OOMatch: Pattern Matching as Dispatch in Java

Adam Richard Ond'ej Lhotak
University of Waterloo University of Waterloo
abrichard@uwaterloo.ca olhotak@uwaterloo.ca
Abstract terface to conceptualize and work with these components. A

We present a new language feature, specified as an extensiofil@sS-Pased type system provides this quite well.

to Java. The feature is a form of dispatch which includes and ~ Functional programming languages, on the other hand,
subsumes multimethods (see for example [3]), but which Nave gained a group of devoted followers not only for their

is not as powerful as general predicate dispatch [7]. It is, beauty, but also for their stability. Because of their declara-

however, intended to be more practical and easier to use tharflV® nature and lack of side effects, it is considerably more

the latter. The extension, dubbed OOMatch, allows method difficult to write buggy software in a functional language
parameters to be specified patterns which arematched (once the software passes the compiler) than in an object-

against the arguments to the method call. When matchesoriented language. As there is a greater trend toward se-

occur, the method applies; if multiple methods apply, the curity and 9Io§ing segurity holes, as computers are used fqr
method with themore specifipatternoverridesthe others. more anql ns_kler appllcatl_ons, and as programs get larger, it
The pattern matching is very similar to that found in the 1S becoming increasingly important to prevent bugs from the

“case” constructs of many functional languages (ML [12], start. . , ,
for example), with an important difference: functional lan- __The strong static typing of languages like Standard ML

guages normally allow pattern matching ovariant types [12] and H.askeII [5] provides .this safety quite vyeII. But
(and other primitives such as tuples), while OOMatch al- most functional languages (with notable excgptlons such
lows pattern matching on Java objects. Indeed, the wider@S OCaml [2] and Scala [14]) do not have built-in support

goal here is the study of the combination of functional and 0" class-based object-oriented programming as found in
object-oriented programming paradigms. Of special impor- [anguages like Java and C++. _
tance, we ensure that matching can occur while retaining the E@ch methodology - functional and OO programming -
complete control of class designers to prevent implementa-'S useful fpr a wide class of problems, and emboghes the
tion details (such as private variables) from being exposed toProgramming style of a large group of people. It is very
clients of the class. difficult to say whether one or the other methodology is ideal
We here present both an informal “tutorial” description of for all situations, or whether some mixture is ideal. Indeed,

OOMatch, as well as a formal specification of the language, If @nyone knows the answer to that question, that person
and a proof that the conditions specified guarantee run-timeSHuld probably create a programming language. Therefore,
safety. we believe that for the time being, it is best to provide

a language that supports as many styles as possible. The
Categories and Subject DescriptorsD.3.3 [Programming features embodying each style should further be orthogonal
Languagek Language Constructs and Features—Classeswith each other, so that different pieces of code written in
and objects, Patterns, Polymorphism, Procedures, functionsdifferent styles can be pieced together to form a program.
and subroutines This paper presents a small step towards the goal of uni-
fying object-oriented and functional programming. In par-
ticular, it considers how pattern matching — a common and

Keywords predicate dispatch, dynamic dispatch, pattern useful feature of many functional languages —might be inter-

General Terms Design, Languages

matching, multimethods, Java woven into the object-oriented tapestry. Pattern matching in,
for example, ML, allows one to decompose algebraic types
1. Introduction and Motivation or tuples into their components, either in a case statement or

in a set of functions. Though this pattern matching is use-

Object-oriented programming languages have become theq in 4 functional context, simple algebraic types and tuples
industry hallmark for writing large programs (of millions of ;.ant used much in object-oriented programming; classes

lines of code), and with good reason. Building large systems ;.o ;sed much more. So we here present a means of decon-

naturally lends itself to breaking down a task into COMPO- gircting objects into their components and specifying pat-
nents, and programmers must be provided with a simple in-

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 1 2007/3/19

terns that match objects with certain properties. The patterns But this is incorrect because the version of “equals”
are specified in different method headers (as in ML), and the shown does not in fact override Object’s “equals” method,
compiler decides on a natural order to check for a matching which has signaturepublic boolean equals(Object
pattern, i.e. to check which methods override which. This obj) [9]. Because thequals in C does not have the same

is specified via subtyping, so this feature subsumes poly- parameter types, the methods become overloaded rather than
morphic dispatch and multimethods. Most important to this overridden. This means that, for example, this code:
approach, it should be noted, is that information hiding of

objects (a fundamental property of object-oriented systems)iect o = new C(...);

must be preserved: we must not allow clients to access thelf (@ew C(...).equals(o)) {...}

data of the object except in ways the class writer explicitly does not call the usersquals method, but the one in the
allows. Another important goal is simplicity; if programmers Opject class, probably causing unexpected behavior. In an
find the facility confusing, they can already simulate it them- jmaginary language where the methods were treated as mul-
selves using if-else blocks and casting, and its practical valuetimethodsg. equals (C) would overrideC. equals (Object)
would be lost. which would in turn overridedbject .equals(Object),
Though OOMatch is being implemented as an extension gng the behavior that was probably expected would take
to Java, it would likely be trivial to adapt the feature to other place. Instead, in Java, one must (and must remember to)

similar object-oriented languages, such as C++. write custom dispatch code, such as:

2. Background class C {

2.1 Pattern Matching public boolean equals(Object otherObject)
Pattern matching is a popular feature of the ML family {

of languages. It lets one create a function with multiple if (!(other instanceof C))

cases, each case of which handles arguments of a particular return false;

form. For example, the following code declares a binary tree C other = (C)otherObject;

structure in SML:

datatype tree = Leaf of int
| Node of tree * tree ;
This code is noticeably more verbose and error-prone

With that definition, each case can be matched with mul- . ’
than the multimethod version.

tiple function definitions:

fun f(Leaf(x)) = ... 3. Related Work

I f(Node(nl, n2)) = ... The idea of dispatch mechanisms more general and powerful
; than polymorphic dispatch (the dispatch found in Java) is not
new. Multimethods were introduced in CommonLoops [1]

The first version off is called if a leaf node is passed
as an argument, and the second is called for non-leaf nodes"d added to Java in MultiJava [3]. This notion was general-

The free variableg, n1, andn2 can then be referred to in '26d and formalized as predicate dispatch [7], in which any

the body of the function, like any parameters. Note that, if arbitr_ary predicate can be used tq phopse the method to call.
multiple functions match (which can't happen in the above The idea is that a boolean condition is added to a method

example), the first match is the one chosen. Qefinition, and when the condition _evaluates to true (at the

time of a method call), that method is called. If a method A's
2.2 Primer on Multimethods condition implies B’s (where A and B have the same name
and argument types but different boolean conditions), then

Multimethods are a classic example of a powerful form of “". ; ;
A is said to override B.

dispatch. They allow the method chosen to depend on the X . ; -
run-time types ofll arguments, rather than just the receiver Rredlcate dispatchis b y d?‘f'n'“o” the most pqw?rful form
argument. To understand the usefulness of this feature, con—mc d|spatch. How_eve_r, wh|Ie_ Itis an excell_ent aid in under-
sider how one might write a class with an “equals” method. standing and motivating various forms of dispatch, we would

In Java, a naive programmer might write the following: like to provide the common programmer with a language
' feature that is less powerful but easier to use and compute.

class C {
o 3.1 TOM
public boolean equals(C other) TOM [13] is a language extension that allows decomposing
{ ...} objects into their component parts and matching them with
} patterns. It takes a multi-language perspective - the extension

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 2 2007/3/19

can be used in Java, C, and Caml. In TOM, one constructsstill very powerful) subset, allowing only primitive values,
algebraic types, which are entities that have a one-to-oneparameter references, subtype queries (allowing for multi-
correspondence with a type in the target language (e.g. a Javanethods), field references and built-in operators. The most
class). One then provides “functions” on these types to work noteworthy restriction here is that arbitrary function calls
with them, mapping calls to these functions to code in the cannot appear in “when” clauses. It then uses an external
base language being used. Then, one can match an algebraigdecision procedure — namely, CVC Lite [4] — to determine
type with a case-like construct (called “%match”), allowing which functions override which.
the pattern that matches to be selected and used. Though its “when” clause is more powerful than

TOM only provides a case-like construct; matching is not OOMatch’s pattern matching, we believe there are many
used to directly select one of several functions to execute. situations in which OOMatch is more practically useful. In
Its pattern matching, however, works in much the same way particular, it is cumbersome to extract the internals of ob-
as OOMatch’s pattern matching, both involving the decon- jects in JPred. Perhaps more importantly, doing so requires
structing of objects. Further, TOM includes a way to match the data members of objects to be exposed, which violates
lists, which is a useful and powerful feature that OOMatch encapsulation. Further, JPred disallows Java interfaces from
does not (yet) include. being matched in order to achieve proof that typechecking

can find all ambiguity errors at compile time. As we shall

3.2 HydroJ see later, we choose to relax this restriction at the cost of a
HydroJ [10] introduces a form of dispatch similar to the run-time check for some of these errors.
one given here, but with a completely different goal — that i
of allowing the function declarations to be changed without 3-4 Views
changing the calls to those functions, and vice versa. Its ap-Views [16] were another attempt to unite pattern matching
plication is ubiquitous and distributed computing, in which and data abstraction. The “in” clauses of views are simi-
several small devices communicate with each other, and onéar to Java constructors and “out” clauses are like OOMatch
wants to improve one component without having to replace deconstructors. However, using views, the only way to get
(and waste) the old ones. In HydroJ, this is made easier byinformation from an object is by making reference to its
its rule that if the number of arguments to a function call declarative form —there are no accessor methods like in Java.
exceeds the number of parameters in its definition, the ex-This may be fine for a functional language, but in Java an
cess arguments are ignored. In more mainstream languagesybject frequently contains information not found in its inter-
of course, this would be a compile error. face, and there should be a way to get that information back

Function parameters in HydroJ can also contain nested(safely). Also, there is no mention in [16] of the order func-
patterns on HydroJ’s special types (“semi-structured data”). tions with patterns are checked for applicability, or which
Moreover, in HydroJ a function with more parameters over- functions override which; presumably functions appearing
rides a function of the same name with fewer parameters. first are considered to have priority. OOMatch, in contrast,
Hence, it contains both a form of dispatch and pattern match- determines override relationships based on which method is
ing to facilitate this dispatch. more specific.

