Succinct Representation of Labeled Graphs

Jérémy Barbay!, Luca Castelli Aleardi?, Meng He!, and J. Tan Munro!

! Cheriton School of Computer Science, University of Waterloo, Canada, {jbarbay, mhe, imunro}@uwaterloo.ca
2 Laboratoire d’Informatique, Ecole Polytechnique and University of Marne-la-Vallée, France,
amturing@lix.polytechnique.fr

Technical Report CS-2007-11
Cheriton School of Computer Science
University of Waterloo

Abstract. In many applications, properties of an object being modeled are stored as labels on vertices
or edges of a graph. In this paper, we consider succinct representation of labeled graphs. Our main
results are the succinct representations of labeled and multi-labeled graphs (we consider vertex labeled
planar triangulations, as well as edge labeled planar graphs and the more general k-book embedded
graphs) to support various label queries efficiently. The additional space cost to store the labels is
essentially the information-theoretic minimum. As far as we know, our representations are the first
succinct representations of labeled graphs.

We also have two preliminary results to achieve the main results. First, we design a succinct represen-
tation of unlabeled planar triangulations to support the rank/select of edges in ccw (counter clockwise)
order in addition to the other operations supported in previous work. Second, we design a succinct
representation for a k-book graph when k is large to support various navigational operations more
efficiently. In particular, we can test the adjacency of two vertices in O(lg klglg k) time, while previous

work uses O(k) time [9, 15].

1 Introduction

Graphs are fundamental combinatorial objects in mathematics and in computer science. They
are widely used to represent various types of data, such as the link structure of the web,
geographic maps, and surface meshes in computer graphics. As modern applications often
process large graphs, the problem of designing space-efficient data structures to represent
graphs has attracted much attention. Researchers have designed succinct graphs to address
this problem by applying the idea of succinct data structures, i.e. data structures that occupy
space close to the information-theoretic lower bound to represent them, while supporting
efficient navigational operations [4, 5, 6, 7, 12, 15].

Previous work focused on succinct graph representations which support efficiently testing
the adjacency between two vertices and listing the edges incident to a vertex [4, 5, 15].
However in many practical applications this connectivity information is associated with labels
on the edges or vertices of the graph, and the space required to encode those labels largely
dominates the space used to encode the connectivity information, even when the encoding
of the labels is compressed [11]. For example, when surface meshes are associated with
properties such as color and texture information, more bits per vertex are required to encode
those labels than to encode the graph itself. We address this problem by designing succinct
representations of labeled graphs, where labels from an alphabet [o]® are associated with edges
or vertices, which support efficiently label-based connectivity queries, such as navigating

® We use [0] to denote the set {1,2,...,a} of references to arbitrary labels.

among the subset of neighbors of (resp. edges connected to) a vertex v which are associated
with a label a. Our results are on the word RAM model with word size O(lgn) bits*. We
assume that all the graphs are simple graphs for simplicity, though most of our techniques
can be extended to support multigraphs.

The rest of the paper is organized as follows. We describe previous work that we either use
or improve upon in Section 2. We present a succinct index for triangulated planar graphs with
labels associated with their vertices in Section 3. To achieve this result, we describe a succinct
representation of unlabeled planar triangulations which supports the rank/select of edges
in ccw (counter clockwise) order in addition to the other operations supported in previous
work [4, 5, 6, 7]. We present a succinct encoding for k-book graphs and with labels associated
with their edges in Section 4. To achieve this result, we design a succinct representation for a
k-book graph when k is large which supports various navigational operations more efficiently.
For example, we can test the adjacency of two vertices in O(lg klglg k) time, while previous
work uses O(k) time [9, 15]. We conclude with a discussion of our results in Section 5.

2 Preliminaries

2.1 Related Work

Here we briefly review related work on succinct unlabeled graphs. As most graphs in prac-
tice have particular combinatorial properties, researchers usually exploit these properties to
design succinct representations.

Jacobson [12]| first proposed the problem of representing unlabeled graphs succinctly.
His approach is based on the concept of book embedding by Bernhart and Kainen [3]|. He
showed how to represent a k-book embedded graph on the bit probe model using O(kn)
bits to support adjacency test in O(lgn) time, and the listing of all neighbors of a given
vertex = in O(d(z)lgn + k) time, where d(x) is the degree of . Munro and Raman [15]
improved his results on the word RAM model by showing how to represent a graph using
2kn + 2m + o(nk + m) bits to support adjacency test and the computation of the degree of
a vertex in O(k) time, and the listing of all the neighbors of a given vertex z in O(d(x) + k)
time. Gavoille and Hanusse [9] proposed a different tradeoff. They proposed an encoding
in 2(m 4 1)1gk 4+ 4(m + i) + o(km) bits, where ¢ is the number of isolated vertices, to
support adjacency test in O(k) time. A very common type of graphs are planar graphs, and
any planar graph can be embedded in at most 4 pages [18]. Thus the above results can be
applied directly to planar graphs. In particular, a planar graph can be represented using
8n 4+ 2m + o(n) bits to support adjacency test and the computation of the degree of a vertex
in constant time, and the listing of all the neighbors of a given vertex = in O(d(z)) time [15].

A different line of research is based on the canonical ordering of planar graphs. Chuang et
al. 7] designed a succinct representation of planar graphs of n vertices and m edges in
2m + (54 €)n + o(m + n) bits, for any constant € > 0, to support the operations on planar
graphs in asymptotically the same amount of time as the approach described in the previous
paragraph. Chiang et al. [6] have further reduced the space cost to 2m + 3n + o(m + n) bits.
When a planar graph is triangulated, Chuang et al. [7] showed how to represent it using
2m + 2n + o(m + n) bits.

