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Abstract

Uncertainty pervades many domains in our lives. Current real-life
applications, e.g., location tracking using GPS devices or cell phones,
multimedia feature extraction, and sensor data management, deal with
different kinds of uncertainty. Finding the nearest neighbor objects to a
given query point is an important query type in these applications.

In this paper, we study the problem of finding objects with the high-
est marginal probability of being the nearest neighbors to a query object.
We adopt a general uncertainty model allowing for data and query un-
certainty. Under this model, we define new query semantics, and provide
several efficient evaluation algorithms. We analyze the cost factors in-
volved in query evaluation, and present novel techniques to address the
trade-offs among these factors. We give multiple extensions to our tech-
niques including handling dependencies among data objects, and answer-
ing threshold queries. We conduct an extensive experimental study to
evaluate our techniques on both real and synthetic data.

1 Introduction

Nearest neighbor (NN) queries are widely used in many applications including
geographical information systems [11], and similarity search [30]. The problem
can be defined as follows: ‘given a number of objects, find the nearest object(s)
to a given query point, based on a distance metric.’ A large body of research
studies NN queries for precise (certain) data, e.g., [14, 25]. Many of these works
focus on using index structures for efficient computation.

Applications in domains that involve uncertainty such as location track-
ing [9] and sensor data management [21] have motivated the need to support new
query types [27], uncertainty models [26], and query processing techniques [24].
Queries that involve ranking objects under uncertainty based on a scoring cri-
terion, e.g., top-k and NN queries, are important to a wide range of these
applications, as illustrated by the next examples.
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Figure 1: Using Cell Towers to Locate Mobile Users

Example 1.1 Cell towers are used to locate mobile users using techniques sim-
ilar to [31]. In Figure 1, the signals communicated between a mobile user and
the three nearest towers define contour lines of user’s possible locations. Each
contour line gives a uniform distribution of user’s location. Hence, a user is
more likely to be located at the intersection of contour lines (the shaded areas in
Figure 1).

In Example 1.1, assume the query point is an accident location, where the
data objects are the mobile users. Each data object has an uncertain location
attribute. In these settings, finding the most probable nearest witnesses/police
cars to accident location is an important query. The next examples give other
variations of the same problem.

Example 1.2 In location-based services, a user may request the locations of
the nearest gas stations. To protect user’s privacy, an area that encloses user’s
actual location may be used as the query object. Gas stations (the data ob-
jects) have deterministic locations and thus they can be modeled as deterministic
points.

Example 1.3 In face recognition systems, e.g., [19], a person is identified by
computing the similarity between a query object (description of person’s face),
and data objects (descriptions of faces stored in a database). Each description
is a vector of features such as the relative locations of face elements, and their
sizes. Due to imprecision of feature extraction, such vectors usually involve
uncertainty. Each feature is thus modeled as a probability distribution on possible
values. Finding persons that are most similar to the person in question involves
a nearest neighbor search with uncertainty in both data and query objects.

A related issue to the previous examples is the uncertainty of the existence of
data objects. For example, mobile users can continuously appear and disappear
in an area of interest. Hence, each user belongs to the database with less than
absolute confidence.
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Figure 2: Expectation-based NN Queries (a) Uniform Distributions (b) Non-uniform
Distributions

Integrating the above sources of uncertainty with the conventional distance-
based criterion of NN queries raises new challenges regarding query semantics
and evaluation.

1.1 Motivation and Challenges

A large body of research addresses NN queries where both data and query
objects are deterministic points. Classical algorithms include the HS algorithm
[14] and the RKV algorithm [25]. Recent proposals address NN queries under
uncertainty with different query semantics. We describe some of these proposals
in the following.

In [20], the problem is reduced to a conventional NN query, where the NNs
are computed based on their expected distance to the query point. This method
can give different answers from the alternative approach that reports objects
with the highest marginal NN probabilities, and hence exploits data uncertainty
rather than reducing the problem to a deterministic version. To illustrate, Fig-
ure 2 (a) depicts two moving objects O1 and O2 whose possible locations are
uniformly distributed in the shown solid ovals with means µ1 and µ2, respec-
tively. For the query point q, O1 is the NN based on its expected distance to q.
Assume that the probability of O1 being inside the dotted circle, centered at q,
is 0.4. Hence, O2 is the NN based on marginal probabilities since the probability
of O1 being the NN is at most 0.4 (the probability of O1 being inside the dotted
circle). Non-uniform distributions may also exhibit the same discrepancy. For
example, in Figure 2(b) objects have non-uniform distributions. O1 is the NN
based on expected distance to q, while O2 is the NN based on marginal proba-
bilities, since the probability of O2 being the NN is at least 0.6 (the probability
of O2 being inside the shaded area).

Approximating marginal NN probabilities using sampling techniques, e.g.,
[16], suffers from an inherent slow diminishing of approximation error when
increasing sample size. For example, in Monte-Carlo sampling, quadrupling the
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number of samples only halves the error [18].
Threshold-based probabilistic NN queries are addressed in [6], where objects

with marginal NN probabilities above a given threshold are reported. Threshold-
based queries have inherent problems in selecting a suitable threshold. Setting
the threshold too high may lead to empty results, and hence the query needs
to be restarted with a lower threshold. Alternatively, setting the threshold too
low may produce too many results and increase query response time.

Current proposals are lacking with regard to two points:

• Most proposals assume limited uncertainty models that do not support all
possible uncertainty sources. For example, in [7], data objects have un-
certain attributes, while their existence in the database is certain. In [8],
data objects have deterministic attributes, and uncertain existence in the
database. In [16], data and query objects are uncertain, while their exis-
tence in database is certain. To the best of our knowledge, integrating all
uncertainty sources within the same processing framework has not been
addressed before.

• Current proposals separate the I/O operations (i.e., object retrieval) and
CPU operations (i.e., probability computation) of probabilistic NN queries
into two isolated stages, as in [7, 6]. No current work addresses interleaving
these operations during query processing, or integrating their costs into a
unified cost model.

Integrating all uncertainty sources in the same model adds further complex-
ity to the problem. For example, if all objects have deterministic existence in
the database, a large number of objects can be pruned using spatial proper-
ties [7, 6]. Specifically, an object cannot be the NN if its minimum distance to
the query point is larger than the maximum distance of another object. Such
pruning criterion is not directly applicable when objects’ existence is uncertain.

Interleaving I/O and CPU operations, based on a cost model, allows for ad-
dressing the trade-offs among the cost factors of NN queries. This is particularly
important if a small number of answers, e.g., the top-k answers, is required.

1.2 Contributions

We summarize our contributions as follows:

• We introduce Topk-PNN query, a novel formulation of NN queries combin-
ing both data/query uncertainty and distance-based criteria (Section 2).

• We study object retrieval orders of Topk-PNN queries, and give new re-
sults regarding the I/O optimality of different orders. We further analyze
the cost factors of Topk-PNN queries, and construct a unified cost model
and efficient query evaluation techniques (Section 3).

• We address Topk-PNN queries with uncertain query objects and both
uncertain (Section 4) and deterministic (Section 5) data objects.
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• We give multiple extensions to our techniques including handling depen-
dencies among data objects, answering top-k queries over uncertain data
(Appendix A), and supporting threshold queries (Section 6).

2 Problem Definition

We next describe the uncertainty model we adopt in this paper followed by our
formal problem definition.
Uncertainty Model. We assume a database of objects O = {O1, . . . , On}
such that the existence (membership) of objects in O is uncertain, i.e., Pr(Oi ∈
O) ≤ 1. We denote with Pr(Oi), and Pr(¬Oi) = 1 − Pr(Oi) the existence and
absence probabilities of Oi, respectively. Each object Oi ∈ O has a probabilistic
attribute, defined as follows:

Definition 2.1 Probabilistic Attribute. A probabilistic attribute A in
object Oi is a random variable drawn from a distribution with density function
fA

i . �

We assume fA
i has a bounding uncertainty region RA

i so that ∀x 6∈ RA
i ,

fA
i (x) = 0 and

∫
RA

i
fA

i (x) dx = 1. If fA
i is an unbounded probability den-

sity function (PDF), e.g., Gaussian PDF, we truncate PDF tails with negligible
probabilities and normalize the resulting PDF. This procedure is also used in
other related works (e.g., [6, 5]), and in other contexts such as such as econo-
metrics (e.g., [12]). We show in our experiments (Section 6.8) the effect of PDF
truncation on the accuracy of the results. For a probabilistic attribute A whose
domain is an n-dimensional space, we assume RA

i is an n-dimensional hyper-
rectangle. For example, the location attribute of an object moving in 2D plane,
has a rectangular uncertainty region with 2D PDF. We restrict our discussions
to 2D space for clarity. However, our techniques are applicable to n-dimensional
spaces.