This feature is very useful in ubiquitous and distributed

. o . . 3.5 Scala

computing applications, which the language is targeted for,
but is not well-suited for a general-purpose programming Scala [14] is a language that also attempts to merge Object-
language, as is our goal. In particular, the excess argumentoriented and functional programming, roughly starting with
rule in HydroJ means that if one accidentally adds extra Java as a base. It contains a form of pattern matching called
arguments to a call, the program will compile and run, and case classed set of case classes is a class hierarchy which
silently ignore the arguments, likely resulting in bugs. This allows objects in the hierarchy to be easily matched or de-
goes against our goal of safety through a strong type systemconstructed; there is special syntax to make this convenient.
Also, though HydroJ’s means of dispatch based on matching To take the example from [14]:
objects is much like ours, it doesn't provide a means of
decomposing a Java type and safely extracting its internals
to perform the match.

abstract class Term

case class Num(x : int) extends Term
case class Plus(left: Term, right : Term)
3.3 JPred extends Term

JPred [11] adds a powerful form of predicate dispatch to Num andPlus here are each subclasses of, or "cases of”,
Java. It uses a general “when” clause to dispatch on boolearnTerm. Num, for example, can now be constructed by passing
and arithmetic expressions involving the parameters, mucha singleint parameter to its constructor. Variables of type
like general predicate dispatch. To make it easier to com- Term can then be matched against in a special “match” ex-
pute the override relationships, JPred restricts the predicategpression, andium.x can be extracted back (deconstructed)
that can appear in a “when” clause to a decidable (thoughwhenNum matches. For example:

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 3 2007/3/19

Term x = ...; //Numeric constants

x match { class NumConst extends Expr { ... }
case Plus(y, Num(0)) =>y
case Plus(Num(0), y) => y Then part of the functionality to simplify expressions
case _ => x could be implemented using OOMatch as the following set
} of methods:

Case classes are then similar to algebraic types, but MOT€/ /4o nothing by default
powerful in that they can be used like regular classes.
Scala also has a feature callegtractors described in
[6], which are similar to OOMatch deconstructors. These //Anything + O is itself
allow the addition of “apply” and “unapply” methods to a Expr optimize(Plus(Expr e, NumConst(0)))
class, the latter of which allow objects of the class to be { return e; }
decomposed, and their components returned. Such objects
can then be matched in a “match” expression, as above, but//COnstant folding
u1aconqo“ed\N§y: - Expr optimize(Binop(NumConst ci,
Despite the similarities between Scala’s pattern match- NumConst c2) op)
ing and OOMatch, Scala does not use pattern matching for{ return op.eval(cl, c2); }
method dispatch, but only a “match” construct that can ap-
pear inside a method body. Cases in Scala match expressions These methods are matching appropriate types of ex-
are evaluated in the order in which they appear; unlike in pressions and applying optimizations when possible. Each
OOMatch, Scala does not automatically prefer specific pat- method specifies an optimization rule. The latter two meth-
terns over more general ones. ods, which also have one parameter each, specify patterns
3.6 OCaml to break down or “deconstruct” that parameter into its com-

' ponents, which are matched against the argument passed to
Objective Caml [2] is another language that combines ,ntinize. The second method, for example, takes a pa-
object-oriented and functional styles, in this case by adding ;gmeter of typePlus and breaks it into two parts (the two
classes and objects to a functional language (ML). It con- operands of the “+” operatorxpr e andNumConst (0).
tains regular ML pattern matching with a "match” clause, That method only applies, then, when the parameter is of
Wh_ich allows matching of primitives, tuples, records, and type Plus, and the operands match these two patterns.
union types. We assume that all operands are of t@r, so the first

Matching of records types can be seen as being very gperand always matches, while the second one apparently
similar to object matching, as OOMatch allows. However, matches when the other operand is a numeric constant with
OCaml pattern matching does not match OCaml objects, the value 0. Note that the way these patterns are written,
nor does OCaml provide multimethods or any other more 44 which ones are allowed, is so far magic to the reader —
general form of dispatch on patterns in which precedence iSthe extra information the classBsus andNumConst must

Expr optimize(Expr e) { return e; }

determined automatically by the compiler. provide in order to allow themselves to participate in pattern
. . matching is described shortly.

4. Using OOMatch - Informal Description The key point to notice in the above example is that the

4.1 Pattern Matching third methodoverridesthe first, since its pattern imore

specific tharthe original’s (becausBinop extendsExpr),
and the second also overrides the first siBtgop extends
Expr. Note that the order in which the methods appear does
pot affect these override relationships.

Theo in the second method means that the pattern is only
matched when the numeric constant’s value is 0. The named

We introduce OOMatch using a simple example. Suppose
one is writing the optimizer component of a compiler, and
wants to write code to simplify arithmetic expressions. Sup-
pose the Abstract Syntax Tree (AST) is represented as a clas
hierarchy (a natural way to represent an AST), as follows.

//Arithmetic expressions variables in the patterns are given the value that is matched,

abstract class Expr { ... } so that this value can be used by referring to the declared
name in the method body. Note that the patterns themselves

//Binary operators can be named or unnamed; the Plus match is unnamed, while

class Binop extends Expr { ... } the Binop is given the name “op” so that the matched object
can be referred to in the method.

//’+’ operator Patterns can of course themselves contain patterns (as

class Plus extends Binop { ... } is shown in the second method above), and can indeed be

nested to any arbitrary depth. The most specific match is

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 4 2007/3/19

always chosen first. So, for example, we could add anotherOOMatch. The first way, described next, is simplest but al-
function with signature lows little control; the second option allows the class writer
much greater control over access to the class.

In OOMatch, programmers can add access specifiers to
constructor parameters:

Expr optimize(Binop(IntConst cl, IntConst c2))

whereIntConst extendNumConst, and this new function
would override the third one, because the pattern type is the
same but the subpatterns are more specific.

An interesting exercise is to think of what would be
necessary to rewrite the above code in pure Java. While
i's noteworthy that our version is probably more com-
pact and understandable, a more important property of the
OOMatch version is that each method represents a separat
rule. This one-to-one mapping of rules to methods is not
as feasible in Java. One Java approach would be to have
one method do the dispatch to determine which “rule” is
applicable - it could be calledptimize in this case - and
have other methods of different names for each rule (ei- e Declares a parameter to the constructor
ther optimizel, optimize2, andoptimize3, or perhaps
optimizePlusZero andoptimizeFold). There are many
situations where this approach is less than elegant.

Note that OOMatch introduces the potential for new
kinds of compile errors. In fact, the above code contains
such an instance, as a careful reader might have noticed. If Deconstructing an object means that certain components
optimize is passed an expression like+ 0, the second of the object are being “returned”, and then matched against.
and third methods will both apply, because this expression is So for
both adding 0 to an expression and performing an operation
on two constants. However, it cannot be said that either of EXPr optimize (Binop(NumConst ci,
these methods overrides the other, because there are cases NumConst c2) op)

where the second applies and the third doesn't, and vicehe jnstance variables el and e2 are extracted froBritiep
versa. This is called an ambiguity error — it is possible for argument, and if they are both instances of NumConst, they
more than one method to apply, but neither is necessarily 5y assigned, by reference, to the variables c1 and c2. Note
more specific than the other. Normally, this results in a com- hat access specifiers other than “public” are allowed to
pile error, though there are cases where the compiler cannotestrict access to the variable in the class; however, the object
detect ambiguity errors, as we shall see later. In this case, the.an still be deconstructed as long as it has a constructor
problem can be resolved by adding a fourth method which \yhose parameters have some access specifier.
handles the intersecting case: The above syntax is convenient and intuitive because ob-
jects can be deconstructed in the same way they were con-
structed. Moreover, even in the absence of pattern matching,
)) the ability to write both instance variables and constructor
The other new kind of error that can be present in an parameters all at once provides a handy shortcut for writing
OOMatch program is called @ncomplete error It occurs gyick-and-dirty classes for which access is not important.
when there is a method that is not general enough to be calledg ¢ in large object-oriented systems, it is crucial that pro-
directly from a call site (we shall see later how “not general grammers are able to restrict access to data members. Hence,
enough” is defined), and which appears alone (i.e., it doesn’t jhe more general and powerful notion adeconstructorde-
override any other method), so that it has no way of being g¢riped next, is provided.
called. For example, if the following lone function appeared: An equivalent way to write the Binop class in OOMatch
} is as follows. Indeed, the above definition of the Binop class

) using thepublic specifier is merely syntactic sugar for the
an incomplete error would result, because the case following form.

