Vol. 00 no. 00 2007
Pages 1-9

Designing Succinct Structural Alphabets
Shuai Cheng Li?, Jinbo XuP*, Xin Gao#, Dongbo Bu®¢, Ming Li*®

aDavid R. Cheriton School of Computer Science University of Waterloo, Ontario, Canada N2L 3G1
bToyota Technological Institute at Chicago, 1427 East 60th Street, Chicago, IL 60637
¢Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China 100080

ABSTRACT

Motivation: The 3D structure of protein sequence A can be assem-
bled by the substructures corresponding to small segments of A. A
sequence segment does not take on all the structural fragments and
thus it is desirable to build a short customized structural candidate
list for each sequence segment. For each sequence segment, these
substructures are its “specific structural alphabet”. The smaller these
candidate lists are, the faster the protein structure can be construc-
ted; the more accurate these candidate lists are, the more accurate
the final protein structure will be. A major obstacle in protein struc-
ture prediction is to construct a small set of structural candidates for
each segment such that the native structure can be rebuilt from these
structural candidates accurately.

Results: Based on integer linear programming and incorporating
extra structural information, a software package FragShaver is deve-
loped. We have made significant progress in overcoming the above-
mentioned obstacle:

e Comparing our package to the Rosetta’s fragment selection
method, at threshold 1A and structural fragment length 9, the
position coverage is improved from 56.4% to 79.1% for 3-sheet,
and from 55.5% to 67.9% for loop, while reducing the candidate
list size from 25 to 10 simultaneously. By using candidate list
size 25, our method improves Rosetta’s position coverage of (3-
sheet from 56.5% to 89.6% and the position coverage of loop
from 55.5% to 78.1%. At 1.5A, we achieve position coverage
96.7%.

e Applying our method to Kolodny’s independent library, our expe-
riment indicates that our method is capable of identifying a small
subset of structural candidates for a given sequence segment to
achieve the same accuracry as using the whole library, reducing
Kolodny’s library size from 200 to 25 at the same accuracy.

Additionally, FragShaver is robust for optimizing the parameters of
a distance function of structural fragment selection. This provides the
specialists with an automatic tool for performing parameter optimi-
zation on a designed distance function for selecting the structural
candidates.
Contact: {scli, mli}@cs.uwaterloo.ca,j3xu@tti-c.org

1 INTRODUCTION

Protein structure modelling and determination are some of the fu
damental tasks in molecular biology. Intensive research has be

n_
an constructing structural fragments with ab initio methods, and

predict protein 3D structures. A small amount of structural frag-
ments can model the protein structure accurately. The library size
and accuracy are dominating factors for modelling and predicting
the protein structures. Though the library size is small, from tens
to hundreds, the size is still considered to be large for practical
purposes such as protein structure prediction. Research has been
conducted on building very compact independent libraries for pro-
tein structures. It is difficult to reduce the size of such libraries
further. However, a sequence segment does not adopt all the structu-
ral fragments in a library with equal probabilities. Hence it is more
reasonable to build a customized structural candidate list for each
sequence segment. By this, the size of structural candidate list can be
much more succinct, and the protein structure can be modelled more
accurately. This work is essential to protein structure prediction and
other related research.

1.1 Fragment Libraries

(Structural) Fragment libraries are also referred to as “structural
alphabet” in literatures. The size of a fragment library may vary
from tens to hundreds. The fragments may have fixed or variable
lengths. The structural fragments may have all-atom descriptions or
reduced descriptions witt'as only. The libraries are used to pre-
dict or model protein structures (Roometral., 1990; Fetrovet al,,
1997; Bystroff and Baker, 1998; Camproex al,, 1999; de Bre-
vernet al, 2000, 2002; Hunter and Subramaniam, 2003; Camproux
et al,, 2004; Etchebegdt al,, 2005) and (Ungeet al., 1989; Levitt,
1992; Prestrelskét al, 1992; Unger and Sussman, 1993; Schuch-
hardtet al,, 1996; de Brevern and Hazout, 2000; Michelettial.,
2000; Ashish V. Tendulkar and Wangikar, 2004).