The query object q is an uncertain object with uncertainty region Rq, and
a PDF fq. The existence of query object is always certain, i.e., Pr(q) = 1. We
assume that our queries involve a single probabilistic attribute, e.g., location,
and hence we use the object Oi to directly refer to its queried attribute Oi.A.
We omit the superscript A for brevity.
Topk-PNN Queries. Let d be a distance metric, e.g., Euclidian distance.
Since Oi has different possible values, there is a range of possible distances
between Oi and the query object q. Let Si be an interval enclosing all possible
distances between Oi and q. We denote with Pnn(Oi, q) the marginal probability
of Oi to be the NN to q. The value of Pnn(Oi, q) is found by summing all
probabilities where d(Oi, q) is the least among all other objects.

Pnn(Oi, q) =

Z
Si

Pr(Oi ∧ d(Oi, q) = s ∧ ∀j 6= i(¬Oj ∨ d(Oj , q) > s) ds (1)
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Equation 1 integrates the probabilities of all settings where Oi is the NN to
q.

We describe how to compute Pnn(Oi, q) when all objects are independent.
Given a point x, let Fj(x, dist) be the probability that Oj does not exist or
d(Oj , x) > dist. This probability is formulated as follows:

Fj(x, dist) = Pr(¬Oj ∨ d(x, Oj) > dist)

= Pr(¬Oj) + Pr(Oj) ·
Z

y∈Rj :d(x,y)>dist

fj(y)dy (2)

Based on Equation 2, we formulate Pnn(Oi, q) under independence as follows:

Pnn(Oi, q) = Pr(Oi)

Z
Rq

Z
Ri

fq(x) · fi(y) ·
Y
j 6=i

Fj(x, d(x, y)) dy dx (3)

Note that
∑

Oi
Pnn(Oi, q) ≤ 1. The value (1−

∑
Oi

Pnn(Oi, q)) corresponds
to the probability of the configuration in which no object exists. The probability
of such configuration is equal to

∏
Oi

Pr(¬Oi).
We assume that Pnn(Oi, q) values are distinct across objects in O using a

deterministic tie-breaker (a typical assumption in top-k algorithms, e.g., [10]).
We next give our query definition.

Definition 2.2 Top-k Probable NN (Topk-PNN) Query. Given a
database O and a query object q, a Topk-PNN query returns a vector V =<
O(1) . . . O(k) > ⊆ O such that: Pnn(O(1), q) > · · · > Pnn(O(k), q) , and
@Oi ∈ (O − V ) where Pnn(Oi, q) > Pnn(O(k), q). �

In general, Topk-PNN queries incur two cost factors:

1. I/O cost incurred by object retrieval, which can be the cost of reading
objects from disk or transferring objects’ details, e.g., a PDF histograms,
over the network if objects are obtained from remote sources.

2. CPU cost incurred by computing a complex nested integral to evaluate
the Pnn values of different objects.

Our techniques are based on optimizing the two above cost factors by ex-
ploiting general properties in top-k queries: (1) most database objects are not
part of the query answer, and hence many I/O operations can be avoided; and
(2) the scores of retrieved objects can be bounded, i.e., not fully computed,
while still being able to rank query answers at reduced computational costs.
We focus on the case of independent objects and discuss extensions to handle
object dependencies in Appendix A.

3 Query Evaluation

In this section, we describe our techniques to compute Topk-PNN queries with
uncertain data objects and a single (deterministic) query point q. We discuss
handling uncertain query objects in Sections 4 and 5.
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Based on Equation 3, when q is a single point, Pnn(Oi, q) is computed as
follows:

Pnn(Oi, q) = Pr(Oi)

Z
Ri

fi(x)
Y
j 6=i

Fj(q, d(q, x)) dx (4)

We discuss in Section 3.1 optimizing the number of I/O operations. We
show in Section 3.2 how to perform computation lazily to optimize the CPU
cost. Further, we describe in Section 3.3 techniques to optimize the combined
cost of I/O and CPU.

3.1 Optimizing Object Retrieval

Let d(Oi, q) and d(Oi, q) denote the minimum and maximum distances between
Oi and q, respectively. Figure 3(a) shows such distances. Further, let min-dist
order denote the ascending order of objects based on d(., q).
Incremental Access Assumption. The main assumption we make on the
class of algorithms we consider in this section is that objects are incrementally
retrieved from the database with no prior information on the PDFs of non-
retrieved objects. This assumption applies particularly to the case of retrieving
objects from remote sources.

Incremental access of objects in the order of an arbitrary measure defined
on objects boundaries, e.g., d(Oi, q) or d(Oi, q), can be made using an index
over objects uncertainty regions (e.g., an R-tree). Building and traversing such
index does not require knowledge about objects PDFs.

We propose IO-Centric, an algorithm to compute Topk-PNN queries with
optimality guarantees on the number of I/O’s. The idea is to incrementally
retrieve objects from the database, while bounding Pnn(Oi, q), for each retrieved
object Oi, using an interval [lo(Oi), up(Oi)]. In addition, Pnn(φ, q), where φ
represents any non-retrieved object, is upper-bounded with a function up(φ).
Query answer is reported by reasoning about probability bounds to guarantee
result correctness.

Algorithm 1 gives the details of IO-Centric. For illustration, we assume a
Topk-PNN query with k = 1. We show at the end of this section how to compute
queries with k > 1. The algorithm goes through two consecutive phases: (1) a
growing phase, where a set of candidates grows by retrieving objects in min-dist
order and updating their lo(.) values until some object Oi satisfies lo(Oi) >
up(φ) and hence any yet non-retrieved object cannot be the query answer; and
(2) a shrinking phase, where candidates are pruned by retrieving new objects,
and using these objects to update the bounds of candidates. The algorithm
terminates when a candidate object O∗, retrieved in the growing phase, satisfies
(lo(O∗) > max(up(φ), up(Or)), for any other candidate Or. At this point,
IO-Centric guarantees that O∗ is the most probable NN to q. If the database
is exhausted before entering the shrinking phase, the algorithm directly reports
the candidate with the highest up(.), since in this case up(.) is the exact Pnn

value, as discussed below.
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Algorithm 1 IO-Centric (O:database, q: query point)

1: up(φ)← 1.0 {upper bound of Pnn value of non-retrieved objects}
2: Create an empty candidate set C
{start growing phase}

3: while (O not exhausted AND @Oj ∈ C with lo(Oj) > up(φ)) do
4: Oi ← next object in O based on min-dist to q
5: Add Oi to C
6: Compute lo(Oi) {Equ. 5}
7: up(φ)← up(φ)− lo(Oi)
8: end while
9: For each Oj ∈ C, compute up(Oj) {Equ. 6}
{start shrinking phase}

10: while (O not exhausted AND
@O∗ ∈ C with lo(O∗) > max(up(φ), up(Or)) for any
other object Or ∈ C) do

11: Retrieve the next object based on min-dist to q
12: For each Oj ∈ C, update lo(Oj), up(Oj) {Equ. 5 and 6}
13: For each Oj 6∈ C, update lo(Oj) {Equ. 5}
14: Update up(φ) as 1−

P
lo(.) of all retrieved objects

15: Remove from C any object Oj with up(Oj) < lo(Or) for some other object
Or ∈ C

16: end while
17: return the object O∗ with max up(.) in C

We note that the behavior of IO-Centric is similar to the adaptation of
the NRA algorithm in [22].
Bound Computation. Let Ó ⊆ O be the current set of retrieved objects,
and Ol ∈ Ó be the last retrieved object in min-dist order. The value of lo(Oi)
is given by Equation 4 by pessimistically estimating Pnn(Oi, q) by assuming a
non-retrieved object φ as a deterministic point (with probability 1) located at
d(Ol, q). This setting maximizes the possible Pnn value of φ, and consequently
minimizes the possible Pnn values of all retrieved objects (since the summation
of Pnn values is ≤ 1). Formally, lo(Oi) is computed as follows:

lo(Oi) = Pr(Oi) ·
∫

x∈Ri:d(q,x)<d(q,Ol)

fi(x) ·
∏

Oj∈Ó∧j 6=i

Fj(q, d(q, x)) dx (5)

For example, Figure 3 (a) shows how to compute lo(Oi) by integrating the
shaded areas where Ol is O3.