* We use log, « to denote the logarithmic base 2 and lg # to denote [Ig2]. Occasionally this matters.

Based on a partition algorithm, Castelli Aleardi et al. [4] proposed a succinct represen-
tation of planar triangulations with a boundary. Their data structure uses 2.175 bits per
triangle to support various operations efficiently. Castelli Aleardi et al. [5] further combined
this approach with some recent optimal encodings of planar maps to design succinct repre-
sentations of 3-connected planar graphs and triangulations using 2 bits per edge and 1.62
bits per triangle respectively, which asymptotically match the respective entropy of these
two types of graphs.

2.2 Multiple Parentheses

Chuang et al. [7] proposed to succinctly represent multiple parentheses, which is a string of
O(1) types of parentheses that may be unbalanced. Thus a multiple parenthesis sequence of
p types of parentheses is a sequence over the alphabet {(1,(2,...; (p,)15)2, s)p}. We call (;
and); type-i open parenthesis and type-i closing parenthesis, respectively. Chuang et al. [7]
proved the following lemma:

Lemma 1 ([7]). Let S be a string consisting of O(1) types of parentheses. Then it is possible

to construct in O(|S]) time a succinct representation of S using o(|S|) auziliary bits, which

supports the following queries in O(1) time:

— m_rank(S, i, a): the number of parentheses o in S[1..i];

— m_select(S,i,a): the position of the i™ parenthesis a;

—m_first (S5,1): the position of the first occurrence of parenthesis o after S[i|;

— m_last (S,1): the position of the last occurrence of parenthesis a before S|i];

— m_match(S,1): the position of the parenthesis matching S[i];

— m_enclose(S,1,12): the position of the closest matching parenthesis pair of type k which
encloses S[i1] and S[ia].

We propose an encoding for the case when the number of types of parentheses is non-
constant in Theorem 3.

2.3 Succinct Indexes for Strings and Binary Relations

Barbay et al. [1] showed how to achieve data abstraction in the design of succinct data
structures by designing succinct indezes. Given an abstract data type, or ADT, to access
the given data, the goal is to design auxiliary data structures (i.e. succinct indexes) that
occupy asymptotically less space than the information-theoretic lower bound on the space
required to encode the given data, and support an extended set of operations using the basic
operators defined in the ADT. They considered a string S of length n over an alphabet of
arbitrary size o, and the operations include: string rank(a, z), the number of occurrences
of ain S[1...7]; string select(a,r), the position of the r*" occurrence of o in the string;
and string access(z), the character at position z in the string. They defined the interface
of the ADT of a string through the operator string access and achieved:

Lemma 2 (Theorem 3.1 in [1]). Given support for string access in f(n,o) time on a
string S € [o]", there is a succinct index using n - o(lg o) bits that supports string rank in
O((lglglgo)*(f(n,0) +1glgo)) time, and string_select in O(lglglgo(f(n,o) +lglgo))

time.

Fig. 1. A triangulated planar graph having 12 vertices with its canonical spanning tree T (on the left). On the right
it is shown the triangulation induced with a realizer, as well as the local condition describing incident edges around
each internal vertex.

Barbay et al. [1] extended the problem to the design of succinct indexes for sequences
of n objects where each object can be associated with a subset of labels from [o], this
association being defined by a binary relation of ¢ pairs from [n]x[c]. The operations include:
object access(w,i), the i label associated with z in lexicographic order, and +oo if no
such label exists. label rank(a,z), the number of objects labeled o up to (and including)
z; label select(a,r), the position of the r™ object labeled a; and label access(z,a),
whether object z is associated with label a. They defined the interface of the ADT of a
binary relation through the operator object access and achieved:

Lemma 3 (Theorem 3.2 in [1]). Given support for object access in f(n,o,t) time
on a binary relation formed by t pairs from an object set [n| and a label set [o], there
is a succinct index using t - o(lgo) bits that supports label rank and label access in
O(lglgolglglgo(f(n,o,t) + lglgo)) time, and label select in O(lglglgo(f(n,o,t) +
lglg o)) time.

2.4 Realizers and Planar Triangulations

First, we give the definition of the realizers of planar triangulations:

Definition 1 ([17]). A realizer of a planar triangulation T is a partition of the set of the

internal edges into three sets Ty, Ty and Ty of directed edges, such that for each internal

vertex v the following conditions are true:

— wvertex v has ezactly one outgoing edge in each of the three sets Ty, Ty and Ty;

— local condition: the edges incident to v in ccw order are: one outgoing edge in Ty, zero
or more incoming edges in Ty, one outgoing edge in Ty, zero or more incoming edges in
Ty, one outgoing edge in Ty, and finally zero or more incoming edges in Ty (see Figure 1).

A fundamental property of the realizers of a planar triangulation is:

Lemma 4 ([17]). Consider a planar triangulation T of n wvertices, with exterior face
(vo, v1,0n-1). Then T always admits a realizer R = (Ty, Ty, T) and each set of (undirected)
edges in T; is a spanning tree of all internal vertices. More precisely we have:

— To is a spanning tree of T \ {v1, va_1};

— Ty is a spanning tree of T \ {vo, vn=1};

— T, is a spanning tree of T \ {vo,v1};

2.5 The Book Embedding of a Graph

Bernhart and Kainen [3] proposed to embed a graph in a book. A k-book embedding of a
graph is a topological embedding of it in a book of k pages that specifies the ordering of the
vertices along the spine, and carries each edge into the interior of one page. Thus, a graph
with one page is an outerplanar graph. The pagenumber (written as a single word) or book
thickness |3 of a graph is the minimum number of pages that the graph can be embedded
in. A very useful fact is that any planar graph can be embedded in at most 4 pages [18].

