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Abstract
We present a new language feature, specified as an extension
to Java. The feature is a form of dispatch which includes and
subsumes multimethods (see for example [3]), but which
is not as powerful as general predicate dispatch [7]. It is,
however, intended to be more practical and easier to use than
the latter. The extension, dubbed OOMatch, allows method
parameters to be specified aspatterns, which arematched
against the arguments to the method call. When matches
occur, the method applies; if multiple methods apply, the
method with themore specificpatternoverridesthe others.

The pattern matching is very similar to that found in the
“case” constructs of many functional languages (ML [12],
for example), with an important difference: functional lan-
guages normally allow pattern matching overvariant types
(and other primitives such as tuples), while OOMatch al-
lows pattern matching on Java objects. Indeed, the wider
goal here is the study of the combination of functional and
object-oriented programming paradigms. Of special impor-
tance, we ensure that matching can occur while retaining the
complete control of class designers to prevent implementa-
tion details (such as private variables) from being exposed to
clients of the class.

We here present both an informal “tutorial” description of
OOMatch, as well as a formal specification of the language,
and a proof that the conditions specified guarantee run-time
safety.

Categories and Subject DescriptorsD.3.3 [Programming
Languages]: Language Constructs and Features—Classes
and objects, Patterns, Polymorphism, Procedures, functions,
and subroutines

General Terms Design, Languages

Keywords predicate dispatch, dynamic dispatch, pattern
matching, multimethods, Java

1. Introduction and Motivation
Object-oriented programming languages have become the
industry hallmark for writing large programs (of millions of
lines of code), and with good reason. Building large systems
naturally lends itself to breaking down a task into compo-
nents, and programmers must be provided with a simple in-

terface to conceptualize and work with these components. A
class-based type system provides this quite well.

Functional programming languages, on the other hand,
have gained a group of devoted followers not only for their
beauty, but also for their stability. Because of their declara-
tive nature and lack of side effects, it is considerably more
difficult to write buggy software in a functional language
(once the software passes the compiler) than in an object-
oriented language. As there is a greater trend toward se-
curity and closing security holes, as computers are used for
more and riskier applications, and as programs get larger, it
is becoming increasingly important to prevent bugs from the
start.

The strong static typing of languages like Standard ML
[12] and Haskell [5] provides this safety quite well. But
most functional languages (with notable exceptions such
as OCaml [2] and Scala [14]) do not have built-in support
for class-based object-oriented programming as found in
languages like Java and C++.

Each methodology - functional and OO programming -
is useful for a wide class of problems, and embodies the
programming style of a large group of people. It is very
difficult to say whether one or the other methodology is ideal
for all situations, or whether some mixture is ideal. Indeed,
if anyone knows the answer to that question, that person
should probably create a programming language. Therefore,
we believe that for the time being, it is best to provide
a language that supports as many styles as possible. The
features embodying each style should further be orthogonal
with each other, so that different pieces of code written in
different styles can be pieced together to form a program.

This paper presents a small step towards the goal of uni-
fying object-oriented and functional programming. In par-
ticular, it considers how pattern matching – a common and
useful feature of many functional languages – might be inter-
woven into the object-oriented tapestry. Pattern matching in,
for example, ML, allows one to decompose algebraic types
or tuples into their components, either in a case statement or
in a set of functions. Though this pattern matching is use-
ful in a functional context, simple algebraic types and tuples
aren’t used much in object-oriented programming; classes
are used much more. So we here present a means of decon-
structing objects into their components and specifying pat-
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terns that match objects with certain properties. The patterns
are specified in different method headers (as in ML), and the
compiler decides on a natural order to check for a matching
pattern, i.e. to check which methods override which. This
is specified via subtyping, so this feature subsumes poly-
morphic dispatch and multimethods. Most important to this
approach, it should be noted, is that information hiding of
objects (a fundamental property of object-oriented systems)
must be preserved; we must not allow clients to access the
data of the object except in ways the class writer explicitly
allows. Another important goal is simplicity; if programmers
find the facility confusing, they can already simulate it them-
selves using if-else blocks and casting, and its practical value
would be lost.

Though OOMatch is being implemented as an extension
to Java, it would likely be trivial to adapt the feature to other
similar object-oriented languages, such as C++.

2. Background
2.1 Pattern Matching

Pattern matching is a popular feature of the ML family
of languages. It lets one create a function with multiple
cases, each case of which handles arguments of a particular
form. For example, the following code declares a binary tree
structure in SML:

datatype tree = Leaf of int
| Node of tree * tree ;

With that definition, each case can be matched with mul-
tiple function definitions:

fun f(Leaf(x)) = ...
| f(Node(n1, n2)) = ...
;

The first version off is called if a leaf node is passed
as an argument, and the second is called for non-leaf nodes.
The free variablesx, n1, andn2 can then be referred to in
the body of the function, like any parameters. Note that, if
multiple functions match (which can’t happen in the above
example), the first match is the one chosen.

2.2 Primer on Multimethods

Multimethods are a classic example of a powerful form of
dispatch. They allow the method chosen to depend on the
run-time types ofall arguments, rather than just the receiver
argument. To understand the usefulness of this feature, con-
sider how one might write a class with an “equals” method.
In Java, a naive programmer might write the following:

class C {
...
public boolean equals(C other)
{ ... }

}

But this is incorrect because the version of “equals”
shown does not in fact override Object’s “equals” method,
which has signaturepublic boolean equals(Object
obj) [9]. Because theequals in C does not have the same
parameter types, the methods become overloaded rather than
overridden. This means that, for example, this code:

Object o = new C(...);
if (new C(...).equals(o)) {...}

does not call the user’sequals method, but the one in the
Object class, probably causing unexpected behavior. In an
imaginary language where the methods were treated as mul-
timethods,C.equals(C)would overrideC.equals(Object)
which would in turn overrideObject.equals(Object),
and the behavior that was probably expected would take
place. Instead, in Java, one must (and must remember to)
write custom dispatch code, such as:

class C {
...
public boolean equals(Object otherObject)
{

if (!(other instanceof C))
return false;

C other = (C)otherObject;
...

}
}

This code is noticeably more verbose and error-prone
than the multimethod version.

3. Related Work
The idea of dispatch mechanisms more general and powerful
than polymorphic dispatch (the dispatch found in Java) is not
new. Multimethods were introduced in CommonLoops [1]
and added to Java in MultiJava [3]. This notion was general-
ized and formalized as predicate dispatch [7], in which any
arbitrary predicate can be used to choose the method to call.
The idea is that a boolean condition is added to a method
definition, and when the condition evaluates to true (at the
time of a method call), that method is called. If a method A’s
condition implies B’s (where A and B have the same name
and argument types but different boolean conditions), then
A is said to override B.

Predicate dispatch is by definition the most powerful form
of dispatch. However, while it is an excellent aid in under-
standing and motivating various forms of dispatch, we would
like to provide the common programmer with a language
feature that is less powerful but easier to use and compute.