Similarly, the value of up(Oi) is given by Equation 4 by optimistically esti-
mating Pnn(Oi, q) by assuming that the minimum distance between any non-
retrieved object and q is greater than d(Oi, q), and hence it does not affect
Pnn(Oi, q). Formally, up(Oi) is computed as follows:

up(Oi) = Pr(Oi)
∫

Ri

fi(x)
∏

Oj∈Ó∧j 6=i

Fj(q, d(q, x)) dx (6)
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Figure 3: Computing Probability Bounds

Since the summation of Pnn values of all database objects is ≤ 1, we have
up(φ) = 1 −

∑
Oi∈Ó lo(Oi), which is the maximum Pnn value a non-retrieved

object could obtain, while lo(φ) is always zero.
Algorithm Analysis. We justify the way we compute lo(Oi) and up(Oi) by
showing that they are the tightest bounds on Pnn(Oi, q) under the Incremental
Access Assumption. Then, we analyze the growing and shrinking phases of
IO-Centric.

Lemma 3.1 Let Ó be a subset of objects retrieved in min-dist order under the
Incremental Access Assumption. For Oi ∈ Ó, lo(Oi) and up(Oi) are the tightest
lower and upper bounds of Pnn(Oi, q) based on Ó, respectively. �

We include the proof of Lemma 3.1 in Appendix B. It follows from
Lemma 3.1 that any Topk-PNN algorithm working under the Incremental Ac-
cess Assumption, and retrieving objects in min-dist order cannot terminate while
retrieving less objects than IO-Centric.
Growing Phase. Our main result, represented in Theorem 3.2, is that Al-
gorithm IO-Centric is I/O-optimal in the growing phase among the class of
algorithms that work under Incremental Access Assumption, and use arbitrary
retrieval orders (not necessarily min-dist). We include the proof of Theorem 3.2
in Appendix B.

Theorem 3.2 Under the Incremental Access Assumption, any Topk-PNN al-
gorithm A must retrieve all objects retrieved by Algorithm IO-Centric in the
growing phase. �

Shrinking Phase. Based on Equation 5, lo(Oi) can only increase by retrieving
the next object in min-dist order and adding this object to the set Ó. This is
because for any other non-retrieved object Ó, we have d(q, Ó) ≥ d(q, Ol), and
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hence Ó does not change the value of the integral in Equation 5. On the other
hand, based on Equation 6, retrieving any new object Ó can be used to decrease
up(Oi) since Equation 6 does not restrict the values of x ∈ Ri. We hence make
the following observations: (1) Arbitrary object retrieval order can result in
decreasing up(Oi), and (2) Only min-dist retrieval order can result in increasing
lo(Oi), and hence decreasing up(φ).

Since the shrinking phase starts when lo(Oi) > up(φ) is satisfied for some
object Oi, any retrieved object in the shrinking phase is not a query answer.
Retrieved objects in the shrinking phase tighten the probability bounds of candi-
date objects by either increasing the lo(.) values and decreasing the up(.) values
of different candidates (which is only possible under min-dist retrieval), or by
only decreasing the up(.) values (which is possible using arbitrary retrieval or-
der). Hence, the question is whether we can find an optimal retrieval order that
leads to query termination with the least number of retrieved objects. The-
orem 3.3 gives a negative result on the existence of such optimal order. We
include the proof in Appendix B.

Theorem 3.3 There exist two database instances D1 and D2 where, in the
shrinking phase and under the Incremental Access Assumption, min-dist is the
optimal retrieval order in D1 but not the optimal retrieval order in D2. �

Retrieval orders in the shrinking phase lead to query termination based on
different factors including the overlap of uncertainty regions of different objects,
and how objects’ PDFs interact to decide their Pnn values. The effect of these
factors cannot be known under our Incremental Access Assumption without
actually retrieving the objects. We thus resort to heuristics to choose the object
retrieval order in the shrinking phase. Since only min-dist order has the property
of changing all lo(.) and up(.) values, as well as up(φ), we adopt min-dist retrieval
in the shrinking phase.

Throughout the remainder of this paper, min-dist order is used in incremen-
tal object retrieval.
Topk-PNN Queries with k > 1. Algorithm IO-Centric is extended to
answer Topk-PNN queries with k > 1 by changing the condition that ends the
growing phase to: ∃O′ ⊆ C, |O′| = k such that ∀O′ ∈ O′(lo(O′) > up(φ)), and
continuing the shrinking phase until the condition in Definition 2.2 is satisfied.

3.2 Lazy Computation of Bounds

The bounds lo(Oi) and up(Oi) use nested integration on Ri. While these bounds
are tight (Lemma 3.1), they involve high computation cost in return of optimal
I/O cost. We note that using looser bounds and extra object retrievals may
yield better overall query evaluation cost.

We propose a lazy bound-refinement technique that starts with the coarse
granularity of the whole uncertainty region Ri, and lazily tightens the bounds
by considering the finer granularity of subregions in Ri. Consider Equation 4.
Starting with the granularity of Ri, we upper-bound Fj(q, d(q, x)) by replacing
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d(q, x) with its smallest possible value d(q, Oi), resulting in Fj(q, d(q, Oi)) which
is independent of x. Hence, Pnn(Oi, q) is upper-bounded as follows:

Pnn(Oi, q) = Pr(Oi) ·
Y
j 6=i

Fj(q, d(Oi, q)) ·
Z

Ri

fi(x) dx

= Pr(Oi) ·
Y
j 6=i

Fj(q, d(Oi, q))
(7)

Similarly, Pnn(Oi, q) is lower-bounded as follows:

Pnn(Oi, q) = Pr(Oi) ·
Y
j 6=i

Fj(q, d(Oi, q)) (8)

Our bound-refinement procedure has the insight that partitioning Ri into
smaller subregions gives tighter bounds on Pnn(Oi, q), since we exploit further
information in fi. We prove this fact in Theorem 3.6. We start our description
of the refinement procedure by defining partitions.

Definition 3.4 Object Partition. A partition Pi for object Oi is a set of
disjoint subregions {Ri1 . . . Rin} of Ri, such that Pi totally covers Ri. �

For example, in Figure 3(b), {R31, R32} is a possible partition of O3. Let
Pr(Rij) =

∫
Rij

fi(x)dx. It follows that
∑

Rij∈Pi
Pr(Rij) =

∫
Ri

fi(x)dx = 1. We
use min-dist order to create initial object partitions, where a newly retrieved
object Ol splits the partitions of already retrieved objects based on d(Ol, q), as
shown in Figure 3(b).

Let d(Rij , q) and d(Rij , q) be the minimum and maximum distances between
subregion Rij and q, respectively. These distances are shown in Figure 3(b). A
lower-bound of Pnn(Oi, q), given Pi, is computed as follows:

Pnn(Oi, q|Pi) = Pr(Oi) ·
X

Rij∈Pi

Pr(Rij) ·
Y
k 6=i

Fk(q, d(q, Rij)) (9)

Similarly, an upper-bound of Pnn(Oi, q), given Pi, is computed as follows:

Pnn(Oi, q|Pi)
∗ = Pr(Oi) ·

X
Rij∈Pi

Pr(Rij) ·
Y
k 6=i

Fk(q, d(q, Rij)) (10)

Since
∑

Oi
Pnn(Oi, q) ≤ 1, another valid upper-bound for Pnn(Oi, q) is 1 −∑

j 6=i Pnn(Oj , q|Pj). The overall upper-bound is thus computed as follows:

Pnn(Oi, q|Pi) = min(Pnn(Oi, q|Pi)
∗, 1−

X
j 6=i

Pnn(Oj , q|Pj)) (11)

The above bounds provide multiple optimization opportunities of CPU cost.
Bound computation cost is mainly dominated by the cost of computing Fk(.),
which can be efficiently done using a PDF index, e.g., [15]. Furthermore, it is
possible to cache Fk(q, dist) at different dist values to be used with multiple
bound computation.

While the above bounds assume all database objects are retrieved, they can
still be used with partial retrieval of database objects, and hence supporting
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our incremental retrieval strategy. We discuss how this can be done by first
distinguishing two types of object’s subregions.

Definition 3.5 Inner and Outer Subregions. Let Ol be the last retrieved
object in min-dist order. A subregion Rij is an inner subregion if d(Rij , q) ≤
d(Ol, q), otherwise Rij is an outer subregion. �

For example, R11, R12 and R13 in Figure 3(b) are inner subregions, given that
the last retrieved object is O4. On the other hand, R14 is an outer subregion.

