
CS–2007–10

Addressing an Open Problem on Regex

Cezar Câmpeanu and Nicolae Santean

Technical Report 10

David R. Cheriton School of Computer Science

University of Waterloo

2007

Addressing an Open Problem on Regex

Cezar Câmpeanu1 and Nicolae Santean2

1 Department of Computer Science and IT, University of Prince Edward Island
2 School of Computer Science, University of Waterloo

Abstract. In this paper we revisit the semantics of extended regular expressions (regex), defined
succinctly in the 90’s (A. V. Aho) and rigorously in 2003 by Câmpeanu, Salomaa and Yu, when the
authors reported an open problem, namely whether regex languages are closed under the intersection
with regular languages. We give a positive answer to this question; and for doing so, we propose a new
class of machines — regex automata systems (RAS) — which are equivalent to regex. Among others,
these machines provide a consistent and convenient method of implementing regex in practice. We also
prove, as a consequence of this closure property, that several anthological languages, such as the mirror
language, the language of palindromes and the language of balanced words are not regex languages.

Keywords: Extended Regular Expression, Regex Automata System, Regex

1 Introduction

Pattern expressions (PE) and extended regular expressions (regex) have recently been the subject
of scrutiny for formal language theorists, in an effort to provide a conceptual basis to the exist-
ing implementations of regular expressions. Regular expressions are powerful programming tools
present in many language implementations such as Perl, Awk, PHP, and Python, as well as in
most programming languages implemented after year 2000. Despite a similar nomenclature, these
practical regular expressions (called regex in our paper) are more powerful that their theoretical
counterpart, mainly due to the introduction of a new operator, that of back-referencing. This new
feature allows to express patterns (repetitions) in words, thus, regex can specify languages beyond
the regular family. For example, the regex (a∗b)\1 expresses all the double words starting with
arbitrary many a’s followed by a b: the operator “\1” is a reference to (copy of) the content of the
first pair of parentheses.

The current implementation of extended regular expressions is plagued by many conceptual
problems, which can readily be demonstrated on any system with the above-mentioned software.
For example, the use of Perl regex ((a)|(b)) ∗ \2 or ((a)|(b)) ∗ \2\3 leads to an erratic behavior
due to its inherent semantic ambiguity. Furthermore, in Perl, the expression () is considered to
match the empty-word, whereas it should arguably match the empty set; thus, there is no semantic
difference between () and ()∗. Moreover, by definition, a backreference should replicate the last
match of its corresponding paranthesis if such mach has occurred, or emptyset otherwise. However,
in the following runtime example this is not the case: ((b)|(a)) ∗ c\2\3 matches babbcba in some
implementations. Here, the behaviour suggests that although in the last iteration the third paren-
thesis is not matched, it is still backreferenced with a value from a previous iteration. Thus, we
observe implementation inconsistencies and lack of standard semantics in such pathological situa-
tions, where there are more than one possible interpretations of regex semantics. Moreover, these
problems transcend the practice. For example, in neither [1] nor [2] — where extended regular

expressions have been defined theoretically — there is a resolution on the meaning of ((a)|(b))\2\3,
for example.

This unfortunate status quo, of having a flawn regex implementation, as well an incomplete
theoretical foundation, has recently lead to an increased research effort aiming at their better
understanding. Among the most recent work we mention that of Câmpeanu et al., who have initi-
ated a rigorous formalism for regex in [2], and an alternative to this formalism, given by pattern
expressions, in [4].

The present paper continues this line of research, focusing on two matters: to deal with some
pathological aspects of regex semantics, and most importantly, to answer an open problem stated
in [2, Conclusion], namely, whether regex languages are closed under the intersection with regular
languages. In [3], we have answered this question positively for pattern expression languages, and
it was believed for a while that this answer will extend naturally to regex languages, invoking the
equivalence of these formalisms. However, we have recently found evidence that this is not the
case. For example, we conjecture that the regex ((a∗b)\2)∗ can not be converted into a pattern
expression, due to the outer iteration which can change its pattern at every repetition. In fact,
we believe that pattern expression languages are not even closed under the Kleene star - closure
holding trivially for regex. Thus, the open problem in [2] has remained standing, despite our new
results in [3]. Consequently, we revisit this problem and we prove rigorously that regex languages
are closed under intersection with regular languages. In Section 2 we give a background on extended
regular expressions. Section 3 presents a machine counterpart for regex: the regex automata system
(RAS), and it shows their equivalence with regex. In order to prove the mentioned closure property,
we first introduce a normalization of regex in Section 4, and use the RAS formalism to construct an
automata system for the intersection of a regex langauge and a regular language. Section 5 presents
a few consequences of this closure property and concludes the paper.

2 Notations and Definitions

Let Σ be an alphabet, that is, a finite set of symbols (or letters). By Σ∗ we denote all words (strings
of symbols) over Σ, and by ε we denote the empty word, i.e., the word with no symbols. If w ∈ Σ∗,
we denote by |w|a the number of occurrences of symbol a in w, and by |w| the length of w (the total
number of symbols in w). A language L is a subset of Σ∗. The cardinality of a set X is denoted by
#(X). For other notions and notations we refer the reader to [9, 8, 6].