NumConst (1) (among others) is not handled.

class Binop {
public Binop(public Expr el,
public Expr e2)
.}

Thepublic specifier on parameters does 4 things:

¢ Declares the variable to be a public instance variable of
the class

e Assigns the argument passed to the constructor to the
instance variable

¢ Allows the object to be deconstructed in a pattern that
corresponds to the way it was constructed

Expr optimize(Plus(NumConst e, NumConst(0)))
{ return e; }

void f(NumConst(0)) { ...

class Binop {

4.2 Deconstructors public Expr el, e2;

To allow the specification of patterns on objects, as in the
previous section, their classes must provide a meanle-of
constructingsaid objects. There are two ways of doing so in

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007

public Binop(Expr el, Expr e2) {
this.el el;
this.e2 = e2;

5 2007/3/19

{...}
}

deconstructor Binop(Expr el, Expr e2) _ This rule could be _removed re!atively eas_,ily in alanguage
{ with a construct to include a file and bring all symbols
el = this.el; defined therein — including deconstructors — into the current
€2 = this.e2; namespace, but Javasport statement does not allow this.
} The alternative would be to search all imported classes for
possible deconstructor definitions, but this be too expensive.
} o From the point of view of the OOMatch compiler, re-
ferring to a deconstructor &Y is the “default” form, and
A deconstructor breaks dowthis into components, and means that a deconstructor nanyad looked up in the class
returns them to be matched against. But rather than return-X or its superclasses. When a deconstructor is referred to as
ing said components in the return value, its parameters aresimply X, the compiler first looks for a deconstructorin
“out” parameters, each one representing a component. Thethe class; if none is found, it looks in the superclassf
deconstructor must assign each of them a value on each posfor a deconstructor with the name of theperclassHence,
sible path through its body; they have no defined values atthe expressioRlus (Expr e, NumConst(0)) seen earlier
the beginning of the body. Aside from these restrictions, any could be short foPlus.Binop (Expr e, NumConst(0)),
arbitrary code may appear in a deconstructor, and any valuedf the classP1lus does not have a deconstructor of its own.
of typeExpr can be returned in the parametetsande2 in
the example above. This way, classes can restrict access t
their instance variables however they see fit. Deconstructors may not be declared to throw any exceptions.
Of course, in a real-world application, the instance vari- The advantage of &hrows clause is that it forces clients to
ables above would probably be private and accessed usingcatch the exceptions declared in the corresponding method.
accessor methods. Indeed, this is exactly what deconstrucBut the method headers that use the deconstructors obvi-
tors allow one to do. ously cannot themselves catch these exceptions. Another
Note that the (perhaps confusing) syntactic notation of possible rule would be to force method headers to declare
deconstructors returning their values in “out” parameters is a “throws” clause containing any exceptions that the decon-
solely a result of the limitations of Java. A more elegant, and structors it invokes throw. The callers of such methods would
understandable to the user, syntax would be for deconstruc-then be required to catch these exceptions. However, if this
tors to return a tuple of values, which supposedly representwere done, then all methods in an overriding group would
the components ofhis. Any function which takes no pa- also be required to throw the exceptions, even if they do not
rameters and returns a tuple could then be used as a decondse the deconstructors themselves. This could get complex
structor. This approach was taken by Scala’s extractors [6], and confusing. More importantly, we do not see any obvi-
for example. ous use for this feature; if one is discovered, it could become
In general, method headers in OOMatch can contain reg-future work.
ular formal parameters, or patterns. Patterns can contain lit-
eral primitive values (including string literals). One cannot, 4-4 Deconstructor Return Value
then, match on a specific object value of class type, un- To further increase the power of deconstructor bodies, they
less they provide a deconstructor for the object and specify may return a boolean valuerue means the match suc-
the value as a pattern. In other words, one cannot specify aceededfalse means it failed. This allows even a decon-
“new” expression in a parameter to match against. Also note structor whose pattern is matched to disallow the match un-
that literals can appear outside of patterns, in place of regu-der certain arbitrary conditions, such as the state of the ob-
lar parameters. For example, the following pair of functions ject. This return statement is optional.
is allowed (and is potentially useful):

61.3 No “throws” Clause for a Deconstructor

4.5 Order of Deconstructors

The order deconstructors are called (when determining
which method applies to a method call) is left unspecified.
The second method above overrides the first. This choice was made to free implementations to do opti-

Note also that a deconstructor can be given any name, notMizations or maximize other metrics that may require cer-
just the name of the class. However, if given a name other tain implementations of the dispatch algorithm (described

than the name of the class, any references to the deconstruc&ter). Further, implementations may choose not to run the
tor must be prefixed with the class name, as in: deconstructor for a given pattern, as long as the required
semantics are preserved. However, we do make the require-

Expr optimize(Expr.my_deconstructor(ment that deconstructors are run at most once to determine
NumConst c1, NumConst c2)) the method to call. In particular, the rule is that for a given

void f(int x) { ... }
void £(0) { ... }

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 6 2007/3/19

method call, a deconstructor referenced in a method of theobject simply and concisely. In the above example, the user
same name as the call may not be run more than once formight not care to give a name to the sinBliemop parameter,
each reference to it. because she only cares about the Baprs contained within
Because of the functional nature of the context in which it, and by using patterns is avoiding callsBtinop’s “getter”
deconstructors are intended to be used, it is not normally methods within the body of the function. It would be tedious
useful to write code which depends on the deconstructorsto force programmers to write an extra function that throws
that are called and the order in which they are called. Hence,an exception fomull in these cases, especially since the
this implementation-defined behavior was deemed more de-runtime system generates an exceptiomiarl anyway.
sirable than explicitly-defined behavior, because it increases

the potential for optimizations. 4.7 Undecidable Errors
Though the compiler can catch many of the new possible
4.6 Null errors, finding all of them is undecidable. Rather than re-

Null parameters introduce some interesting cases. First, nullstricting the language and disallowing certain programs that
literals override any formal parameter of class type. Supposemake sense, we have chosen to throw an exception at run-
there are two classdsandB, unrelated by inheritance, and time when the relatively rare cases described here occur. We

this code: now describe the three types of errors, in addition to the
“null” error mentioned in Section 4.6 and the possibility of
class C { deconstructors returning false, that might cause a run-time
void f(A a) { ... 2 exception.
void f(B b) { ... }
void f(null) { ... } 4.7.1 Interfaces
b The first potential error is caused by multiple inheritance,

which is partially allowed in Java by implementing multiple

The third meth verri h th hers. There is no . . . L : .
e third method overrides both the others ere1s no interfaces. Consider the following trivial pair of functions:

way to specify that one is matching only null values of a

particular type; syntax to allow this could be a possible fu- yoid f(a a) { ... }

ture addition. Otherwiseyull is doing nothing special here; yoid f(B b) { ... }

sincenull is a subtype of all other types, it overrides all

methods with a single parameter of class type, as expected.WhereA andB are interfaces that are not related at all. De-
Another trickier issue withwul1l is in matching patterns. SPite this being entirely valid Java, the compiler cannot guar-

Given theBinop deconstructor from Section 4.2, one might a@ntee that this program is free from ambiguity errors, be-

expect the following lone function to present no problems, cause it might happen that there is a classhich imple-

as it handles everjinop object: ments bothi andB, and if an object of typ€ is passed to
£, OOMatch will not know which version to call. It is not
class C { possible to tell whether suchGaexists at compile time; not
void f(Binop(Expr el, Expr e2)) only does Java’s modular typechecking preclude knowledge
{ ...} of the class hierarchy, but dynamic class loading means that
} knowing what classes will be present at the time of a call to

f is undecidable.

A simple test showed that JPred [11] avoided this issue
by disallowing interfaces as multimethod parameters. We
found this approach too restrictive; programmers expect to
be able to use interface parameters the same way they use
class parameters. Further, if this feature were migrated to
a language with multiple inheritance, the problem would
return.