3.1 TOM

TOM [13] is a language extension that allows decomposing
objects into their component parts and matching them with
patterns. It takes a multi-language perspective - the extension
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can be used in Java, C, and Caml. In TOM, one constructs
algebraic types, which are entities that have a one-to-one
correspondence with a type in the target language (e.g. a Java
class). One then provides “functions” on these types to work
with them, mapping calls to these functions to code in the
base language being used. Then, one can match an algebraic
type with a case-like construct (called “%match”), allowing
the pattern that matches to be selected and used.

TOM only provides a case-like construct; matching is not
used to directly select one of several functions to execute.
Its pattern matching, however, works in much the same way
as OOMatch’s pattern matching, both involving the decon-
structing of objects. Further, TOM includes a way to match
lists, which is a useful and powerful feature that OOMatch
does not (yet) include.

3.2 HydroJ

HydroJ [10] introduces a form of dispatch similar to the
one given here, but with a completely different goal – that
of allowing the function declarations to be changed without
changing the calls to those functions, and vice versa. Its ap-
plication is ubiquitous and distributed computing, in which
several small devices communicate with each other, and one
wants to improve one component without having to replace
(and waste) the old ones. In HydroJ, this is made easier by
its rule that if the number of arguments to a function call
exceeds the number of parameters in its definition, the ex-
cess arguments are ignored. In more mainstream languages,
of course, this would be a compile error.

Function parameters in HydroJ can also contain nested
patterns on HydroJ’s special types (“semi-structured data”).
Moreover, in HydroJ a function with more parameters over-
rides a function of the same name with fewer parameters.
Hence, it contains both a form of dispatch and pattern match-
ing to facilitate this dispatch.

This feature is very useful in ubiquitous and distributed
computing applications, which the language is targeted for,
but is not well-suited for a general-purpose programming
language, as is our goal. In particular, the excess argument
rule in HydroJ means that if one accidentally adds extra
arguments to a call, the program will compile and run, and
silently ignore the arguments, likely resulting in bugs. This
goes against our goal of safety through a strong type system.
Also, though HydroJ’s means of dispatch based on matching
objects is much like ours, it doesn’t provide a means of
decomposing a Java type and safely extracting its internals
to perform the match.

3.3 JPred

JPred [11] adds a powerful form of predicate dispatch to
Java. It uses a general “when” clause to dispatch on boolean
and arithmetic expressions involving the parameters, much
like general predicate dispatch. To make it easier to com-
pute the override relationships, JPred restricts the predicates
that can appear in a “when” clause to a decidable (though

still very powerful) subset, allowing only primitive values,
parameter references, subtype queries (allowing for multi-
methods), field references and built-in operators. The most
noteworthy restriction here is that arbitrary function calls
cannot appear in “when” clauses. It then uses an external
decision procedure – namely, CVC Lite [4] – to determine
which functions override which.

Though its “when” clause is more powerful than
OOMatch’s pattern matching, we believe there are many
situations in which OOMatch is more practically useful. In
particular, it is cumbersome to extract the internals of ob-
jects in JPred. Perhaps more importantly, doing so requires
the data members of objects to be exposed, which violates
encapsulation. Further, JPred disallows Java interfaces from
being matched in order to achieve proof that typechecking
can find all ambiguity errors at compile time. As we shall
see later, we choose to relax this restriction at the cost of a
run-time check for some of these errors.

3.4 Views

Views [16] were another attempt to unite pattern matching
and data abstraction. The “in” clauses of views are simi-
lar to Java constructors and “out” clauses are like OOMatch
deconstructors. However, using views, the only way to get
information from an object is by making reference to its
declarative form – there are no accessor methods like in Java.
This may be fine for a functional language, but in Java an
object frequently contains information not found in its inter-
face, and there should be a way to get that information back
(safely). Also, there is no mention in [16] of the order func-
tions with patterns are checked for applicability, or which
functions override which; presumably functions appearing
first are considered to have priority. OOMatch, in contrast,
determines override relationships based on which method is
more specific.

3.5 Scala

Scala [14] is a language that also attempts to merge Object-
oriented and functional programming, roughly starting with
Java as a base. It contains a form of pattern matching called
case classes. A set of case classes is a class hierarchy which
allows objects in the hierarchy to be easily matched or de-
constructed; there is special syntax to make this convenient.
To take the example from [14]:

abstract class Term
case class Num(x : int) extends Term
case class Plus(left: Term, right : Term)

extends Term

Num andPlus here are each subclasses of, or ”cases of”,
Term. Num, for example, can now be constructed by passing
a singleint parameter to its constructor. Variables of type
Term can then be matched against in a special “match” ex-
pression, andNum.x can be extracted back (deconstructed)
whenNum matches. For example:
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Term x = ...;
x match {

case Plus(y, Num(0)) => y
case Plus(Num(0), y) => y
case _ => x

}

Case classes are then similar to algebraic types, but more
powerful in that they can be used like regular classes.

Scala also has a feature calledextractors, described in
[6], which are similar to OOMatch deconstructors. These
allow the addition of “apply” and “unapply” methods to a
class, the latter of which allow objects of the class to be
decomposed, and their components returned. Such objects
can then be matched in a “match” expression, as above, but
in a controlled way.

Despite the similarities between Scala’s pattern match-
ing and OOMatch, Scala does not use pattern matching for
method dispatch, but only a “match” construct that can ap-
pear inside a method body. Cases in Scala match expressions
are evaluated in the order in which they appear; unlike in
OOMatch, Scala does not automatically prefer specific pat-
terns over more general ones.

3.6 OCaml

Objective Caml [2] is another language that combines
object-oriented and functional styles, in this case by adding
classes and objects to a functional language (ML). It con-
tains regular ML pattern matching with a ”match” clause,
which allows matching of primitives, tuples, records, and
union types.

Matching of records types can be seen as being very
similar to object matching, as OOMatch allows. However,
OCaml pattern matching does not match OCaml objects,
nor does OCaml provide multimethods or any other more
general form of dispatch on patterns in which precedence is
determined automatically by the compiler.

4. Using OOMatch - Informal Description
4.1 Pattern Matching

We introduce OOMatch using a simple example. Suppose
one is writing the optimizer component of a compiler, and
wants to write code to simplify arithmetic expressions. Sup-
pose the Abstract Syntax Tree (AST) is represented as a class
hierarchy (a natural way to represent an AST), as follows.