3 Vertex Labeled Planar Triangulations

3.1 Three New Traversal Orders on a Planar Triangulation

We first define three new traversal orders on planar triangulations based on realizers. Let T
be a planar triangulation with exterior face (vg, vy, v,—1). We denote its realizer by (Ty, T, T5)
following Definition 1. By Lemma 4, Ty, T} and T, are three spanning trees of the internal
nodes of 7T, rooted at vg, v1 and v,_1, respectively. We add the edges (vo,v1) and (vg, vn_1)
to Ty, and call the resulting tree, Ty, the canonical spanning tree of T [7]. In this section,
we denote each vertex by its number in canonical ordering, which corresponds to the ccw
preorder number in T.

Definition 2. The zeroth order m is defined on all the vertices of T and is simply given
by the preorder traversal of Ty starting at vo in counter clockwise order (ccw order).

The first order m; is defined on the vertices of T \ vo and corresponds to a traversal of
the edges of Ty as follows. Perform a preorder traversal of the contour of Ty in a ccw manner.
During this traversal, when visiting a vertex v, we enumerate consecutively its incident edges
(v,ur), ..., (v,u;) in Ty, where v appears before u; in mo. The traversal of the edges of Ty
naturally induces an order on the nodes of Ty: each node (different from vy) is uniquely
associated with its parent edge in T;.

The second order m; is defined on the vertices of T \ {vo,v1} and can be computed in
a stmilar manner by performing a preorder traversal of Ty in clockwise order (cw order).
When visiting in cw order the contour of Ty, the edges in Ty incident to a node v are listed
consecutively to induce an order on the vertices of Ty.

Note that the orders m; and w5 do not correspond to any known traversal order on the
trees T} and Ty, as they are dependent on Ty through my. Another important fact about m
and 7 (but not mp) is that, as DFUDS, they list consecutively the children of each node z in
the corresponding tree, i.e., for any node z, its children in 7} (resp. in T3) have consecutive
numbers in 7y (resp. in m3). Figure 2 illustrates the orders mg, m and 7, defined above.

3.2 Planar Triangulations

We consider the following operations on unlabeled planar triangulations:

— adjacency(z,y), whether vertices x and y are adjacent;

— degree(z), the degree of vertex x;

— select neighbor ccw(z,y,r): the r'® neighbor of vertex z starting from vertex y in
ccw order if x and y are adjacent, and oo otherwise;

7_‘_24610987253
1 23 456789

Fig. 2. A planar triangulation induced with one realizer: the three orders mo, m1 and w2 on the set of its vertices are
also shown.

— rank neighbor ccw(z,y,z): the number of neighbors of vertex = between (and includ-
ing) the vertices y and z in ccw order if y and z are both neighbors of 2, and oo otherwise.

To represent a planar triangulation 7, we compute a realizer (Ty, Ty, T,) of T following
Definition 1. We then encode the three trees Ty, 71 and T, using a multiple parenthesis
sequence S of length 2m consisting of three types of parenthesis. S is obtained by performing
a preorder traversal of the canonical spanning tree To =ToU (vo,v1) U (vo, vp—1) and using
different types of parentheses to describe the edges of Ty and edges in T \ To. We use
parentheses of the first type, namely /(" and ’)’, to encode the tree Ty, while other types of
parentheses, '[", '], "{’, '} to encode the edges of T} and Ty.

Let v, ...,vn—1 be the ccw preorder of the vertices of T. Then the string Sy is simply
the balanced parenthesis encoding of the tree T, [15]: Sy can be obtained by performing a
cew preorder traversal of the contour of Ty, writing down an open parenthesis when an edge
of Ty is traversed the first time, and a closing parenthesis when it is visited the second time.
During the traversal of Ty, we insert in S a pair of parentheses ‘[’ and /]’ for each edge of T},
and a pair of parentheses '{’ and '}’ for each edge in T,. More precisely, when visiting in ccw
order the edges incident to a vertex v;, we:

— Insert a [’ for each edge (v;, vj) in Ty, where ¢ < j, before the parenthesis ')’ corresponding

to v;;

— Insert a ']’ for each edge (v;,v;) in Ty, where i < j, after the parenthesis ’(’ corresponding
to vy;

— Insert a '} for each edge (v, v;) in T, where 1 > j, after the parenthesis ’(’ corresponding
to wv;;

— Insert a{ for each edge (v;, v;) in Ty, where 1 > j, before the parenthesis’)’ corresponding
to vj.

The relative order of the parentheses '[', /', '} and '{’ inserted between two consecutive
parentheses of the other type, i.e. ’(’ or ’)’, do not matter. Thus string S is of length 2m,
consisting of three types of parenthesis. It is easy to observe that substrings S; and S, are
balanced parenthesis sequences of length 2(n — 1) and 2(n — 2), respectively.

We first observe some basic properties of string S. Recall that a node v; can be referred
to by its preorder number in Ty, and by the position of the matching parenthesis pair (; and
)i (let p; and ¢; denote their positions in S). Let be ps (or ¢;) be the position of the open (or
closing) parenthesis in S corresponding to the first (or last) child of node v; in Tj.

Property 1. The following basic facts hold:

— Two nodes v; and v; are adjacent if and only if there is one common incident edge (v;, v;)
in exactly one of the trees Ty, T} or Ts;

— P <pr<q<g;

— The number of edges incident to v; and not belonging to the tree T is (ps — pi) + (¢ — @);

— If v; is not a leaf in Ty, between the occurrences of the /(' that correspond to the vertices
v; and v;41 (note that the ’(’ corresponding to v;11 is at position py), there is exactly one
’I'. Similarly, there is exactly one ‘{’ between the ")’ that correspond to the vertices v; and
the ")’ at position ¢.