Equations 9 and 10 can be adopted with partial retrieval of database ob-
jects, based on min-dist order, using the virtual object φ which represents any
non-retrieved object. Specifically, to compute Pnn(.), the object φ is assumed
to be located at the nearest possible distance to q, i.e., at d(Ol, q), with prob-
ability 1. In Equation 9, Pr(Rij), for an outer subregion Rij , would thus be
multiplied by Fφ(q, d(q, Rij)) = 0, while Pr(Rij), for an inner subregion, would
be multiplied by Fφ(q, d(q, Rij)) = 1. Hence, only inner subregions contribute
to Pnn(.). On the other hand, in Equation 10, in order to compute Pnn(.), the
object φ is assumed to be located at the maximum possible distance from q
(i.e., positive infinity), or equivalently, no more objects are available. Hence,
Fφ(q, d(q, Rij)) = 1 for any subregion Rij , and thus all object’s subregions con-
tribute to Pnn(.).
Partition Refinement. A partition P1

i is refined by partitioning one of
its subregions into two smaller subregions to create a finer partition P2

i . For
example, in Figure 3(b), P1

3 = {R3} is refined by splitting R3 to R31 and R32,
resulting in P2

3 = {R31, R32}. Theorem 3.6 shows that partition refinement leads
to tightening the bounds of Pnn(Oi, q). We include the proof in Appendix B.

Theorem 3.6 If partition P2
i is finer than partition P1

i , then (1)
Pnn(Oi, q|P2

i ) ≥ Pnn(Oi, q|P1
i ); and (2) Pnn(Oi, q|P2

i ) ≤ Pnn(Oi, q|P1
i ). �

A partition Pi is refined by splitting either an inner or an outer subregion.
Selecting which subregion to split is controlled by the cost model in Section 3.3.
Let Ol be the last retrieved object in min-dist order, we consider two cases:
(1) Splitting inner subregions. Finding the optimal split location, i.e., the
location that would result in the largest bound tightening at the least cost, is
by itself an optimization problem. The cost of such optimization may outweigh
the benefit of finding the optimal refinement, since an optimization algorithm
would effectively try many candidate split locations (we discuss splitting cost
and benefit in Section 3.3). We thus adopt a heuristic to split an inner subregion
at its middle distance to q. Our heuristic allows the bounds to converge to the
exact Pnn value at a rate comparable to the optimal splitting method as shown
in Appendix C.
(2) Splitting outer subregions. Split location is set at d(Ol+1, q), i.e., by
retrieving the next object Ol+1. This results in two smaller subregions; an
inner and an outer subregion. Note that Ol+1 initially has one outer subregion
covering its entire uncertainty region.
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Splitting subregions to the finest level, i.e., each subregion has the minimal
width supported by numerical precision, reduces Equations 9 and 10 to the
integral in Equation 4, which is the exact Pnn value, under the same precision.

3.3 Optimizing Total Cost

In this section, we show how to compute Topk-PNN queries while optimizing
the combined I/O and CPU cost. We adopt a benefit-cost approach, where a
benefit is obtained by refining the bounds of Pnn(Oi, q), since such refinement
leads to query termination, while a cost is incurred in bound computation and
object retrieval. We thus view bound refinement as an expensive predicate with
a cost and a benefit. Finding the optimal predicate evaluation order, i.e., the
order that results in query termination at the least cost, is equivalent to the
optimal scheduling problem [4], which is NP-hard. We propose a technique to
rank bound refinement operations based on estimated benefit and cost, and
iteratively apply the refinement with the highest rank.

Let ORij be the set of objects overlapping with Rij based on distance to
q. For example, in Figure 3(b), OR13 = {O2, O3}. The cost of using Rij in
bound refinement is estimated as follows. For Ok ∈ ORij

, let Ck be the cost of
integrating the density function fk over the subregion in Ok that overlaps with
Rij based on distance to q. For example, to use R13 in bound refinement, we
need to integrate the density functions f2 and f3 over the subregions R22 and
R31, respectively. We use PDF indexing (e.g., aggregate R-tree [17]) to speed
up the computation of integrals. Estimating the cost Ck depends on the type of
PDF index. For example, when using an aggregate R-tree (aR-Tree) to index
objects’ PDFs, the number of visited index nodes is used to reflect the cost [29].

On the other hand, the benefit of a subregion Rij is estimated as the dif-
ference between Rij ’s contributions to upper and lower bounds of Pnn(Oi, q).
The intuition is that subregions with large differences are expected to tighten
Pnn(Oi, q) bounds considerably when refined.

Definition 3.7 Refining Cost and Benefit. Let CIO be object retrieval cost.
Then,

• cost(Rij) =

8><>:
P

Ok∈ORij
Ck if Rij is inner

CIO +
P

Ok∈ORij
Ck if Rij is outer

• benefit(Rij) = Pr(Rij) ·` Q
k 6=i Fk(q, d(Rij , q))−

Q
k 6=i Fk(q, d(Rij , q))

´
�

The rank of Rij is defined as follows:

rank(Rij) =
benefit(Rij)

cost(Rij)
(12)
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Algorithm 2 Find-Topk-PNN (O:database, q: query point, k:answer size)

1: Create a priority queue Q based on Pnn(Oi, q)
2: Add φ to Q, with bounds [0,1]
3: reported← 0
4: while (reported < k) do
5: Ot ← remove top object in Q
6: if (Ot is φ AND not all objects are retrieved) then
7: Ol ← next object in O based on min-dist to q
8: bounds(Ol)← use Equations 7 and 8
9: Add Ol to Q

10: else
11: Rti ← highest-rank subregion in Pt (Section 3.3)
12: if (Rti is an outer subregion AND not all objects are retrieved) then
13: Retrieve next object Ol, compute its bounds and add to Q
14: end if
15: Split Rti into two subregions (Section 3.2)
16: end if
17: Update bounds of Ot, re-insert Ot into Q
18: O∗ ← peek at top object in Q
19: if (∀Oi ∈ Q, Oi 6= O∗ : Pnn(O∗, q) > Pnn(Oi, q)) then
20: Report O∗, and remove it from Q
21: reported← reported + 1
22: end if
23: end while

Search Algorithm. Since
∑

Oi
Pnn(Oi, q) ≤ 1, tightening the bounds of one

object affects the bounds of other objects. We are unaware of how much an ob-
ject Oi affects other objects before actually tightening the bounds of Pnn(Oi, q).
We cannot thus ideally order objects for processing in a deterministic way (sim-
ilar to selective predicates with dependencies [23]). Consequently, we choose to
process objects in Pnn(Oi, q) order, following the upper-bound principle, which
is widely-used in optimal top-k algorithms [10].

We now formulate Find-Topk-PNN, a search algorithm to find Topk-PNN
query answer, while optimizing the total cost based on Definition 3.7. The
details are given in Algorithm 2. The algorithm maintains an object priority
queue Q based on Pnn(Oi, q). The queue is initialized with the virtual object
φ. At each step, the algorithm removes Q’s top object Ot (line 5). If the top
object happens to be φ, a new object Ol is retrieved in min-dist order, its bounds
are computed, and it is inserted in Q (lines 7-9). If Ot 6= φ, we identify the
subregion Rti with the highest-rank in Ot (line 11). If Rti is an outer subregion,
a new object is retrieved to split Rti (lines 12-14). Alternatively, if Rti is an
inner subregion, Rti is split as discussed in Section 3.2 (line 15). New bounds of
Pnn(Ot, q) are computed and Ot is re-inserted in Q (line 17). An object O∗ is
reported once Pnn(O∗, q) is greater than upper-bounds of all other objects in Q
including φ (lines 18-21). The algorithm terminates upon reporting k objects.

Figure 4 illustrates Algorithm Find-Topk-PNN using an example. In Fig-
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Figure 5: Partitioning Subregion Pairs

ure 4(a), O1, the first object in min-dist order, is partitioned based on min-dist
between the next object O2 and q. Assume that O1 has the highest Pnn(Oi, q),
and that R12 is its highest-rank subregion, we thus need to partition R12. In
Figure 4(b), partitioning R12 involves retrieving another object O3, which splits
R12 into R13 and R14, and O2 into R21 and R22. In Figure 4(c), assume that
the next object to be processed is O1 again and that R13 has the highest rank.
Now, we further partition R13 without retrieving a new object. The algorithm
continues to find query answer.

4 Uncertain Query, Uncertain Data

We discuss how to extend our techniques to allow uncertainty in both the query
and data objects.

4.1 Computing Probability Bounds

We extend our lazy bound refinement procedure (Section 3.2) to consider un-
certain query object. We start by describing object partitioning.