//Arithmetic expressions
abstract class Expr { ... }

//Binary operators
class Binop extends Expr { ... }

//’+’ operator
class Plus extends Binop { ... }

//Numeric constants
class NumConst extends Expr { ... }

Then part of the functionality to simplify expressions
could be implemented using OOMatch as the following set
of methods:

//do nothing by default
Expr optimize(Expr e) { return e; }

//Anything + 0 is itself
Expr optimize(Plus(Expr e, NumConst(0)))
{ return e; }

//Constant folding
Expr optimize(Binop(NumConst c1,

NumConst c2) op)
{ return op.eval(c1, c2); }

These methods are matching appropriate types of ex-
pressions and applying optimizations when possible. Each
method specifies an optimization rule. The latter two meth-
ods, which also have one parameter each, specify patterns
to break down or “deconstruct” that parameter into its com-
ponents, which are matched against the argument passed to
optimize. The second method, for example, takes a pa-
rameter of typePlus and breaks it into two parts (the two
operands of the “+” operator),Expr e andNumConst(0).
That method only applies, then, when the parameter is of
type Plus, and the operands match these two patterns.
We assume that all operands are of typeExpr, so the first
operand always matches, while the second one apparently
matches when the other operand is a numeric constant with
the value 0. Note that the way these patterns are written,
and which ones are allowed, is so far magic to the reader –
the extra information the classesPlus andNumConst must
provide in order to allow themselves to participate in pattern
matching is described shortly.

The key point to notice in the above example is that the
third methodoverrides the first, since its pattern ismore
specific thanthe original’s (becauseBinop extendsExpr),
and the second also overrides the first sinceBinop extends
Expr. Note that the order in which the methods appear does
not affect these override relationships.

The0 in the second method means that the pattern is only
matched when the numeric constant’s value is 0. The named
variables in the patterns are given the value that is matched,
so that this value can be used by referring to the declared
name in the method body. Note that the patterns themselves
can be named or unnamed; the Plus match is unnamed, while
the Binop is given the name “op” so that the matched object
can be referred to in the method.

Patterns can of course themselves contain patterns (as
is shown in the second method above), and can indeed be
nested to any arbitrary depth. The most specific match is
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always chosen first. So, for example, we could add another
function with signature

Expr optimize(Binop(IntConst c1, IntConst c2))

whereIntConst extendsNumConst, and this new function
would override the third one, because the pattern type is the
same but the subpatterns are more specific.

An interesting exercise is to think of what would be
necessary to rewrite the above code in pure Java. While
it’s noteworthy that our version is probably more com-
pact and understandable, a more important property of the
OOMatch version is that each method represents a separate
rule. This one-to-one mapping of rules to methods is not
as feasible in Java. One Java approach would be to have
one method do the dispatch to determine which “rule” is
applicable - it could be calledoptimize in this case - and
have other methods of different names for each rule (ei-
ther optimize1, optimize2, andoptimize3, or perhaps
optimizePlusZero andoptimizeFold). There are many
situations where this approach is less than elegant.

Note that OOMatch introduces the potential for new
kinds of compile errors. In fact, the above code contains
such an instance, as a careful reader might have noticed. If
optimize is passed an expression like1 + 0, the second
and third methods will both apply, because this expression is
both adding 0 to an expression and performing an operation
on two constants. However, it cannot be said that either of
these methods overrides the other, because there are cases
where the second applies and the third doesn’t, and vice
versa. This is called an ambiguity error — it is possible for
more than one method to apply, but neither is necessarily
more specific than the other. Normally, this results in a com-
pile error, though there are cases where the compiler cannot
detect ambiguity errors, as we shall see later. In this case, the
problem can be resolved by adding a fourth method which
handles the intersecting case:

Expr optimize(Plus(NumConst e, NumConst(0)))
{ return e; }

The other new kind of error that can be present in an
OOMatch program is called anincomplete error. It occurs
when there is a method that is not general enough to be called
directly from a call site (we shall see later how “not general
enough” is defined), and which appears alone (i.e., it doesn’t
override any other method), so that it has no way of being
called. For example, if the following lone function appeared:

void f(NumConst(0)) { ... }

an incomplete error would result, because the case
NumConst(1) (among others) is not handled.

4.2 Deconstructors

To allow the specification of patterns on objects, as in the
previous section, their classes must provide a means ofde-
constructingsaid objects. There are two ways of doing so in

OOMatch. The first way, described next, is simplest but al-
lows little control; the second option allows the class writer
much greater control over access to the class.

In OOMatch, programmers can add access specifiers to
constructor parameters:

class Binop {
public Binop(public Expr e1,

public Expr e2)
{ ... }
...

}

Thepublic specifier on parameters does 4 things:

• Declares the variable to be a public instance variable of
the class

• Declares a parameter to the constructor

• Assigns the argument passed to the constructor to the
instance variable

• Allows the object to be deconstructed in a pattern that
corresponds to the way it was constructed

Deconstructing an object means that certain components
of the object are being “returned”, and then matched against.
So for

Expr optimize(Binop(NumConst c1,
NumConst c2) op)

the instance variables e1 and e2 are extracted from theBinop
argument, and if they are both instances of NumConst, they
are assigned, by reference, to the variables c1 and c2. Note
that access specifiers other than “public” are allowed to
restrict access to the variable in the class; however, the object
can still be deconstructed as long as it has a constructor
whose parameters have some access specifier.

The above syntax is convenient and intuitive because ob-
jects can be deconstructed in the same way they were con-
structed. Moreover, even in the absence of pattern matching,
the ability to write both instance variables and constructor
parameters all at once provides a handy shortcut for writing
quick-and-dirty classes for which access is not important.
But in large object-oriented systems, it is crucial that pro-
grammers are able to restrict access to data members. Hence,
the more general and powerful notion of adeconstructor, de-
scribed next, is provided.

An equivalent way to write the Binop class in OOMatch
is as follows. Indeed, the above definition of the Binop class
using thepublic specifier is merely syntactic sugar for the
following form.

class Binop {
public Expr e1, e2;
public Binop(Expr e1, Expr e2) {

this.e1 = e1;
this.e2 = e2;
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...
}
deconstructor Binop(Expr e1, Expr e2)
{

e1 = this.e1;
e2 = this.e2;

}
...

}

A deconstructor breaks downthis into components, and
returns them to be matched against. But rather than return-
ing said components in the return value, its parameters are
“out” parameters, each one representing a component. The
deconstructor must assign each of them a value on each pos-
sible path through its body; they have no defined values at
the beginning of the body. Aside from these restrictions, any
arbitrary code may appear in a deconstructor, and any values
of typeExpr can be returned in the parameterse1 ande2 in
the example above. This way, classes can restrict access to
their instance variables however they see fit.

Of course, in a real-world application, the instance vari-
ables above would probably be private and accessed using
accessor methods. Indeed, this is exactly what deconstruc-
tors allow one to do.

Note that the (perhaps confusing) syntactic notation of
deconstructors returning their values in “out” parameters is
solely a result of the limitations of Java. A more elegant, and
understandable to the user, syntax would be for deconstruc-
tors to return a tuple of values, which supposedly represent
the components ofthis. Any function which takes no pa-
rameters and returns a tuple could then be used as a decon-
structor. This approach was taken by Scala’s extractors [6],
for example.