But unlike a function that takes a single parameter of
type Binop, this one cannot be passed the valuel, be-
causenull cannot be deconstructed. If this is attempted,
a run-time error occurs. Unlike ML and similar languages,
which disallow the above code and force a function contain-
ingnull to be provided, OOMatch permits the above and as-
sumes the user is never going to pass1 to £. This allows
patterns to be used for no other reason than to specify non-
null parameters, which is sometimes useful. Besides, many4.7.2 Different deconstructors
(though not all) bugs caused by passiitg 1 to a pattern pa-

. : . The next type of ambiguity can occur when there is a pair
rameter could be caught statically, with a program analysis. yp gutty P

Anoth d thi bl h dered i of functions in a group, and a corresponding parameter is
nother way around this problem that was considered Is referring to a different deconstructor in each function. For

to force every mgthod using a pattern to override a regular example, let's take the class from before and add an extra
Java method; this way, the Java method could always bedeconstructor to it:

called as a last resort. This was decided against for the
simple reason that one useful way to use patterns is not forclass Binop {
override purposes, but merely to extract the internals of an

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 7 2007/3/19

deconstructor Binop(Expr el, Expr e2)

{ ...} class C {

deconstructor Binop2(Expr el, Expr e2) void f(Point(0, 0)) { ... }

{ ... %} void f(ScreenCoordinate.Point(0, 0))
} {...%}

Now suppose we have a set of methods that matches ony

both of them:
One might expect the second versionfdb override the

class C { first, because they both have the same pattern, but the second
e method only admits objects of typgcreenCoordinate.
void f(Binop(Expr el, Expr e2)) { ... } However, because of the deconstructor definition in
void f(Binop2(Expr el, Expr e2)) { ... } ScreenCoordinate, it is not so; the compiler can say

} nothing, in general, about which deconstructor is more

specific than which, even if the user intended the one in

ScreenCoordinate to be more specific. Hence, there is no

overriding taking place here, nor is there a compile error.

Of course, compiler implementations can and should give a
nwarning in this situation.

Since both patterns appear to match e\&iyop, it may
at first appear that this is clearly an ambiguity, or even a
duplicate method definition. But in fact it is not necessarily
so. Since deconstructors can run arbitrary code and retur
true or false depending on whether they match, it is quite
possible for the programmer to ensure that they match only4.7.3 Non-deterministic deconstructors
in a mutually exclusive manner. For example, the Binop
class could keep track of a boolean flag and only match one
deconstructor when it’s true, and the other when it's false.
But the compiler cannot decidably determine whether they
will both match in some cases. So, to ensure that it allows
all programs that make sense, we've decided to wait until class C {
run-time to give the error in this case. void f(Point(0, 0)) { ... }

Note that it makes no difference whether the pattern con- void f(Point(1, 1)) { ... }
tains constants in its parameters or not, or whether one pat-}
tern appears to be more specific than the other. Since the
deconstructors may be returning completely different val-
ues, (there is no rule forcing them to return instance vari-
ables of the class, for example) the compiler can say nothing

Finally, because deconstructors can return any values, prob-
lems can arise if they return different values on different in-
vocations. Consider the following pair of functions which
use the clasBoint described above:

It may appear that these functions are clearly mutually
exclusive. But in fact, nothing prevents the deconstructor for
Point from being implemented like so:

about whether both functions will always apply simultane- deconstructor Point(int x, int y) {
ously, whether they are mutually exclusive, or whether one Random r = new Random();
overrides the other. Hence, it assumes they are mutually ex- //Randomly return either 0 or 1
clusive, and a run-time error can occur if this turns out not to //for each of x and y
be so. x = r.nextInt(2);

Note that this problem can appear in mischievous ways. y = r.nextInt(2);

For example, if a subclass defines a deconstructor of the }

same name as a superclass (not something that is normally) o) i o

useful), the two deconstructors are considered completely N this case, it is quite possible that on the first invoca-
separate, and override relationships that may have been astion of the deconstructor, 2 zeroes are returned, and on the
sumed to be present may in fact not be present. For exampleS€cond invocation, two ones are returned, which makes both

consider this code: functions match. In general, a deconstructor should have no
side effects, and always return the same set of values given
class Point { the same objects. Again, the compiler cannot determine, in
R general, whether this is so.
deconstructor Point(int x, int y) { ... } This kind of non-deterministic behavior is, of course,
} not very useful in a pattern matching context, and is hence
relatively easy to avoid; on the other hand, such problems
class ScreenCoordinate extends Point { could potentially be very difficult to find and debug. On the
.. plus side, this problem, as well as the other two mentioned
deconstructor Point(int x, int y) { ... } in this section, could be found with a static program analysis
} in many cases.

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 8 2007/3/19

4.8 Cross-class Ambiguities This is fine in Java,; all three methods are overloaded. But
An issue that arises when studying multimethods is whether N OOMatch, the two versions af. £ override the version

Java’s subclass overriding should always take precedencd” C: but are ambiguous with each other. An error must be
over parameter overriding. The alternative is to give an am- 9\V€n here, becaused. 1 is called statically, butis passed a

biguity error. For example, consider this code: pair .ofB.s and a receiver argument of typgthere will be an
ambiguity.
class Shape { Second, the meaning of a Java program might be slightly
intersection(Shape s); different when treated as an OOMatch program. In partic-
intersection(Circle(0, 0)); ular, methods which are only overloaded in Java might be-
} come overridden when treated as OOMatch code. For ex-
ample, supposk extendst and we have the following Java
class Square extends Shape { code:
) intersection(Shape s); class C {
void f(A a) {...}
What happens if void £(B b) {...}
void g() {
Square.intersection(new Circle(0, 0)) A a = new BQ);
f(a);
is called? ShoulSquare.intersection be ambiguous }
with Shape.intersection(Circle(0, 0))? In T

OOMatch, we decided to resolve the ambiguity in favor of .]]
Square.intersection — i.e., to make Java overriding al- !f the class 15 comp_ﬂed as a ‘Ja_va class, the calf will
ways take precedence over OOMatch overriding. The orig- invoke the first version of, des_p|te the fact that the argu-
inal thought was that preventing the above code as an am-ments ‘“real” type isB, . If compiled as an OOMatch class,
biguity (which may make perfect sense to the programmer however, the tvv_o versions df become multimethods, .and
who wrote it) was unnecessarily restrictive. the second version is invoked. Though the Java behavior may
In retrospect, this choice was probably a mistake. A bet- S€€m stranger, there may be legacy code that depends on it,
ter, and safer, approach would be to allow the programmer?‘”d Whose be_haworshould not be changed,; t_hat _|t is changed
to attach annotations specifying which method should take IS & Point against OOMatch. Nevertheless, this disadvantage
precedence. Besides safety, this approach has the advantages deemed a worthwhile price to pay to avoid the need for
that it very often happens that a class writer wants to impose SPecific syntax for multimethod behavior (such as the “@”
a policy on all subclasses; perhaps the writer of Shape wantsSymbol from MultiJava [3]). Special syntax would make the
intersection to always do a specific thing when called with féature more cumbersome and confusing to learn, which, we
Circle(0, 0). In the current implementation, this is not felt, is worse than violating backwards-compatibility.

possible. Further, it should be noted that OOMatch code is inter-
This feature is left to future work. operable with Java code. It is entirely possible to compile
new code with the OOMatch compiler, and use the resulting

4.9 Backwards Compatibility .class file with legacy code that has been compiled with the

Java compiler. When assurance is needed that legacy code
'retain its exact behavior, or when Java code that will not
compile with OOMatch cannot be updated, part of the code
can be compiled with the Java compiler.

The syntax of Java is, for the most part, a subset of OOMatch
that is, most Java code will compile as an OOMatch pro-
gram. However, there are two exceptions that may cause
incompatibilities.

First, there are cases where code that is valid as Java cod% e L
generates an ambiguity error when compiled with OOMatch. - Formal Specification
For example, suppoge extends B and we have thiscode: 5.1 Syntax

We present the core (desugared) syntax of OOMatch by
making two modifications to the Java grammar from Chap-
ters 3 and 8 of the Java Language Specification, second edi-
} e tion [8]. In this section, we show differences from the Java
grammar in bold.

class C {
void f(A a, Ab) { ... }

class D extends C { OOMatch adds deconstructors as a new kind of class
void f(A a, Bb) { ... } member:
void fB b, A a) { ... } '

} ClassMemberDeclaration= FieldDeclaration

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 9 2007/3/19

| MethodDeclaration 4. For array typesA [] <: B[] if A <: B.

| ClassDeclaration 5. T <: Object for all class, interface, and array typés.
| InterfaceDeclaration 6. T[] <: CloneableandT]] <: java.to.Serializable
| deconstructor for all array typesT’].
deconstructor.:= deconstructor ldentifier o .
(FormalParameterLisg;) MethodBody LEMMA 5.1. Subtyping is a partial order.

