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ABSTRACT
Motivation: The 3D structure of protein sequence A can be assem-
bled by the substructures corresponding to small segments of A. A
sequence segment does not take on all the structural fragments and
thus it is desirable to build a short customized structural candidate
list for each sequence segment. For each sequence segment, these
substructures are its “specific structural alphabet”. The smaller these
candidate lists are, the faster the protein structure can be construc-
ted; the more accurate these candidate lists are, the more accurate
the final protein structure will be. A major obstacle in protein struc-
ture prediction is to construct a small set of structural candidates for
each segment such that the native structure can be rebuilt from these
structural candidates accurately.
Results: Based on integer linear programming and incorporating
extra structural information, a software package FragShaver is deve-
loped. We have made significant progress in overcoming the above-
mentioned obstacle:

• Comparing our package to the Rosetta’s fragment selection
method, at threshold 1Å and structural fragment length 9, the
position coverage is improved from 56.4% to 79.1% for β-sheet,
and from 55.5% to 67.9% for loop, while reducing the candidate
list size from 25 to 10 simultaneously. By using candidate list
size 25, our method improves Rosetta’s position coverage of β-
sheet from 56.5% to 89.6% and the position coverage of loop
from 55.5% to 78.1%. At 1.5Å, we achieve position coverage
96.7%.

• Applying our method to Kolodny’s independent library, our expe-
riment indicates that our method is capable of identifying a small
subset of structural candidates for a given sequence segment to
achieve the same accuracry as using the whole library, reducing
Kolodny’s library size from 200 to 25 at the same accuracy.

Additionally, FragShaver is robust for optimizing the parameters of
a distance function of structural fragment selection. This provides the
specialists with an automatic tool for performing parameter optimi-
zation on a designed distance function for selecting the structural
candidates.
Contact: {scli, mli}@cs.uwaterloo.ca,j3xu@tti-c.org

1 INTRODUCTION
Protein structure modelling and determination are some of the fun-
damental tasks in molecular biology. Intensive research has been
carried out for building structural fragment libraries to model and
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predict protein 3D structures. A small amount of structural frag-
ments can model the protein structure accurately. The library size
and accuracy are dominating factors for modelling and predicting
the protein structures. Though the library size is small, from tens
to hundreds, the size is still considered to be large for practical
purposes such as protein structure prediction. Research has been
conducted on building very compact independent libraries for pro-
tein structures. It is difficult to reduce the size of such libraries
further. However, a sequence segment does not adopt all the structu-
ral fragments in a library with equal probabilities. Hence it is more
reasonable to build a customized structural candidate list for each
sequence segment. By this, the size of structural candidate list can be
much more succinct, and the protein structure can be modelled more
accurately. This work is essential to protein structure prediction and
other related research.

1.1 Fragment Libraries
(Structural) Fragment libraries are also referred to as “structural
alphabet” in literatures. The size of a fragment library may vary
from tens to hundreds. The fragments may have fixed or variable
lengths. The structural fragments may have all-atom descriptions or
reduced descriptions withCαs only. The libraries are used to pre-
dict or model protein structures (Roomanet al., 1990; Fetrowet al.,
1997; Bystroff and Baker, 1998; Camprouxet al., 1999; de Bre-
vernet al., 2000, 2002; Hunter and Subramaniam, 2003; Camproux
et al., 2004; Etchebestet al., 2005) and (Ungeret al., 1989; Levitt,
1992; Prestrelskiet al., 1992; Unger and Sussman, 1993; Schuch-
hardtet al., 1996; de Brevern and Hazout, 2000; Michelettiet al.,
2000; Ashish V. Tendulkar and Wangikar, 2004).

The size of a library for prediction purpose is smaller than the
size of a library for modelling purpose, as the latter requires a hig-
her resolution. Fragments in these libraries typically have lengths
no more than 9. The structure database may not contain repre-
sentative ressemblances for longer fragments (Fideliset al., 1994).
Kolodny et al. (2002) studied fragment library withk-mean cluste-
ring methods and showed that it is not necessary to have a large
fragment library to accurately model protein structures and con-
struct near native models. In that paper, fragments with length 4–7
were built with library sizes varying from 4 to 250. Holmes and
Tsai (2004) studied the aspects and criteria of evaluating fragment
libraries for building protein structures. Besides extracting structural
fragments from known proteins, research has also been conducted
on constructing structural fragments with ab initio methods, and
such methods produced longer fragments (DePristoet al., 2003).