In general, method headers in OOMatch can contain reg-
ular formal parameters, or patterns. Patterns can contain lit-
eral primitive values (including string literals). One cannot,
then, match on a specific object value of class type, un-
less they provide a deconstructor for the object and specify
the value as a pattern. In other words, one cannot specify a
“new” expression in a parameter to match against. Also note
that literals can appear outside of patterns, in place of regu-
lar parameters. For example, the following pair of functions
is allowed (and is potentially useful):

void f(int x) { ... }
void f(0) { ... }

The second method above overrides the first.
Note also that a deconstructor can be given any name, not

just the name of the class. However, if given a name other
than the name of the class, any references to the deconstruc-
tor must be prefixed with the class name, as in:

Expr optimize(Expr.my_deconstructor(
NumConst c1, NumConst c2))

{ ... }

This rule could be removed relatively easily in a language
with a construct to include a file and bring all symbols
defined therein – including deconstructors – into the current
namespace, but Java’simport statement does not allow this.
The alternative would be to search all imported classes for
possible deconstructor definitions, but this be too expensive.

From the point of view of the OOMatch compiler, re-
ferring to a deconstructor asX.Y is the “default” form, and
means that a deconstructor namedY is looked up in the class
X or its superclasses. When a deconstructor is referred to as
simply X, the compiler first looks for a deconstructorX in
the classX; if none is found, it looks in the superclass ofX
for a deconstructor with the name of thesuperclass. Hence,
the expressionPlus(Expr e, NumConst(0)) seen earlier
could be short forPlus.Binop(Expr e, NumConst(0)),
if the classPlus does not have a deconstructor of its own.

4.3 No “throws” Clause for a Deconstructor

Deconstructors may not be declared to throw any exceptions.
The advantage of athrows clause is that it forces clients to
catch the exceptions declared in the corresponding method.
But the method headers that use the deconstructors obvi-
ously cannot themselves catch these exceptions. Another
possible rule would be to force method headers to declare
a “throws” clause containing any exceptions that the decon-
structors it invokes throw. The callers of such methods would
then be required to catch these exceptions. However, if this
were done, then all methods in an overriding group would
also be required to throw the exceptions, even if they do not
use the deconstructors themselves. This could get complex
and confusing. More importantly, we do not see any obvi-
ous use for this feature; if one is discovered, it could become
future work.

4.4 Deconstructor Return Value

To further increase the power of deconstructor bodies, they
may return a boolean value;true means the match suc-
ceeded,false means it failed. This allows even a decon-
structor whose pattern is matched to disallow the match un-
der certain arbitrary conditions, such as the state of the ob-
ject. This return statement is optional.

4.5 Order of Deconstructors

The order deconstructors are called (when determining
which method applies to a method call) is left unspecified.
This choice was made to free implementations to do opti-
mizations or maximize other metrics that may require cer-
tain implementations of the dispatch algorithm (described
later). Further, implementations may choose not to run the
deconstructor for a given pattern, as long as the required
semantics are preserved. However, we do make the require-
ment that deconstructors are run at most once to determine
the method to call. In particular, the rule is that for a given
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method call, a deconstructor referenced in a method of the
same name as the call may not be run more than once for
each reference to it.

Because of the functional nature of the context in which
deconstructors are intended to be used, it is not normally
useful to write code which depends on the deconstructors
that are called and the order in which they are called. Hence,
this implementation-defined behavior was deemed more de-
sirable than explicitly-defined behavior, because it increases
the potential for optimizations.

4.6 Null

Null parameters introduce some interesting cases. First, null
literals override any formal parameter of class type. Suppose
there are two classesA andB, unrelated by inheritance, and
this code:

class C {
void f(A a) { ... }
void f(B b) { ... }
void f(null) { ... }

}

The third method overrides both the others. There is no
way to specify that one is matching only null values of a
particular type; syntax to allow this could be a possible fu-
ture addition. Otherwise,null is doing nothing special here;
sincenull is a subtype of all other types, it overrides all
methods with a single parameter of class type, as expected.

Another trickier issue withnull is in matching patterns.
Given theBinop deconstructor from Section 4.2, one might
expect the following lone function to present no problems,
as it handles everyBinop object:

class C {
void f(Binop(Expr e1, Expr e2))
{ ... }

}

But unlike a function that takes a single parameter of
typeBinop, this one cannot be passed the valuenull, be-
causenull cannot be deconstructed. If this is attempted,
a run-time error occurs. Unlike ML and similar languages,
which disallow the above code and force a function contain-
ingnull to be provided, OOMatch permits the above and as-
sumes the user is never going to passnull to f. This allows
patterns to be used for no other reason than to specify non-
null parameters, which is sometimes useful. Besides, many
(though not all) bugs caused by passingnull to a pattern pa-
rameter could be caught statically, with a program analysis.

Another way around this problem that was considered is
to force every method using a pattern to override a regular
Java method; this way, the Java method could always be
called as a last resort. This was decided against for the
simple reason that one useful way to use patterns is not for
override purposes, but merely to extract the internals of an

object simply and concisely. In the above example, the user
might not care to give a name to the singleBinop parameter,
because she only cares about the twoExprs contained within
it, and by using patterns is avoiding calls toBinop’s “getter”
methods within the body of the function. It would be tedious
to force programmers to write an extra function that throws
an exception fornull in these cases, especially since the
runtime system generates an exception fornull anyway.

4.7 Undecidable Errors

Though the compiler can catch many of the new possible
errors, finding all of them is undecidable. Rather than re-
stricting the language and disallowing certain programs that
make sense, we have chosen to throw an exception at run-
time when the relatively rare cases described here occur. We
now describe the three types of errors, in addition to the
“null” error mentioned in Section 4.6 and the possibility of
deconstructors returning false, that might cause a run-time
exception.

4.7.1 Interfaces

The first potential error is caused by multiple inheritance,
which is partially allowed in Java by implementing multiple
interfaces. Consider the following trivial pair of functions:

void f(A a) { ... }
void f(B b) { ... }

whereA andB are interfaces that are not related at all. De-
spite this being entirely valid Java, the compiler cannot guar-
antee that this program is free from ambiguity errors, be-
cause it might happen that there is a classC which imple-
ments bothA andB, and if an object of typeC is passed to
f, OOMatch will not know which version to call. It is not
possible to tell whether such aC exists at compile time; not
only does Java’s modular typechecking preclude knowledge
of the class hierarchy, but dynamic class loading means that
knowing what classes will be present at the time of a call to
f is undecidable.

A simple test showed that JPred [11] avoided this issue
by disallowing interfaces as multimethod parameters. We
found this approach too restrictive; programmers expect to
be able to use interface parameters the same way they use
class parameters. Further, if this feature were migrated to
a language with multiple inheritance, the problem would
return.