The size of a library for prediction purpose is smaller than the
size of a library for modelling purpose, as the latter requires a hig-
her resolution. Fragments in these libraries typically have lengths
no more than 9. The structure database may not contain repre-
sentative ressemblances for longer fragments (Fiéeled, 1994).
Kolodny et al. (2002) studied fragment library witk-mean cluste-
ring methods and showed that it is not necessary to have a large
fragment library to accurately model protein structures and con-
struct near native models. In that paper, fragments with length 4—7
were built with library sizes varying from 4 to 250. Holmes and
Tsai (2004) studied the aspects and criteria of evaluating fragment
libraries for building protein structures. Besides extracting structural
fragments from known proteins, research has also been conducted

carried out for building structural fragment libraries to model andSUCh methods produced longer fragments (DePes&, 2003).

*to whom correspondence should be addressed

For protein structure prediction purpose, to have a position-
specific structural fragment list for every sequence segment of
the target is more desirable. Only a limited number of structural
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fragments in the fragment libraries can be adopted as candidate.3 Our Contributions

structural fragment for a sequence segment. In SirgoBE (1997);  For each sequence segment of a target, our method is capable of con-
Rohl et al. (2004), each sequence segment is scored against eaghyycting a succinct list of structure candidates such that the native

structural fragment of the same length (i.e. 9) and the structural fragstrcture can be built from these structural fragments accurately.
ments with smaller distance values are selected as candidates. Thex software package, FragShaver, based on integer linear pro-

distant function is a simple City Block Metric: gramming is developed. By comparing our package to the Rosetta’s

¢ 20 fragment selection method, with the threshold As and fragment
DISTANCE — Z Z 1S(aa, i) — X (aa, )| 1) length 9, the position coverage is improved from _56.4% to_ 79.1%
for B-sheet, and from 55.5% to 67.9% for loop while reducing the
candidate list size from 25 to 10 simultaneously. With the candidate
where/ is the fragment length$(aa, i) and X (aa, i) are the fre-  list size as 25, our method can improve the position coverage of
quencies of amino acida at position: in the sequence segment sheet from 56.5% to 89.6% and the position coverage of loop from
and in the structural fragment, respectively. The frequencies cag5.5% to 78.1%. Using the same amount of fragments, and with
be obtained typically from sequence alignment tools such as PSk threshold A, the improvement of our method is 30% and 20%
BLAST (Altschulet al,, 1997). Unlike Rosetta with fixed fragment for 3-sheet and loop on average. Applying our method to Kolodny’s
lengths, Zhang (2006) extracts the structural fragments from théibrary, our experiment indicates that the method is potentially capa-
threading algorithms, and the lengths of the fragments are not fixetble of identifying a small subset of fragments from the library for

1.2 Fragment Based Protein Structure Prediction sequence segments to achieve high accuracy. .
Our package is robust for optimizing the parameters of a distance

The structure predictions based on fragment assembly has showfinction of structural fragment selection and allows specialists to

promising results. For example, two top methods in CASP7, Rosettgaye fast prototype of distance entries to select structural candidates.
and Zhang-server, both use fragment assembly. Fragment based

protein structure prediction is done in two steps: (1) identify the2 APPROACH
building blocks, which are fragments of known structures; (2) con- ) )
struct the protein structure with those building blocks using some/Vé model the problem of tuning the parameters of a distance func-
search or simulation algorithms. tion as an optimization problem. We solve this optimization problem
Fragment based protein structure prediction method can be tracélfth integer linear programming (ILP). The ILP is guaranteed to
back to Pauling and Corey (1951); Pauliegal. (1951), in which find an optimal solution, which ensures that we find an optimal
a protein fold is simplified into smaller parts by using the regularc@mbination of the parameters for a distance function. .
secondary structure element prediction. Research intensified after !N OUr approach, each fragment structure adopts its own specific
Jones and Thirup (1986)'s work, which uses known structures tgarameter settings. The intuition behind this is that the accuracy
refine structures. Jones and Thirup (1986); Claesseak (1989): and usefulness of the distance entries are varying from structural
Ungeret al.(1989); Simoret al.(1991); Levitt (1992): Sippl (1993): fragments to structural fragments. By tuning the parameters, we can
Wendoloski and Salemme (1992); Bowie and Eisenberg (1994) eachssign lower weights to the distance entries containing error or noise
developed fragment structure prediction methods and demonstrand assign higher weights for those entries which are more accurate.
ted success. Later, Rosetta was developed by Siroals(1997) We designed four types of scores for fragment selection: mutation
which improved the protein structure prediction based on fragment§COre, Sécondary structure score, contact capacity score and environ-
significantly. Rosetta is still evolving, and keeps on producing pro_mental fithness score. The four types of scores are combined by using
mising results (Haet al, 1997; Simonet al, 1999; Bonneaetal, ~ our ILP model. o
2001; Kuhimanet al, 2003; Bradleyet al, 2003; Chivianet al, Our sys_,tem con_S|sts of two parts: (1) training the parameters; and
2005). Some recent fragment assembly algorithms, including Had?) selecting candidate structural fragments for a sequence segment.
pel et al. (2003); Inbaret al. (2003); Leeet al. (2005) use longer The parameters for each structural fragment are identified with the
fragments and/or different simulation algorithms. training data set. To select the candidate structural fragments, each
In the past two CASPs (Critical Assessment of Techniques foS€dUence segment is scored against each structural fragment. The
Protein Structure Prediction - biannual experiments to assess préiructural fragments are ranked according to our distance function
tein structure prediction methods (Mot al, 1999, 2001, 2003, for each sequence segment. The fofstructural fragments are
2005)), the top automatic server employed protein structural fragSelected as the candidate list for the sequence segment.
ments. Rosetta, the best automatic server in CASP6 and second best
in CASP7 selected length 9 structural fragments from known pro3 METHODS