Observe that Sy is the balanced parenthesis encoding of the tree T [15], so that if we
store Sy and construct the auxiliary data structures for Sy as in [15], we can support a set
of navigational operators on Ty. S can be represented using Lemma 1 in 2mlog, 6 + o(m)
bits, which is essentially 5.17 bits per edge. However, this encoding does not support the
computation of an arbitrary word in Sy, so that we cannot navigate the tree Ty without
storing Sy explicitly, which will cost essentially 2 additional bits per node. To reduce this
space redundancy, we have:

Lemma 5. The string S can be stored in 2mlog, 6 + o(m) bits to support in O(1) time the
operators listed in Lemma 1, as well as the computation of an arbitrary word, or ©(n) bits
of the balanced parenthesis sequence of Ty.

Proof. We construct a conceptual bit vector B; of 2m bits, so that By[i] = 1 iff S[¢] =" ('
or S[i] =')'. We construct another conceptual bit vector By of 2m — 2n bits for the 0s in B,
(recall that there are 2n parentheses in Tp), so that B,[i] = 1 iff the parenthesis corresponds
to the :*" 0 in B is either '[' or /]'. We store B, and B, using the fully indexable dictionary
encoding by Raman et al. [16] to support rank/select operations on them. The space cost
of storing By and B is thus lg (2;") +o(m) +1g (2m;2n) + o(m). As m = 3n — 3, the above
space cost is approximately 2mlog, 3 + o(m).

In addition, we store Sp, S; and Sy using the encoding of balanced parentheses by
Munro and Raman [15] to support the rank/select of each parenthesis among the paren-
theses of the same type, locating the match parenthesis of a given parenthesis, and the
computation of the closing enclosing pair of a given parenthesis pair. The space cost of stor-
ing these three sequences is 2n 4+ o(n) +2(n — 1) 4+ o(n) + 2(n — 2) 4+ o(n) = 2m + o(m) bits.
Thus the total space cost is 2mlog, 6 + o(m) bits.

As B; and B, can be used to compute the rank/select operations over § if we treat each
type of (open and closing) parentheses as the same character, and Sy, S; and Sy can be used

7

to support operations on the parentheses of the same type, the operations listed in Lemma 1
can be easily supported in constant time. As we store Sy explicitly in our representation, we
can trivially support the computation of an arbitrary word of Sp. O

The same approach can be directly applied to a multiple parenthesis sequence of O(1)
types of parentheses:

Corollary 1. Consider a multiple parenthesis sequence M of 2n parenthesis of p types,
where p = O(1). M can be stored using 2nlg(2p) + o(n) bits to support in O(1) time the
operators listed in Lemma 1, as well as the computation of an arbitrary word, or O(n) bits
of the balanced parenthesis sequence of the parentheses of a given type in M.

The following theorem shows how to efficiently support the navigational operations in
a triangulation and how to compute the number of an internal node in 7 or 7y given its
number in 7y (and vice-versa).

Theorem 1. A planar triangulation T of n wvertices and m edges can be represented
using 2mlog, 6 + o(m) bits to support adjacency, degree, select neighbor ccw,
rank neighbor ccw and the following operation in O(1) time (for j € {1,2}):

— II;(1): given the number of a node v; in my it returns the number of v; in ;;

- Hj_l(z) gwen the number of a node v; in m; it returns its rank in mo.

Proof. We construct the string S for 7 as shown in this section, and store it using 2m log, 6+
o(m) bits by Lemma 5. Recall that S, is the balanced parenthesis encoding of Ty, and that
we can compute an arbitrary word of Sy from S. Thus we can construct additional auxiliary
structures using o(n) = o(m) bits [14, 15] to support the navigational operations on Tp. As
each vertex is denoted by its number in canonical ordering, we have that vertex x corresponds
to the z'M open parenthesis in Sy. We now show that these structures are sufficient to support
the navigational operations on 7T .

To compute adjacency(z,y), recall that = and y are adjacent iff one is the parent of the
other in one of the trees Ty, Ty and Ty. As Sy encodes the balanced parenthesis sequence of
Ty, we can trivially check whether x (or y) is the parent of y (or z) using existing algorithms
on Sy [15]. To test adjacency in Ty, we recall that z is the parent of y iff the (only) incoming
edge of y, denoted by a’]’, is an outgoing edge of =, denoted by a ’[". It then suffices to retrieve
the first /" after the y™ /(" in S, given by m_first;(S,m_select(S,y, ('), and compute
the index, 7, of its matching closing parenthesis, /', in S. We then check whether the nearest
succeeding closing parenthesis /)’ of the '[' retrieved, located using m_ first,,(S,1), is the zth
closing parenthesis in S. If it is, then z is the parent of y. We can use a similar approach to
test the adjacency in T5.

To compute degree(z), let dy, d; and dy be the degrees of z in the trees T, Ty and T, (we
denote the degree of a node in a tree as the number of nodes adjacent to it), respectively,
so that the sum of these three values is the answer. To compute dy, we use Sy and the
algorithm to compute the degree of a node in an ordinal tree using its balanced parenthesis
representation by Chuang et al. [7]. To compute d; + dy, if z has children in Ty, we first
compute the indices, 7; and 4, of the " and the z + 1*" /(" in §, and the indices, j; and
J2, of the (n —)™ and the (n — z + 1)* /)" in S in constant time. By the third item of
Property 1, we have the property d; + dy = (i2 — 1) + (j2 — j1). The case when z is a leaf
in Ty can be handled similarly.