4.7.2 Different deconstructors

The next type of ambiguity can occur when there is a pair
of functions in a group, and a corresponding parameter is
referring to a different deconstructor in each function. For
example, let’s take the class from before and add an extra
deconstructor to it:

class Binop {
...
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deconstructor Binop(Expr e1, Expr e2)
{ ... }
deconstructor Binop2(Expr e1, Expr e2)
{ ... }

}

Now suppose we have a set of methods that matches on
both of them:

class C {
...
void f(Binop(Expr e1, Expr e2)) { ... }
void f(Binop2(Expr e1, Expr e2)) { ... }

}

Since both patterns appear to match everyBinop, it may
at first appear that this is clearly an ambiguity, or even a
duplicate method definition. But in fact it is not necessarily
so. Since deconstructors can run arbitrary code and return
true or false depending on whether they match, it is quite
possible for the programmer to ensure that they match only
in a mutually exclusive manner. For example, the Binop
class could keep track of a boolean flag and only match one
deconstructor when it’s true, and the other when it’s false.
But the compiler cannot decidably determine whether they
will both match in some cases. So, to ensure that it allows
all programs that make sense, we’ve decided to wait until
run-time to give the error in this case.

Note that it makes no difference whether the pattern con-
tains constants in its parameters or not, or whether one pat-
tern appears to be more specific than the other. Since the
deconstructors may be returning completely different val-
ues, (there is no rule forcing them to return instance vari-
ables of the class, for example) the compiler can say nothing
about whether both functions will always apply simultane-
ously, whether they are mutually exclusive, or whether one
overrides the other. Hence, it assumes they are mutually ex-
clusive, and a run-time error can occur if this turns out not to
be so.

Note that this problem can appear in mischievous ways.
For example, if a subclass defines a deconstructor of the
same name as a superclass (not something that is normally
useful), the two deconstructors are considered completely
separate, and override relationships that may have been as-
sumed to be present may in fact not be present. For example,
consider this code:

class Point {
...
deconstructor Point(int x, int y) { ... }

}

class ScreenCoordinate extends Point {
...
deconstructor Point(int x, int y) { ... }

}

class C {
void f(Point(0, 0)) { ... }
void f(ScreenCoordinate.Point(0, 0))
{ ... }
...

}

One might expect the second version off to override the
first, because they both have the same pattern, but the second
method only admits objects of typeScreenCoordinate.
However, because of the deconstructor definition in
ScreenCoordinate, it is not so; the compiler can say
nothing, in general, about which deconstructor is more
specific than which, even if the user intended the one in
ScreenCoordinate to be more specific. Hence, there is no
overriding taking place here, nor is there a compile error.
Of course, compiler implementations can and should give a
warning in this situation.

4.7.3 Non-deterministic deconstructors

Finally, because deconstructors can return any values, prob-
lems can arise if they return different values on different in-
vocations. Consider the following pair of functions which
use the classPoint described above:

class C {
void f(Point(0, 0)) { ... }
void f(Point(1, 1)) { ... }

}

It may appear that these functions are clearly mutually
exclusive. But in fact, nothing prevents the deconstructor for
Point from being implemented like so:

deconstructor Point(int x, int y) {
Random r = new Random();
//Randomly return either 0 or 1
//for each of x and y
x = r.nextInt(2);
y = r.nextInt(2);

}

In this case, it is quite possible that on the first invoca-
tion of the deconstructor, 2 zeroes are returned, and on the
second invocation, two ones are returned, which makes both
functions match. In general, a deconstructor should have no
side effects, and always return the same set of values given
the same objects. Again, the compiler cannot determine, in
general, whether this is so.

This kind of non-deterministic behavior is, of course,
not very useful in a pattern matching context, and is hence
relatively easy to avoid; on the other hand, such problems
could potentially be very difficult to find and debug. On the
plus side, this problem, as well as the other two mentioned
in this section, could be found with a static program analysis
in many cases.
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4.8 Cross-class Ambiguities

An issue that arises when studying multimethods is whether
Java’s subclass overriding should always take precedence
over parameter overriding. The alternative is to give an am-
biguity error. For example, consider this code:

class Shape {
intersection(Shape s);
intersection(Circle(0, 0));

}

class Square extends Shape {
intersection(Shape s);

}

What happens if

Square.intersection(new Circle(0, 0))

is called? ShouldSquare.intersection be ambiguous
with Shape.intersection(Circle(0, 0))? In
OOMatch, we decided to resolve the ambiguity in favor of
Square.intersection – i.e., to make Java overriding al-
ways take precedence over OOMatch overriding. The orig-
inal thought was that preventing the above code as an am-
biguity (which may make perfect sense to the programmer
who wrote it) was unnecessarily restrictive.

In retrospect, this choice was probably a mistake. A bet-
ter, and safer, approach would be to allow the programmer
to attach annotations specifying which method should take
precedence. Besides safety, this approach has the advantage
that it very often happens that a class writer wants to impose
a policy on all subclasses; perhaps the writer of Shape wants
intersection to always do a specific thing when called with
Circle(0, 0). In the current implementation, this is not
possible.

This feature is left to future work.

4.9 Backwards Compatibility

The syntax of Java is, for the most part, a subset of OOMatch;
that is, most Java code will compile as an OOMatch pro-
gram. However, there are two exceptions that may cause
incompatibilities.

First, there are cases where code that is valid as Java code
generates an ambiguity error when compiled with OOMatch.
For example, supposeA extends B and we have this code:

class C {
void f(A a, A b) { ... }
...

}
class D extends C {

void f(A a, B b) { ... }
void f(B b, A a) { ... }

}

This is fine in Java; all three methods are overloaded. But
in OOMatch, the two versions ofD.f override the version
in C, but are ambiguous with each other. An error must be
given here, because ifC.f is called statically, but is passed a
pair ofBs and a receiver argument of typeD, there will be an
ambiguity.

Second, the meaning of a Java program might be slightly
different when treated as an OOMatch program. In partic-
ular, methods which are only overloaded in Java might be-
come overridden when treated as OOMatch code. For ex-
ample, supposeB extendsA and we have the following Java
code:

class C {
void f(A a) {...}
void f(B b) {...}
void g() {

A a = new B();
f(a);

}
}

if the class is compiled as a Java class, the call tof will
invoke the first version off, despite the fact that the argu-
ment’s “real” type isB, . If compiled as an OOMatch class,
however, the two versions off become multimethods, and
the second version is invoked. Though the Java behavior may
seem stranger, there may be legacy code that depends on it,
and whose behavior should not be changed; that it is changed
is a point against OOMatch. Nevertheless, this disadvantage
was deemed a worthwhile price to pay to avoid the need for
specific syntax for multimethod behavior (such as the “@”
symbol from MultiJava [3]). Special syntax would make the
feature more cumbersome and confusing to learn, which, we
felt, is worse than violating backwards-compatibility.

Further, it should be noted that OOMatch code is inter-
operable with Java code. It is entirely possible to compile
new code with the OOMatch compiler, and use the resulting
.class file with legacy code that has been compiled with the
Java compiler. When assurance is needed that legacy code
retain its exact behavior, or when Java code that will not
compile with OOMatch cannot be updated, part of the code
can be compiled with the Java compiler.

5. Formal Specification
5.1 Syntax

We present the core (desugared) syntax of OOMatch by
making two modifications to the Java grammar from Chap-
ters 3 and 8 of the Java Language Specification, second edi-
tion [8]. In this section, we show differences from the Java
grammar in bold.