For a data object Oi and a query object q, let partition Pi denote a set of
subregion-pairs (Rij , Rqs), where Rij ⊆ Ri and Rqs ⊆ Rq, such that the distinct
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Rij ’s in pairs in Pi are disjoint and totally cover Ri, and similarly the distinct
Rqs’s in pairs in Pi are disjoint and totally cover Rq. That is, Pi is the cross-
product of individual partitions of Oi and q. The subregions in each pair are
defined as rectangles. For example in Figure 5, (R11, Rq1) is a pair of subregions
in P1 (shown as shaded rectangles). In the same figure, P1 contains a total of
16 pairs. The partition of q may be different with different data objects. For
example in Figure 5, O1 may use the partition {Rq1, . . . , Rq4}, while O2 uses
the partition {Rq}. We thus have (R11, Rq1) ∈ P1 and (R2, Rq) ∈ P2. We show
how to lazily construct these partitions in Section 4.2.

The justification of the above partitioning method is that when q is uncer-
tain, rectangular subregions facilitate computing the minimum and maximum
distances among objects, as widely-used in classical NN techniques, e.g., [14].

Given the above partitioning scheme, we extend our bound computation
procedure as follows:

Pnn(Oi, q|Pi) =

Pr(Oi) ·
X

(Rij ,Rqs)∈Pi

Pr(Rij).Pr(Rqs).
Y
k 6=i

Fk(Rqs, d(Rqs, Rij)) (13)

where Fk(Rqs, dist) is computed as follows:

Fk(Rqs, dist) = Pr(d(Ok, Rqs) > dist ∨ ¬Ok)
= Pr(Ok) · Pr(d(Ok, Rqs) > dist) + Pr(¬Ok)

(14)

The lower-bound in Equation 13 is correct due to the following inequality:

∀x ∈ Rij , y ∈ Rqs :

Fk(y, d(x, y)) ≥ Fk(Rqs, d(x, y)) ≥ Fk(Rqs, d(Rqs, Rij))
(15)

We use Minkowski sum [3] to limit the integration area in Fk(Rqs, dist). The
Minkowski sum of two areas results from summing every point in the first area
with every point in the second. That is, Minkowski sum(A,B) = {x + y|x ∈
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A, y ∈ B}. Let M be a Minkowski sum defined over Rqs and a circle centered
at (0,0) with radius dist. For example, in Figure 6(a), we show the Minkowski
sum for subregion-pair (R11, Rq1), where dist = d(R11, Rq1). For any point x
outside M , we have d(x,Rqs) > dist. Thus, we find the value of Fk(Rqs, dist)
by integrating the density function fk outside M . For example, in Figure 6 (a),
F2(Rq1, d(Rq1, R11)) = Pr(O2) ·

∫
A2

f2(x) dx + Pr(¬O2).
Similar to the case of deterministic query point, we define an upper-bound

of Pnn(Oi, q) as follows:

Pnn(Oi, q|Pi) = Min(1−
X
j 6=i

Pnn(Oj , q|Pj), Pnn
∗
(Oi, q|Pi)) (16)

where Pnn
∗
(Oi, q|Pi) is computed as follows:

Pnn
∗
(Oi, q|Pi) =

Pr(Oi) ·
X

(Rij ,Rqs)∈Pi

Pr(Rij) · Pr(Rqs) ·
Y
k 6=i

Fk(Rqs, d(Rqs, Rij)) (17)

where Fk(Rqs, dist) is computed as follows:

Fk(Rqs, dist) = Pr(d(Ok, Rqs) > dist ∨ ¬Ok)

= Pr(Ok) · Pr(d(Ok, Rqs) > dist) + Pr(¬Ok)
(18)

The correctness of the upper-bound given by Equation 17 can be proved
similar to the correctness of lower-bound. We compute Fk(Rqs, dist) by inte-
grating the density function fk outside S, where S is defined using four arcs with
radii equal to dist, and the center of each arc is the furthest opposite corner
of Rqs. For example, Figure 6(b) shows the four arcs drawn from the corners
of Rq1 with radii dist. For any point x outside S, we have d(x, Rqs) > dist.
For example, in Figure 6(b), we compute the value of F2(Rq1, d(Rq1, R11)) as
Pr(O2) ·

∫
A2

f2(x) dx + Pr(¬O2).

4.2 Refining Objects’ Partitions

Refining a partition Pi has to take into consideration query uncertainty. We
extend our definition of inner/outer subregions as follows. Let Ol be the last
retrieved object. We call a subregion-pair (Rij , Rqs) inner if d(Rij , Rqs) ≤
d(Ol, q), otherwise we call it an outer subregion-pair. Definition of inner and
outer subregions in this case allows using retrieved objects for bound computa-
tion in Equations 13 and 16 based on the same discussion in Section 3.2.
Splitting an outer subregion-pair. Splitting an outer subregion-pair
(Rij , Rqs) is performed upon retrieving a new object Ol+1 based on min-dist
order. To generate a smaller inner subregion-pair (Ŕij , Ŕqs) from this split, we
need to select the split location such that d(Ŕij , Ŕqs) ≤ d(Ol+1, q). Any circle
with diameter less than or equal to d(Ol+1, q) intersecting with both Rij and
Rqs can be used for such splitting. Such circle would enclose the new subregions
Ŕij and Ŕqs (e.g., the dotted circle in Figure 5. There is potentially an infinite
number of circles that satisfy these two requirements. Our strategy is to find a
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split that maximizes the probability of the resulting inner subregions in order
to maximize their effect on the bounds (Section 3.2).

We heuristically obtain such split by locating two points along the line that
connects the farthest points of Rij and Rqs such that the distance between each
point and the line’s midpoint is equal to d(Ol+1, q)/2. The obtained points
represent the two ends of a diameter for the circle used for splitting. For ex-
ample, Figure 5 shows how to split (R1,Rq) based on object O2. We obtain
one inner subregion-pair (R11, Rq1), and 15 outer subregion-pairs which are the
combinations of other subregions in R1 and Rq.
Splitting an inner subregion-pair. Splitting an inner subregion-pair
(Rij , Rqs), is performed by extending our middle distance method (Section 3.2).
Specifically, we select the subregion (either Rij or Rqs) that has the larger den-
sity, and split it at the middle of its largest dimension. The intuition is to
decrease the difference between the minimum and maximum distances between
Rij and Rqs, and thus allow for obtaining tighter bounds.

5 Uncertain Query, Certain Data

In this section, we discuss answering Topk-PNN queries when data objects have
deterministic attributes and certain membership (i.e., Pr(Oi) = 1,∀Oi ∈ O),
while the query object is uncertain. For example, in Figure 7, the data objects
are represented by points in the space, while the query object is bounded by
the uncertainty region Rq which is shown as a solid rectangle. Based on this
setting, Pnn(Oi, q) is computed as follows:

Pnn(Oi, q) =

Z
Rq

fq(x) ·
Y
j 6=i

Fj(x, d(x, Oi)) dx (19)

where Fj(x, dist) = 1 if d(x, Oj) > dist, and 0 otherwise.
To compute Pnn(Oi, q), we propose an efficient algorithm based on Voronoi

diagram [2], which is widely-used in (reverse) nearest neighbors queries. A
Voronoi diagram divides the space into disjoint cells, each of which is associated
with one object Oi such that Oi is the NN to any point in this cell. For example,
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each one of the four objects shown in Figure 7 exists in a separate subregion of
the space.

Therefore, the NN to q would be Oi whenever q resides in the area Ai, which
is the intersection of Rq and the Voronoi cell of Oi. Hence, Pnn(Oi, q) = Pr(q ∈
Ai) =

∫
Ai

fq(x)dx.
Voronoi diagram can be constructed off-line for stationary data objects [2].

We show how to answer Topk-PNN queries under these settings. We limit
the number of retrieved objects by using an index over data objects (e.g., R-
tree) to prune any object whose minimum distance to q is greater than the
maximum distance between q and some other object. We compute Pnn(Oi, q)
for retrieved objects by simple integration of fq(.) over each subregion Ai of Rq.
We maintain a virtual object, φ, that represents non-retrieved objects, where
Pnn(φ, q) = 1−

∑
i Pnn(Oi, q). We update Pnn(φ, q) when an object is retrieved.

An object O∗ is reported if Pnn(O∗, q) is greater than all other Pnn(.) values as
well as Pnn(φ, q). The algorithm terminates when k objects are reported.

6 Experiments

In addition to Algorithms Find-Topk-PNN and IO-Centric, we implemented
the following algorithms for performance comparison:

• CPU-Centric: A variant of Find-Topk-PNN that optimizes CPU cost only
by loading all objects that survive spatial pruning (Section 1) into memory,
and tightening their bounds lazily until query answer is reported.