An extended regular expression, or regex for brevity, is a regular expression with back-references.
This extension can be found in most language implementations and has been conceptualized in
several studies, such as [1], [2] and [4]. We give here a definition equivalent with the one found in
[1, C. 5, §2.3, p. 261].

Definition 1. A regex over Σ is a well-formed parenthesized formula, consisting of operands in
Σ∗∪{\i|i ≥ 1}, the binary operators · and +, and the unary operator ∗ (Kleene star). By convention,
() and any other form of “empty” expression is a regex denoting ∅ (consequently, ()∗ will denote ε).
Beside the common rules governing regular expressions, a regex obeys the following syntactic rule:
every control character \i is found to the right of the i’th pair of parentheses, where parentheses
are indexed according to the occurrence sequence of their left parentheses.

The language represented by a regex r is that of all words matching r in the sense of regular
expression matching, with the additional semantic rules:

2

1. During the matching of a word with a regex r, a control \i should match a subword identical
with the subword which has matched the parenthesis i in r. There is one exception to this rule:

2. If the i’th pair of parentheses is under a Kleene star and ‘\i’ is not under the same Kleene star,
then ‘\i’ matches the content of the i’th pair of parentheses as given by its last iteration.

Example 1. The expression r = (a∗)b\1 defines the language {anban | n ≥ 0}. For the expression
r = (a∗b)∗\1, aabaaabaaab ∈ L(r) and aabaaabaab 6∈ L(r).

There is a regex construct that exhibits a semantic ambiguity, which should arguably be reported as
an error during the syntactic analysis preceding the regex parsing. Consider the following example:
r = ((a) + (b))(ab + \2). Here, we have a back-reference to the second pair of parentheses, which
is involved in an alternation. What happens when this pair of parentheses is not instantiated? We
adopt the following convention3:

If a control \i refers to the pair of parentheses i which has not been instantiated due to an
alternation, we assume that pair of parentheses instantiated with ∅, thus, \i will match ∅
(remember that ∅ concatenated with any word or language yields ∅).

It turns out that although regex languages are not regular, they are the subject of a pumping
lemma similar to that for regular languages ([2]). We finally mention the complexity of membership
problem for regex:

Theorem 1. (Aho, 1990) The membership problem for regex is NP-complete.

3 Regex Machines: Regex Automata Systems

In this section we propose a system of finite automata, with computations governed by a stack,
which addresses the membership problem for regex. The purpose of this automata system is twofold:
to give a theoretically sound method of implementing regex in practice, and to prove the closure
property of regex under intersection with regular languages.

Let Σ be a finite alphabet and {u1, v1, . . . , un, vn} be a set of 2n variable symbols, n ≥ 1.
By Σi we denote the alphabet Σ ∪ {u1, v1, . . . , ui−1, vi−1}, for i ∈ {1, . . . , n} (thus, Σ1 = Σ).
A regex automata system (RAS) is a tuple A = (A1, . . . , An) of n finite automata, such that
Ai = (Σi, Qi, 0i, δi, Fi), with Qi = {0i, 1i, . . . , #(Qi)i}, and which satisfies the following condi-
tions: (1) for all i, j ∈ {1, . . . , n}, the variable symbol ui can occur as the label of at most one
transition in automaton Aj , and (2) if ui ∈ Σj then ui 6∈ Σj′, for all j′ 6= j. If we denote
Q = ∪n

i=0Qi, our RAS A is described at each computation step by a configuration of the fol-
lowing form: (q, w, S, x1, x2, . . . , xn), where q ∈ Q, w ∈ Σ∗, S is a stack of elements taken from
Q, and {xi}n

i=1 is a set of buffers capable of holding words in Σ∗: the buffer xi will store a word
matching variable ui.

The computation starts with an initial configuration (00, w, ∅, ∅, ∅, . . . , ∅︸ ︷︷ ︸
n

), and the system tran-

sits from configuration to configuration as follows

(s, αw, S(t), x
(t)
1 , x

(t)
2 , . . . , x(t)

n) 7→ (q, w, S(t+1), x
(t+1)
1 , x

(t+1)
2 , . . . , x(t+1)

n)
3 All the proofs in this paper can easily be adapted to any other alternative semantics.

3

in one of the following circumstances:

1. letter-transition: α = a ∈ Σ, s ∈ Qi, q ∈ δi(s, a), S(t+1) = S(t), x
(t+1)
j = x

(t)
j a for all j ≥ i

such that ui ¹ uj , and x
(t+1)
j = x

(t)
j for all the other cases.

2. v-transition: α ∈ Σ∗, s ∈ Qk, q ∈ δk(s, vi), S(t+1) = S(t), xi = α, x
(t+1)
j = x

(t)
j α for all

j ≥ k such that uk ¹ uj , and x
(t)
j = x

(t+1)
j for all the other cases. Obviously, when xi = ∅, this

transition can not be performed.
3. u-transition: α = ε, s ∈ Qi, r ∈ δi(s, uk), q = 0k, S(t+1) = push(r, S(t)), x

(t+1)
k = ε, and

x
(t+1)
j = x

(t)
j for all j 6= k.

