theibligion betweenrset[i][p;] and the eliminator: a large
value of! corresponds to an algorithm using more global informatiehile a small value of correspond to an
algorithm using only local information. If the index of thecsessorucc(e) of e in set[7] is not far fromp;, then

the distribution betweeret[7][p;] andset[i][p; + {] is expected to be similar to the distribution betweesn [:][p;]
andset[¢][succ(e)], and the estimate will be fairly accurate. Thus if the setisty, or piecewise uniform, we would
expect this strategy to outperform interpolation becahseset is locally representative. On the other hand, if the se
comes from a random uniform distribution then we would experpolation to be better because in this case using
a larger range to interpolate is more accurate than usingalesmange.

4 Experimental Results

In each of the contexts defined in Section 2 we test all therdhgos defined in Section 3 and we measure their
performance in terms of the number of searches and comparjgerformed, and in terms of CPU time. The CPU
times for the Random and Google data-sets correspond ontgésures on theNTEL platform, as the instances are
too small for the execution time to be measured onstne platform. Both platforms are considered for the larger
TREC GOV2 data-set.

Note that the number of searches for a fixed merging algoritbes not depend on which search algorithm is used
(they all return the same position), and that the number ofgarisons performed does not depend on the architecture.
Despite the fact that the CPU time on a particular instanneskightly vary from one execution to another, we verified
on small samples5() queries from the TREC data-set, all queries from the Googla-det) that the CPU measures
over a single run yield the same conclusion than averagirgs®vuns: hence we report our results on larger samples
with a single run.

4.1 Experiments on random, uniformly distributed data

In the context of randomly generated data, we only measweénformance of the algorithms with two lists, in
a similar way to the study by Baeza-Yates and Salinger [2]ciwhompare the CPU performance on random data
of the combination8aezaYates usingAdaptive Binary, Small_Adaptive usingGalloping and of the naive
linear algorithmBaezaYates usingAdaptive Binary was the best combination. We test a larger set of algorithms,
on random data generated in a similar way, and we measurehmerformance in CPU time and the number of
comparisons and searches. Note Hsaiquential behaves exactly the sameSssjuential on two arrays and is not
represented.

We show on the plots the number of comparisons and CPU timefifferent intersection and search algorithms
as a function of the size of the largest list when the size of the smallestiists fixed, for various values of.. The
standard deviation is usually very low, hence we omit in tharés with more than two plots on them.

Comparison with Baeza-Yates and Salinger [2]:In terms of CPU time, our results agree with Baeza-Yates and
Salinger’s study: botRaezaYates andSo_BaezaYates usingAdaptive Binary outperform any other combination

of algorithms. Figure 1 shows the performance of the five t@stbinations of algorithms on this data-set. As Figure 2
shows, none of the other search algorithms perform beterttie initial choice proposed by Baeza-Yates and Salinger.
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Fig. 1. CPU times for the five best combinations of algo- Fig. 2. CPU times for all search algorithms in combination
rithms on random generated instancBsezaYates US- with BaezaYates. The best search algorithm is the one
ing Adaptive Binary performs the best for all size ra- proposed originallyAdaptive Binary.
tios, closely followed bySwapping_SvS and SvS using
Galloping.

The superiority ofidaptive Binary over all search algorithms when usiBgezaYates or So_BaezaYates
is easily explained: value based search algorithms sudn#@srpolation are too costly in CPU time, and adap-
tive search algorithms such &lloping or Extrapol_Ahead are inefficient when the searched position is in
the middle of the array on average. The superiorityBaézaYates among melding algorithms is relative, as
SvS and Swapping_SvS perform well for almost any search algorithm. The differeric CPU performance be-
tweenBaezaYates andSo_BaezaYates USingAdaptive_Binary, SvS, Swapping_SvS Or Small_Adaptive using
Galloping is minimal (see Table 2).