teins as building blocks, and assembled them with a Monte Carl@efore we give the description of our methods for predicting struc-

search strategy directed by some statistical energy functions to yielghral fragments, we first formalize the problem. and the evaluation
native like structuresSP? (Zhou and Zhou, 2005), one of the of experimental results.

best methods in CASP6, used fragments with similar structures

to generate template profiles for threading purpose. (Zierag, ~ 3-1 Problem Statement

2005; Zhang, 2006) developed TASSER, which generated variou§iven a protein target of lengthn, we parset into a collection
length fragments from threading and assembled them with a Montef sequence segments. We use a sliding window of a fixed length
Carlo method. For all of these methods, candidate structure seleé-and step size 1 to pargein this paper. Let these fragments be
tion for sequence segments serves as the foundation to obtain betigr!, ge?, . .., ge?, p = n — £ + 1, and denote the native structural
predictions. fragments of these fragmentsias’, ns?, ..., ns?.

i=1 aa
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We need to have a collection of structural fragments from whichrable 1. Proteins for Structural Database and Training Set
we can select the structure candidates for sequence segments.
Denote this collection of structural fragments as:

A. Structural Database:
S= {sel, se2, .., sel} lpi4a 1zm8a 1j79a Irlja lzhva lwlya 2ald4a 2gc9a
ljfla 1t9ha  1llm5a  lkxoa 1xfia lrgpa 1ml5a 1z96a

We refer to this collection of structural fragmentssérsictural space  1vksa  1025a  1mjsa  2erba  2bsya  1llst  1g8aa  lwzca

in this paper lvdva 1se8a 1p9%ha 1rl7a 1gfta laol lju3a  1rsga
The problem that we want to address here is to identify some1|g7a lwkoa  1mia Lai ydwa  Ixkpe  latg 1s5aa

structural fragments for each sequence segment which contain at . _

least one structural fragment which is close to the native structure ofS: Training Set: _

the sequence segment lolra 2byca 1lyb5a 1pbwa 1vOea 1lorva 1jb7b 2ftra

; . . 2foma 1xtta lsuua  1xuua 1w2wb 1lviaa 1r9wa 1fj2a
. j .

.Stated formally: foge’, 1 < J_ < ¢, and a given integer and a ltcba 2azd4a 1mzwb 1leflc luvgc likta 1xfsa  lzava
distance thresholé, we want to find asub_set qf structural fragments 1fia 1fp2a 1ldmga 2ah5a 1vksa loyga
S; C S, such thatS;| < k and3s € S; with dist(s,ns’) < 6 for
some di_Stance funCtiOdiSt-_ If such an element exists, We SaY  The first 4 letters is the PDB name, and the 5th letter is the chain id for each entry. If the
thatge’ is coveredby S;. It is clear that we assume any sequencesth letter is a space, the whole protein is used in the structural space.
segment is covered b§. S; is referred to astructure candidate

list or simplycandidate lisiandk is calledcandidate list sizén this

paper. The structure database of fragments is made from 40 protein
3.2 Structural Distance Criteria chains as shown in Table 1. We parse these proteins with a sliding
window of size/ and step size 1. Totally there are 9,658 resi-

S§ues. The structural database consists of 9,338 length-9 structural

To compute the distance between structural fragments, we u
the standard measure, which is the backborec@rbon root- fragments
mean-squared deviation (0b®MSD). CeRMSD satisfies triangle '

. . The training data consist of 30 chains, which are also shown in
inequalities for fragments of equal length. Our methods are alsq'able 1. We also parse them into lengtfieagments with sliding
applicable to other distance measures.

window of step size 1. Totally there are 6,584 residues.