To support select neighbor ccw and rank neighbor ccw, we make use of the local
condition of realizers in Definition 1. The local condition tell us that, given a vertex =z, its
neighbors, when listed in ccw order, form the following six types of vertices: 2’s parent in Ty,
z’s children in Ty, 2’s parent in T}, «’s children in Ty, z’s parent in Ty, and z’s children in
T:. The i** child of z in ccw order in Ty can be computed in constant time, and the number
of siblings before a given child of z in ccw order can also be computed in constant time using
the algorithms of Lu and Yeh [14]|. The children of = in T corresponds to the parentheses
'l between the (n — .”L’)th and the (n — z + 1)“‘)" in S, and because of the construction of
S, if v and v are both children of x, and u occurs before v in my, then u is also before v in
ccw order among the children of z. The children of = in T3 have a similar property. Thus the
operators supported on S allow us to perform rank/select operations on the children of z in
Ty and T, in ccw order. As we can also compute the number of each type of neighbors of z in
constant time, this allows us to support select neighbor ccw and rank neighbor ccw
in constant time.

To compute II,(i), we first locate the position, j, of the ¢ ‘(' in S, which is
m_select(S,:,("). We then locate the position, k, of the first /]’ after position j, which is
m_firsty(S,j). After that, we locate the matching parenthesis of S[j] using m_match(S, j)
(p denotes the result). S[p] is the parenthesis " that corresponds to the parent of u; in T, and
by the construction algorithm of S, then rank of S[p] is the answer, which ism_ rank(S, p,’[').
The computation of IT; ' is exactly the inverse of the above process. IT, and II;' can be
supported similarly. O

3.3 Vertex Labeled Planar Triangulations

In addition to unlabeled operators, we present a set of operators that allow efficient naviga-

tion on a labeled graph (these are natural extensions to navigational operators on labeled

trees):

— lab_degree(a,), the number of neighbors of vertex = in G associated with label o

— lab_select ccwu(a,z,y,r), the r'" vertex labeled a among neighbors of vertex x after
vertex y in ccw order, if y is a neighbor of z, and oo otherwise;

— lab_rank ccw(a,z,y,z): the number of the neighbors of vertex x labeled a between
vertices y and z in ccw order if y and z are neighbors of =, and oo otherwise.

Recall that Lemma 5 encodes the string S constructed in Section 3.2 to support the
computation of an arbitrary word of Sp, which is the balanced parenthesis sequence of the tree
Tp. In this section, we consider the DFUDS sequence (or Depth First Unary Degree Sequence [2]
of Ty), as the DFUDS order traversal visits the children of a node consecutively.

Lemma 6. The string S can be stored in (2log, 6 4+ €)m + o(m) bits, for any € such that 0 <
€ < 1, to support in O(1) time the operators listed in Lemma 1, as well as the computation of
an arbitrary word, or ©(n) bits of the balanced parenthesis sequence, and the DFUDS sequence

of Ty.

Proof. We construct the same data structures as in Lemma 5, except when we encode Sy, we
use the TC representation of the tree Ty [10]. To be specific, we encode Sy using (24 €)n+o(n)
bits, for any € such that 0 < ¢ < 1, and this encoding supports the computation of an

arbitrary word of the balanced parenthesis sequence, and the DFUDS sequence of Ty in constant
time. As we can compute an arbitrary of the original sequence of Sy in constant time and all
the other structures are the same as in Lemma 5, we can still support the operators listed
in Lemma 1 in constant time. O

The following lemma explains how to support label-based navigation operators on labeled
planar triangulations. As Barbay et al. did for multi-labeled trees [1|, we construct succinct
indexes for labeled planar triangulations. We define the interface of the ADT of labeled
planar triangulations through the operator node label(wv,i), which returns the i-th label
associated to vertex v in lexicographic order.

Theorem 2. Consider a multi-labeled planar triangulation T of n vertices, associated with
o labels in t pairs (t > n). Given the support of node label in f(n,o,t) time on the
vertices of T, there is a succinct index using t - o(lgo) bits which supports lab_degree,
lab_select ccw and lab_rank ccw in O((lglglg o)*(f(n,o,t) +1glgo)) time.

Proof. The main idea is to combine our succinct representation of planar triangulations with
three instances of the succinct indexes for related binary relations [1, 2].

We represent the combinatorial structure of 7 using Theorem 1, in which we use Lemma 6
to store S. Thus we can construct the auxiliary data structures for the DFUDS representation
of Ty [13]. Observe that the sequence of the vertices (for simplicity we only consider internal
vertices) referred by their numbers in three different orders, the order corresponding to an
enumeration of the nodes of Ty in DFUDS order, m; and m,, form three binary relations Ry,
R, and R, with their associated labels.

We adopt the same strategy used previously for multi-labeled trees [1]. We can convert
the rank of the vertices between my and 7y, and between 7y and 7, in constant time by
Theorem 1. We can also convert between the preorder number of the nodes in T (note that
this is the same order as 7o) and the DFUDS number of the nodes in T in constant time [13].
Therefore, we can use the operator node label to support the ADT of Ry, Ry and R;.
Thus, for each of the binary relations R;, Ry, and R4 we construct a succinct index using
t - o(lg o) bits using Lemma 3.

Using properties of realizers of triangulations and the technique used in Barbay et al. [1]
for dealing with each binary relation R;, we are able to enumerate all the neighbors of a
vertex in O(lglgolglglg o(f(n,o,t) 4+ lglgo)) time per neighbor.