Number of searches and comparisonsin terms of the number of search®sezaYates, SvS, Swapping_SvS and
Small Adaptive perform the best, whileequential andSo_BaezaYates perform much more searches (see again
Table 2). The difference of performance betwBeazaYates andSo_BaezaYates is easily explaineBaezaYates
performs one more comparison per search to reduce the ddoyane more value, which increases the number of
comparisons but reduces the number of searches in compaoisSe_BaezaYates. The difference of performance
betweersequential and the other algorithms is due to the fact theduential always chooses the new eliminator
on the array previously searched: in the context where thimeshts of the array are uniformly drawn and of very
different size, it always results in a worse performanca ttteoosing the eliminator from the smallest array.

In terms of the number of comparisons, the use of value basartls algorithms such aterpolation,
Extrapolation Or Extrapol Ahead results in a better performance for any melding algorithmse algorithms
outperform other search algorithms on the uniform distidnof elements in the arrays.

The best combinations regarding the number of comparisoedonmmed are Swapping SvS using
Extrapol_Ahead andBaezaYates USingInterpolation, even though Figure 3 shows tisatapping SvS with
Extrapol_Ahead has a small advantage otezaYates with Interpolation.

Fixing the size of the smallest list to other sizes does rtet #he relative ranking (see Figure 4), so we only report
the data forn = 200. For completeness we summarize the results across alithligsron the whole Random data set
in Table 3.
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Algorithm Searche Comparisons Runtime
SvS 200 1024 Extrapol_Ahead) 242986 Rounded_Binary)
Swapping_SvS 200 1024 Extrapol_Ahead) 230916 fdaptive_Binary)
Small Adaptive| 200 1024 Extrapol_Ahead) 435828 Galloping)
BaezaYates 199 1066 ([nterpolation) 188258 fdaptive_Binary)
So_BaezaYates| 328 1064 ([nterpolation) 218156 fdaptive_Binary)
Sequential 385 1198 Extrapol_Ahead) 327075 fdaptive_Binary)

Table 2. Total number of searches and comparisons and total runimegperformed by each algorithm on the Random data-set,
when associated with the search algorithm performing tfs¢ Wigh it. The number of searches and comparisons are atetgl
although the difference in terms of the number of searchdenpeed betweeBaezaYates andSo_BaezaYates does not corre-
sponds to the difference in the number of comparison peddrrithe CPU times are not correlated with the two other measur

SvS Swapping_SvS| Sequential | BaezaYates |So_BaezaYates|Small Adaptive
cmp |cpu |cmp |cpu [cmp |cpu  |cmp |cpu  |cmp |cpu cmp |cpu
Total_Binary 2815 (2623972815 |2540084397 |4575402811 |2500184501 |402544|2815 |677318
Adaptive_Binary|2469 |2550642469 (2309162632 (3270751620 |1882581620 (218156(2469 |444476
Rounded Binary |2623 |2429862623 (2468713997 (4364382629 (2427734190 (391347(2623 |443064
Galloping 2087 (2453332087 (2442162237 |332311j2410 |2559452373 |286040|2087 |435828
Interpolation |1067 |2791271067 |2806241242 |3747791066 (2754631064 |304616/1067 |466446
Extrapolation |1281 |37558591281 (3714441444 (4642031261 (3739471262 |401933|1281 |547751
Extrapol_Ahead |1024 |4132091024 [4048411198 |5761091085 (4264521073 |506075|1024 |584941

Table 3. Total number of comparisons and CPU times performed by elgchitam over the Random data set. In bold, the best
performance in terms of the number of comparisons, for uarimelding algorithms in combination wilkxtrapol Ahead, and
the best performance in terms of CFRdezaYates usingAdaptive Binary.

1250 550000

average Baeza-Yates Interpolation average Swapping SvS Adaptive Binary
1200 S va vatos hicrpolaian -+ 1 averagd Bacen Y atos Soricd Adapive Binary
std Swapping SvS Extrapolate Ahead - 500000 F average SvS Reunded Binary 4
1150 | . i //,,,,/——r"'" ‘ 4 VaVYVe/rEgrgﬁaeza'-Yétes Rounded Binary
noer | /; , ¥ 1 450000 | _— |
1050 /*/ z ] ///,/ =
2 ' 400000 / e 4
§ 1000 | /,/ — A // - .
g 950 7 ssoo00 /S . 7
900 / 4 / ) g
850 / 4 300000 g o 4
800 / 4 ’
¥ 250000 7
750 | % 4
700 L L L L 200000 L L L L
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Fig.3. Number of comparisons forBaezaYates Fig. 4. CPU times for the five best combinations of algo-
using Interpolation and Swapping SvS  US- rithms on the Random data-set with the smallest list of
ing Extrapol Ahead on the Random data-set. size 400. The order of the algorithms is the same than
Swapping_SvS With Extrapol_Ahead performs vis- when the smallest list has size 2B&¢zaYates using