OOMatch adds deconstructors as a new kind of class
member:

ClassMemberDeclaration::= FieldDeclaration
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| MethodDeclaration
| ClassDeclaration
| InterfaceDeclaration
| deconstructor

deconstructor::= deconstructor Identifier
( FormalParameterListopt ) MethodBody

In addition to formal parameters as in Java, OOMatch
allows methods to have two new kinds of parameters: literals
and patterns.

MethodHeader::= MethodModifiersopt ResultType
MethodDeclarator Throwsopt

MethodDeclarator::= Identifier( OOMatchParameterListopt )
OOMatchParameterList::= OOMatchParameter

| OOMatchParameterList, OOMatchParameter
OOMatchParameter::= FormalParameter

| Literal
| Pattern

Pattern::= Type. Identifier( OOMatchParameterListopt )

Because in Java, the floating point literals-0.0 and0.0
are considered equal, as are the integer literals-0 and 0,
OOMatch considers them the same literal. For example, the
method signaturevoid m(0.0) is considered to be the same
asvoid m(-0.0).

5.2 Notation and Definitions

Throughout this section, we will use the following abbrevi-
ations for OOMatch entities.

• F [T ] represents a Java formal parameter of typeT .

• C[v, T ] represents an OOMatch literal parameter with
Java literal valuev and typeT .

• P [Tr, n, ~Tp] represents an OOMatch pattern with type
Tr, namen, and parameter types~Tp.

• D[n, ~Tp] represents a deconstructor with namen and out-
parameter types~Tp.

• M [Tr, n, ~Tp, ~Tt] represents a method with return typeTr,
namen, parameter types~Tp, and declared throwing types
~Tt.

We explicitly define a subtyping relation that corresponds
to the assignability rules defined in the Java Language Spec-
ification [8].

DEFINITION 5.1. The subtyping relation<: is the smallest
transitive and reflexive relation satisfying the following:

1. T <: T ′ if T and T ′ are classes or interfaces andT
extends or implementsT ′.

2. null <: T if T is a class, interface, or array type.
3. byte <: short <: int <: long <: float <: double,

andchar <: int.

4. For array types,A[] <: B[] if A <: B.
5. T <: Object for all class, interface, and array typesT .
6. T [] <: Cloneable andT [] <: java.io.Serializable

for all array typesT [].

LEMMA 5.1. Subtyping is a partial order.

Proof We have transitivity and reflexivity from the defini-
tion; we only need to show antisymmetry, i.e. no cycles.

The subtyping cases can be divided into primitives, ar-
rays, and other reference types. Primitive types are unrelated
to any other types, and there is no cycle in the relations given
in case 3. Array types are not the supertype of any other ref-
erence type, so there can be no cycles between them and
other reference types. From case 4, there can be no cycles
among array types unless there are cycles among reference
types. Null is not the supertype of any other type, so it can-
not participate in a cycle; the only thing left is classes and
interfaces. These cannot be defined circularly, as stated in
the Java specification, section 8.1.3. [8]

5.3 Deconstructor Binding

At compile time, every pattern appearing in the program is
statically bound to a fixed deconstructor, which will be used
to evaluate the pattern. To specify which deconstructor is
to be used for a given pattern, we first define thetypeof a
parameter as follows:

type(F [T ]) = T

type(C[v, T ]) = T

type(P [T, n, ~p]) = T

Then, a deconstructorD[n1, ~T1] is eligible for a pattern
P [T2, n2, ~p2] if

• they have the same name (n1 = n2),

• they have the same number of parameters (| ~T1| = |~p2|),
and

• the type of every parameter of the pattern is a sub-
type of the corresponding parameter of the deconstructor
(∀i.type(p2i) <: T1i).

A deconstructorD[n, ~T ] is more specificthanD′[n′, ~T ′] if
every parameter ofD is a subtype of the corresponding
parameter ofD′ (∀i.Ti <: T ′

i ).
The deconstructor bound to a given pattern must be eligi-

ble for the pattern, and it must be more specific than every
deconstructor eligible for the pattern. A compile-time error
is generated when these conditions are not satisfied by any
deconstructor.

5.4 Method Invocation

We now specify how OOMatch determines, at a given call
site and with specific runtime arguments, which method to
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invoke. We break the specification into three parts. First, we
define a set of methods that areapplicable, in that they could
be invoked provided no “more specific” method is avail-
able. Second, we define a partial order on the set of appli-
cable methods to decide which methods shall be preferred
over others. Finally, we use these definitions to specify how
OOMatch selects the method to be executed.

5.4.1 Applicable methods

The predicateapplicable(M [Tr, nM , ~p, ~Tt], n,~a) is defined
on a method with return typeTr, namenM , parameters
~p, and throwing types~Tt; the namen of the method to
be invoked at a call; and a list of argument values~a. The
predicate is true when all of the following conditions hold:

1. The name of the method matches the name at the call site:
nM = n.

2. The number of arguments and number of parameters are
equal:|~a| = |~p|.

3. Each argument isadmissiblefor its corresponding pa-
rameter:∀i.admissible(ai, pi). Admissibility is a gener-
alization of the Java guarantee that a method with a given
parameter type is only called with arguments that are in-
stances of that type. The admissibility condition is made
precise below.

The predicateadmissible(a, p) is defined on an argument
a of statically declared typeTs and run-time typeTd, and
a parameterp. Recall that an OOMatch parameter can be a
Java formal, a Java literal, or a pattern.

1. Whenp is a Java formal and whena is not null, admissi-
bility is determined as in Java:a is admissible if in Java
it is method invocation convertible [8, Section 5.3] to
the type declared forp. Whena is null, it is admissible
if its statically declared typeTs is a subtype of the type
declared forp.

2. Whenp is a literal l, a is admissible exactly when it
is equal tol. For string literals, equality is defined as
l.equals(a) returning true; for all other literals, equal-
ity is defined as the Java== operator.

3. Whenp is a patternP [Tr, n, ~p] with type Tr, namen,
and parameters~p, OOMatch first checks whether the
runtime typeTd of a is a subtype ofTr. If it is not, then
a is not admissible. If it is, then determining whether
a is admissible requires executing a deconstructor. The
deconstructor to be executed for any given pattern is
fixed at compile time, using the procedure which that
was described in Section 5.3. Executing the deconstructor
produces a boolean success value, and one value for
each parameter in~p. If the success value is false,a is
not admissible. If the success value is true, each value
produced by the deconstructor is (recursively) tested for
admissibility against its corresponding parameter in~p.

The argumenta is admissible if all of the values are
admissible.

If a is null andp is a pattern,a is never admissable.

5.4.2 Preferred Methods

We now define the preference preorder≺M between meth-
ods, which is used to determine which of a set of applicable
methods shall be invoked. The order is defined in terms of an
analogous order≺P on method parameters. For two meth-
odsm,m′ with parameter lists~p, ~p′, m ≺M m′ when one of
the following conditions holds:

1. m is in a subclass ofm′, or

2. m andm′ are in the same class, have the same number
of parameters, and each parameter from~p is preferred to
the corresponding parameter from~p′: ∀i.pi ≺P p′

i.