3.3 Evaluation Criteria The proteins for structure database and training set are both from

We use fragment coverage (fc-score), local fit approximation (If-a noen-homologous (less than 30% homology) list with resolution
< 24, dated on March 28, 2006. The list of these proteins was

score) and position coverage (pc-score) as the evaluation criteria.
One way to evaluate the significance of selected structural fraggreated by the program PISCES (Wang and Roland L., 2003), and

ments for each target is to simply count percentage of sequenc,Itg.?ta”y tk:1ere ar(‘je 3177 chains. ins f hich d
segments covered by the structural candidate lists for a given struc- For the test data, we use proteins from CASP7 which were create

ture distance threshold. This percentage is referred fcagsent after April, 2006; there are in total 94 proteins. Also the test set are
coverage parsed into fragments of length

Local Fit Approximation is a criterion developed in Kolodny  OUr methods can be used for over varying fragment lengths. We

et al. (2002) to evaluate the quality of a fragment library. For each¢00Se fixed length mainly for the ease of comparison. Further-
sequence segment, the most similar structure in termad\eSD more, th.e RMSD measure is not applicable across varying fragme.nt
from the structure candidate list is used. Then we take the averaqgngths in general, and to compute lf-score over varying Ie_ngths IS
this CARMSD value over all the sequence segment addba! fit ess reasonable. For example,@a RMSD threshold A is conside-
score red to be accurate for a fragment with length 30, and unacceptable
However, a better approach for protein prediction purpose, is td°" & fragment with length 4.
count the number of positions “correctly predicted” in targeBy
“correctly predicting a position” we mean that there is at least one3'5 Structural Space ) o _ _
sequence segment containing the position covered. The percentagér the structural space, we can use either existing libraries or
of the positions which are correctly predicted is referred tpas- ~ €mploy the Rosetta/Zhang's approach, that is, to select the frag-
tion coveragépc) in this work. This criterion is also used by Simons ments directly from the PDB (Bermaet al, 2000). For a compre-
etal.(1997) and it is important for protein prediction based on frag-hensive fragment library, each structural element in the PDB can
ment assembly methods. The positions are divided into three cas&¢ mapped to some fragments in the library. This implies that a
a-helix, ﬁ.sheet, and LoopNe evaluate the coverage for each type subset of fragments from the PDB COI’reSpondS to a subset of frag-

of positions. ments from a fragment library and the two approaches are equivalent
to some extend. In this paper, we choose to select the fragments
: irectly from some proteins in the .
3.4 Data Set directly f teins in the PDB

Our data set consists of three parts: (1) Structure Database; (2) Trai- Ideally, the structure space needs to ensure that any structural
ning Set; and (3) Testing Set. The structure database is the collectidragment can find at least one ressemblance in the space within
of structural fragments from which we can select the candidatessome distance threshold. An independent library has size from tens
structural fragments for a sequence segment. Training set consiststf several hundreds. This implies that by using a small amount of

the fragments used to compute our parameters. Testing set contaipsoteins with known structures, most of the sequence segments can
proteins for evaluating our method. be covered.
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Fig. 2. Coverage for Helix, Sheet, and Loop vs. Number of Template. We
Fig. 1. Position Coverage vs. RMSD Threshold for Various Number of Tem- yse a distance thresholdiland fragment length 9.

plates. The fragment length is 9. The postion coverage is compute for the
number of templates as: 2, 6, 10, 14, 18 and 22

3.6 ILP Model for Parameter Settings

We conduct a simple study to show by using a small amount oksome of the initial ideas are borrowed from J. Meller and R. Elber
proteins with known structures, most of the sequence segments €aP001). In that paper, linear programming is used to compute the
be covered by the structural fragments from these proteins. profiles for threading.