ibly better. Adaptive_Binary performs the best for all size ratios.
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4.2 Experiments on the Google data-set

Solving the queries provided by Google on the index of thein aveb-crawl, Demainet al. [11] studied the com-
binations of algorithmsmall_Adaptive usingGalloping, SvS andSwapping_SvS usingAdaptive_Binary, and
found the combinatioBmall_Adaptive usingGalloping to outperform the others in terms of the number of com-
parisons performed.

We measured the performance of each combinations of aigasibn the same queries, but on the index of a larger
web crawl, also provided by Google. Similarly to the resglt&en by Demainet al., we show on the plots the number
of comparisons and CPU times as a function of the numbafrkeywords in the queries, which corresponds to the
number of arrays forming the instance. The standard deviati the two by two difference of performances on each
instance, not represented here, was always very low. Wetbmigtandard deviation of the average performance of
each algorithm on instances composed @frays: it mostly represents the variation of difficulty amgajueries with
k keywords, and not the stability of the results.

Comparison with Demaineet al. [11]: Considering the same algorithms studied by Demaeira., our results agree
with the previous studysmall_Adaptive usingGalloping performs less comparisons than the other algorithms, but
in fact Small_Adaptive does not behave much differently fra8nS andSwapping SvS, as the combinationsvs
usingGalloping andSwapping SvS usingGalloping performs almost equally: the improvement in the number of
comparisons performed is mainly due to the usage o&#1aoping search algorithm (see Figure 5). This similarity
of performance is likely to come from the fact that witl286 keywords per query on averag:s, Swapping_SvS
andsmall Adaptive behave the same on instances which consist of only two arrays

200000 2.5e+07

T T T T T
average Adaptive Binary SvS average Adaptive Binary Baeza Yates
average Galloping SvS average Adaptive Binary Baeza Yates Sorted
180000 |- average Interpolatipn SvS - A average Galloping SvS
average Extrapol_Ahgad SvS average Galloping/SwSvS
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140000
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Fig.5. Number of comparisons forsvS using Fig.6. CPU times for the four best combina-
Adaptive_Binary, Galloping, Interpolation oOf tions: SvS and Swapping SvS USing Galloping

Extrapol_Ahead on the Google data-seGalloping search, andBaezaYates and So_BaezaYates uUSINg

and Interpolation successively improve on Adaptive Binary search on Google data-sesvs,

Adaptive Binary search. The performance of Swapping SvS and So_BaezaYates perform very

Extrapol_Ahead is almost indistinguishable from similarly, butBaezaYates performs slightly worse.

Interpolation's although Table 5 shows that it does per-
form slightly betterSwapping_SvSandSmall_Adaptive
show the same behavior.
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The number of comparisons performed is further reduced éyiie of value based search algorithms. All inter-
section algorithms benefit from the uselafterpolation, and all excepBaezaYates andSo_BaezaYates benefits
even more from the use @ktrapol_Ahead, the variants that we introduced (see again Figure 5). Asultreéhe best
combination of search and melding algorithms regardingithmber of comparison performed @®all_Adaptive,

SvS and Swapping_SvS usingExtrapol_Ahead, and results in an important improvement over the best isolut
proposed by Demaingt al..

Study of Barbay and Kenyon's [4] algorithm: The algorithm proposed by Barbay and Kenyon [4] and its remdo
ized variant [3] are both performing noticeably more conguars than the other intersection algorithms measured,
independently of the search algorithm chosen (see Tablehl.high number of comparisons is correlated with the
high number of searches performed: the algorithms failsbdi shorter proof by cycling through the arrays.