For protein structure prediction purpose, to have a position-
specific structural fragment list for every sequence segment of
the target is more desirable. Only a limited number of structural
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fragments in the fragment libraries can be adopted as candidate
structural fragment for a sequence segment. In Simonset al.(1997);
Rohl et al. (2004), each sequence segment is scored against each
structural fragment of the same length (i.e. 9) and the structural frag-
ments with smaller distance values are selected as candidates. The
distant function is a simple City Block Metric:

DISTANCE =
X̀
i=1

20X
aa

|S(aa, i)−X(aa, i)| (1)

where` is the fragment length,S(aa, i) andX(aa, i) are the fre-
quencies of amino acidaa at positioni in the sequence segment
and in the structural fragment, respectively. The frequencies can
be obtained typically from sequence alignment tools such as PSI-
BLAST (Altschul et al., 1997). Unlike Rosetta with fixed fragment
lengths, Zhang (2006) extracts the structural fragments from the
threading algorithms, and the lengths of the fragments are not fixed.

1.2 Fragment Based Protein Structure Prediction
The structure predictions based on fragment assembly has shown
promising results. For example, two top methods in CASP7, Rosetta
and Zhang-server, both use fragment assembly. Fragment based
protein structure prediction is done in two steps: (1) identify the
building blocks, which are fragments of known structures; (2) con-
struct the protein structure with those building blocks using some
search or simulation algorithms.

Fragment based protein structure prediction method can be traced
back to Pauling and Corey (1951); Paulinget al. (1951), in which
a protein fold is simplified into smaller parts by using the regular
secondary structure element prediction. Research intensified after
Jones and Thirup (1986)’s work, which uses known structures to
refine structures. Jones and Thirup (1986); Claessenset al. (1989);
Ungeret al.(1989); Simonet al.(1991); Levitt (1992); Sippl (1993);
Wendoloski and Salemme (1992); Bowie and Eisenberg (1994) each
developed fragment structure prediction methods and demonstra-
ted success. Later, Rosetta was developed by Simonset al. (1997),
which improved the protein structure prediction based on fragments
significantly. Rosetta is still evolving, and keeps on producing pro-
mising results (Hanet al., 1997; Simonset al., 1999; Bonneauet al.,
2001; Kuhlmanet al., 2003; Bradleyet al., 2003; Chivianet al.,
2005). Some recent fragment assembly algorithms, including Has-
pel et al. (2003); Inbaret al. (2003); Leeet al. (2005) use longer
fragments and/or different simulation algorithms.

In the past two CASPs (Critical Assessment of Techniques for
Protein Structure Prediction - biannual experiments to assess pro-
tein structure prediction methods (Moultet al., 1999, 2001, 2003,
2005)), the top automatic server employed protein structural frag-
ments. Rosetta, the best automatic server in CASP6 and second best
in CASP7 selected length 9 structural fragments from known pro-
teins as building blocks, and assembled them with a Monte Carlo
search strategy directed by some statistical energy functions to yield
native like structures.SP 3 (Zhou and Zhou, 2005), one of the
best methods in CASP6, used fragments with similar structures
to generate template profiles for threading purpose. (Zhanget al.,
2005; Zhang, 2006) developed TASSER, which generated various
length fragments from threading and assembled them with a Monte
Carlo method. For all of these methods, candidate structure selec-
tion for sequence segments serves as the foundation to obtain better
predictions.

1.3 Our Contributions
For each sequence segment of a target, our method is capable of con-
structing a succinct list of structure candidates such that the native
structure can be built from these structural fragments accurately.

A software package, FragShaver, based on integer linear pro-
gramming is developed. By comparing our package to the Rosetta’s
fragment selection method, with the threshold as 1Å, and fragment
length 9, the position coverage is improved from 56.4% to 79.1%
for β-sheet, and from 55.5% to 67.9% for loop while reducing the
candidate list size from 25 to 10 simultaneously. With the candidate
list size as 25, our method can improve the position coverage ofβ-
sheet from 56.5% to 89.6% and the position coverage of loop from
55.5% to 78.1%. Using the same amount of fragments, and with
a threshold 1̊A, the improvement of our method is 30% and 20%
for β-sheet and loop on average. Applying our method to Kolodny’s
library, our experiment indicates that the method is potentially capa-
ble of identifying a small subset of fragments from the library for
sequence segments to achieve high accuracy.

Our package is robust for optimizing the parameters of a distance
function of structural fragment selection and allows specialists to
have fast prototype of distance entries to select structural candidates.