Proof We have transitivity and reflexivity from the defini-

In addition to formal parameters as in Java, OOMatch tion; we only need to show antisymmetry, i.e. no cycles.
allows methods to have two new kinds of parameters: literals e subtyping cases can be divided into primitives, ar-
and patterns. rays, and other reference types. Primitive types are unrelated
to any other types, and there is no cycle in the relations given
in case 3. Array types are not the supertype of any other ref-
erence type, so there can be no cycles between them and
other reference types. From case 4, there can be no cycles
among array types unless there are cycles among reference
types. Null is not the supertype of any other type, so it can-
not participate in a cycle; the only thing left is classes and
interfaces. These cannot be defined circularly, as stated in
the Java specification, section 8.1.3. [8] |

MethodHeader:= MethodModifiersy,: ResultType
MethodDeclarator Throwgp;
MethodDeclarator.:= Identifier OOMatchParameterLisjy)
OOMatchParameterList:= OOMatchParameter
| OOMatchParameterList, OOMatchParameter
OOMatchParameter:= FormalParameter
| Literal
| Pattern
Pattern::= Type. Identifier (OOMatchParameterLisy)

5.3 Deconstructor Binding

Because in Java, the floating point literals.0 and0.0 At compile time, every pattern appearing in the program is

are considered equal, as are the integer literaland o, statically bound to a fixed deconstructor, which will be used
OOMatch considers them the same literal. For example, the, o\ aluate the pattern. To specify which deconstructor is

method signatureoid m(0.0) is considered to be the same 4 e ysed for a given pattern, we first define tyee of a

asvoid m(-0.0). parameter as follows:

5.2 Notation and Definitions type(F[T]) = T

Throughout this section, we will use the following abbrevi-

ations for OOMatch entities. typeClv,T)) =T
e F'[T) represents a Java formal parameter of type type P[T,n,p]) =T

e C[v, T] represents an OOMatch literal parameter with

. Then, truct ,Ty] is eligible f tt
Java literal value and typeT”. en, a deconstructob[n,, T3] is eligible for a pattern

P[Ty,ny, p3] i

e P[T,,n,T,] represents an OOMatch pattern with type « they have the same name; (= ny),

T,, namen, and parameter typés,. .
_) ¢ they have the same number of paramet&fs| (= |p2|),
e Din,T,] represents a deconstructor with namend out-

and
arameter types,.
P . yE b _ ¢ the type of every parameter of the pattern is a sub-
* M[T;,n, Tp, T;] represents a method with return tyfie type of the corresponding parameter of the deconstructor
namen, parameter types,, and declared throwing types (Vi.type(pz;) <: Th;).
T,.

A deconstructoD[n, T is more specifithan D'[n’, T"] if

We explicitly define a subtyping relation that corresponds every parameter oD is a subtype of the corresponding
to the assignability rules defined in the Java Language Spec-parameter oD’ (Vi.T; <: TY).
ification [8]. The deconstructor bound to a given pattern must be eligi-
ble for the pattern, and it must be more specific than every
deconstructor eligible for the pattern. A compile-time error
is generated when these conditions are not satisfied by any

DEFINITION 5.1. The subtyping relatior:: is the smallest
transitive and reflexive relation satisfying the following:

1.7 <: T'if T andT" are classes or interfaces arifl deconstructor.
extends or implement®'.

2. null <: T if T is a class, interface, or array type. 5.4 Method Invocation

3. byte <: short <: int <: long <: float <: double, We now specify how OOMatch determines, at a given call
and char <: int. site and with specific runtime arguments, which method to

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 10 2007/3/19

invoke. We break the specification into three parts. First, we
define a set of methods that aeplicable in that they could

be invoked provided no “more specific’ method is avail-
able. Second, we define a partial order on the set of appli-
cable methods to decide which methods shall be preferred
over others. Finally, we use these definitions to specify how
OOMatch selects the method to be executed.

5.4.1 Applicable methods

The predicatepplicabl€ M [T, ny, P, ft], n,a) is defined
on a method with return typ&;,., namen,;, parameters
7, and throwing typesT}; the namen of the method to
be invoked at a call; and a list of argument valugsThe
predicate is true when all of the following conditions hold:

1. The name of the method matches the name at the call site
Ny = nN.

equal:|@| = |p].

. Each argument iadmissiblefor its corresponding pa-
rameter:Vi.admissibléa;, p;). Admissibility is a gener-
alization of the Java guarantee that a method with a given
parameter type is only called with arguments that are in-
stances of that type. The admissibility condition is made
precise below.

The predicat@admissibléa, p) is defined on an argument
a of statically declared typ& and run-time typel;, and
a parametep. Recall that an OOMatch parameter can be a
Java formal, a Java literal, or a pattern.

1. Whenp is a Java formal and whenis not null, admissi-
bility is determined as in Java:is admissible if in Java
it is method invocation convertible [8, Section 5.3] to
the type declared fgp. Whena is null, it is admissible
if its statically declared typd’; is a subtype of the type
declared fop.

. Whenp is a literall, a is admissible exactly when it
is equal tol. For string literals, equality is defined as
l.equals(a) returning true; for all other literals, equal-
ity is defined as the Javeas operator.

. Whenp is a patternP[T,., n, p] with type T,, hamen,
and parameterg, OOMatch first checks whether the
runtime typeT,; of a is a subtype off;.. If it is not, then
a is not admissible. If it is, then determining whether
a is admissible requires executing a deconstructor. The
deconstructor to be executed for any given pattern is
fixed at compile time, using the procedure which that
was described in Section 5.3. Executing the deconstructor

produces a boolean success value, and one value for

each parameter ip. If the success value is false,is

not admissible. If the success value is true, each value
produced by the deconstructor is (recursively) tested for
admissibility against its corresponding parametepin

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007

The argument: is admissible if all of the values are
admissible.

If a is null andp is a patterng is never admissable.

5.4.2 Preferred Methods

We now define the preference preordey; between meth-
ods, which is used to determine which of a set of applicable
methods shall be invoked. The order is defined in terms of an
analogous ordex p on method parameters. For two meth-
odsm, m’ with parameter listg, p’, m <, m’/ when one of

the following conditions holds:

1. misin a subclass afn’, or

2. m andm’ are in the same class, have the same number
of parameters, and each parameter fioiw preferred to
the corresponding parameter frof Vi.p; <p pl.

The parameter preference relatien is defined induc-

. The number of arguments and number of parameters ardively as the smallest preorder satisfying the following:

1. F[T1] <p F[T»] whenevefT} <: T5.

2. Clv, | =<p F[T] whenever the Java expressiOf) v
v evaluates to true.

3. Clvy, T1] <p Cluy, T3] if the Java expression == vy
evaluates to true, anb, <: T, whereT; andT; are the
types of the literals;, andwvs.

4, P[Tl,’fl,ﬁ] <p F[TQ] whenT; <: Ts.

5. F[T1] <p P[Tz,n,p] whenT; <: T, and it is not the
case thafly <: 7.

P[Tl,nl,p_ﬂ <p P[Tg,ng,p_é] whenT; <: T5, both
patterns are associated with the same deconstructor, and
Vi.p1; <p p2;-

6.

LEMMA 5.2. The parameter preference relatieqp is anti-
symmetric.

Proof

We need to prove that <p b andb <p a impliesa = b.
We show it by structural induction on the parameters. There
are six cases to consider.

l.a = F[Tl],b = F[Tg] ThenT) <: To andT, <: T;.
Since there are no cycles in subtypifig,and7; are the
same; so, by definitiory, = b.

2.a = Cv,Th] andb = F[I»]. The condition is always
false, becausé’[Tx] 4Ap C[v, T3] for any formal and
constant parameters, so the implication is true by default.

3.a = Clvn,Ty] and b Clva, T3]. This means that
T Ty, sinceT; <: Ty andT, <: T;. And we
also knowv; == v, by the definition of<p. So, by
definition,a = b.

a P[Tl,n,ﬂ,b = F[Tg] If a <p b, T1 <: To.
Sinceb <p a, it isn’'t the case thall; <: T5. This is
a contradiction, so the implication is true by default.

4,

11 2007/3/19

5.a = F[T1],b = P[Ts,n,ps]. WLOG, this is the same We now define a concrete parameter intersection function
case as the previous one. which we claim satisfies the above properties. We will prove

6.a = P[Ty,n1,p1],b = P[Ts,n,ps]. To havea <p b the claim in Section 5.6.4.

andb <p a, Ty = T for the reasons given above. Sincé peryition 5.2. Several cases of the parameter intersec-
the deconstructors are the same, the nameand n tion function are shown in Table 1. The function is defined to
must be equalp; = p; by induction. So, it follows by p symmetric: thus, the blank entries in the table correspond
definition thata = b. to entries opposite the diagonal.
] The intersection of two patterns is the most complicated
case. Letv = P[0,,n4, P,] and3 = P[0s,ns, P3). Then
5.4.3 Overall Method Dispatch the intersectiory M 3 is determined by the following steps:

To select the method to be invoked for a given call, OOMatch 1. If o and 3 correspond to different statically determined
considers all methods in the runtime class of the receiver ob- deconstructors, their intersection is undefined. Other-
jectand all its superclasses. The method to be invoked fora wise, proceed to the next step.

given call must be applicable for the call, and it must be pre- 2 pefines as follows. If9; <: 6, thend = 0,. If 6, <: 6;,
ferred over all other methods applicable for the call. When theng = g,. If neither of these holdsy M 3 is undefined.
exactly one method satisfies these conditions, the method is Otherwise, proceed to the next step.

invoked. Becausex, is antisymmetric, it is not possible 3 IP;\ ” |P}|, thena M 43 is undefined. Otherwise,
for more than one method to satisfy the conditions. When proceed to the next step.

no_method satlsfles the condltlo_ns, a runtime €ITOr 0CCUTS. 4 ¢ tor anyi, P.; N Ps, is undefined, then 11 3 is unde-
This can occur if the set of applicable methods is empty (a fined. Otherwise pr(;ceed to the next step.