The main idea is using the fact that in each order =; the children of a node lying in a tree
T; (the descendant) are enumerated consecutively: and the cyclic order of neighbors around
a vertex is well described by the local condition characterizing realizers (see Definition 1).
More precisely, to enumerate the children of a node v in Ty we use DFUDS order on Tj, where
children are listed consecutively. To enumerate the children of v in the tree Ty (or T3) it
suffices to observe that they are listed consecutively by m; (or m32): so this corresponds to a
list of consecutive labels in the relation Ry (or R3): access to these labels can be efficiently
performed using label rank and label select operators on R; (or Ry or Ry). Finally,
observe that even if the orders m, m; and m, on the vertices are completely different from
known orders on trees (like preorder, postorder or DFUDS), Theorem 1 provides efficient tools
for converting the rank of a node from an order 7; to a different one in O(1) time. Hence
the support of the rank/select operations on the neighbors of a node matching a label « is

10

simply reduced to a combination of 1label select and label rank operations on one of
the binary relations Ry, Ry or Ry at each time, following the orders defined on the three
different types of parentheses.

Finally, we observe that the space requirements of our representation is dominated by
the cost of the succinct indexes for the binary relations, each using ¢ - o(lg o) bits. O

4 Edge Labeled Graphs with Pagenumber k

4.1 Multiple Parentheses

In this section, we consider the succinct representation of multiple parenthesis sequences of

p types of parentheses, where p is not a constant. We consider the following operations on a

multiple parenthesis sequence S[1..2n] in addition to those defined in Lemma 1:

— m_rank’(S,1), the rank of the parenthesis at position i among parentheses of the same
type in S;

— m_findopen(S,:) (m_findclose(S,1)), the matching closing (open) parenthesis of the
same type for the open (closing) parenthesis at position ¢ in S.

Note that m_findopen and m_findclose are identical to the operator m_match. We define
them here for the simplicity of the proofs in this section.

Theorem 3. A multiple parenthesis sequence of 2n parentheses of p types, in which the
parentheses of any given type are balanced, can be represented using 2nlgp + o(nlgp) bits
to support m_access, m_rank’, m_findopen and m_findclose in O(lglgp) time, and
m_select,in O(1) time. Alternatively, it can be represented using 4nlgp + o(nlgp) bits
to support these operations in O(1) time.

Proof. We store the sequence as a string P over alphabet {(1,(2,..-; (p,)1,)2, -,)p} using
Lemma 4.1 of [1]. P occupies at most n lg p+o(nlg p) bits, and the operations string access
and string rank can be supported in O(lglg p) time, and string select can be supported
in O(1) time. We define another operation string rank’(a,:), which returns the number
of characters a in P[l..7] if P[i] = a. From the proof of Lemma 4.1 in [1], we have that
string rank’(i) can also be supported in O(1) time.

We construct a balanced parenthesis sequence B;, where B;[j] is an open (closing) paren-
thesis iff the 5" parenthesis of type i in the multiple parenthesis sequence is an open (closing)
parenthesis. We denote the length of B; by n;, where n; is the number of parentheses of type
i. We store each B; using the representation by Munro and Raman [15]|. Thus the total space
cost is Ele(ni +o(n;)) = 2n + o(n).

The operation m_access can be supported by calling string access on P once, so
it can be supported in O(lglgp) time. To support m_rank’(5,i), we first compute the
parenthesis, «, at position ¢ using m_access in O(lglgp) time. Then m_rank/(S,:1) =
string rank’p(c,:). We also have m_select(S,«,:1) = string selectp(a,:). Finally,
to support m_findopen(S,:¢) (the support for m_findclose is similar), we first com-
pute the parenthesis); at position ¢ using m_access. Then we have m_findopen(S,1) =
m_select(S,(;,findclosep, (string rank's((,,?))).

To support all the above operations in constant time, we only need to support
string accesson P in constant time. This can be achieved by writing down the sequence

11

P explicitly in addition to the data structures constructed above, and the total space will
be increased by 2nlg p bits. O

4.2 Graphs with Pagenumber k for large k

In this section, on unlabeled graphs with page number k, we consider the operations
adjacency and degree defined in Section 3.2, and the operator neighbors(z), which re-
turns the neighbors of vertex x.

Previous results on succinctly representing k-book embedded graphs [9, 15| support
adjacency in O(k) time. The lower-order term in the space cost of the result of Gavoille and
Hanusse [9] is o(km), which is dominant when k is large. Thus previous results mainly deal
with the case when k is small. We consider the case when k is larger.

Theorem 4. A graph of n vertices and m edges with pagenumber k can be represented
using n + 2mlgk 4+ o(mlgk)) bits to support operations adjacency in O(lgklglgk) time,
degree in O(1) time, and neighbors(z) in O(d(x)lglgk) time where d(z) is the degree of
x. Alternatively, it can be represented in n + 4mlgk + o(mlgk)) bits to support operations
adjacency in O(lgk) time, degree in O(1) time, and neighbors(z) in O(d(x)) time.

Proof. We denote each vertex by its rank along the spine of the book (i.e. vertex x is the z®
vertex along the spine). An edge between vertices x and y is a left edge (or right edge) of x
ify >z (ory<a).
We construct a bit vector B of n + m bits to encode the degree of each node in unary
as in [12], in which vertex x corresponds to the z™ 1 followed by d(z) 0s. We encode B
using n + m + o(n 4+ m) bits to support rank / select operations [8]. We construct a multiple
parenthesis sequence S of 2m parentheses of k types as follows. For each node z = 1,2, ...n
and for each page 1 = 1,2, ..., k,
1. If there are j left edges of = on page ¢ where 7 > 0, we write down 57 — 1 copies of the
symbol);.
2. Assume that the left edges of = are on pages pi,pa,....,p1. We sort the sequence
Yprs Jpas -5)py DY the largest span of the left edges of z on these pages and write down the
sorted sequence, i.e. in the sorted sequence,’)! appears before ')/ if the largest span of

Pu Pv
the left edges of = on page p, is less than the maximum span of the left edges of = on

page py.
3. Similarly, we assume that the right edges of x are on pages ¢, ¢y, ...,q,. We sort the
sequence (g, (g -+, (p, by the maximum span of the right edges of x on these pages and

write down the sorted sequence.
4. If there are j' right edges of = on page ¢ where 3 > 0, we write down j' — 1 copies of the
symbol (;.