2 APPROACH
We model the problem of tuning the parameters of a distance func-
tion as an optimization problem. We solve this optimization problem
with integer linear programming (ILP). The ILP is guaranteed to
find an optimal solution, which ensures that we find an optimal
combination of the parameters for a distance function.

In our approach, each fragment structure adopts its own specific
parameter settings. The intuition behind this is that the accuracy
and usefulness of the distance entries are varying from structural
fragments to structural fragments. By tuning the parameters, we can
assign lower weights to the distance entries containing error or noise
and assign higher weights for those entries which are more accurate.

We designed four types of scores for fragment selection: mutation
score, secondary structure score, contact capacity score and environ-
mental fitness score. The four types of scores are combined by using
our ILP model.

Our system consists of two parts: (1) training the parameters; and
(2) selecting candidate structural fragments for a sequence segment.
The parameters for each structural fragment are identified with the
training data set. To select the candidate structural fragments, each
sequence segment is scored against each structural fragment. The
structural fragments are ranked according to our distance function
for each sequence segment. The topk structural fragments are
selected as the candidate list for the sequence segment.

3 METHODS
Before we give the description of our methods for predicting struc-
tural fragments, we first formalize the problem. and the evaluation
of experimental results.

3.1 Problem Statement
Given a protein targett of lengthn, we parset into a collection
of sequence segments. We use a sliding window of a fixed length
` and step size 1 to parset in this paper. Let these fragments be
qe1, qe2, . . . , qep, p = n − ` + 1, and denote the native structural
fragments of these fragments asns1, ns2, . . . , nsp.
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We need to have a collection of structural fragments from which
we can select the structure candidates for sequence segments.
Denote this collection of structural fragments as:

S = {se1, se2, . . . , seq}

We refer to this collection of structural fragments asstructural space
in this paper.

The problem that we want to address here is to identify some
structural fragments for each sequence segment which contain at
least one structural fragment which is close to the native structure of
the sequence segment.

Stated formally: forqej , 1 ≤ j ≤ q, and a given integerk and a
distance thresholdθ, we want to find a subset of structural fragments
Sj ⊂ S, such that|Sj | ≤ k and∃s ∈ Sj with dist(s, nsj) ≤ θ for
some distance functiondist. If such an elements exists, we say
that qej is coveredby Sj . It is clear that we assume any sequence
segment is covered byS. Sj is referred to asstructure candidate
list or simplycandidate listandk is calledcandidate list sizein this
paper.

3.2 Structural Distance Criteria
To compute the distance between structural fragments, we use
the standard measure, which is the backbone Cα-carbon root-
mean-squared deviation (or CαRMSD). CαRMSD satisfies triangle
inequalities for fragments of equal length. Our methods are also
applicable to other distance measures.

3.3 Evaluation Criteria
We use fragment coverage (fc-score), local fit approximation (lf-
score) and position coverage (pc-score) as the evaluation criteria.

One way to evaluate the significance of selected structural frag-
ments for each target is to simply count percentage of sequence
segments covered by the structural candidate lists for a given struc-
ture distance threshold. This percentage is referred to asfragment
coverage.

Local Fit Approximation is a criterion developed in Kolodny
et al. (2002) to evaluate the quality of a fragment library. For each
sequence segment, the most similar structure in term of CαRMSD
from the structure candidate list is used. Then we take the average
this CαRMSD value over all the sequence segment as thelocal fit
score.

However, a better approach for protein prediction purpose, is to
count the number of positions “correctly predicted” in targett. By
“correctly predicting a position” we mean that there is at least one
sequence segment containing the position covered. The percentage
of the positions which are correctly predicted is referred to asposi-
tion coverage(pc) in this work. This criterion is also used by Simons
et al.(1997) and it is important for protein prediction based on frag-
ment assembly methods. The positions are divided into three cases
α-helix,β-sheet, and Loop. We evaluate the coverage for each type
of positions.

3.4 Data Set
Our data set consists of three parts: (1) Structure Database; (2) Trai-
ning Set; and (3) Testing Set. The structure database is the collection
of structural fragments from which we can select the candidate
structural fragments for a sequence segment. Training set consists of
the fragments used to compute our parameters. Testing set contains
proteins for evaluating our method.