The searches performed Bgquential are shorter on average than other similar algorithms: ttie between
the number of comparisons and the number of searches is madtessthan for other algorithms such &gs (see
again Table 4). This is probably explained by the fact gwfuential performs many searches of average size, as
opposed to algorithms such ags which perform many small searches in the smallest arraysa kew rather large
ones in the other arrays,

Algorithm ComparisongSearchefRatio

SvS usingGalloping 16884 3542 |4.77
Swapping_SvS USingGalloping 16884 3541 |4.77
Small_Adaptive USingGalloping 16884 3542 |4.77
Sequential USingGalloping 25440 5801 [4.39
RSequential UsingGalloping 24518 5873 |4.17
BaezaYates USiNgGalloping 24285 3327 |7.30
So_BaezaYates USingGalloping 20935 5209 |4.02
BaezaYates USingAdaptive Binary 18543 3327 |5.57
So_BaezaYates USingAdaptive Binary| 15689 5209 |3.01

Table 4. Number of comparisons and searches performed on the Goatfesdt. The average cost of a search (the log of its
length), here measured in number of comparisons, is sniafi@equential andRSequential than forSvS, Swapping SvS or
Small_Adaptive.

Note that the number of comparisons (and ratiop@ézaYates andSo_BaezaYates uSingGalloping iS not
representative: when usinglaptive Binary search, which is better suited to their behavior, the peréorces in
terms of the number of comparisons are much better (see dghla 4). The melding algorithiso_BaezaYates is
more efficient in terms of the number of comparisons thaszaYates, although it performs more searches, which
still results in a slightly smaller number of comparisons pearches: this corresponds to the additional comparison
performed byBaezaYates to check if the searched element is present in the searched ar

Real time on real data: The CPU performances are correlated with the number of cosgues for all melding and
search algorithms, except for the value based search @ilgw;j such aExtrapol Ahead (See Figure 6). The fact that
Interpolation performs more comparisons thBmtrapol Ahead (See Figure 8), but uses less CPU time indicates
that the cost of the extra memory accesses perform@&dtwapol Ahead is more significant than the reduction in the
number of comparisons: it might result in an additional eantiss, since it is at distan¢en of the previous access,
wheren is the number of remaining element in the array.
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For completeness we summarize the results across all gdgaron the whole data set in Table 5.

SvS Swapping_SvS|Sequential|BaezaYates|So_BaezaYates|Small_ AdaptiveRSequential
cmp |cpu |cmp |cpu cmp |cpu |cmp |[cpu |cmp |cpu cmp |cpu cmp |cpu
Total_Binary 582175.142|582094.976 |9308718.674|575945.426(8371Q7.140 582178.325 94400Q15.446|
Adaptive_Binary|392213.762(392213.937 |558176.704|185433.284|156893.113 392257.208 5421Q013.401
Rounded Binary |546744.684/546714.831 |872678.260(5428§5.327|785116.908 546797.995 8850914.873]
Galloping 168842.791|168842.874 |2544(04.808|242853.953|209353.769 168845.980 2451811.525
Interpolation |121843.338|121843.434 |178435.640|153524.182(123864.046 121856.577 1739811.992
Extrapolation |134264.229|134264.248 |1967246.617|174555.426|144285.258 134277.493 1910013.104
Extrapol_Ahead |121255.480|1212595.424 |(177018.641|161796.637|131457.279 121268.614 1727915.036

Table 5. Total number of comparisons and CPU times (in millions oflegtperformed by each algorithm over the Google data set.
In bold, the best performance in terms of number of compass®¥S andSwapping_SvS uUsingExtrapol_Ahead, and in terms
of CPU timesSvS usingGalloping.

4.3 Experiments on the TREC GOV2 data-set

As for the Google data-set, we measured the number of seaactiecomparisons performed and the CPU time used
by the algorithms. As in the previous section, we show on tbe&sggthe number of comparisons and CPU times for
different melding and search algorithms as a function oftlmaber of arrays forming the instances.