“no such method” error), or if none of the applicable meth- 5. oM 3is defined t,o beP[6, n P]3]

ods is preferred over all the others (an ambiguity error). In ™ ey Fa A
Section 5.6.4, we will present a set of static conditions that g g Always-matches

guarantee that these runtime errors will not occur. _ . .
A second informal condition that we would like to enforce

5.5 Compile-time checks is that given a call site, for any actual runtime arguments
In this section, we specify properties that the OOMatch satisfying the declared types at the call site, some method
compiler checks statically to reduce the number of errors that Will be applicable (again, provided that deconstructors do
can occur at runtime. We begin by defining the notions of notreturn false or null, and null is not passed to them).
parameter intersection and always-matches, which are used We define the predicat@ways-matchegd’,) on a list

in the static checks. of static types (i.e. the static types of the call site arguments)
. and a list of OOMatch parameters (i.e. the parameters of a
5.5.1 Parameter Intersection method) as follows:

Intuitively, one of the conditions that we would like to hold
is that when two methods are both applicable for a call, it
will be possible to find a preferred method for the call. For ~ N
this reason, we define the notion of intersection, a partial 1. |7s| = |P|, and
function from a pair of parameters to a parameter. We would 2. for everyi, either

DEFINITION 5.3. always-matched,, P) is true if both of
the following conditions hold:

like intersection to have the following properties: (@ P, = F[T] andT,; <: T, or

1. Whenever it is possible for both; andm. to be appli- (b) P; = P[T,n, P'| andTy; <: T and, lettingD[n, T!]
cable for the same call, the intersections of their corre- be the deconstructor bound to P
sponding parameters should all be defined, and a method always-matched’;, P’).

mg With those intersections as its parameters should also
be applicable for the same call (provided its deconstruc-
tors do not return false or null).

LEMMA 5.3.Let m = M][T,,n,p, Ty be a method, and
a the actual arguments of a method call with static types
T.. If always-matched’,, 7), and no deconstructor returns
2. Whenever the intersectigny of two parameterg; and false or null, and none of the arguments are null, then
p2 is defined, it should be preferred over both of them: applicablem, n, @)
p3 <p p1 andps <p pa.

Thus, loosely, as long as an OOMatch program contains theProof

intersection of every pair of methods for which intersection ~ The predicatapplicablefrom section 5.4.1 has 3 condi-
is defined, it will not encounter a run-time ambiguity be- tions. The first holds by our assumption that the method call
tween any pair of methods. We will formalize this property is ton. The second holds becauslevays-matched’,, 7) =

in Section 5.6.4. IT,| = |p]. The third condition requires that each @f is

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 12 2007/3/19

y i [a=Flo] | o =Clv1, 6] | a=P[61,n,P,] |

« if 01 <: 09
ﬁ = F[QQ} ﬁ if 0> <: 04
undefined otherwise
. « if v1==vy andf; <: 6,
B = Clvz, 0] ﬁndefined Ifo(tf]le)rq\)/\llisev2 B if v1==v> andé; <: 6,
undefined otherwise
ﬂ if 65 <: 64
B = Pl0s,n9, P3| | Pl61,n2,Ps] if 6; <: 6, andd, £: 6, | undefined see Def 5.2
undefined otherwise

Table 1. Partial function (parameter intersection)

admissible top;. This is shown next, by contradiction and set of methods irC'. All of the following conditions must

structural induction. hold in order for the class to be accepted by the OOMatch
There are three cases for. compiler.

1.p; =C[_,_]. Inthis casealways—matche{ﬁi,ﬁ) must CONDITION 5.1. Unambiguity: For any pair of methods
have been false, because there is no case for literal paramsuch that neither is preferred to the other and the intersec-
eters in the definition cdlways-matchesContradiction. tion of their parameter lists is defined, there is some method

in C whose parameter list is exactly that intersection. That

always-matched’,,), T,; <: T. We need to show that 'S vy = M[b1,n, é1,0r1],m2 = M(0z,n, 62,072] €
this implies thaZ,; can be converted by method invoca- Mc: If #1712 is defined, aney s ma, andms Aar ma,
tion conversion td". then3M {03, n, 1 N da, O73] € Mc.

There are three cases fé;: primitive, array, or other ConbpiTION 5.2. Valid method calls: For each method call
reference type. According to [8, Section 5.3], widening site in the program on a receiver of static type there is
primitive conversions or widening reference conversions sgome methoeh — M][T,,n, 7, ﬁ] implemented irC' or its

(OI’ |dent|ty Conversions) must be aIIOWed for method Superc|asses such that a|Ways_mat¢ﬂ_ésﬁ'), Whereﬂ are
invocation conversion to be doable. For primitives, only the static types of the arguments at the call site. Moreover,

case 3 of<: applies; the subtyping relations given there gne of the methods satisfying this condition is preferred over
correspond exactly to the widening primitive conversions || methods satisfying the condition.

in [8, Section 5.1.2]. For arrays and other reference
types, cases 1, 4, 5, and 6 apply, and correspond exactly toCONDITION 5.3. Completeness: Loosely, for every method
the widening reference conversions in [8, Section 5.1.4]. in the program, it is possible to construct a call site that
Hence,admissibleholds in this case. could call the method. Formally, for every method =
3.p; = P[T,n, p']. We need to look at case 3afimissible [T, n. P, T¢] declared in a clas€” in the program, if we
were to add to the program the call siten(a@), where the

Sincealways—matche{iﬁ), T,; <: T, so the first part) . .
of the case passes. The deconstructor is then executed?tat'c type ofo is C and the static types af are typep),

and because we assume it returns true, the second parWth the previous condition would hold for this added call
of the conditions also pass, and we get a new set of val- Site.

ues with types/{. We assume that; is not null, so that conpiTion 5.4. Valid return types: For any pair of re-

can't preveniadmissiblefrom holding. From the defini- |ated methods, the return type must be the same. Specifi-
tion of always-matcheslways-matched’,, p’). Further- cally, for any two methodsy; = M(61,n, &, Or1], ma =
more, we assume that none of the values returned fromM[@2 n g é’TQ] in C or a superclass of’ such that the in-

the deconstructor are null. Therefore, by the inductive as- yersection of their parameter lists is defined, the return types
sumption, admissibility holds. must be the same, i.¢, = 0.

2. p; = F[T]. We need to look at case 1adimissibleSince

u ConDITION 5.5. Valid “throws” clauses: For any pair of

related methods, the throws clauses must be tpe same.
5.5.3 Conditions to be checked statically Specifically, for any two methods, = M|61,n, &, 611],

We now define the conditions under which a class with its 72 = M[f2,n, 3,0r2] in C or a superclass of’ such that
set of methods is considered valid or well-formed. Consider the intersection of their parameter lists is defined, all the
aclasg”, which is valid by the Java rules, and Ief- be the ~ types infr; are also infr».

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 13 2007/3/19

CONDITION 5.6. No duplicate methods: For any two meth- CLAIM 5.1. Because Java disallows multiple inheritance,
odsm; = M|[f;,n,d, 67T1],m2 = M[Gg,nﬁ, §T2] € Mc, common-descendent can only be true for a pair of interfaces.
it is not the case that all the parameters are equal; i.e. there L
is some such thai; # ;. 5.6.3 Deterministic deconstructors
] o We need to briefly define the notion of deconstructors be-
5.6 Absence of runtime ambiguities ing deterministi¢ all deconstructors should be so, though
In addition to the conditions above, which are checked by the the compiler isn’t required to check this because it's unde-
compiler and must hold in order for an OOMatch program to cidable. Informally, it means that a deconstructor always re-
compile, we define the following optional conditions. If an turns the same set of values for a given object; i.e. it acts like
OOMatch program satisfies these conditions, every call will a function. Formally, a deconstructor is said to be determin-
resolve to some method (i.e. no method ambiguity errors canistic if it does not modify the heap, and for any object passed
occur). toit, it always returns the same values every time it executes.

5.6.1 Undecidable equivalence 5.6.4 Claims of safety

An undecidable equivalence is a formalization of the prob- Given the above notation and definitions, we can now make
lem mentioned in Section 4.7, when two methods have a cor-the following claims for an OOMatch program which is
responding parameter that use different deconstructors thawell-formed, i.e. which has passed the typechecking de-
are deconstructing related types. Formally: scribed above and whose classes are valid.