Table 1. Proteins for Structural Database and Training Set

A. Structural Database:
1ci4a 1zm8a 1j79a 1rlja 1zhva 1wlya 2a14a 2gc9a
1jfla 1t9ha 1lm5a 1kxoa 1xfia 1rqpa 1m15a 1z96a
1yksa 1q25a 1mj5a 2erba 2bsya 1lst 1g8aa 1wzca
1v4va 1se8a 1p9ha 1r17a 1qfta 1aol 1ju3a 1rsga
1lg7a 1wkoa 1mla 1ail 1y9wa 1xkpc 1atg 1s5aa

B. Training Set:
1olra 2byca 1yb5a 1pbwa 1v0ea 1orva 1jb7b 2ftra
2foma 1xtta 1suua 1xuua 1w2wb 1viaa 1r9wa 1fj2a
1tc5a 2az4a 1mzwb 1ef1c 1uvqc 1ikta 1xfsa 1zava
1fj2a 1fp2a 1dmga 2ah5a 1vk5a 1oyga

The first 4 letters is the PDB name, and the 5th letter is the chain id for each entry. If the
5th letter is a space, the whole protein is used in the structural space.

The structure database of fragments is made from 40 protein
chains as shown in Table 1. We parse these proteins with a sliding
window of size` and step size 1. Totally there are 9,658 resi-
dues. The structural database consists of 9,338 length-9 structural
fragments.

The training data consist of 30 chains, which are also shown in
Table 1. We also parse them into length-` fragments with sliding
window of step size 1. Totally there are 6,584 residues.

The proteins for structure database and training set are both from
a non-homologous (less than 30% homology) list with resolution
< 2Å, dated on March 26th, 2006. The list of these proteins was
created by the program PISCES (Wang and Roland L., 2003), and
totally there are 3177 chains.

For the test data, we use proteins from CASP7 which were created
after April, 2006; there are in total 94 proteins. Also the test set are
parsed into fragments of length`.

Our methods can be used for over varying fragment lengths. We
choose fixed length mainly for the ease of comparison. Further-
more, the RMSD measure is not applicable across varying fragment
lengths in general, and to compute lf-score over varying lengths is
less reasonable. For example, a Cα RMSD threshold 2̊A is conside-
red to be accurate for a fragment with length 30, and unacceptable
for a fragment with length 4.

3.5 Structural Space
For the structural space, we can use either existing libraries or
employ the Rosetta/Zhang’s approach, that is, to select the frag-
ments directly from the PDB (Bermanet al., 2000). For a compre-
hensive fragment library, each structural element in the PDB can
be mapped to some fragments in the library. This implies that a
subset of fragments from the PDB corresponds to a subset of frag-
ments from a fragment library and the two approaches are equivalent
to some extend. In this paper, we choose to select the fragments
directly from some proteins in the PDB.

Ideally, the structure space needs to ensure that any structural
fragment can find at least one ressemblance in the space within
some distance threshold. An independent library has size from tens
to several hundreds. This implies that by using a small amount of
proteins with known structures, most of the sequence segments can
be covered.
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Fig. 1. Position Coverage vs. RMSD Threshold for Various Number of Tem-
plates. The fragment length is 9. The postion coverage is compute for the
number of templates as: 2, 6, 10, 14, 18 and 22

We conduct a simple study to show by using a small amount of
proteins with known structures, most of the sequence segments can
be covered by the structural fragments from these proteins.

Fig. 1 shows the relationship between the position coverage and
distance threshold for different number of templates (or proteins
with known structures), where the templates are randomly selected.
Fragments with length 9 is used. The coverage increases steadily
with the increment of the number of proteins. For a distance thres-
hold of 2.5Å, even 2 templates are enough to cover more than 99%
of the positions. For a distance threshold of 1.5Å, 6 templates or
more are able to cover more than 99% of the positions. However,
we note that for distance threshold 1Å, the coverage increases very
slowly after more than 10 templates. With 18 templates, the position
coverage values are more than 98% and 99.9% for distance thres-
holds 1̊A and 1.5̊A , respectively, which is considered to be accurate
enough for the purpose of protein structure prediction. Also, we
have compared the coverage with existing fragment libraries such
as the ones from Kolodnyet al. (2002). By using 40 templates as
structural database, we can model protein structures more accurately
than the independent libraries.

We ran the experiments on other selections of templates, and
similar results are obtained. Also, as we increase the number of tem-
plates to 100, the coverage does not increase too much. We noticed
that a small number of proteins do not imply that the structural space
is small, as each template may contain several hundred structural
fragments and it is still a very tedious task to select a customized
candidate list with high coverage.

In Fig. 2, we set the distance threshold as 1Å. We divide the posi-
tions into 3 cases:α-helix, β-Sheet, and loop. By using more than
5 proteins, theα-helix positions have position coverage more than
99%. By using more than 15 proteins, theβ-sheet positions and loop
positions can have coverage more than 98% and 96%, respectively.
The increasing rate of the coverage becomes very slow after the use
of more than 15 proteins for both theβ-sheet and the loop case. The
figure also implies that theα-helix positions are more regular and
we may be able to predict them accurately.