Fig. 1 shows the relationship between the position coverage and \\e make the following assumption: between each structural frag-

distance threshold for different number of templates (or proteinsnent s’ and each sequence segment and , a feature vector
with known structures), where the templates are randomly selectegitn Iength d can be computed, and we denote it a8’ =

Fragments with length 9 is used. The coverage increases steadi y)z I > Without loss of generality, we assumé < Uf J o<
with the increment of the number of proteins. For a distance thres; Each structural fragmemkl is associated with a weight vector
hold of 2.53, even 2 templates are enough to cover more than 99%,,: _ (wi, ..., wh). The distance between a sequence segment

of the positions. For a distance threshold of AL templates or  and a structural fragment is computed by the dot product between
more are able to cover more than 99% of the positions. Howevenyi gnqyid which is:

we note that for distance threshold lthe coverage increases very
slowly after more than 10 templates. With 18 templates, the position
coverage values are more than 98% and 99.9% for distance thres-
holds 1A and 1.52 , respectively, which is considered to be accurate
enough for the purpose of protein structure prediction. Also, we i i i
have compared the coverage with existing fragment libraries such D> = Z Wi @
as the ones from Kolodngt al. (2002). By using 40 templates as
structural database, we can model protein structures more accurately
than the independent libraries.

We ran the experiments on other selections of templates, and
similar results are obtained. Also, as we increase the number of tem- This model is generic. Although we assume a linear combination
plates to 100, the coverage does not increase too much. We noticed the feature, we do not assume any linearality addut, and it
that a small number of proteins do not imply that the structural spacean contain quadratic terms and so on. For example, in Eg. 1, a
is small, as each template may contain several hundred structurfdature vector with length80 is used. Each structure or sequence
fragments and it is still a very tedious task to select a customizedegment of length 9 is represented oy 20 frequency distribu-
candidate list with high coverage. tion matrices. The feature vector has a size 180, and each entry is

In Fig. 2, we set the distance threshold s We divide the posi- the absolution value of the difference between the corresponding
tions into 3 casesx-helix, 8-Sheet, and loop. By using more than entries.
5 proteins, thex-helix positions have position coverage more than For each sequence segmeet, Q7 is denoted as the set of struc-
99%. By using more than 15 proteins, theheet positions and loop tural fragments which have a distancegtd’s native structure less
positions can have coverage more than 98% and 96%, respectivelynan the distance threshddA robust distance function should rank
The increasing rate of the coverage becomes very slow after the usie structural fragments i@’ for ge’ better than those non-native
of more than 15 proteins for both titesheet and the loop case. The like structural fragments. Our objective here is to optimize the para-
figure also implies that the-helix positions are more regular and meters of the distance function such that we have a distance function
we may be able to predict them accurately. which ranks aje’’s native-like structure better than which are not.
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For notation simplicity, in the following formulations we assume (Jones, 1999). The program predict the confidences for a position to
1 <i<pandl <j < gqgandtheILP is as follows: be a-helix, 3-sheet and loop. Let the confidences predicted for each
position: be «;, 8;, andl;. There are three cases when computing

q P
. the secondary structure score at position
min) " g; ®) Y P
j=1 e If the secondary structure type &f[i] is a-helix, then we use:
D™ - DY <dyi (246 —€ neQi¢Q VY (4) il
o e If the secondary structure type f[i] is S-sheet, then we use:
> duig <k fasp—k), neQ v (5) Bl
lsisaigQ’ e Ifitis loop, we just use 0.
. J|_ ) ; . .
Z‘ frg 1@ =1+ g5, vi (6 3.7.3 Contact Capacity ScoreFor each structural positiose[:],
neQs a contact numben; is calculated. The contact capacity potential is
L due to consider hydrophobic contributions of free energy. Contact
Z wj =1, Vi (1) capacity is to measure the capacity that a residue bastacts with
=1 any other residues in the template.
dnijs fngrg; € 0,1}, w! €[0,1] (8) Given a protein template, 1€¥ (aa, ¢) be the number of residues

with type aa andc contacts,N(c) be the total number of residues
The constant is created to tolerate errors. Ideally we want to havehavingc contacts,N (aa) be the number of residues with type
the parameter settings such that: andN be the total number of residues. Then for an amino acid type

aa, the capacity to have contacts is defined to be:

D™ 4 e< DM (9)
N x N(aa,c

wherese™ is a native-like structure foge’, andse’ is non native CC(c,aa) = —log N(C)]\E(aa))
like structure forge’. Eq. 4 is used to achieve this goal. It is clear
that—2 < D™ — D% < 2. If d,,;,; = 0, we rank the near native The contact capacity score for positianis computed as:
like structurese™ better than the non-native like structue. Eq. 5  S(aa, i) x CC(n;, aa).
intends to score a native like structwe™ to be in the candidate
list with sizek. If f,,7 = 0, then the number of non native-like
structural fragments foge’ that scores higher thase™ (which is a
native like structure foge”) is at mostk. If g; = 0, EqQ. 6 ensures
that at least one near native structure for sequence segefeistin
its candidate list. The objective function Eqg. 3 is used to minimize
the number of sequence segments whose candidate list withk size
does not contain a near native structure. Eq. 7 is just to normaliz
the parameter distributions.