DEFINITION 5.4. undecidable-equivalence is a predicate CLAIM 5.2. A no-such-method error cannot occur at run-
on pairs of OOMatch parameters. time unless one of the following occurs.
undecidable-equivalen¢e,) is true if and only ifa =
P[0, n, 1] andB = P[6, ns, ¢2), where deconstructén) #
deconstructof), and eitherd; <: 65 or 6, <: 6;.

¢ A deconstructor returns false.
¢ A deconstructor returnsu 11 in one of its “out” param-

eters.
DEFINITION 5.5. undecidable-equivalence-list is a predi- e nullis passed to a pattern parameter.
cate on pairs of lists of parameters.
undecidable-equivalen¢&,) is true if and only if|@| = Proof This claim follows from Condition 5.2 and Lemma 5.3.
|g| and there exists such that either: Since for eachacall site, there isﬁ a method for which
) . always-matchdq, p) is true, wherel are the static types
* undecidable-equivalence;, ;) or . of the arguments of the call, afitare the parameters of the
*a; = Pl0i,n,¢1] and 3; = P[fz,n2,¢2] and method. Lemma 5.3 says that this method is applicatiie.
deconstructofo;) = deconstructofs;) and
undecidable—equivalence—l(ﬁl,52). CLAIM 5.3. An ambiguity error cannot occur at runtime

unless one of the following conditions is true.
5.6.2 Common descendent

e common-descendent-list is true for the parameters of
some pair of methods with the same name.

e There is an undecidable equivalence between the param-
eter lists of a pair of methods applicable to the same call
site.

e Some deconstructor is not deterministic.

We need to formalize the notion of a pair of parameters
where there is a type that is a subtype of both of them; this
is one way in which a run-time ambiguity could occur. We
define common-descendent to be a predicate on a pair of
parameters as follows.

DEFINITION 5.6. common-descendent(3) is true if and
only if the program contains a clagkdistinct froma and Proof
8 such that) <: typg(r) and6 <: typg(3). Let o.n(7) be any method call site. Let be the set of
methods applicable for the call. We assume that at least
one method is applicable (otherwise, a no-such-method error
occurs). LetB be any nonempty subset df. We will show

by induction on B| that for every seB, there is a method in
DEFINITION 5.7. common-descendent-iigt 3) is true if A thatis preferred over all methods

Now we define a function used to determine whether
there is an instance of common-descendent within the pa-
rameters of a pair of methods.

and only if|@| = | 3] and there exists such that either: Base case|B| = 1. By reflexivity of the preference
relation, the single method iA is preferred over all methods
e common-descend€nt;, 3;), or in B
*a; = Plla,nq,d] and §; = Pl0s,ns,0'] and Inductive case: Suppose that for every suliSaf size
deconstructofey;) = _ deconstructof3;) and |C| = k of A, there is a method irl that is preferred over
common-descendent-li&t,). every method irC.

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 14 2007/3/19

Let B be any subset oft of size|B| = k + 1. Select
any methodn; from B. Since the seB \ {m; } is of sizek,
there is a methodh, in A that is preferred over all methods
in B\ {m;}. We have three cases to consider:

1. my <p ms. Thenm; is preferred over all methods in
B, since=<, is transitive.

2. my <pr my. Thenmy is the uniqgue method preferred
over all methods irB.

3. m1 Aar mo @andms £ my. Then, lettingp andp; be
the parameter lists afi; andms, the intersectiop Mp;
is defined, by Lemma 5.4 which will be proven below.
By the definition of the<,, relation,m; andm, must
be in the same class (otherwise, one would be preferred
over the other). By Condition 5.5.3, there is a method
mg implemented in the same classras andm, whose
parameters ar@; M ps. An additional consequence of
Lemma 5.4 is thatngs is applicable, and therefore ia.
By Lemma 5.5 (given below)yns is preferred overn,
andms. By transitivity of the preference relatioms is
preferred over all methods iR.

By induction, for every subset of A, including A itself,
there is a method irl preferred over all methods iR. N

LEMMA 5.4, Letp; andp; be a pair of parameter lists with
|p1] |p3|. Additionally, suppose that
common-descendent-igt , p3) and
undecidable-equivalence-ligt, p>) are both false. Also,
suppose that all deconstructors associated with all patterns
in p1 and p> and all of their subpatterns are deterministic.
Finally, suppose that there is a list of actual Java valies
such that each value is admissible for the corresponding pa-
rameter in bothp; and p». Then the intersectiop; M ps is
defined, and the same valugsre admissible for the inter-
sected parametens M ps3.

Proof

Let « be any parameter ¢fi and be the corresponding
parameter of;. Letr be the actual argument admissible for
both o and 5. We will show by structural induction on the
forms ofa andg thata 1 G is always defined.

¢ Supposex = C[vy, 6] and = Cluva, 2]. Since both
methods are applicable for the call, == r andvy == r.
There are 3 cases for

1.7 is a non-nullString literal. SinceString literals
only == otherString literals,v; andv, must be the
sameString literal, sov;==vy. Thereforea M 5 =
a=[.

2. risnull. Sincenull is only==tonull (See section
of [8, Section 15.21.3])p; and vy are bothnull.
Thereforev;==v9, S0 M = a = .

3. r is of a primitive numeric type (includinghar).
Now, for numeric typess= is an equivalence, be-

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007

cause [8, Section 15.21.1] states “The value produced
by the == operator is true if the value of the left-
hand operand is equal to the value of the right-hand
operand; otherwise, the result is false.”, with the ex-
ception of NaN, which is not equal to itself. But NaN
cannot appear as a constant parameter, because there
is no floating point constant that can represent it (see
[8, Section 3.10.2]). This means that== v,. And it
cannot happen that two numeric values are equal un-
less the type of one is a subtype of another, or one is
short or byte. But there is no constant parameter of
type short or byte, because all integer literals have
typeint (see [8, Section 3.10.1]); therefafe <: 6

orf, <: 61. Thereforepy 1 3 is defined to be one of

o or S.

® Supposer is a literalC[v, 0,] and 5 is a formal F[6s].
Letting Ty be the run-time type af, we know thatl}; <:
f, andr == v. Now, there are three cases for the tgpe
of the constant parameter

1.v is a non-null String literal. In this case, the
only values forr such thatr == wv is another
String literal; in other words g, String. But
(String)v==v for any String literal v. Therefore
Clv,01] 1 F[0s] is defined to b&[v, 6,].

2. v is null, andd; = NullType. But the only value
that’s equal tmull isnull (see [8, Section 15.21.3]),
and (NullTypehull == null. ThereforeC[v, 6]
F[0,] is defined to be&[v, 64].

3. v andr are numeric types. For numeric types, is
an equivalence (see above). Since testing equality in-
volves binary numeric promotion ([8, Section 5.6.2]),
it is also the case that == holdsrifandv are treated as
having the type that they’'re both widened to. Hence,
there are 3 further sub-cases.

"0 <: 0.
Then (62)v == v because, by binary numeric
promotion this is the same d$s)v == (63)v,
which is true.

"y <: 0.
Then we know thatf;)r==(6;)v, sincer == v

and by binary numeric promotion.

Therefore(6s)(0,)r==(02)(01)v, because the val-
ues being narrowed are equal, so will still be equal
after narrowing.

Therefore(03)(61)r==(02)v, sincev has type; .

Therefore,r==(05)v, since this means that same
as the previous form because of binary numeric
promotion.

Therefore, by transitivityy==(62)v.

15 2007/3/19

* 0, and ¢, are unrelated, and have the common
supertypeint.
Then binary numeric promotion says that= v
is the same a§int)r == (int)v.
Therefore(6;)(int)r == (02)(int)v, because the
values being narrowed are equal, so will still be
equal after narrowing.

Therefore,r == (63)(int)v, since this means
the same as the previous form because of binary
numeric promotion.

Thereforey == (65)v, for the same reason. (Val-
ues smaller thafint are always widened tint).

Therefore, by transitivityy==(6-)v.

So in each casdf;)v == v. Therefore Clv, 6] 1N
F[65] is defined to b&[v, 61].

It is not possible fora to be a literal and3 to be a

istic andr is admissible to both andg, it is also admis-
sible to their intersectioty.

We have shown that for all possible forms @fand 3,
a M G is defined and is admissible to it. [|

LEmMMA 5.5. For a pair of parameters, andb whose inter-
section is defined, if undecidable-equivalefagé) is false,
thenc <p aandc <p b, wherec = a M b.

Proof There are six cases to consider.

l.a = F[01],b = F[0s]. If 6; <: 62 thenc <p b holds
from case 1 of its definition, and <p « is true by
reflexivity. WLOG, the case whei <: 6, is the same.

2.a = Fl#],b = C|vg,65]. The only possibility for their
intersection to not bel is for it to beb. b < a from
case 2 of the definition ok p, which is the same as the
conditions of1, andb < p b by reflexivity.

pattern, because there are no values admissible to bothg , — C[v;,61],b = Clvs, 65]. If 61 <: 65 anduv; == vy,

a literal and a pattern. The only values admissible to a
literal are values of primitive typesull, or values of
type String. Patterns never match values of primitive
type ornull. Since the clasString is final, it is not
possible to add a deconstructor to it, so it also cannot be
matched by a pattern.