4. context switch: α = ε, s ∈ Fi (i 6= n), q = top(S(t)), S(t+1) = pop(S(t)), and x
(t)
j = x

(t+1)
j for

all j.

If f ∈ Fn, then the configuration (f, ε, ∅, x1, x2, . . . , xn) is final. A computation is successful if it
lands on a final configuration while it has consumed the entire input. Incidentally, at the end of
a successful computation, the buffer xn will store exactly the initial input word. Notice that the
stack S may have at most n − 1 elements, thus it can be viewed as part of the finite control of
A. What makes a RAS more powerful than a finite automaton is the set of n buffers, each being
capable of holding an arbitrary long input.

In order to prove that RAS and regex are equivalent, we present a conversion of a regex into
a RAS and vice versa. For our construction, we require another manner of indexing parentheses
in a regex; that is, inner pairs of parentheses will have indices smaller than those for parentheses
which surround them. For example, the regex (1(2a∗b)∗c)\2 + (3a∗(4b + ba))\3 is re-indexed, and
the back-references are adjusted, as follows: (2(1a∗b)∗c)\1 + (4a∗(3b + ba))\4. It is clear that this
method of indexing does not change the interpretation of such regex. Notice also that there may
be more than one way to index a regex according with this method, and we will enforce uniqueness
by adding the second convention: if two pairs of parentheses are not nested, than the left pair has
a smaller index than the right one.

Let r be a regex with parentheses indexed according to this new convention. Without loss
of generality, we assume that r has an enclosing pair of parentheses, otherwise we consider the
regex (r) instead. The parentheses of r are numbered as 1, 2, . . . , n, and obviously, the n’th pair of
parentheses is the outermost one. To each pair of parentheses (i. . .) we associate a variable symbol
ui, regardless on whether this pair is back-referenced or not (we reserve variable symbols in order
to simplify the formalism). For each back-reference \i in r we associate another variable symbol vi.
The interpretation of these two sets of variables becomes apparent during the matching of a word:
ui will store the content of i’th parenthesis used in matching, whereas vi will enforce the matching
of a sub-word with the already-instantiated content of ui.

For every parenthesis ui we associate a regular expression ri over Σi, such that substituting the
variable ui with the corresponding regular expression ri, and each variable vi with \i, we obtain
the original regex r (= rn), corresponding to the variable un.

Example 2. Let r = (5(2(1a∗b)∗c)\1 + (4a∗(3b + ba))\4). We have two sets of variables
{u1, u2, u3, u4, u5} and {v1, v2, v3, v4, v5}, and to each ui we associate a regular expression as fol-
lows: u1 → (a∗b) = r1, u2 → (u∗1c) = r2, u3 → (b + ba) = r3, u4 → (a∗u3) = r4, and
u5 → (u2v1 + u4v4) = r5. Notice that these regular expressions have no parentheses beside the
enclosing ones.

4

As mentioned before, we denote Σi = Σ∪{u1, . . . , ui−1}∪{v1, . . . , vi−1}. Then the expression ri is a
regular expression over Σi. If the variable ui is used in regex rj , i.e., |rj |ui > 0, we say that ui ¹ uj .
This relation is transitive and antisymmetric, and it becomes reflexive when we add ui ¹ ui, for all
0 ≤ i ≤ n. If ui ¹ uj , during the matching of an input word with regex r, each time we attempt to
match a sub-word with the expression ri, we have to consider updating the string which match rj

as well, since the expression ri is a dependency of rj .
Given the regex r, we now construct an equivalent RAS A = (A1, . . . , An), by associating to

each expression ri an automaton Ai = (Σi, Qi, 0i, δi, Fi) recognizing the language L(Ai) = L(ri).
One can easily see that indeed, A verifies the RAS conditions:

1. Each automaton Ai uses only variable symbols uj and vj with j < i; in particular, A1 has
no variable symbols. This is due to the way we index parentheses in r, and to the fact that
within the pair (i. . .), one can not have a back-reference \i (we do not allow self-referencing in
regex). Also, recall that a back-reference stands always to the right of its corresponding pair of
parentheses, whereas the index of un-nested parentheses increases from left to the right.

2. In each automaton Ai, and for any index j , the symbol uj is the label of at most one transition.
Indeed, since the symbol uj corresponds to the j’th pair of parentheses in r, it is clear that
there is at most one occurrence of uj in any expression ri (there is an unique pair of parentheses
indexed with j).

Vice versa, given a RAS A = (A1, . . . , An), one can construct a corresponding regex r by reversing
the previous construction: for each Ai we find the equivalent regular expression ri over the alphabet
Σi, and starting with rn we recursively substitute each symbol ui by its corresponding regular
expression ri, and each symbol vi with the back-reference \i, placing \i always at the end of each
alternation. We eventually obtain a regex over Σ. The conditions governing the structure of A
ensure that the obtained regex r is well-formed.

Theorem 2. RAS are equivalent with regex.