Fig. 2. Coverage for Helix, Sheet, and Loop vs. Number of Template. We
use a distance threshold 1Å, and fragment length 9.

3.6 ILP Model for Parameter Settings
Some of the initial ideas are borrowed from J. Meller and R. Elber
(2001). In that paper, linear programming is used to compute the
profiles for threading.

We make the following assumption: between each structural frag-
ment sei and each sequence segmentqej and , a feature vector
with length d can be computed, and we denote it as:Vi,j =
〈vi,j

1 , . . . , vi,j
d 〉. Without loss of generality, we assume−1 ≤ vi,j

l ≤
1. Each structural fragmentsei is associated with a weight vector
Wi = 〈wi

1, . . . , w
i
d〉. The distance between a sequence segment

and a structural fragment is computed by the dot product between
Wi andVi,j , which is:

Di,j =

dX
l=1

wi
lv

i,j
l (2)

This model is generic. Although we assume a linear combination
of the feature, we do not assume any linearality aboutVi,j , and it
can contain quadratic terms and so on. For example, in Eq. 1, a
feature vector with length180 is used. Each structure or sequence
segment of length 9 is represented by9 × 20 frequency distribu-
tion matrices. The feature vector has a size 180, and each entry is
the absolution value of the difference between the corresponding
entries.

For each sequence segmentqej ,Qj is denoted as the set of struc-
tural fragments which have a distance toqej ’s native structure less
than the distance thresholdθ. A robust distance function should rank
the structural fragments inQj for qej better than those non-native
like structural fragments. Our objective here is to optimize the para-
meters of the distance function such that we have a distance function
which ranks aqej ’s native-like structure better than which are not.
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For notation simplicity, in the following formulations we assume
1 ≤ i ≤ p and1 ≤ j ≤ q and the ILP is as follows:

min

qX
j=1

gj (3)

Dn,j −Di,j ≤ dn,i,j(2 + ε)− ε, n ∈ Qj , i /∈ Qj , ∀j (4)X
1≤i≤q,i/∈Qj

dn,i,j ≤ k + fn,j(p− k), n ∈ Qj , ∀j (5)X
n∈Qj

fn,j ≤ |Qj | − 1 + gj , ∀j (6)

X̀
l=1

wj
l = 1, ∀j (7)

dn,i,j , fn,j , gj ∈ {0, 1}, wj
i ∈ [0, 1] (8)

The constantε is created to tolerate errors. Ideally we want to have
the parameter settings such that:

Dn,j + ε ≤ Di,j (9)

wheresen is a native-like structure forqej , andsej is non native
like structure forqej . Eq. 4 is used to achieve this goal. It is clear
that−2 ≤ Dn,j −Di,j ≤ 2. If dn,i,j = 0, we rank the near native
like structuresen better than the non-native like structuresei. Eq. 5
intends to score a native like structuresen to be in the candidate
list with sizek. If fn, j = 0, then the number of non native-like
structural fragments forqej that scores higher thansen (which is a
native like structure forqej) is at mostk. If gj = 0, Eq. 6 ensures
that at least one near native structure for sequence segmentqej is in
its candidate list. The objective function Eq. 3 is used to minimize
the number of sequence segments whose candidate list with sizek
does not contain a near native structure. Eq. 7 is just to normalize
the parameter distributions.

3.7 Distance Entries
The distance entries in this paper consist of four types of scores,
which are mainly taken from Xu (2005).

3.7.1 Mutation Scores Mutation score is similar to the case of
Rosetta, as shown in Eq. 1, which is to compute the similarity score
between profiles. The profiles for both the template and the sequence
are obtained from 5-rounds of PSI-BLAST with a cutoff of9×10−4.
Mutation score betweense andqe consists of̀ entries. One entry
is calculated for each corresponding pair of positions. The value at
positioni, 1 ≤ i ≤ ` is defined to be:

S(aa, i)× log
X(aa, i)

S(aa, i)
(10)

where we recall from Eq. 1 thatS(aa, i) andX(aa, i) are the fre-
quencies of amino acid aa at positioni for sequence segment and
structural fragment, respectively. We have tested other possibilities,
such as city block metric, dot product, and the one from Kimet al.
(2003a), we find that Eq. 10 is slightly more stable.