The Sequence S, although appears to be similar to the sequence in Theorem 2 of [9], it
differs in the order we store the parentheses corresponding to the edges of a given vertex. It
also has 2m parentheses of k types, and we encode it using Theorem 3 in 2mlgk + o(mlg k)
bits. Finally we construct a bit vector B’ of 2m bits in which B[] = 1 iff S[¢] is a closing
parentheses, and encoding it using 2m 4+ o(m) bits to support rank / select operations. Thus
the total space cost is n + 2mlgk + o(mlgk) bits.

12

With the above definitions and structures, the algorithm [12] to check whether there is
an edge between vertices and y on page p can be described as follows (assume, without
loss of generality, that @ < y). We first retrieve the index, w, of the parenthesis in S that
corresponds to the right edge of = with the largest span on page p. Because this occurrence is
the first occurrence of the character (, in S after position bin rankz(0,bin selectg(l,x)),
we can compute w in O(lglg k) time. We then retrieve the index, ¢, of the closing parenthesis
that matches Blw] in O(lglg k) time, and if it corresponds to a left edge of y (this is true
iff bin rankg(l,¢) = y), then there is an edge between z and y. Similarly, we retrieve the
parenthesis in § that corresponds to the left edge of y with the largest span on page p, and
if its matching open parenthesis corresponds to a right edge of x, then z and y are adjacent.
If the above process cannot find an edge between x and y, then = and y are not adjacent.
All these steps takes O(lglg k) time.

To compute adjacency(z,y) (assume, without loss of generality, that » < y), we first
observe that by Step 2 of the construction algorithm of 5, the open parentheses that cor-
respond to the right edges of x with the largest spans among the right edges of = on the
same pages form a substring of S. We can compute the starting position of this substring
using B and B’ in constant time. Because these parentheses are sorted by the spans of the
edges they correspond to, we can perform a doubling searching to check whether one of these
edges connects x and y. In each step of the doubling search, we perform the algorithm in the
last paragraph in O(lglgk) time. There are at most k such parentheses, so we perform the
algorithm at most O(lg k) times. Similarly, we perform doubling search on the left edges of
y with the largest spans among the left edges of y on the same pages. Thus we can test the
adjacency between two vertices in O(lg klglg k) time.

The degree of any vertex can be easily computed in constant time using B. We can
also perform the algorithms in previous work [12] to compute neighbors(z), and it takes
O(d(z)lglgk) time on our data structures.

Finally, to improve the time efliciency, we can store S using 4m lgk + o(mlg k) bits using
Theorem 3 to achieve the other tradeoff. O

4.3 Edge Labeled Graphs with Pagenumber k

We consider the following operations on edge labeled graphs:

— lab_adjacency(a,z,y), whether there is an edge labeled o between vertices z and y;
— lab_degree edge(a,z), the number of edges of vertex x that are labeled o

— lab_edges(a,x), the edges of vertex x that are labeled a.

We first show how to design succinct representation for an edge labeled graph with one page.

Lemma 7. An outerplanar graph of n vertices and m edges in which each edge has a la-
bel from alphabet [o] can be represented using n + m(lgo + o(lg o)) bits to support oper-
ation lab_adjacency in O(1) time, lab_degree edge in O(lglgo(lglglg c)?) time, and
lab_edges(a,z) in O(lab_degree edge(o,z)lglgolglglg o) time.

Proof. We construct a bit vector B of n 4+ m bits to encode the degree of each node in unary
as in the proof of Theorem 4. We construct a balanced parenthesis sequence P as follows.
List the vertices from left to right along the spine, and each node is represented by zero or

13

- ba
(o)

c
ORORORONO » ®
P ((()() (X)

))) ((()
B: 1000 1000 10 10 1000000 100 100 100
L: aaa bb a cab c
R: a b aba b ca ca

Fig. 3. An example of the succinct representation of a labeled graph with one page.

more closing parentheses followed by zero or more open parentheses, where the number of
closing (or open) parentheses is equal to the number of left (or right) edges. We construct
a string R, where R[i] is the label of the edge corresponds to the :*" open parenthesis in
P. We build a succinct index for R to support rank / select operations using Theorem 3.1
of [1]. We have a similar conceptual string L, where L[7] is the label of the edge corresponds
to the :*M closing parenthesis in P, but we do not store R explicitly. Instead, we construct
a succinct index for L to support rank / select operations using Theorem 3.1 of [1|. These
data structures occupy n + m(lgo + o(lg o)) in total. See Figure 3 for an example.

To use the succinct index constructed above to support rank / select on L, we need to show
how to compute string access(i) on R. We first compute the index, 7, of the ™! closing
parenthesis in P. Then we find its matching open parenthesis and let u denote its index in
P and L[u] is the results. All these operations can be computed in constant time, so we can
support string access on L in constant time. Thus we can support string rank and
string select on L in O(lglgo(lglglg 0)?) time and O(lglg o lglglg o) time, respectively.

To compute lab adjacency(z,y), we first use the algorithm in [12] to check whether
and y are adjacent. If they are, we retrieve the index of open parenthesis in P that corresponds
to the edge between = and y, compute its rank, v, among open parenthesis, and if R[v] = a,
we return true. This takes constant time.