3.7.4 Environmental Fitness Scord’he environments for each
structural position are defined by the combination of secondary
structure type and solvent accessibility. Three secondary structure
types are useda-helix, 8-strand, or loop; and three accessibility
levels are defined: buried, intermediate and accessible. So in total
there are 9 states of structural environments and each structural posi-
tion has one of the environment type. Denote the environment type
&t structural positiori as F;, and an amino acida fithess score

for environmentE’ asF'(E, aa), and then the fithess score between
3.7 Distance Entries se[i] and ge[i] is calculated asS(aa,i) x F(FE;, aa). For more

The distance entries in this paper consist of four types of score@,etails’ we refer readers to Kiet al. (2003b).

which are mainly taken from Xu (2005). 3.8 Implementation

3.7.1 Mutation Scores Mutation score is similar to the case of We have implemented the program with C++, on Linux. The ILP is
Rosetta, as shown in Eq. 1, which is to compute the similarity scorémplemented with the package CPLEX. Also, we built some heu-
between profiles. The profiles for both the template and the sequendistics into the program in the case that ILP cannot find an optimal
are obtained from 5-rounds of PSI-BLAST with a cutoffof 10~*.  solution within a reasonable amount of time.

Mutation score betweere andge consists off entries. One entry

is calculated for each corresponding pair of positions. The value a4 RESULTS

positioni, 1 < i < £is defined to be: First we compare FragShaver's score function with Rosetta’s frag-

ment city block metric. Then we show that our program is promising
(10) for selecting structural candidates from a fragment library. Finally
we show that our package can be applied to improve given distance

where we recall from Eq. 1 tha(aa, i) and X (aa, i) are the fre- ~ function for fragment selection.

quencies of amino acid aa at positioffior sequence segment and 4.1 FragShaver's Score Function vs. City Block Metric
structural fragment, respectively. We have tested other possibilities'__,0
such as city block metric, dot product, and the one from I€inal.
(2003a), we find that Eq. 10 is slightly more stable.

X (aa,1)

S(aa, 'L) X log m

r the Rosetta’s fragment selection method, we implemented it
according to the specifications from Simaisl. (1997); Rohket al.
(2004).

3.7.2 Secondary Structure Scor@he secondary structure for a  Table 2 compares the City Block Metric (CBM) and FragShave’s
structural element is computed with DSSP (Kabsch and Sandescore (FSS) function. The fragment candidate list size is set to be
1983). For the secondary structure of a sequence, we use PSIPREIB, the number of templates used is 40 and the fragment length is 9.
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Table 2. Position Coverage for CBM vs. FragShaver's Score Function Table 3. Position Coverage for Threshold Value a5 1

a-Helix (3-Sheet Loop Overall a-Helix (3-Sheet Loop Overall
0 (&) "CBM FSS CBM FSS CBM FSS CBM FSS k CMB FSS CMB FSS CMB FSS CMB FSS

0.5 942 95.1 10.0 376 26.6 38.7 494 551 5 905 96.6 342 65.6 40.3 59.8 60.7 75.1

1 98.2 98.6 56.4 89.6 555 78.1 722 882 10 97.2 975 424  79.1 46.1  67.9 65.1 815
15 99.7 99.7 89.3 98.2 81.3 933 89.9 96.7 15 97.8 99.3 495 821 50.6 70.5 68.6 85.0
2 100 100 99.7 99.8 96.9 98.9 98.6 994 20 98.1 98.0 53.6 85.1 535 73.0 70.8 86.4
2.5 100 100 99.9 999 99.7 99.7 99.8 99.8 25 98.2 98.6 56.4 89.6 555 781 72.2 86.4
3 100 100 100 100 99.9 100 999 100 30 983 987 59.9 90.8 574 79.6 73.6 88.2

35 100 100 100 100 100 100 100 100 35 98.5 98.8 61.5 92.0 58.5 81.1 74.5 90.0

40 98.7 99.0 63.5 92.9 59.5 82.3 75.4 90.8

Position coverage(%) is displayedc. CBM is the City Block Metric. FSS is the FragShaver's

Score function. The first columé (A) is the native threshold. The fragment candidate lisPosition coverage score(%) is displayed. CBM is the City Block Metric. FSS is the

size (k) is 25. The fragment length is 9. FragShaver's Score function. The first column is the fragment candidate list size. The
fragment length iso 9. The position coverage (%) is reported for the three cases. The
threshold value isA.