3.7.2 Secondary Structure ScoreThe secondary structure for a
structural element is computed with DSSP (Kabsch and Sander,
1983). For the secondary structure of a sequence, we use PSIPRED

(Jones, 1999). The program predict the confidences for a position to
beα-helix, β-sheet and loop. Let the confidences predicted for each
positioni beαi, βi, andli. There are three cases when computing
the secondary structure score at positioni:

• If the secondary structure type ofse[i] is α-helix, then we use:
αi-li

• If the secondary structure type ofse[i] is β-sheet, then we use:
βi-li

• If it is loop, we just use 0.

3.7.3 Contact Capacity ScoreFor each structural positionse[i],
a contact numberni is calculated. The contact capacity potential is
due to consider hydrophobic contributions of free energy. Contact
capacity is to measure the capacity that a residue hasc contacts with
any other residues in the template.

Given a protein template, letN(aa, c) be the number of residues
with typeaa andc contacts,N(c) be the total number of residues
havingc contacts,N(aa) be the number of residues with typeaa
andN be the total number of residues. Then for an amino acid type
aa, the capacity to havec contacts is defined to be:

CC(c, aa) = − log
N ×N(aa, c)

N(c)N(aa)

The contact capacity score for positioni is computed as:
S(aa, i)× CC(ni, aa).

3.7.4 Environmental Fitness ScoreThe environments for each
structural position are defined by the combination of secondary
structure type and solvent accessibility. Three secondary structure
types are used:α-helix, β-strand, or loop; and three accessibility
levels are defined: buried, intermediate and accessible. So in total
there are 9 states of structural environments and each structural posi-
tion has one of the environment type. Denote the environment type
at structural positioni asEi, and an amino acidaa fitness score
for environmentE asF (E, aa), and then the fitness score between
se[i] and qe[i] is calculated as:S(aa, i) × F (Ei, aa). For more
details, we refer readers to Kimet al. (2003b).

3.8 Implementation
We have implemented the program with C++, on Linux. The ILP is
implemented with the package CPLEX. Also, we built some heu-
ristics into the program in the case that ILP cannot find an optimal
solution within a reasonable amount of time.

4 RESULTS
First we compare FragShaver’s score function with Rosetta’s frag-
ment city block metric. Then we show that our program is promising
for selecting structural candidates from a fragment library. Finally
we show that our package can be applied to improve given distance
function for fragment selection.

4.1 FragShaver’s Score Function vs. City Block Metric
For the Rosetta’s fragment selection method, we implemented it
according to the specifications from Simonset al.(1997); Rohlet al.
(2004).

Table 2 compares the City Block Metric (CBM) and FragShave’s
score (FSS) function. The fragment candidate list size is set to be
25, the number of templates used is 40 and the fragment length is 9.
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Table 2. Position Coverage for CBM vs. FragShaver’s Score Function

α-Helix β-Sheet Loop Overall
θ (Å) CBM FSS CBM FSS CBM FSS CBM FSS

0.5 94.2 95.1 10.0 37.6 26.6 38.7 49.4 55.1
1 98.2 98.6 56.4 89.6 55.5 78.1 72.2 88.2
1.5 99.7 99.7 89.3 98.2 81.3 93.3 89.9 96.7
2 100 100 99.7 99.8 96.9 98.9 98.6 99.4
2.5 100 100 99.9 99.9 99.7 99.7 99.8 99.8
3 100 100 100 100 99.9 100 99.9 100
3.5 100 100 100 100 100 100 100 100

Position coverage(%) is displayed. CBM is the City Block Metric. FSS is the FragShaver’s
Score function. The first columnθ (Å) is the native threshold. The fragment candidate list
size (k) is 25. The fragment length is 9.

The table displays the position coverage. In Table 2, we can see that
the improvement is small forα-helix. This is mainly because that
the possible improvement gap is small. With the threshold value as
0.5Å, the position coverage increases from 10.0% to 37.6%, and
from 26.6% to 38.7% forβ-sheet and loop, respectively. With the
threshold value as 1̊A, the position coverage increases from 56.4%
to 89.6%, and 55.5% to 78.1% forβ-sheet and loop, respectively.
For threshold 1.5̊A, significant improvement is observed forβ-sheet
and loop as well. Overall, we can have a position coverage 88.2%
and 96.7% for threshold value 1Å and 1.5̊A , respectively, and the
two values for CBM are 72.2 and 89.9.