• Baseline [7]: An algorithm that filters objects using spatial pruning,
computes the exact Pnn(.) values for all objects, and returns the top-
k objects. The computation of Pnn(.) values is improved by restricting
integration to the overlapping areas of objects.

• Probabilistic Verifiers [6]: A threshold-based probabilistic NN algo-
rithm. The algorithm filters objects using spatial pruning, then partitions
objects into subregions that are used to bound objects’ Pnn(.) values. If
computed bounds do not allow termination, nested integration is used per
each subregion to compute exact probabilities.

• Find-Threshold-PNN: A threshold based version of Algo-
rithm Find-Topk-PNN that reports all objects whose Pnn(.) values
are above a given threshold τ . We extend Algorithm 2 as follows. The
stopping criterion (line 4) is modified so that the algorithm terminates
when the object Ot on the top of the queue has Pnn(Ot, q) below τ ,
since in this case no other object can have Pnn(.) value above τ . The
answer reporting criterion (line 19) is modified such that an object O∗ is
reported, and removed from Q, if Pnn(O∗, q) is above τ .

We compare our techniques to Algorithms CPU-Centric and Baseline.
We additionally compare between Algorithms Find-Threshold-PNN and
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Probabilistic Verifiers. We use real and synthetic data in our compar-
isons. Our performance metrics are query response time, and the number of
retrieved objects.

6.1 Experimental Setup

All experiments are conducted on a SunFire X4100 server with 2.2GHz proces-
sor, and 2GB of RAM. We used an open source R*-tree implementation [13] to
index the bounding rectangles of objects. Objects are retrieved in min-dist or-
der using best-first tree traversal. An object PDF is represented as a histogram
of 300 bins indexed using an aggregate R-tree [17] which allows efficient density
aggregation.

We used ‘Los Angeles’ dataset, a real dataset available in [1], with 60K
geographical objects described by ranges of longitudes and latitudes. We used
Uniform and Normal distributions as the objects’ PDFs. For Synthetic data, we
generated data objects in a 2-dimensional grid of size 1000 × 1000. The PDFs
fi’s can be either uniform, normal or skewed, where skewed PDFs are generated
by shifting the mean of a normal distribution based on a skewness parameter
∈ [−1, 1], and normalizing the resulting distribution. Positive skewness means
that PDF is biased towards q, while negative skewness means that PDF is
biased away from q. We additionally truncate unbounded PDFs (i.e., normal
and skewed) such that the probability of the truncated region is less than 0.003.
The truncated PDFs are then normalized. Our problem parameters are the
following:

• Number of Objects: The number of objects ranges from 100,000 to 300,000
(default is 100,000).

• Size of Objects: The size of each object ranges from 10× 10 to 100× 100
(default is 100× 100).

• Data Distribution: We experimented with uniform, normal, positively
skewed and negatively skewed objects’ PDFs (default is normal).

• Source of Uncertainty: We experimented with (1) certain query object and
uncertain objects with certain membership (CQ,UO), (2) certain query
and uncertain objects with uncertain membership (CQ,UEO), and (3)
uncertain query and uncertain objects with certain membership (UQ,UO)
(default is (CQ,UO)).

• k: The value of k changes from 1 to 10 (default is 1).

In each experiment, we change the value of one parameter, while setting all
other parameters at their default values.
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6.2 Algorithms General Behavior

In general, IO-Centric retrieves the least number of objects among all algo-
rithms, followed by Find-Topk-PNN. However, IO-Centric has slower running
time than Find-Topk-PNN in most cases since IO-Centric only minimizes the
I/O cost. If the number of retrieved objects is significantly small, e.g., PDFs
with positive skewness as in Figure 11, IO-Centric incurs almost the same
cost as Find-Topk-PNN, since both algorithms process a few objects.

CPU-Centric is more efficient when most data objects need to be retrieved,
e.g., (UQ,UO) in Figure 12 and Skewed(-1) distribution in Figure 11, since in
this case CPU-Centric benefits from ignoring the overhead of scheduling object
retrievals. Find-Topk-PNN has the best running time in almost all experiments,
since it takes into consideration the combined cost of CPU and I/O.

Baseline is typically an order of magnitude slower than Find-Topk-PNN.
For example, for 100,000 objects in Figure 10, Baseline terminates in 2063
seconds, while Find-Topk-PNN terminates in 141 seconds. The main reason is
the significant computational overhead incurred in the full integral evaluation.

Figure 10 shows that increasing the number of objects does not severely
degrade the performance of Find-Topk-PNN. For example, tripling the number
of objects from 100,000 to 300,000 results in less than one order of magnitude
increase in the running time (from 141 to 885 seconds). Increasing the total
number of objects has less impact on the number of retrieved objects (went
from 616 to 1750 objects in the same example).
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Figure 14: Find-Threshold-PNN Vs. Probabilistic Verifiers (a) Synthetic Data
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6.3 Real vs. Synthetic Data

The running times of our techniques with real data (Figure 8(a)) is significantly
smaller than the time with synthetic data (Figure 9 (a)). The reason is that
the majority of objects in the real data are scattered and hardly overlapping
(each object covers less than 0.001% of the space), while in the synthetic data,
objects are heavily overlapping (each object covers 10% of the space in default
configuration). Similarly, our techniques retrieve a larger number of objects
with synthetic data (Figure 10 (b)) since a large number of objects are candi-
date answers. The inverse relationship between objects’ overlapping and query
response time is also illustrated in Figure 9, where the degree of overlapping is
controlled by varying object size in synthetic data.

6.4 Effect of Data Distribution

Figure 11 shows that the number of retrieved objects is relatively small when
objects’ distribution is positively skewed (2 object retrieved by Find-Topk-PNN
compared to 616 objects in the default configuration). This is due to the
fact that positively skewed PDFs increase Pnn(.) values rapidly with a small
number of retrievals. Consequently, a rapid decrease in Pnn(φ, q) occurs, and
both IO-Centric and Find-Topk-PNN quickly terminate. CPU-Centric and
Baseline do not gain much from positive skewness since they initially retrieve
all candidate answers. Negatively skewed PDFs result in relatively larger num-
ber of retrievals for the opposite reason. For example, Find-Topk-PNN retrieves
the same number of objects as Baseline in this case.

6.5 Effect of Uncertainty Source

Figure 12 (a) shows that the uncertainty of objects existence leads to increasing
the running times. The reason is that pruning objects based on spatial proper-
ties is not applicable unless a retrieved object has a membership probability of
1, which results in a large number of retrievals as shown in Figure 12 (b). This
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Verifiers

leads to significant increase in the running times of Baseline and CPU-Centric
since they mainly depend on spatial pruning. For example, the number of re-
trievals in these algorithms is 11299 objects (11% of all objects) at (CQ,UEO),
compared to 680 (0.6%) at (CQ,UO). The running time significantly increases
when the query object is uncertain (UQ,UO). The reason is that query un-
certainty results in looser Pnn(.) bounds compared to the deterministic query
point, and hence, additional computation is needed.

6.6 Scalability with k

Figure 13 shows the performance with different k values. The running times of
Find-Topk-PNN, CPU-Centric, and IO-Centric slightly increase with k, e.g.,
from 141 seconds for k=1 to 309 seconds for k=10 in Find-Topk-PNN. Baseline
has the same running time for all k values since it always computes the exact
Pnn(.) values of all objects. The number of retrieved objects in CPU-Centric
and Baseline are the same for all k values since they both avoid object retrievals
based only on spatial pruning.

6.7 Comparison with Other Approaches

We compare Find-Threshold-PNN, our threshold-based extension with
Probabilistic Verifiers. Probabilistic Verifiers resorts to expensive
integration when objects cannot be judged to be in query result based on their
initial bounds. This approach shows longer running times when compared
to Find-Threshold-PNN in both synthetic data (one order of magnitude dif-
ference in Figure 14(a)) and real data (Figure 14(b)). The difference in running
time is smaller (less than one second) with real data since objects are hardly
overlapping, and thus integration cost is small. The running times of both al-
gorithms decrease when the threshold approaches 1, since high threshold values
allow pruning large number of objects using their initial bounds, i.e., without
performing expensive refinement. Find-Threshold-PNN slightly outperforms
Probabilistic Verifiers w.r.t number of retrieved objects.
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Figure 16: Effect of PDF Truncation (a) Running Time (b) Error

We also evaluate Find-Threshold-PNN with threshold queries that allow a
small error in the output as proposed in [6]. That is, we also report any object Oi

with Pnn(Oi, q)− Pnn(Oi, q) < ∆ and Pnn(Oi, q) > τ . The value of parameter
∆ represents the amout of error tolerance. We show in Figure 15 the effect of
varying ∆ on the performance while we fix the probability threshold at 0.1. We
note that the running time of Algorithm Find-Threshold-PNN has improved
35% when increasing ∆ from 0 to 0.25. On the other hand, the Probabilistic
Verifiers approach experienced 5% improvement for the same change in ∆.
This observation suggests that Algorithm Find-Threshold-PNN exploits error
tolerance more efficiently to decrease the running time. Our explanation is that
Algorithm Find-Threshold-PNN performs lazy tightening of bounds only when
stopping criteria is not met and thus avoids unnecessary computations.