Proof. (sketch) We have already shown how a regex r can be associated with a RAS A, by a
two-way construction: r → A, and A → r. These conversions are not unique, depending on the
algorithms used to convert a finite automaton into a regular expression and vice versa. Given r and
A = (A1, . . . , An), we make the following remarks:

- In the definition of transitions in A, case 1 corresponds to a match of a letter, case 2 corresponds
to a match of a back-reference, case 3 corresponds to starting of a match for a parenthesis k,
while case 3 corresponds to ending the match for parenthesis i – marking the moment when xi

(the value of variable ui) can be used in a subsequent back-referencing.
- During a computation, A cannot transit along a transition labeled with a variable symbol vi for

which ui has not been instantiated. This behaviour is consistent with the common understanding
of regex evaluation, where we can not use a back-reference of a parenthesis which has not been
matched (e.g, as a result of an alternation) – more precisely, we use ∅, equivalent with no match.

- The operation of A is non-deterministic, since it follows closely the non-deterministic matching
of a word against the regex r.

The idea of proving the equivalence of r and A is as follows. Consider a successful computation in
A, for some input w ∈ L(A):

(00, w, ∅, ∅, ∅, . . . , ∅) 7→∗ (fi, α, S(t), x
(t)
0 , x

(t)
1 , . . . , x(t)

n) 7→∗ (fn, ε, ∅, x(l)
1 , x

(l)
2 , . . . , x(l)

n),

5

where fi ∈ Fi. In other words, in this computation we emphasize a configuration immediately
before a context-switch (case 4 in the description of transitions in A). One can check that when this
configuration has been reached, all buffers xj , with xj 6= ∅ and uj ¹ ui, hold words corresponding
with uj , that is, words which match the j’th pair of parentheses in r (in other words, which match
the expression rj). Notice that when a variable uj is involved in an iteration, the buffer xj holds
the last iterated value of uj at that point in computation. At the end of a successful computation,
the set of buffers {xi}n

i=1 provide the matching sub-words used for parsing w according to r.
The converse argument works similarly. Given a word w in L(r), one can construct a matching

tree [2] for w, and the node corresponding with i-th pair of parentheses in r will hold a sub-word
which is reconstructed in the buffer xi during a successful computation of A on input w.

Although the remaining proof details require an intricate formalism, they are straightforward
and will be omitted. ut

Corollary 1. The membership problem for regex has O(mn) space complexity, where n is the
number of pairs of parentheses in the regex and m is the length of the input word.

Proof. Since regex is equivalent with RAS, we use RAS to decide word membership. A RAS has
one stack of depth bound by the number n of pairs of parentheses in regex, and it has n buffers,
each holding a word at most as long as the input word. ut

From now on we assume without loss of generality that all components Ai of a RAS A =
(A1, . . . , An) are trim (all states and transitions are useful).

4 Main Result: Intersection with Regular Languages

In this section we present a construction of a RAS that recognizes the intersection of a regex
language and a regular language, based on the equivalence of regex with RAS. We first give some
additional definitions and results.

Definition 2. We say that a regex r is in free-star normal form if

1. every parenthesis included in a starred sub-expression is not back-referenced outside that sub-
expression, i.e, in a sub-expression to the right of that starred sub-expression.

2. all star operations are applied to parentheses.

This definition says that a free-star normal form regex is a regex where a pair of parentheses and
its possible back-references occurs only in the same sub-expression under a star operator.

Example 3. The expression (a)∗\1, and ((a∗)b\2) ∗ \2 are not in star-free normal form, while
((a)∗)\1, (a) ∗ (a)\2, and (((a)∗)(a)b\4) ∗ (((a)∗)(a)b\6)\6 are.

Lemma 1. For every regex r there exists an equivalent regex r′ in star-free normal form.

Proof. The second condition can easily be satisfied, therefore we only consider expressions where
star is applied to parentheses. Our argument is based on the following straightforward equality:
u∗ = (u∗u+ε). This equality isolates two cases: when the iteration actually occurs, case in which we
know exactly what an eventual back-reference will replicate, and the situation when the iteration

6

does not occur (zero-iteration), case in which an eventual back-reference would be set to ∅. The
proof is done by induction on the number of parentheses that are back-referenced. If there are no
back-references, there is nothing to prove. Let us assume that we have a regex where a parenthesis is
starred and it is also back-referenced. We consider the most exterior pair of parentheses containing a
starred pair of parentheses that is back-referenced. We do not ignore the case when a most exterior
parenthesis has a star and it is also back-referenced: in this case, our back-reference can refer to
this pair of parentheses. This means that our expression r has the form α(β(iγ)iµ)∗ζ\{i}ρ, where
β, µ can be empty. The new expression is

α(β(iγ)iµ)∗(β(i+kγ)i+kµ + ε)ζ\{i + k}ρ = α(β(iγ)iµ)∗(β(i+kγ)i+kµ)ζ\{i + k}ρ,

where k = |(β(iγi)µ)|(+ |β|(+ 1. In this case, we can drop the ε, since \{i + k} becomes ∅.
We can see that the starred parenthesis i is no longer back-referenced in the sub-expression

to the right of)i. The expressions: α, β(i+kγ)i+kµ + ε, and β(iγ)iµ have fewer back-referenced
parentheses, therefore, using our inductive hypothesis, we can equivalently write all these sub-
expressions in a star-free normal form. This means that the original expression can be written in
star-free normal form. ut
Remark 1. For a RAS obtained from a regex in star-free normal form, if a variable ui is instantiated
within a loop of an automaton Aj , then its value can not be used by a transition labeled vi which
does not belong to that loop.