To compute lab_degree edge(a,), we need to compute the number, [, of the left edges
of x that are labeled «, and the number, r, of the right edges of = that are labeled . To
compute [, we first compute the indices [; and /5 such that each parenthesis in the substring
Pll;..I5] is a closing parentheses that corresponds to an left edge of z, using rank / select
operations on B and P in constant time. We then use string rank and string select
to compute the number of occurrences of « in the substring L[l;..l5] in O(lglg o(lglglg o)?)
time. Similarly we can compute r by performing rank / select operations on B, P and R,
and the sum of [and r is the answer. To further list all the edges of z that is labeled «, we
need to perform string select on L and R to retrieve the indices of the corresponding
parentheses in P, and perform rank / select operations on B to retrieve the vertices that
these edges connect to. O

To support an edge labeled graph with k pages, we can use Lemma 7 to represent each
page and combine all the pages represented in this way to support navigational operations.

14

Alternatively, we can use the result of Theorem 4 and a similar approach in the proof of
Lemma 7 to achieve a different tradeoff to improve the time efficiency when k is large.

Theorem 5. A k-book graph of n wvertices and m edges in which each edge has a label
from alphabet [o] can be represented using kn + m(lgo + o(lgo) bits to support opera-
tion lab_adjacency in O(k) time, lab_degree edge in O(klglgo(lglglgo)?) time, and
lab_ edges(a,z) in O(lab_degree edge(a,x)lglgolglglgo + k) time. Alternatively, it
can be represented using n + 4mlgk 4+ o(mlgk) + m(lgo + o(lg o)) bits to support opera-
tion lab_adjacency in O(lgk) time, lab_degree edge in O(lglga(lglglgo)?) time, and
lab edges(a,z) in O(lab_degree edge(a,z)lglgolglglg o) time.

In particular, o labeled planar graph can be represented using 4n+m(lg o+ o(lg o) bits to
support operation lab_adjacency in O(1) time, lab_degree edge in O(lglg o(lglglg 0)?)
time, and lab_edges(a,z) in O(lab_degree edge(a,z)lglgolglglg o) time.

The above approach can be used directly to support multi-labeled graphs with pagenum-
ber k. The only change is that the string L will become a binary relation, encoded using
Lemma 3.

5 Concluding Remarks

In this paper, we present a framework of succinctly representing the properties of the graphs
in the form of labels. We expect that our approach can be extended to support other types of
planar graphs, which is an open research topic. Another open problem is to design succinct
representation of vertex labeled graphs with pagenumber k.

Our final comment is that because Theorem 2 provides a succinct index for vertex labeled
planar triangulations, we can in fact store the labels in compressed form as Barbay et al. have
done to compress strings, binary relations and multi-labeled trees [1], while still supporting
various operations. The same applies to Theorem 5, as we use succinct indexes for strings to
encode the labels.

References

[1] Jérémy Barbay, Meng He, J. ITan Munro, and S. Srinivasa Rao. Succinct indexes for
strings, binary relations and multi-labeled trees. In Proceedings of the 18th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 680-689. ACM-SIAM, ACM, 2007.

[2] David Benoit, Erik D. Demaine, J. ITan Munro, and Venkatesh Raman. Representing
trees of higher degree. In Proceedings of the 6th International Workshop on Algorithms
and Data Structures, pages 169-180. Springer-Verlag LNCS 1663, 1999.

[3] Frank Bernhart and Paul C. Kainen. The book thickness of a graph. Journal of Com-
binatorial Theory, Series B, 27(3):320-331, 1979.

[4] L. Castelli-Aleardi, O. Devillers, and G. Schaeffer. Succinct representation of triangu-
lations with a boundary. In Proc. 9th Workshop on Algorhtms and Data Structures
(WADS), volume 3608 of LNCS, pages 134-145. Springer, 2005.

[5] L. Castelli-Aleardi, O. Devillers, and G. Schaeffer. Optimal succinct representations of
planar maps. In Proc. of 22nd ACM Annual Symposium on Computational Geometry
(SoCG), pages 309-318, 2006.

15

[6] Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly spanning trees with applications to
graph encoding and graph drawing. SODA, pages 506-515, 2001.

[7] R.C.-N Chuang, A. Garg, X. He, M.-Y. Kao, and H.-I. Lu. Compact encodings of
planar graphs via canonical orderings and multiple parentheses. Automata, Laguages
and Programming, pages 118-129, 1998.

[8] David R. Clark and J. Ian Munro. Efficient suffix trees on secondary storage. In
Proceedings of the Tth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
383-391, 1996.

[9] Cyril Gavoille and Nicolas Hanusse. On compact encoding of pagenumber k graphs.
Discrete Mathematics € Theoretical Computer Science, 2004. To appear.

[10] Meng He, J. Tan Munro, and S. Srinivasa Rao. Succinct ordinal trees based on tree
covering. In Proceedings of the 34th International Colloguium on Automata, Languages
and Programmaing, 2007. To Appear.

[11] Martin Isenburg and Jack Snoeyink. Face fixer: Compressing polygon meshes with
properties. In Proceedings of SIGGRAPH 2000, pages 263-270, 2000.

[12] G. Jacobson. Space efficients static trees and graphs. In Proceedings of the IEEE
Symposium on Foundations of Computerb Science (FOCS), pages 549-554, 1989.

[13] Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Ultra-succinct representation
of ordered trees. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2007.

[14] Hsueh-I Lu and Chia-Chi Yeh. Balanced parentheses strike back. Accepted to ACM
Transactions on Algorithms upon minor revision, 2007.

[15] J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses
and static trees. SIAM J. Comput., 31(3):762-776, 2001.

[16] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In Proceedings of the 15th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 233242, 2002.

[17] Walter Schnyder. Embedding planar graphs on the grid. In Proc. of the First Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 138-148, 1990.

[18] Mihalis Yannakakis. Four pages are necessary and sufficient for planar graphs. In
Proceedings of the 18th Annual ACM-SIAM Symposium on Theory of Computing, pages
104-108, 1986.

16