In Table 3, we fix the threshold value as 1Å and we compare
the results by varying the candidate list size. The position cover-
age is displayed. The improvement forβ-sheet is more than 30%
on average with the same candidate list size. The improvement for
loop is more than 20% on average for all the cases. From the table
we can see that, the position coverage is increased from 56.4% to
79.1%, and from 55.5% to 67.9% forβ-sheet and loop, respec-
tively, while reducing the fragment candidate size from 25 to 10
simultaneously. By using 5 as the candidate list size, FragShaver’s
performance is better than that of CBM with 40 as fragment can-
didate list size forβ-sheet and loop. Also with using 15 as the
candidate list size, FragShaver’s performance is better than CBM
with 40 as the candidate list size in all the cases.

In Table 4, we fix the threshold value as 1Å and we compare the
results by varying the candidate list size. Table 4 shows the results
of fragment coverage and local fit criteria. FragShaver with candi-
date list size as 10 has higher fragment coverage than the fragment
coverage of CBM with candidate list size 40, and the scores are
43.3% and 40.8%, respectively.

For all these evaluation criteria, we can safely draw a conclu-
sion that FragShaver is able to identify compact candidate lists for
sequence segments.

Besides the results reported, we conducted experiments on vary-
ing the fragment length and candidate list size. The FragShaver is
stable and robust, and consistent improvement is observed.

4.2 Selecting Fragments from a Library
Sequence specific fragment candidate lists are able to model a pro-
tein more accurately than an independent fragment library. In this
subsection, we show that FragShaver can produce a more accurate

Table 3. Position Coverage for Threshold Value as 1Å.

α-Helix β-Sheet Loop Overall
k CMB FSS CMB FSS CMB FSS CMB FSS

5 90.5 96.6 34.2 65.6 40.3 59.8 60.7 75.1
10 97.2 97.5 42.4 79.1 46.1 67.9 65.1 81.5
15 97.8 99.3 49.5 82.1 50.6 70.5 68.6 85.0
20 98.1 98.0 53.6 85.1 53.5 73.0 70.8 86.4
25 98.2 98.6 56.4 89.6 55.5 78.1 72.2 86.4
30 98.3 98.7 59.9 90.8 57.4 79.6 73.6 88.2
35 98.5 98.8 61.5 92.0 58.5 81.1 74.5 90.0
40 98.7 99.0 63.5 92.9 59.5 82.3 75.4 90.8

Position coverage score(%) is displayed. CBM is the City Block Metric. FSS is the
FragShaver’s Score function. The first column is the fragment candidate list size. The
fragment length is 9. The position coverage (%) is reported for the three cases. The
threshold value is 1̊A.

Table 4. Fragment Coverage and Local Fit Score for
Threshold Value as 1̊A.

Fragment Coverage(%) Local Fit Score(Å)
k CBM FSS CBM FSS

5 29.2 37.9 1.860 1.542
10 33.1 43.3 1.592 1.338
15 35.5 46.8 1.468 1.240
20 37.0 49.6 1.393 1.176
25 38.2 51.5 1.342 1.133
30 39.3 53.2 1.301 1.097
35 40.1 54.6 1.272 1.072
40 40.8 55.6 1.247 1.050

CBM is the City Block Metric. FSS is the FragShaver’s Score
function. The first column is the fragment candidate list size.
Column 2 and Column 3 are the fragment coverage scores for
CBM and FSS, respectively. Column 4 and Column 5 are the
local fit scores for CBM and FSS, respectively. The fragment
length is 9. The threshold value is 1Å.

fragment candidate list than an independent library by comparing
to the fragment libraries from Kolodnyet al. (2002). From another
aspect that each structural fragment can be mapped to an entry in a
fragment library, FragShaver is able to select a subset of fragments
from a library for a sequence segment. The libraries from Kolodny
et al. (2002) with fragment length 7 are used, and the library sizes
are 50, 100, 150, 200, and 250. In order to have a fair comparison,
we re-evaluated the performances of these libraries on our test data.
Denote the library size asL.

Table 5 shows the results of Kolodny library, and FragShaver’s
customized lists. By using candidate list size 25, the fragment cover-
age score is better than the library with 200 fragments. The local fit
score by using 100 fragments is comparable with a fragment library
size 250.