The table displays the position coverage. In Table 2, we can see that Table 4. Fragment Coverage and Local Fit Score for

the imprgvement is small f(m-h.elix. This i§ mainly because that Threshold Value asA.
the possible improvement gap is small. With the threshold value as
0.54, the position coverage increases from 10.0% to 37.6%, and
from 26.6% to 38.7% fop3-sheet and loop, respectively. With the Fragment Coverage(%) Local Fit Scokd(
threshold value asA, the position coverage increases from 56.4% k CBM FSS CBM FSS
to 89.6%, and 55.5% to 78.1% foi-sheet and loop, respectively.
For threshold 1.4, significant improvement is observed férsheet 5 292 37.9 1.860 1.542
and loop as well. Overall, we can have a position coverage 88.2% 10 331 433 1592 1.338
and 96.7% for threshold valuedland 1.5 , respectively, and the 15 355 46.8 1468  1.240
two values for CBM are 72.2 and 89.9. 20 370 49.6 1.393 1176
In Table 3, we fix the threshold value ad and we compare gg gg'g g;g 123? 1333
the r_esu_lts by varying _the candidate list size. The position cover- 35 40.1 54.6 1272 1072
age is displayed. The improvement férsheet is more than 30% 40 408 55.6 1.247 1.050
on average with the same candidate list size. The improvement for
loop is more than 20% on average for all the cases. From the table CBM is the City Block Metric. FSS is the FragShaver's Score
we can see that, the position coverage is increased from 56.4% to function. The first column is the fragment candidate list size.
79.1%, and from 55.5% to 67.9% fgi-sheet and loop, respec- Column 2 and Column 3 are the fragment coverage scores for
tively, while reducing the fragment candidate size from 25 to 10 CBM and FSS, respectively. Column 4 and Column 5 are the

local fit scores for CBM and FSS, respectively. The fragment

simultaneously. By using 5 as the candidate list size, FragShaver’s length is 9. The threshold value i1

performance is better than that of CBM with 40 as fragment can-
didate list size for3-sheet and loop. Also with using 15 as the

candidate list size, FragShaver's performance is better than CBMagment candidate list than an independent library by comparing
with 40 as the candidate list size in all the cases. to the fragment libraries from Kolodnst al. (2002). From another

In Table 4, we fix the threshold value a4 and we compare the  agpect that each structural fragment can be mapped to an entry in a
results by varying the candidate list size. Table 4 shows the resultgagment library, FragShaver is able to select a subset of fragments
of fragment coverage and local fit criteria. FragShaver with canditom a library for a sequence segment. The libraries from Kolodny
date list size as 10 has higher fragment coverage than the fragmegt 5| (2002) with fragment length 7 are used, and the library sizes
coverage of CBM with candidate list size 40, and the scores arge 50, 100, 150, 200, and 250. In order to have a fair comparison,

43.3% and 40.8%, respectively. we re-evaluated the performances of these libraries on our test data.
For all these evaluation criteria, we can safely draw a conclupenote the library size ab.

sion that FragShaver is able to identify compact candidate lists for Tapje 5 shows the results of Kolodny library, and FragShaver’s
sequence segments. _ customized lists. By using candidate list size 25, the fragment cover-
Besides the results reported, we conducted experiments on vargge score is better than the library with 200 fragments. The local fit

ing the fragment length and candidate list size. The FragShaver igcore by using 100 fragments is comparable with a fragment library
stable and robust, and consistent improvement is observed. size 250.