We restricted our study to the most promising algorithmsiftbe study on Google data set: in particular, we did
not consider the melding algorithRsequential on the TREC GOV2 data-set. The fact that the data set is larger
allows us to compare the CPU performances of the algorithmtevo different architectures: trs¥N station has much
more memory but a limited set of instructions, which makegiplication and divisions much more costly; while the
INTEL station has a larger set of instructions, but much less mgreorthat part of the arrays will be cached on the
swap partition of the hard-drive.

Comparison with Demaineet al. [11]: In terms of the number of comparisons performed, the meldiggrithm
Small Adaptive outperforms all the other melding algorithms, in combioativith any search algorithm, which
confirms and extends the results reported by Demetiak [11] (see Table 6). As for the Google data-set, the value-
based search algorithBxtrapol Ahead improves the performance of each melding algorithm, andairiqular
the performance ddmall_Adaptive (again, see Table 6). However, unlike the Google datafsetpérformance of
Interpolation is similar to that ofGalloping. This decrease in performance is mainly due to the fact tieat t
numbering scheme of TREC documents left many “gaps” whicttrdautes to the non-uniformity of posting sets.

Study of Barbay and Kenyon'’s [4] algorithm: As for the Google data-set, the algoritiSequential is much worse
than the other melding algorithms for any fixed search atgorjin terms of the number of comparisons or searches
performed as well as in terms of CPU time (see Figure 7). Tusslints that the instances from the TREC GOV2
data-set are not too different from those from the Google-dat, just larger, both in terms of the sizes of the arrays
and in the number of arrays.
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Fig. 7. Number of comparisons performed by various Fig. 8.Number of comparisons performed by variants of bi-
melding algorithm combined wittGalloping on the nary search combined winall Adaptiveonthe TREC
TREC GOV2 data-set. The difference of performance from GOV2 data-set.Rounded Binary and Total Binary
Sequentialis even worse than on the Google data-set. perform roughly the same, whiledlaptive Binary per-

forms much better.

Impact of the cache: In contrast to the measures on the Google data-set, the muhbemparisons is not always
correlated to the CPU timings, even for comparison baseatisedgorithms. In particular, when using the melding
algorithmsSmall Adaptive Or Sequential, the search algorithrRounded Binary performs more comparisons
thanAdaptive Binary, but uses less CPU (see Figure 9). This indicateshibwaided Binary generates less cache
misses, summing to a better over-all time.

The same is not true with the other melding algorithms, peshzecause the search queries generated by those
algorithms are either shorter (in which case no optimizatibthe cache is needed), or much larger (in which case
cache misses happen at a different level).

Impact of architecture differences: Not surprisingly, the cache optimization of tReunded_Binary search algo-
rithm does not give it any advantage on a machine where aflateefits in memory, such as on platfoswn: then all
the binary variants perform very similarly (see Figure 10).

We were also able to measure a quantitative difference leetwige two architectures: the difference of CPU
performance between the comparison and value-based sdgmfthms, such asalloping andInterpolation,
is much larger on theUN platform than on thaNTEL platform, and this independently of the melding algorithm
considered (see Figure 11 and 12). In general, all intetipolavariants perform poorly on th&uN platform, and
somewhat less poorly on tH8TEL platform. The explanation is twofold:

— The RISC processor of tr8UN platform does not support multiplications natively, whiate performed through
an online routine, whereas the CISC/RISC processor ofifeL platform does support them: this increases the
difference of computational cost between interpolatiamards and other search algorithms.

— As thesuN platform we tested on has significantly more memory tharTt#T&L platform, less cache misses occur
and itis less important on tr8¥N platform than on th&NTEL platform to reduce the number of memory accesses:
this reduces the main advantage of interpolation variants.

For completeness we summarize the results across all tlgwrion the whole TREC GOV2 data set in Tables 6
and 7.
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SvS |Swapping_SvS|Sequential/BaezaYates|So_BaezaYates|Small Adaptive
Adaptive_Binary|13.41 (13.44 28.66 7.87 4.12 13.32
Total_Binary 21.70|21.64 39.90 22.43 28.73 21.54
Rounded_Binary (20.46 (20.57 37.83 21.43 27.15 20.44
Galloping 4.468 4.473 10.57 9.40 5.52 4.44
Interpolation | 4.60 | 4.61 11.13 8.55 4.76 4.57
Extrapolation | 4.25| 4.26 9.84 8.61 4.78 4.23
Extrapol_Ahead | 3.76 | 3.77 8.09 8.05 4.23 3.74

Table 6. Total number of comparisons (in billions) performed by eafgorithm over the TREC GOV2 data set. In bold, the best
results, obtained fd8mall Adaptive USingExtrapol_Ahead.