Supposea and § are both formalsF[#;] and F[0s].
Let Ty be the run-time type of. SinceT,; <: 6; and
Ty <: 65, the lack of a common descendent@ofand
£ implies thatTy = 6; or Ty = 65. Without loss of
generality, assume the former. Th&n<: 6,5, soa M 3 is
defined to bex.

-

Supposex is a patterrP[0;, n, ¢|] andg is a formalF'[].

By the same reasoning as in the previous case, either

01 <: 05, orf, <: 07. In both of these cases, the inter-
section is defined, specifically as eitheor P[0, n, 5]
Now, P[f,n, ¢] andP[f, n, ¢] must be associated with
the same deconstructor; otherwise,
undecidable-equivalen¢B[6:, n, ¢, P62, n, ¢]) would

be true. Since is admissible to botlx and 3, and since
deconstructors are deterministic, it is also admissible to
P[GQ, n, ¢]

Supposex = P[0, na,ps] and8 = P[0, ng,ps) are
both patterns. By the same reasoning as in the previ-
ous two casesf, <: 6z or 6z <: 6,. Without loss

of generality, assume the former. Naw and 5 must

be associated with the same deconstructor; otherwise,
undecidable-equivalen¢e, 5) would be true. Sincev
andg are associated with the same deconstru¢igr, =

|ps|. Since the deconstructor is deterministic, evaluat-
ing it returns the same values for both patterns. There-
fore, Lemma 5.4 can recursively be appliedgp and

pg. Therefore,a M g is defined, specifically toy =
P[0, nq,Pa M pp|. Since deconstructors are determin-

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007

then the intersection is. a <p b by rule 3 of<p, and
a <p a by reflexivity. WLOG, the case where <: 6,
is the same.

4. a = F[Ql],b = P[Qg,ng,ﬂ}. If 0, <: 0 andaMb = b,
thenb <p a by case 4 o p, andb <p b by reflexivity.
Suppose); < 63 anda Mb = P[fy,n2,0] = c. Then
we havec <p a by case 4 of<p again. The only ques-
tion is whetherc <p b, i.e. whetherP[y,ns, 5] <p
P[ls, no, 5], whered; < 6,. If the deconstructors are dif-
ferent, then by definition there is an undecidable equiv-
alence, sinc#; <: 05; but we have assumed there are
none. Therefore deconstructey = deconstructdp).
And 3 <p f by reflexivity. So, all the conditions for
case 6 of<p are applicable, and <p .

5. This case is always, so it doesn'’t apply.

6.a = Pl01,n,d],b = P[f2,n9,]. From the rules for
r, we know thate andb are associated with the same
deconstructor and that eithéf <: 6, or 05 <: 6.

If deconstructofc) # deconstructdi), then there is
an undecidable equivalence betweenand a, since

01 <: 65 or By <: 61; but we have assumed undecidable
equivalences don't occur. Therefore deconstryejor
deconstructdr). @3 <p @is true by induction. There-
fore,c <p a, because all the conditions of case 6-gf
are met.

WLOG, ¢ <p b for the same reasons.

Therefore, in an OOMatch program, there can be no am-
biguities at run-time other than those caused by undecid-
able equivalences, a class inheriting from multiple classes
that are part of a set of multi-methods, or deconstructors be-
having non-deterministically. Furthermore, one could write

16 2007/3/19

program analyses to find even these errors in many common { return true; }
cases statically. }

. e The automatic analyses to catch the possible run-time
6. Implementation errors mentioned in Section 4.7 have yet to be imple-
OOMatch is being implemented as an extension to the Poly- mented.

glot extensible compiler framework [15]. Polyglotis a com- o g5ome form of list matching like that found in TOM
piler that translates Java to Java, it is intended to be extended [13], or even more general pattern matching (e.g. reg-

so that it translates a language similar to Java to Java (which 5y expressions), would further increase the power of
can of course be compiled to bytecode using javac). OOMatch.

7. Conclusion and Future Work

We have presented OOMatch, a mostly backwards com-ReferenCeS

patible extension to Java that allows dispatch to take place [1] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry
by pattern matching. Unlike most pattern matching done in Masinter, Mark Stefik, and Frank Zdybel. CommonLoops:
“case” statements, our matching allows the ordering of cases !\Aerglng Lisp and ObJect-c_)nented ProgrammingQOPLSA
to be determined automatically by the compiler. It also al- 86: Conference Proceedings on Object-oriented Program-

. . . ming Systems, Languages and Applicatiqreges 17-29,
!ows regular_ objects. to be matched, without exposing the New York, NY, USA, 1986. ACM Press.
implementation details of classes.

Some possible future work that could be done for this [2] Emmanuel Chailloux, Pascal Manoury, and Bruno Pagano.
feature is as follows. Dev_eloplng Appllcatlon_s \{\ﬁth Objective Ce_nml2007.
Available at http://caml.inria.fr/pub/docs/oreilly-book/ on
e There is currently no way for programmers to resolve 5 Feb 2007.

ambiguities between methods, i.e. to specify that one [3] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd

method should be preferred over another. Syntax to allow Millstein. Multijava: Modular Open Classes and Symmetric

manual specification of override relationships would help Multiple Dispatch for JavaSIGPLAN Not.35(10):130-145,

them fix these situations. In particular, allowing methods 2000.

in superclasses to override those in subclasses (when [4] CVC Lite. Avaiable at http://www.cs.nyu.edu/acsys/cvcl/.

specified) would be quite worthwhile. [5] Simon Peyton Jones (editor)Haskell 98 Language and

e The regular parameters to a method can be deconstructed, Libraries. Cambridge University Press, 2003.
but the implicit “this” parameter currently cannot. Spe- [6] Burak Emir, Martin Odersky, and John Williams. Matching

cial syntax to allow “this” to be deconstructed and Objects With Patterns. Technical Report LAMP-REPORT-
matched would come in handy in many situations. 2006-006, EPFL, 1015 Lausanne, 2006.

* A general “where” clause for a method, to allow methods [7] Michael Emst, Craig Kaplan, and Craig Chambers. Predicate
to apply on any arbitrary boolean value (basically a pre- Dispatch: A Unified Theory of Dispatch. 1BCOOP
condition), would be useful, and trivial to add. Of course, 98, the 12th European Conference on Object-Oriented

arbitrary “where” clauses could not override each other Programming pages 186-211, 1998.

in general, as their value is undecidable, in general, at [8] James Gosling, Bill Joy, Guy Steele, and Gilad Brachiae
compile time. Java Language Specification, 2nd editiohddison-Wesley,
1996. Downloaded from http://java.sun.com/docs/books/jls/.

[9] Java 2 Platform, Standard Edition, v 1.4.2 API Specification.
Available at http://java.sun.com/j2se/1.4.2/docs/api/ on 5 Feb
2007.

[10] Keunwoo Lee, Anthony LaMarca, and Craig Chambers.
Hydroj: object-oriented pattern matching for evolvable
passed td@. 18th annual ACM SIGPLAN conference on Object-oriented
-])) programing, systems, languages, and applicatiqgreges
e The ability to match against variables that are in scope 205-223, New York, NY, USA, 2003. ACM Press.
(e.g. instance variables) would be useful. For example, it

e Unification would be useful; i.e. the ability to re-use a
matched variable later in the pattern. That is:

void f(Point x, x);

[11] Todd Millstein. Practical Predicate Dispatch. @OPSLA

would greatly simplify writing “equals” methods: '04: Proceedings of the 19th Annual ACM SIGPLAN
class Point { Conference on Object-oriented Programming, Systems,
public Point(private int x, Languages, and Applicationpages 345-364, New York,
private int y) {} NY, USA, 2004. ACM Press.
public boolean equals(Point(x, y)) [12] Robin Milner, Mads Tofte, Robert Harper, and David

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 17 2007/3/19

MacQueen. The Definition of Standard ML MIT Press,
1997.

[13] Pierre-Etienne Moreau, Christophe Ringeissen, and Marian
Vittek. A Pattern Matching Compiler for Multiple Target
Languages. InCC 2003, Compiler Construction: 12th
International Conferencepages 61-76, 2003.

[14] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak
Emir, Sebastian Maneth, &hane Micheloud, Nikolay Mi-
haylov, Michel Schinz, Erik Stenman, and Matthias Zenger.
An Overview of the Scala Programming Language. Techni-
cal Report LAMP-REPORT-2006-00Ecole Polytechnique
Féderale de Lausanne, 1015 Lausanne, Switzerland, 2006.

[15] Polyglot Extensible Compiler Framework. Available at
http://www.cs.cornell.edu/projects/polyglot/.

[16] P. Wadler. Views: A Way for Pattern Matching to Cohabit
with Data Abstraction. IlPOPL '87: Proceedings of the
14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languagepages 307-313, New York, NY,
USA, 1987. ACM Press.

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 18 2007/3/19