Example 4. Let r = ((a∗b)∗c\2)∗\2\1. We rewrite it in star free normal form as follows:
r = (1(2a∗b)∗2c\2)∗1\2\1
∼ (((a)∗b)∗c\2)∗\2\1
∼ (((a)∗b)∗(((a)∗b) + ε)c\5)∗\5\4
∼ (((a)∗b)∗(((a)∗b) + ε)c\5)∗((((a)∗b)∗(((a)∗b) + ε)c\11)|ε)\11\10
∼ (((a)∗b)∗(((a)∗b))c\5)∗((((a)∗b)∗(((a)∗b))c\11))\11\10.

Theorem 3. The family of regex languages is closed under the intersection with regular languages.

Proof. Let L = L(r) be a regex language and R be a regular language accepted by a trim
DFA B = (Σ, QB, 0, δB, FB), with m = #(QB). We consider a RAS C = (C1, C2, . . . Cn),
Ck = (Qk, Σk, δk, 0k, Fk), such that L(C) = L(r), where C is obtained using the construction in
Section 3 from regex r assumed in star-free normal form (Lemma 1). We now construct a RAS
which simulates the run of C in “parallel” with B. The simulation goes in parallel when C transits
from state to state based on letters in Σ. When C meets a transition labeled with a variable name
”u” or ”v”, B is put on hold, and C calls the proper module which takes over the resolution of u,
or advances with the content of v in parallel with B. Whenever a module uses a transition labeled
with a letter in Σ, B is revived and advances again in parallel with C. This idea is facing the
challenge of designing this simulator as a RAS. The problem turned to be difficult because of in-
creased descriptional complexity, and we will see that the newly constructed RAS uses significantly
more variables than C, each component having significantly more states than the corresponding
component in C.

One essential technique used in the proof is to index the newly introduced variables in such
manner, that the subscripts themselves provide information on where the run of B has paused, or
where it should resume from, in terms of the states of B.

7

In order to construct a RAS for the intersection, we need to consider the family of functions
fw : QB → QB defined as fw(q) = δB(q, w). Since QB is finite, the number of functions {fw | w ∈
Σ∗} is finite. These functions, together with composition and fε as identity, form a finite monoid:
the transition monoid TB of B.

Thus, we partition Σ∗ into equivalent classes, given by the equivalence of finite index: u ≡ v ⇔
fu = fv.

We denote W = Σ∗/ ≡, the quotient of Σ∗ under ≡, and denote the functions in TB by {fc}c∈W .
Thus, if w1, w2 ∈ c, then for all i ∈ QB,

δB(i, w1) = j iff δB(i, w2) = j. (1)

Please, note that if there is an i ∈ QB such that δB(i, w1) = j and δB(i, w2) = j, we may have
w1 6≡ w2. We can only say that w1 and w2 are equivalent, if equation 1 holds for all i ∈ QB.
Therefore, the transitions from a state i in B can be precisely determined for each class c ∈ W .

For i, j ∈ QB, denote by Bi,j the automaton obtained from B by setting i to be the initial state
and j the only final state. Then, we anticipate that beside the normal indexing of variables in C, we
need extra information for subscripts: one component to keep track of states from QB, and another
component to keep track of the class of W for each instantiation of a variable. The QB index is
used to keep track of the states in B, while the W component is used to syncronize the match for
uk with vk.

We anticipate that we need some minimal information for states in order to keep track of
what variable is initialized and what variable is not. Moreover, if a variable resulting from uk is
initialized, it must be syncronized with all future vk-corresponding variables; therefore, beside k
we need to know the behavior of a transition with a vk-related variable, and when this transition
can be triggered. Therefore, the name of a state having a transition with a vk-related variable
must contain enough information to distinguish a specific case of variable(s) instantiation; in other
words, must reflect the behavior for the QB index of such a transition.

Since all transitions labeled with a variable resulting from uk correspond to an automaton of
the new RAS, we need to establish the initial state of this automaton. The QB component of this
initial state must be stored in the name of the u-variable.

We denote Init(k) = {s ∈ Q | ∃i : δi(s, uk) is defined}. Since C is a RAS, there exists exactly
one transition for each k; thus Init(k) will always have one element only. We are interested in the
set of states having transitions with variables uk (1 ≤ k ≤ n− 1): Init =

⋃n−1
k=1 Init(k). Note that

we may have variables uk, uk′ , with k 6= k′, but Init(k) = Init(k′).
Since in any RAS we are allowed to have only one transition with each u-variable, and we are

also allowed to reinstantiate variables, we must have only one state changing the instantiation of
an u-variable. Thus, we distinguish between states following the first instantiation of an u-variable
and states following its reinstantiation. Moreover, we give different names to u-variables in order to
ensure the unicity of such transitions. Hence, the variables for the newly defined RAS, A, will be
denoted by uk,S and vk,S , with k ∈ {1, . . . , n}, where S is a set related to W and defined as follows.