SvS Swapping_SvS| Sequential | BaezaYates |So_BaezaYates|Small Adaptive
INTEL |SUN INTEL |SUN INTEL |SUN INTEL |SUN INTEL |SUN INTEL |SUN
Adaptive_Binary|11730315388757686 |15916990125440957§53363 {11240136273 (98411 (180957230258
Total_Binary 360526180854/81227 [18297459838735455893341 (18423988081 |227041|320692244521
Rounded_Binary (64910 |17534363693 |18015016979734856375730 {18217083717 {223368(108728241526
Galloping 33255 (96907 [30686 [10219713224521981655088 (12590440462 {111422|59081 |162243
Interpolation |47883 |13496049060 (14027212733832750967066 (15766954331 |142653|75162 |200471
Extrapolation |49694 |14238550570 (14788G13694632831677592 18594463244 |171270|78606 |208057
Extrapol_Ahead |61731 |15813862021 |16354515539633852587303 |19410881922 {192490(88674 (223195

Table 7. Total CPU time performed by each algorithm over the TREC G@O¥ set. In bold, the smallest CPU times onIHEEL
platform, obtained usingwapping_SvS; and on theSUN platform, obtained usingvs, both in combination withGalloping
search.
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5 Conclusions

To summarize our results:

— In terms of the number of searches performed, the best ngelgorithms areSmall Adaptive, SvS and
Swapping_SvS on random data angiall_Adaptive on real data.

— In terms of the number of comparisons performed, the bestbemtions on random data consist in one
of the melding algorithmsmall_Adaptive, SvS and Swapping SvS associated with the search algorithm
Extrapol_ Ahead. On real datasmall Adaptive takes the advantage on the others and forms the best com-
bination when combined withxtrapol Ahead, which improves on the previous results [11].

— In terms of CPU time, the best performance on random dat@sponds to thBaezaYates algorithm using
Adaptive Binary search (which confirms previous results [2]), closely fakal by theSvs algorithm using
Galloping search. On real data, the algorittams takes the advantage and forms the best solution, still in
combination withGalloping Search.

In terms of the number of searches or comparisons perforthegoor performance of sophisticated algorithms
such asequential, designed to exploit short certificates of the interseddgror of its randomized variant [3], both
on random and real data, indicates the regularity of thantss in both settings: most instances have a long certificat
On the other hand, the difference of performance of the set#ion algorithnBaezaYates on random and real data
shows that real data are far from randomly uniform. In paféic the good performance of tlExtrapol_Ahead
search algorithm shows that value-based search algorihensot only performing well on sorted arrays of random
elements, but also on posting lists.

In terms of CPU time, the architecture differences betwherptatforms led to both quantitative results variations
(the gaps between the performance of some algorithms wgerlan the RISC architecture than on the CISC archi-
tecture), and qualitative result variatio®®{nded_Binary optimizes the cache on the architecture with the smallest
amount of memory, but not on the other one). The differencizaf between the Google and the GOV2 data set led to
gualitative changes in the CPU performance between thantarof binary search, as the variants optimized for cache
effects performed better than others on the largest datasdtworst on the smallest. As those search algorithms
are outperformed both in number of comparison performedia@PU time by more sophisticated algorithms, this
does not yield any qualitative change, but it does hint tipéintizing the best search algorithm in CPU time, such as
Galloping, So that it takes a better advantage of the cache, might giedd better CPU performances.

Finally, the best solution to compute the intersection afesbarrays corresponding to conjunctive queries in an
indexed search engines seems to be one of the simplest galdiorithmsvs, already used in practice, but improved
by replacing the use of thielaptive_Binary search algorithm by an adaptive search algorittum loping search.
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