The parameter preference relation≺P is defined induc-
tively as the smallest preorder satisfying the following:

1. F [T1] ≺P F [T2] wheneverT1 <: T2.

2. C[v, ] ≺P F [T ] whenever the Java expression(T) v
== v evaluates to true.

3. C[v1, T1] ≺P C[v2, T2] if the Java expressionv1 == v2

evaluates to true, andT1 <: T2, whereT1 andT2 are the
types of the literalsv1 andv2.

4. P [T1, n, ~p] ≺P F [T2] whenT1 <: T2.

5. F [T1] ≺P P [T2, n, ~p] whenT1 <: T2 and it is not the
case thatT2 <: T1.

6. P [T1, n1, ~p1] ≺P P [T2, n2, ~p2] when T1 <: T2, both
patterns are associated with the same deconstructor, and
∀i.p1i ≺P p2i.

LEMMA 5.2. The parameter preference relation≺P is anti-
symmetric.

Proof
We need to prove thata ≺P b andb ≺P a impliesa = b.

We show it by structural induction on the parameters. There
are six cases to consider.

1. a = F [T1], b = F [T2]. ThenT1 <: T2 andT2 <: T1.
Since there are no cycles in subtyping,T1 andT2 are the
same; so, by definition,a = b.

2. a = C[v, T1] and b = F [T2]. The condition is always
false, becauseF [T2] 6≺P C[v, T1] for any formal and
constant parameters, so the implication is true by default.

3. a = C[v1, T1] and b = C[v2, T2]. This means that
T1 = T2, sinceT1 <: T2 and T2 <: T1. And we
also knowv1 == v2 by the definition of≺P . So, by
definition,a = b.

4. a = P [T1, n, ~p], b = F [T2]. If a ≺P b, T1 <: T2.
Sinceb ≺P a, it isn’t the case thatT1 <: T2. This is
a contradiction, so the implication is true by default.
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5. a = F [T1], b = P [T2, n, ~p2]. WLOG, this is the same
case as the previous one.

6. a = P [T1, n1, ~p1], b = P [T2, n2, ~p2]. To havea ≺P b
andb ≺P a, T1 = T2 for the reasons given above. Since
the deconstructors are the same, the namesn1 and n2

must be equal.~p1 = ~p2 by induction. So, it follows by
definition thata = b.

5.4.3 Overall Method Dispatch

To select the method to be invoked for a given call, OOMatch
considers all methods in the runtime class of the receiver ob-
ject and all its superclasses. The method to be invoked for a
given call must be applicable for the call, and it must be pre-
ferred over all other methods applicable for the call. When
exactly one method satisfies these conditions, the method is
invoked. Because≺M is antisymmetric, it is not possible
for more than one method to satisfy the conditions. When
no method satisfies the conditions, a runtime error occurs.
This can occur if the set of applicable methods is empty (a
“no such method” error), or if none of the applicable meth-
ods is preferred over all the others (an ambiguity error). In
Section 5.6.4, we will present a set of static conditions that
guarantee that these runtime errors will not occur.

5.5 Compile-time checks

In this section, we specify properties that the OOMatch
compiler checks statically to reduce the number of errors that
can occur at runtime. We begin by defining the notions of
parameter intersection and always-matches, which are used
in the static checks.

5.5.1 Parameter Intersection

Intuitively, one of the conditions that we would like to hold
is that when two methods are both applicable for a call, it
will be possible to find a preferred method for the call. For
this reason, we define the notion of intersection, a partial
function from a pair of parameters to a parameter. We would
like intersection to have the following properties:

1. Whenever it is possible for bothm1 andm2 to be appli-
cable for the same call, the intersections of their corre-
sponding parameters should all be defined, and a method
m3 with those intersections as its parameters should also
be applicable for the same call (provided its deconstruc-
tors do not return false or null).

2. Whenever the intersectionp3 of two parametersp1 and
p2 is defined, it should be preferred over both of them:
p3 ≺P p1 andp3 ≺P p2.

Thus, loosely, as long as an OOMatch program contains the
intersection of every pair of methods for which intersection
is defined, it will not encounter a run-time ambiguity be-
tween any pair of methods. We will formalize this property
in Section 5.6.4.

We now define a concrete parameter intersection function
which we claim satisfies the above properties. We will prove
the claim in Section 5.6.4.

DEFINITION 5.2. Several cases of the parameter intersec-
tion function are shown in Table 1. The function is defined to
be symmetric; thus, the blank entries in the table correspond
to entries opposite the diagonal.

The intersection of two patterns is the most complicated
case. Letα = P [θα, nα, ~Pα] andβ = P [θβ , nβ , ~Pβ ]. Then
the intersectionα u β is determined by the following steps:

1. If α andβ correspond to different statically determined
deconstructors, their intersection is undefined. Other-
wise, proceed to the next step.

2. Defineθ as follows. Ifθ1 <: θ2, thenθ = θ1. If θ2 <: θ1,
thenθ = θ2. If neither of these holds,αu β is undefined.
Otherwise, proceed to the next step.

3. If | ~Pα| 6= | ~Pβ |, then α u β is undefined. Otherwise,
proceed to the next step.

4. If for anyi, Pαi u Pβi is undefined, thenα u β is unde-
fined. Otherwise, proceed to the next step.

5. α u β is defined to beP [θ, nα, ~Pα u ~Pβ ].

5.5.2 Always-matches

A second informal condition that we would like to enforce
is that given a call site, for any actual runtime arguments
satisfying the declared types at the call site, some method
will be applicable (again, provided that deconstructors do
not return false or null, and null is not passed to them).

We define the predicatealways-matches( ~Ts, ~P ) on a list
of static types (i.e. the static types of the call site arguments)
and a list of OOMatch parameters (i.e. the parameters of a
method) as follows:

DEFINITION 5.3. always-matches( ~Ts, ~P ) is true if both of
the following conditions hold:

1. | ~Ts| = |~P |, and
2. for everyi, either

(a) Pi = F [T ] andTsi <: T , or
(b) Pi = P [T, n, ~P ′] andTsi <: T and, lettingD[n, ~T ′

s]
be the deconstructor bound to Pi,
always-matches( ~T ′

s, ~P ′).

LEMMA 5.3. Let m = M [Tr, n, ~p, ~Tt] be a method, and
~a the actual arguments of a method call with static types
~Ts. If always-matches( ~Ts, ~p), and no deconstructor returns
false or null, and none of the argumentsai are null, then
applicable(m,n,~a).