For k ∈ {1, . . . , n}, let Sk ∈ (QBW{1, 2}∪{0})k, Sk = {(ikckmk, . . . , ihchmh, . . . , i1c1m1) | ih ∈
QB ∪ {ε}, ch ∈ W ∪ {ε},mh ∈ {0, 1, 2}; if uh 6¹ uk, then ih = ch = ε and mh = 0; else, if uh ¹
uk and mh = 0, then ih = ch = ε}. The intention behind Sk is to name the states in such way
that we do not allow two simultaneous instantiations of variable uk,S , for different values of the k
component of S in any computation of A. The mh component will store the following information

8

for a variable uh: (a) if mh = 0 then variable uh has not been instantiated yet; (b) if mh = 1 then
variable uh has been instantiated once; and (c) if mh = 2 then variable uh has been reinstantiated.

In C, the variable vk must use the last instantiation of uk; therefore, we must also ensure that
the transitions labeled with vk,S are preceded by uk,S in every computational path in A (Remark 1).
Thus, we store the information of an S ∈ Sk into the name of the states for all automata resulting
from variable uk. The projection πh : Sk −→ (QBW{1, 2} ∪ {0}) is defined by πh(S) = ihchmh,
where S = (ikckmk, . . . , ihchmh, . . . , i1c1m1).

For S ∈ Sk, denote by E(S, h) = S′, where: (a) if πh(S) = 0 then S′ = S and (b) if πh(S) 6= 0
then S′ is such that πh(S′) = 1 and for all h′ 6= h, πh′(S′) = πh′(S). The RAS A, accepting the
intersection L(C) ∩ L(B) is constructed as follows:

1. for all k and S ∈ Sk, such that Ck does not have transitions labeled with variables (i.e., for
which S = (ikckmk, 0, . . . , 0︸ ︷︷ ︸

k−1

)):

Ak,S =
(
Qk ×QB, Σ, (01, i), δk,S , Fk,j

)
, where i = ik; j = fd(i) where d = ck;

for all (p, l) ∈ Qk ×QB and for all a ∈ Σ: δk,S

(
(p, l), a

)
= {(q, e) | q ∈ δk(p, a), e = δB(l, a)}

and Fk,j = Fk × {j};

This is the case when back-references are not processed, thus the construction is the usual au-
tomata Cartesian product [6], Ck×Bi,fd(i). Notice that the definition of δk,S is independent of S,
thus these automata share a same transition table, essentially. Moreover, in order to make the
construction uniform we may consider each state in Qk×QB as an element of Qk×QB×Sk−1,
where il all these cases Sk−1 = {(0, . . . , 0︸ ︷︷ ︸

k−1

)} ;

2. for all k ∈ {2, . . . , n− 1} and S ∈ Sk, denoting i = ik, d = ck, and j = fd(i), we have:

Ak,S =
(
Qk ×QB × Sk−1, Σ ∪ {uk′,S′ | k′ < k, S′ ∈ Sk−1}

∪ {vk′,S′ | k′ < k, S′ ∈ Sk−1}, (0k, i, 0, . . . , 0︸ ︷︷ ︸
k−1

), δk,S , Fk,j

)
,

where Fk,j = Fk × {j}, and

- for all (p, l, S′) ∈ Qk ×QB × Sk−1, a ∈ Σ:

δk,S

(
(p, l, S′), a

)
= {(q, j′, S′) | q ∈ δk(p, a), j′ = δB(l, a), q /∈ Init}
∪ {(q, j′, T) | q ∈ δk(p, a), j′ = δB(l, a), T ∈ E(S′, h), q ∈ Init(h)}

- for all (p, i′, S′) ∈ Qk × QB × Sk−1, k′ < k, d ∈ W , πk′(S′) = ik′ck′mk′ , j′ = fd(i′), and
T ′ ∈ Sk−1 such that πh(S′) = πh(T ′) for all h 6= k′ and πk′(T ′) = i′dmax{2,mk′ + 1}:

δk,S

(
(p, i′, S′), uk′,T ′

)
= {(q, j′, T ′) | q ∈ δk(p, uk′)− Init}
∪ {(q, j′, T) | q ∈ δk(p, uk′) ∩ Init(h), T ∈ E(T ′, h)}

9

- for all (p, i′′, S′) ∈ Qk ×QB × Sk−1, k′ < k, πk′(S′) = i′dmk′ , mk′ > 0, and j′ = fd(i′′):

δk,S

(
(p, i′′, S′), vk′,S′

)
= {(q, j′, T ′) | q ∈ δk(p, vk′)− Init}
∪ {(q, j′, T) | q ∈ δk(p, vk′) ∩ Init(h), T ∈ E(T ′, h)}.