4.2 Selecting Fragments from a Library 4.3 Optimizing the Parameters

Sequence specific fragment candidate lists are able to model a pr@ur package can be employed to improve a designed score function.
tein more accurately than an independent fragment library. In thidn this experiment, we assume the city block metric in Eq. 1 is desi-
subsection, we show that FragShaver can produce a more accurajged as the distance function. The distance function contairz)
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Table 5. Customized Fragment Lists vs. Independent Frag- 5 DISCUSSION

ment Libraries . . . .
In our experiments we used the distance entries: mutations score,

secondary structure score, contact capacity score, and environment
Fragment Coverage (%) Local Fit Scof ( fithess score, and then we use a linear combination of these distance

Lork KFL FSS KFL FSS entries. To improve performance, a natural idea is to use more
distance entries. One way is to combine the scores from threading

25 - 453 - 0.763 results, like the case in Zhang (2006). Moreover, all the scores
50 36.2 40.5 0.754 0.667 currently used are assigned to single residues, which implies that
100  40.7 55.7 0.673 0.589 we take the residues to be independent.
150 433 58.6 0633  0.554 However, some residues are actually correlated, and it may be bet-
200 44.0 60.4 0.603 0.531 ter to incorporate the correlation information into the system. One of
250  46.3 61.8 0.585 0.515

the difficulties for the correlation information is the lack of training
. ] data, as there are 220 combinations for any two positions. A pos-

KFL stands for Kolodny's fragment libraries. FSS is FragShaver's ibl t thi ight be t t d t

distance function. This first column is the fragment candidate list size Sible \_Nay 0 °‘_’er°°me IS mig € 10 Create some pseudo-coun

for FragShaver, and is the library size for Kolodny’s libraries. Fragment techniques as in Blast.

Coverage (%) of a threshold &B shown for Kolodny's fragment Our work improves the accuracy gfsheet and loop positions,

libraries at_column 2 anq for Frgg_shaver’s distance funf:tlon at column and this gives us the probability to predict loop regions more accu-

3, respectively. Local fit score is shown for Kolodny's fragment rately, as loops are considered to be the most variable parts in a

libraries at column 4 and for FragShaver’s distance function at column ) . R .

5, respectively. protein structure. The program can assign weights to the positions of

a structure automatically. This might be useful for identifying struc-

Table 6. Position Coverage of City Block Metric vs. Optimized City BIockf[ure motifs. A position with a small weight may imply this position

Metric is unstable.

The integer linear programming technique used in this work, can

] be applied to parameter training for other problems. The advanta-
DA T ""He"ox Cﬂ'Shegt = Loog = O"erg" ges for the integer linear programming model over support vector
(A) CBM  Opt BM Opt BM Opt BM 0Pt machine is that: integer linear program can find optimal combinati-

ons; and we can learn the insights more easily from the parameter

05 963 96.8 18.1 286 30.8 343 536  57.2 yglues.

1 99.2 99.3 748 82.6 64.8 704 80.0 9

1.5 99.8 100 95.4  98.0 88.8 915 943 96.1

2 100 100 99.8 999 988 991 994 9966 CONCLUSION

25 100 100 99.9 999 998 998 = 999  99.9 | this work, we developed a tool named FragShaver. It can build a
2 5 i%?) 11?)?) gg'g 23'09 gg'g ig'(? gg'g ¥ customized structural candidate list for each sequence segment of a
1 100 100 100 100 100 100 100 protein sequence and allow one to reconstruct the protein with high

CBM is the City Block Metric. Opt is the optimized version of City Block Metric. The first

accuracy. The program uses integer linear programming to find the
optimal combinations of the parameters, hence relieving the specia-

column is the distant threshol&X. The candidate list size is 20. The fragment length is 8. lists of the troubles of parameters tuning, aHOWing one to prototype

the ideas on distance entries fast for fragment selection.
By comparing our package to the Rosetta’s fragment selection

items. We group every 20 items for each position together as a sinrmethod, with the threshold af\land fragment length 9, the posi-
gle score entry. Then we assign each entry a weight as a parametéign coverage is improved from 56.4% to 79.1% féxsheet, and
which makes the new distance function as:

£ 20
DISTANCE =Y wi y_ [S(aa,i) — X(aa,i)|  (11)
i=1 aa

We apply the FragShaver to CBM, and the result of the positio
coverage is shown in Table 6. The test is done using a candidate p_(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database
list size of 20, fragment length 8, and a total of 40 templates. For search programs\ucl. Acids Res25(17), 3389-3402.
thresholds 0.8 and 1A, the coverage improved about 3-10% for

sheet and loop. Improvements can be observed for all the cases. We

from 55.5% to 67.9% for loop while reducing the candidate list size
from 25 to 10 simultaneously. Our method is able to construct com-
pact candidate lists for sequence segments and allows the protein
structure to be reconstructed from these list accurately.
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