4.3 Optimizing the Parameters
Our package can be employed to improve a designed score function.
In this experiment, we assume the city block metric in Eq. 1 is desi-
gned as the distance function. The distance function contains`× 20
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Table 5. Customized Fragment Lists vs. Independent Frag-
ment Libraries

Fragment Coverage (%) Local Fit Score (Å)
L or k KFL FSS KFL FSS

25 – 45.3 – 0.763
50 36.2 40.5 0.754 0.667
100 40.7 55.7 0.673 0.589
150 43.3 58.6 0.633 0.554
200 44.0 60.4 0.603 0.531
250 46.3 61.8 0.585 0.515

KFL stands for Kolodny’s fragment libraries. FSS is FragShaver’s
distance function. This first column is the fragment candidate list size
for FragShaver, and is the library size for Kolodny’s libraries. Fragment
Coverage (%) of a threshold 0.5Åis shown for Kolodny’s fragment
libraries at column 2 and for FragShaver’s distance function at column
3, respectively. Local fit score (Å) is shown for Kolodny’s fragment
libraries at column 4 and for FragShaver’s distance function at column
5, respectively.

Table 6. Position Coverage of City Block Metric vs. Optimized City Block
Metric

α-Helix β-Sheet Loop Overall
θ (Å) CBM Opt CBM Opt CBM Opt CBM Opt

0.5 96.3 96.8 18.1 28.6 30.8 34.3 53.6 57.2
1 99.2 99.3 74.8 82.6 64.8 70.4 80.0 83.9
1.5 99.8 100 95.4 98.0 88.8 91.5 94.3 96.1
2 100 100 99.8 99.9 98.8 99.1 99.4 99.6
2.5 100 100 99.9 99.9 99.8 99.8 99.9 99.9
3 100 100 99.9 99.9 99.9 99.9 99.9 99.9
3.5 100 100 99.9 100 99.9 100 99.9 100
4 100 100 100 100 100 100 100 100

CBM is the City Block Metric. Opt is the optimized version of City Block Metric. The first
column is the distant threshold (Å). The candidate list size is 20. The fragment length is 8.

items. We group every 20 items for each position together as a sin-
gle score entry. Then we assign each entry a weight as a parameter,
which makes the new distance function as:

DISTANCE =
X̀
i=1

wl

20X
aa

|S(aa, i)−X(aa, i)| (11)

We apply the FragShaver to CBM, and the result of the position
coverage is shown in Table 6. The test is done using a candidate
list size of 20, fragment length 8, and a total of 40 templates. For
thresholds 0.5̊A and 1Å, the coverage improved about 3-10% forβ-
sheet and loop. Improvements can be observed for all the cases. We
conducted experiments with different lengths, candidate list sizes
and evaluation criteria, and similar results were obtained.

Our package also allows faster prototyping of distance functions
for fragments for specialists. One can simply test if distance entries
are useful without worrying about the parameters, as the optimal
combination of the parameters is guaranteed by the nature of the
integer linear programming.

5 DISCUSSION
In our experiments we used the distance entries: mutations score,
secondary structure score, contact capacity score, and environment
fitness score, and then we use a linear combination of these distance
entries. To improve performance, a natural idea is to use more
distance entries. One way is to combine the scores from threading
results, like the case in Zhang (2006). Moreover, all the scores
currently used are assigned to single residues, which implies that
we take the residues to be independent.

However, some residues are actually correlated, and it may be bet-
ter to incorporate the correlation information into the system. One of
the difficulties for the correlation information is the lack of training
data, as there are 20×20 combinations for any two positions. A pos-
sible way to overcome this might be to create some pseudo-count
techniques as in Blast.

Our work improves the accuracy ofβ-sheet and loop positions,
and this gives us the probability to predict loop regions more accu-
rately, as loops are considered to be the most variable parts in a
protein structure. The program can assign weights to the positions of
a structure automatically. This might be useful for identifying struc-
ture motifs. A position with a small weight may imply this position
is unstable.

The integer linear programming technique used in this work, can
be applied to parameter training for other problems. The advanta-
ges for the integer linear programming model over support vector
machine is that: integer linear program can find optimal combinati-
ons; and we can learn the insights more easily from the parameter
values.

6 CONCLUSION
In this work, we developed a tool named FragShaver. It can build a
customized structural candidate list for each sequence segment of a
protein sequence and allow one to reconstruct the protein with high
accuracy. The program uses integer linear programming to find the
optimal combinations of the parameters, hence relieving the specia-
lists of the troubles of parameters tuning, allowing one to prototype
the ideas on distance entries fast for fragment selection.

By comparing our package to the Rosetta’s fragment selection
method, with the threshold as 1Å, and fragment length 9, the posi-
tion coverage is improved from 56.4% to 79.1% forβ-sheet, and
from 55.5% to 67.9% for loop while reducing the candidate list size
from 25 to 10 simultaneously. Our method is able to construct com-
pact candidate lists for sequence segments and allows the protein
structure to be reconstructed from these list accurately.
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