6.8 PDF Truncation Error

In this experiment, we study the effect of truncating the objects’ PDFs (fi’s)
on the accuracy of query results and on the performance of our algorithms. We
denote by ε the value of the integral of fi over the truncated region. We vary
ε in the range [0.00005, 0.01]. All other problem parameters are set to their
default values, while k is set to 10.

To measure the accuracy, we compare the vector V of ranked answers, com-
puted at some ε ∈ [0.00005, 0.01], and the vector V́ of ranked answers, com-
puted at the minimum ε = 0.00005, using two metrics: (1) Footrule(V, V́ ) =∑

Oi∈V |Rank(Oi in V ) − Rank(Oi in V́ )|, and (2) FalsePositives(V, V́ ) =
|{Oi : Oi ∈ V and Oi /∈ V́ }|.

Figure 16 shows our results for different ε values. As ε increases, the run-
ning time improves for all algorithms due to the shrinkage of uncertainty re-
gions, which leads to less overlapping between objects. On the other hand,
larger values of ε produce errors in results as we ignore larger regions of PDFs.
For example, going from ε = 0.00005 to 0.0005 reduces the running time of
Algorithm Find-Topk-PNN from 91 seconds to 62 seconds and the number of
retrieved objects from 286 to 155, while introducing a single error.
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7 Related Work

Probabilistic NN queries have gained recent attention due to emerging applica-
tions that involve uncertainty. In [7], a probabilistic data model was proposed to
capture objects with uncertain locations and certain membership. NN queries
are defined so that all objects with non-zero probabilities of being the NN are
reported, which is different from Topk-PNN queries. Furthermore, the proposed
spatial pruning does not apply to the case of uncertain membership.

In [16], answering probabilistic NN queries using sampling methods is stud-
ied. Both query and data objects can be uncertain in this approach. The
proposed algorithm also detects the cases that can be solved based only on the
spatial properties of objects.

A recent approach has been introduced in [6] to solve the problem of proba-
bilistic NN by reporting all objects with probabilities above a specific threshold,
with a given error tolerance. The proposed algorithm goes through three stages
to determine whether an object is part of the query answer or not. The first
stage prunes objects based on their spatial properties (similar to [7]). In the
second stage, space is divided into subregions based on the minimum and max-
imum distances between objects and the query point. Lower and upper bounds
of Pnn(.) values are then computed using coarse grained CDFs corresponding
to the space partitioning to avoid performing nested integration. If the com-
puted bounds are not enough to terminate, nested integration is incrementally
performed over each subregion to compute its exact contribution to the object’s
Pnn(.) value. We contrast and compare our algorithms to this approach in
Section 6.

Another technique to answer probabilistic NN queries has been proposed
in [8], where objects are represented as deterministic points associated with
membership probabilities. However, the proposed model does not support un-
certainty in objects’ attributes.

Our formulation is similar to [24], where probabilistic top-k queries are
addressed using Monte-Carlo multi-simulation. We refine probability bounds
guided by a cost model, while [24] adopts randomized refinement. Addition-
ally, our problem involves correlations among Pnn(.) bounds of different objects,
while the bounds computed in [24] are independent.

A related problem is answering probabilistic range queries [5]. The proposed
model allows uncertain query and data objects. Addressing NN queries under
the same model raises different challenges, as it involves not only the interaction
between each data object and the query object, but also the interaction among
objects.

PDF indexing methods (e.g., [28, 15]) can lower the cost of integrating PDFs
by storing PDF synopses to allow fast pruning of objects that do not satisfy the
query criteria. Although these techniques are proven to be efficient in range
queries, they alone cannot provide efficient processing of Topk-PNN queries.
The reason is that the execution of Topk-PNN queries is mainly influenced by
the interaction among objects’ PDFs. PDF indexing cannot directly be used to
resolve object overlapping, where nested integration is needed (Section 2).
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8 Conclusion

In this paper, we proposed a novel approach to efficiently compute NN queries
in probabilistic databases where data and query objects are uncertain. We
studied the I/O optimality of different retrieval orders. We introduced a unified
cost model combining the I/O and CPU factors. We designed efficient query
processing algorithms to minimize the total incurred cost. We also introduced
extensions to our methods to handle dependent objects and threshold queries.
Our experimental results show orders of magnitude performance gain, compared
to current methods.

References

[1] Topologically integrated geographic encoding and referencing (tiger) system,
http://www.census.gov/geo/www/tiger/.

[2] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric data
structure. ACM Computing Surveys, 1991.

[3] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational geom-
etry algorithms and applications, 2nd ed. springer verlag, 2000.

[4] K. C.-C. Chang and S. won Hwang. Minimal probing: supporting expensive
predicates for top-k queries. In SIGMOD, 2002.

[5] J. Chen and R. Cheng. Efficient evaluation of imprecise location-dependent
queries. In ICDE, 2007.

[6] R. Cheng, J. Chen, M. Mokbel, and C. Chow. Probabilistic verifiers: Evaluating
constrained nearest-neighbor queries over uncertain data. In ICDE, 2008.

[7] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying imprecise data in
moving object environments. In TKDE, 2004.

[8] X. Dai, M. L. Yiu, N. Mamoulis, Y. Tao, and M. Vaitis. Probabilistic spatial
queries on existentially uncertain data. In SSTD, 2005.

[9] V. de Almeida and R. Hartmut. Supporting uncertainty in moving objects in
network databases. In GIS, 2005.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middle-
ware. Journal of Computer and System Science, 2001.

[11] H. Franco-Lopez, A. R. Ek, and M. E. Bauer. Estimation and mapping of forest
stand density, volume, and cover type using the k-nearest neighbors method.
Remote Sensing of Environment 2001.

[12] J. Geweke. Efficient simulation from the multivariate normal and student–t distri-
butions subject to linear constraints and the evaluation of constraint probabilities.
In Computing Science and Statistics: Proceedings of the 23rd Symposium on the
Interface, 1991.

[13] M. Hadjieleftheriou. Spatial index library,
http://research.att.com/~marioh/spatialindex/.

[14] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In SSD, 1995.

27



[15] D. V. Kalashnikov, Y. Ma, S. Mehrotra, and R. Hariharan. Index for fast retrieval
of uncertain spatial point data. In GIS, 2006.

[16] H.-P. Kriegel, P. Kunath, and M. Renz. Probabilistic nearest-neighbor query on
uncertain objects. In DASFAA, 2007.

[17] I. Lazaridis and S. Mehrotra. Progressive approximate aggregate queries with a
multi-resolution tree structure. In SIGMOD Conference, 2001.

[18] E. Li, D. Boos, and M. Gumpertz. Simulation study in statistics. Journal of
Interconnection Networks, 2001.

[19] Q. Liu, W. Yan, H. Lu, and S. Ma. Occlusion robust face recognition with dynamic
similarity features. In ICPR, 2006.

[20] V. Ljosa and A. K. Singh. Apla: Indexing arbitrary probability distributions. In
ICDE, 2007.

[21] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. In SIGMOD, 2003.

[22] N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung. Efficient top-k
aggregation of ranked inputs. ACM TODS., 32(3), 2007.

[23] K. Munagala, S. Babu, R. Motwani, and J. Widomy. The pipelined set cover
problem. In ICDT, 2005.

[24] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic
data. In ICDE, 2007.

[25] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In SIG-
MOD, 1995.

[26] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models for
uncertain data. In ICDE, 2006.

[27] M. A. Soliman, I. F. Ilyas, and K. C. Chang. Top-k query processing in uncertain
databases. In ICDE, 2007.

[28] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar. Indexing
multi-dimensional uncertain data with arbitrary probability density functions. In
VLDB, 2005.

[29] Y. Tao, D. Papadias, and J. Zhang. Aggregate processing of planar points. In
EDBT, 2002.

[30] R. Weber, H. Schek, and S. Blott. A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In VLDB, 1998.