Notice that after each transition triggered by uk′,S′ we reach states where the transition with
vk′,S′ are possible, but transitions with vk′,S′′, πk′(S′) 6= πk′(S′′) are not defined, since vk′,S′′

is a match for ∅. This ensures a synchronization between uk′,S′ and vk′,S′, which mimics the
synchronization between uk′ and vk′ in Ck.

3. An,0,FB
=

(
Qn × QB × Sn−1, Σ ∪ {uk′,S′ | k′ < n, S′ ∈ Sn−1} ∪ {vk′,S′ | k′ < n, S′ ∈

Sn−1}, (0n, 0, . . . , 0︸ ︷︷ ︸
n−1

), δn,0,FB
, Fn,FB

)
,

where Fn,FB
= Fn × FB, and

- for all (p, l, S′) ∈ Qk ×QB × Sn−1, a ∈ Σ:

δn,0,FB

(
(p, l, S′), a

)
= {(q, j′, S′) | q ∈ δn(p, a), j′ = δB(l, a), q /∈ Init}
∪ {(q, j′, T) | q ∈ δn(p, a), j′ = δB(l, a), T ∈ E(S′, h), q ∈ Init(h)}

- for all (p, i′, S′) ∈ Qn × QB × Sn−1, k′ < n, d ∈ W , πk′(S′) = ik′ck′mk′ , j′ = fd(i′), and
T ′ ∈ Sn−1 such that πh(S′) = πh(T ′) for all h 6= k′ and πk′(T ′) = i′d max{2,mk′ + 1}:

δn,0,FB

(
(p, i′, S′), uk′,T ′

)
= {(q, j′, T ′) | q ∈ δn(p, uk′)− Init}
∪ {(q, j′, T) | q ∈ δn(p, uk′) ∩ Init(h), T ∈ E(T ′, h)}

- for all (p, i′′, S′) ∈ Qn ×QB × Sn−1, k′ < n, πk′(S′) = i′dmk′ , mk′ > 0, and j′ = fd(i′′):

δn,0,FB

(
(p, i′′, S′), vk′,S′

)
= {(q, j′, T ′) | q ∈ δn(p, vk′)− Init}
∪ {(q, j′, T) | q ∈ δn(p, vk′) ∩ Init(h), T ∈ E(T ′, h)}.

Considering that An,0,FB
is the “main” automaton of our newly constructed RAS, the depen-

dence between the constituent automata is straightforward. Let H be the number of automata in
A. We make the following observations which justify the correctness of our construction:

1. A is indeed a RAS. The transitions with uk′,S′ are only possible for states (p, i, S′′) in
Qk × QB × Sk−1 with πh(S′) = πh(S′′) for all h 6= k′, and πk′(S′′) = 1 or πk′(S′′) = 0. Notice
that if πk′(S′) > 0, then πk′(S′′) = 1 (a reinstantiation); whereas if πk′(S′) = 0, then πk′(S′′) = 0
(the first instantiation). This ensures the uniqueness of the transition labeled with uk′,S′ in Ak,S .

2. If in the RAS A we consider only the first component of each state and ignore the S-subscript,
we observe that a computation in A for an input word w is successful if and only if there
exists a successful computation for w in this reduced version of A, since all automata Ak,S are

10

identical with Ck, for all S. (We have a surjective morphism from Ak,S to Ck.) For a same k,
the buffers xk,S in Ak,S are not used simultaneously; therefore, it does not make any difference
whether for each k we use one buffer or #Sk buffers.

The subtle point in this construction is to avoid the danger of using a back-reference vk,S

corresponding to a variable uk,S that does not represent the last uk instance, i.e., it is not uk,S ,
but rather uk,S′ for some index S′ with πk(S) 6= πk(S′). However, this problem is avoided since
we use a RAS obtained from a regex in free-star normal form. This guarantees that each time
we re-instantiate uk′,S′ we update the projection k′ of S′; subsequently, all the other variables
uk′,S′′ with π′k(S

′) 6= πk(S′′) are either a match for ∅ or are not on the path for uk′,S′ . Indeed,
πk′(S′′) = πk′(S′), for all states following uk′,S′ in a successful computation path, since star is
only applied to a reinstantiated variable (variable between parantheses). Thus, only the tran-
sitions with vk′,S′ are possible. The syncronization is done using the k′ projection of the index S′.

3. For every transition

((s, i, S), αw, S(t), x
(t)
1 , x

(t)
2 , . . . , x

(t)
H) 7→A ((q, j, T), w, S(t+1), x

(t+1)
1 , x

(t+1)
2 , . . . , x

(t+1)
H)

we have that i = j and α = ε, or δB(i, α) = j, (we choose B to be a DFA).