[31] R. Yamamoto, H. Matsutani, H. Matsuki, T. Oono, and H. Ohtsuka. Position
location technologies using signal strengths in cellular system. In VTC-Spring,
2001.

A Extensions

Handling Dependencies. Our previous discussion assume independent
objects. However, in some scenarios we might have object dependencies. For
example, in Example 1.1, the locations of two cell phones could be correlated
such that their distance cannot exceed some value.
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We show how to handle object dependencies in the following setting. Assume
a setting where objects are partitioned into groups Gi’s, where objects in the
same Gi are mutually exclusive such that Pr(Gm) =

∑
Oi∈Gm

Pr(Oi) ≤ 1,
Pr(¬Gm) = 1 − Pr(Gm), and each object belongs to exactly one group. This
type of dependency can arise in scenarios that involve uncertainty on objects’
identities due to the unreliability of the sources of extracted information, e.g.,
low-quality images. For example, two isolated objects may be suspected to be
the same entity, such that only one of them could be true, while the other is
noisy data.

Let G−i be the set of groups excluding the group that contains Oi. We next
show how to compute bounds on Pnn(.) values in this case.

Pnn(Oi, q|Pi) = Pr(Oi) ·
X

Rij∈Pi

Pr(Rij)
Y

Gm∈G−i

FGm(q, d(q, Rij)) (20)

Pnn(Oi, q|Pi) = Min(1−
X
j 6=i

Pnn(Oj , q|Pj) ,

Pr(Oi) ·
X

Rij∈Pi

Pr(Rij)
Y

Gm∈G−i

FGm(q, d(q, Rij)))
(21)

where FGm(q, dist) = Pr(¬Gm) +
P

Ok∈Gm
Pr(Ok) · Pr(d(q, Ok) > dist).

The above formulation takes into account exclusiveness among objects by
summing up the probabilities of group members using the FGm

(.) terms, and
multiplying the probabilities of different groups together, since there are no
inter-group dependencies.

Our incremental retrieval model applies to the above formulation, since we
can compute the bounds based on the current set of retrieved objects only.
As mentioned in Section 3.2, we only include inner subregions when computing
lower bounds, and we include both inner and outer subregions when we compute
upper bounds.
Top-k Queries with Probabilistic Scores. The formulations and techniques
presented in this paper are in the context of NN queries. However, our tech-
niques can be extended to solve other related problems. Specifically, we consider
top-k queries, where data objects have continuous score distributions. The query
semantics we support is to report the k most probable top-1 answers. Such top-k
queries can be mapped to probabilistic NN queries by modeling object’s score as
1-dimensional uncertainty region, enclosing the possible score values, associated
with the score density. The query point for such NN query is a point located in
1-dimension at the maximum possible score.

B Proofs

B.1 Proof of Lemma 3.1

Let Ol ∈ Ó be the last retrieved object in Ó. For any Oi ∈ Ó, let lo(Oi) be as
given in Equation 5. Assume that another lower-bound ĺo(Oi) > lo(Oi) exists.
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Assume that the next non-retrieved object has a probability of 1 at d(Ol, q). In
this case, Pnn(Oi, q) = lo(Oi). Hence, ĺo(Oi) is an incorrect bound.

Similarly, assume another upper-bound úp(Oi) < up(Oi), where up(Oi) is
given by Equation 6, for an object Oi ∈ Ó. Assume that all non-retrieved objects
have their minimum distance to q greater than d(Oi, q). Hence, Pnn(Oi, q) =
up(Oi). Hence, úp(Oi) is an incorrect bound.

B.2 Proof of Theorem 3.2

Assume that A and IO-Centric have both retrieved the same objects up to
some object Ol. Assume that IO-Centric has next retrieved the object Ol+1,
while A has next retrieved an object different from Ol+1. Since A cannot rule
out the possibility that Ol+1 might be a deterministic point with probability 1
located at distance d(Ol, q) from q, A cannot increase the lower-bounds of Pnn

values computed at the point Ol is retrieved, otherwise incorrect bounds would
be assumed. Consequently, A cannot also change the upper-bound on the Pnn

value of φ computed at the point Ol is retrieved. Hence, A cannot terminate
before retrieving Ol+1.

B.3 Proof of Theorem 3.3

Let D1 be a database instance where, after ending the growing phase, the first
non-retrieved object in min-dist order, Ol, is a deterministic point with probabil-
ity 1. Hence, retrieving Ol leads to direct query termination, since all candidates
would have exact Pnn values based on Equations 5 and 6. Any other retrieval
order in D1 leads to query termination using at least one object, while min-dist
order leads to termination using exactly one object Ol.

The database instance D2 can be constructed by adjusting the PDFs of non-
retrieved objects such that retrieving an object out of min-dist order leads to
direct termination of the query by sufficiently shrinking the up(.) values of can-
didates, while retrieving the next object in min-dist order has a negligible effect
on the candidates Pnn bounds, and hence is not enough for query termination.
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Figure 19: Convergence Rate (a) non-skewed distribution (b) negatively skewed dis-
tribution

We illustrate the proof of Theorem 3.3 using the following example. Con-
sider a database instance D1, shown in Figure 17 where objects have 1-
dimensional uncertain attributes. Assume that we break ties by favoring ob-
jects with smaller identifiers. The growing phase ends after retrieving O1 and
O2 (Pnn(O1, q) ∈ [0.4, 0.4], Pnn(O2, q) ∈ [0.24, 0.6]). In D1, the first non-
retrieved object in min-dist order, O3, is a deterministic point with probability
1. Retrieving O3 leads to direct query termination, since all candidates would
have exact Pnn values (i.e., Pnn(O1, q) ∈ [0.4, 0.4], Pnn(O2, q) = [0.24, 0.24]).
Any other retrieval order in D1, i.e. retrieving O4, does not lead to im-
mediate terminating (Pnn(O1, q) = [0.4, 0.4], Pnn(O2, q) ∈ [0.24, 0.564]). On
the other hand, consider the database instance D2 as shown in Figure 18.
Similar to D1, the growing phase ends after retrieving O1 and O2. Re-
trieving an object in min-dist order, i.e. O3, does not lead to termination
(Pnn(O1, q) = [0.4, 0.4], Pnn(O2, q) ∈ [0.24, 0.564]). However, retrieval of O4

leads to direct termination (Pnn(O1, q) = [0.4, 0.4], Pnn(O2, q) = [0.24, 0.24]).

B.4 Proof of Theorem 3.6

Assume that P2
i is obtained by replacing Rij ∈ P1

i with {Rij.l; l =
1 . . .m}. It follows that d(Rij , q) ≥ d(Rij.l, q). Therefore, Fk(q, d(q, Rij)) ≤
Fk(q, d(q, Rij.l)) for any object Ok 6= Oi. Based on Equation 9 and since∑

Rij.l
Pr(Rij.l) = Pr(Rij), It follows that (1) is true.

Similarly, d(Rij , q) ≤ d(Rij.l, q). Therefore, Fk(q, d(q, Rij)) ≥
Fk(q, d(q, Rij.l)) for any object Ok 6= Oi. Based on Equation 10, it follows
that

∑
Rij∈P2

i
Pnn(Rij , q) ≤

∑
Rij∈P1

i
Pnn(Rij , q). In addition, the value of

1−
∑

j 6=i Pnn(Oj , q|Pj)) does not change when object Oi is partitioned. There-
fore, based on Equation 11, (2) is true.

C Evaluating Refining Heuristics

Our lazy bound refinement procedure refines object’s partition by selecting the
subregion with the highest rank and splitting it at its middle distance to q. We
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show here that the convergence rate of this heuristic to the exact integral value
is comparable to the optimal refinement method. The optimal split location
is found by conducting an exhaustive search over all possible split locations,
and picking the location that results in tightening Pnn(.) bounds the most.
We additionally compare to a randomized strategy that splits a subregion at a
random point.

Figure 19 shows the convergence of the three methods to the exact integral
value with different data configurations. We plot the average width of the in-
tervals that represent the Pnn(.) bounds of all objects against the number of
refinement steps. We use CPU-Centric to study the convergence, since we focus
only on the efficiency of computation. The convergence rates of all methods
are noticeably close. The convergence rate of our middle-distance heuristic is
better than the randomized heuristic. Optimal refinement leads to the small-
est number of steps where each step is much expensive than both heuristics.
Thus, the overall cost of the optimal refinement is actually much higher, which
makes using the optimal refinement unjustifiable as other heuristics provide
close convergence rate at a significantly smaller cost. For example, with Nor-
mal distributions, middle-distance heuristic terminates in 367 seconds, while the
optimal refinement terminates in 3092 seconds.
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