In conclusion, for every transition

((0n, 0B, 0, . . . , 0︸ ︷︷ ︸
n−1

), w, ∅, ∅, ∅, . . . , ∅︸ ︷︷ ︸
H

) 7→∗
A ((q, q′), ε, ∅, x1, x2, . . . , xH)

we have that: δB(0B, w) = q′ and

(0, αw, S(t), x
(t)
1 , x

(t)
2 , . . . , x(t)

n) 7→C (q, w, S(t+1), x
(t+1)
1 , x

(t+1)
2 , . . . , x(t+1)

n),

which means that w ∈ L(A) iff w ∈ L(B) and w ∈ L(C).
Thus, the automata system A recognizes the intersection of L(C) and L(B), proving that the

intersection is a regex language. ut

The above construction involves a RAS and a DFA. If we want to recover a regex from the
resulting RAS A, we notice that there is an “or” between parenthesis uk,S and uk,S′ ; however,
this “or” extends to the last back-reference vk,S . The parenthesis represented by variable uk,S is
the regex for the intersection of L(Bi,j) with the language matched by the parenthesis uk, where
j = fc(i). The same idea applies to back-references.

5 Consequences and Conclusion

We can use Theorem 3 to show that a few remarkable languages, such as the mirror language,
are not regex languages. In [3] and [4] was proven that the following languages satisfy neither the
regex nor the PE pumping lemma:

11

L1 = {(aababb)n(bbabaa)n | n ≥ 0}, L2 = {anbn | n ≥ 0},

L3 = {a2nbn | n ≥ 0}, L4 = {anbncn
∣∣n ≥ 0},

L5 = {{a, b}ncn | n ≥ 0}, L6 = {{a, b}nc{a, b}n | n ≥ 0}.

Since the pumping lemmas for regex and PE are essentially the same, it is clear that all these
languages are not regex languages. This helps us to infer that some other languages, more difficult
to control, are not regex languages – as the following result shows.

Corollary 2. The following languages are not regex languages:

L7 = {wwR | w ∈ Σ∗}, L8 =
{
w | w = wR

}
, L9 =

{
w | |w|a = |w|b

}
,

L10 =
{
w | |w|b = 2|w|a

}
, L11 =

{
w | |w|a = |w|b = |w|c

}
,

L12 =
{
w | |w|a + |w|b = |w|c

}
, L13 =

{
ucv | |u|a + |u|b = |v|a + |v|b

}
.

Proof. We observe that: L7 ∩ (aababb)∗(bbabaa)∗ = L8 ∩ (aababb)∗(bbabaa)∗ = L1, L9 ∩ a∗b∗ = L2,
L10 ∩ a∗b∗ = L3, L11 ∩ a∗b∗c∗ = L4, L12 ∩ (a + b)∗c∗ = L5, and L13 ∩ (a + b)∗c(a + b)∗ = L6. If
any of L7, . . . , L13 was a regex language, so would be its corresponding intersection, leading to a
contradiction.

We should mention that none of the languages L7, . . . , L13 could be proven to be non-regex by
pumping lemma alone. We should also mention a theoretical application of the closure property,
that some previous results involving elaborate proofs, such as Lemma 3 in [2], are immediately
rendered true by Theorem 3.

To conclude, in this paper we have defined a machine counterpart of regex, namely Regex
Automata Systems (RAS) and used them to give an answer to an open problem reported in [2],
namely, whether regex languages are closed under the intersection with regular languages. We have
provided a positive answer to this question, and used this closure property to show that several
anthological languages, such as the mirror language, the language of palindromes or the language
of balanced words, are not regex – thus revealing some of the limitations of regex unforeseen before.
Regex automata systems have also a practical impact: they give a rigorous method for implementing
regex in programming languages and avoid semantic ambiguities.

It remains open whether regex languages are closed under intersection. We conjecture that they
are not, since in the proof for the closure under the intersection with regular languages, we used in
a crucial manner the transition monoid of a DFA, and its corresponding equivalence of finite index.

References

1. A. V. Aho: Algorithms for Finding Patterns in Strings. In: Jan van Leeuwen (edt.), Handbook of Theoretical
Computer Science, Vol.A: Algorithms and Complexity, Elsevier and MIT Press (1990) 255–300.

2. C. Câmpeanu, K. Salomaa and S. Yu: A Formal Study of Practical Regular Expressions. IJFCS, 14(6) (2003)
1007–1018.

12

3. C. Câmpeanu and N. Santean: On Pattern Expression Languages, Technical Report CS-2006-20, David R. Cheriton
School of Computer Science, University of Waterloo, Waterloo, ON, Canada (2006).

4. C. Câmpeanu and S. Yu: Pattern Expressions and Pattern Automata. IPL, 92 (2004) 267–274.
5. J.E.F. Friedl: Mastering Regular Expressions, O’Reilly & Associates, Inc., Cambridge, (1997).
6. J.E. Hopcroft, R. Motwani, and J.D. Ullman: Introduction to Automata Theory, Languages, and Computation,

Addison Wesley, Reading Mass, (2006).
7. M.E. Lesk: Lex - a Lexical Analyzer Generator.Computer Science Technical Report, AT&T Bell Laboratories,

Murray Hill, N.J, 39 (1975).
8. A. Salomaa: Theory of Automata. Pergamon Press, Oxford, (1969).
9. A. Salomaa: Formal Languages. Academic Press, New York, (1973).
10. S. Yu: Regular Languages. In: A. Salomaa and G. Rozenberg (eds.), Handbook of Formal Languages, Springer

Verlag (1997) 41–110.

13