Proof
The predicateapplicablefrom section 5.4.1 has 3 condi-

tions. The first holds by our assumption that the method call
is ton. The second holds becausealways-matches( ~Ts, ~p) ⇒
| ~Ts| = |~p|. The third condition requires that each ofai is
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u α = F [θ1] α = C[v1, θ1] α = P [θ1, n, ~Pα]

β = F [θ2]
α if θ1 <: θ2

β if θ2 <: θ1

undefined otherwise

β = C[v2, θ2]
β if (θ1)v1==v2

undefined otherwise

α if v1==v2 andθ1 <: θ2

β if v1==v2 andθ2 <: θ1

undefined otherwise

β = P [θ2, n2, ~Pβ ]
β if θ2 <: θ1

P [θ1, n2, ~Pβ ] if θ1 <: θ2 andθ2 6<: θ1

undefined otherwise
undefined see Def 5.2

Table 1. Partial functionu (parameter intersection)

admissible topi. This is shown next, by contradiction and
structural induction.

There are three cases forpi:

1. pi = C[ , ]. In this case,always-matches( ~Ts, ~p) must
have been false, because there is no case for literal param-
eters in the definition ofalways-matches. Contradiction.

2. pi = F [T ]. We need to look at case 1 ofadmissible. Since
always-matches( ~Ts, ~p), Tsi <: T . We need to show that
this implies thatTsi can be converted by method invoca-
tion conversion toT .

There are three cases forTsi: primitive, array, or other
reference type. According to [8, Section 5.3], widening
primitive conversions or widening reference conversions
(or identity conversions) must be allowed for method
invocation conversion to be doable. For primitives, only
case 3 of<: applies; the subtyping relations given there
correspond exactly to the widening primitive conversions
in [8, Section 5.1.2]. For arrays and other reference
types, cases 1, 4, 5, and 6 apply, and correspond exactly to
the widening reference conversions in [8, Section 5.1.4].
Hence,admissibleholds in this case.

3. pi = P [T, n, ~p′]. We need to look at case 3 ofadmissible.
Sincealways-matches( ~Ts, ~p), Tsi <: T , so the first part
of the case passes. The deconstructor is then executed,
and because we assume it returns true, the second part
of the conditions also pass, and we get a new set of val-
ues with types~T ′

s. We assume thatai is not null, so that
can’t preventadmissiblefrom holding. From the defini-
tion of always-matches, always-matches( ~T ′

s, ~p′). Further-
more, we assume that none of the values returned from
the deconstructor are null. Therefore, by the inductive as-
sumption, admissibility holds.

5.5.3 Conditions to be checked statically

We now define the conditions under which a class with its
set of methods is considered valid or well-formed. Consider
a classC, which is valid by the Java rules, and letMC be the

set of methods inC. All of the following conditions must
hold in order for the class to be accepted by the OOMatch
compiler.

CONDITION 5.1. Unambiguity: For any pair of methods
such that neither is preferred to the other and the intersec-
tion of their parameter lists is defined, there is some method
in C whose parameter list is exactly that intersection. That
is, ∀m1 = M [θ1, n, ~φ1, ~θT1],m2 = M [θ2, n, ~φ2, ~θT2] ∈
MC , if ~φ1u~φ2 is defined, andm1 6≺M m2, andm2 6≺M m1,
then∃M [θ3, n, ~φ1 u ~φ2, ~θT3] ∈ MC .

CONDITION 5.2. Valid method calls: For each method call
site in the program on a receiver of static typeC, there is
some methodm = M [Tr, n, ~p, ~Tt] implemented inC or its
superclasses such that always-matches( ~Ts, ~p), where~Ts are
the static types of the arguments at the call site. Moreover,
one of the methods satisfying this condition is preferred over
all methods satisfying the condition.

CONDITION 5.3. Completeness: Loosely, for every method
in the program, it is possible to construct a call site that
could call the method. Formally, for every methodm =
M [Tr, n, ~p, ~Tt] declared in a classC in the program, if we
were to add to the program the call siteo.n(~a), where the
static type ofo is C and the static types of~a are type(~p),
then the previous condition would hold for this added call
site.

CONDITION 5.4. Valid return types: For any pair of re-
lated methods, the return type must be the same. Specifi-
cally, for any two methodsm1 = M [θ1, n, ~α, ~θT1],m2 =
M [θ2, n, ~β, ~θT2] in C or a superclass ofC such that the in-
tersection of their parameter lists is defined, the return types
must be the same, i.e.θ1 = θ2.

CONDITION 5.5. Valid “throws” clauses: For any pair of
related methods, the throws clauses must be the same.
Specifically, for any two methodsm1 = M [θ1, n, ~α, ~θT1],
m2 = M [θ2, n, ~β, ~θT2] in C or a superclass ofC such that
the intersection of their parameter lists is defined, all the
types in ~θT1 are also in ~θT2.
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CONDITION 5.6. No duplicate methods: For any two meth-
odsm1 = M [θ1, n, ~α, ~θT1],m2 = M [θ2, n, ~β, ~θT2] ∈ MC ,
it is not the case that all the parameters are equal; i.e. there
is somei such thatαi 6= βi.

5.6 Absence of runtime ambiguities

In addition to the conditions above, which are checked by the
compiler and must hold in order for an OOMatch program to
compile, we define the following optional conditions. If an
OOMatch program satisfies these conditions, every call will
resolve to some method (i.e. no method ambiguity errors can
occur).

5.6.1 Undecidable equivalence

An undecidable equivalence is a formalization of the prob-
lem mentioned in Section 4.7, when two methods have a cor-
responding parameter that use different deconstructors that
are deconstructing related types. Formally:

DEFINITION 5.4. undecidable-equivalence is a predicate
on pairs of OOMatch parameters.
undecidable-equivalence(α, β) is true if and only ifα =
P [θ1, n, ~φ1] andβ = P [θ2, n2, ~φ2], where deconstructor(α) 6=
deconstructor(β), and eitherθ1 <: θ2 or θ2 <: θ1.

DEFINITION 5.5. undecidable-equivalence-list is a predi-
cate on pairs of lists of parameters.
undecidable-equivalence(~α, ~β) is true if and only if|~α| =
|~β| and there existsi such that either:

• undecidable-equivalence(αi, βi) or
• αi = P [θ1, n, ~φ1] and βi = P [θ2, n2, ~φ2] and

deconstructor(αi) = deconstructor(βi) and
undecidable-equivalence-list(~φ1, ~φ2).

5.6.2 Common descendent

We need to formalize the notion of a pair of parameters
where there is a type that is a subtype of both of them; this
is one way in which a run-time ambiguity could occur. We
define common-descendent to be a predicate on a pair of
parameters as follows.

DEFINITION 5.6. common-descendent(α, β) is true if and
only if the program contains a classθ distinct fromα and
β such thatθ <: type(α) andθ <: type(β).

Now we define a function used to determine whether
there is an instance of common-descendent within the pa-
rameters of a pair of methods.

DEFINITION 5.7. common-descendent-list(~α, ~β) is true if
and only if|~α| = |~β| and there existsi such that either:

• common-descendent(αi, βi), or
• αi = P [θα, nα, ~α′] and βi = P [θβ , nβ , ~β′] and

deconstructor(αi) = deconstructor(βi) and
common-descendent-list(~α′, ~β′).

CLAIM 5.1. Because Java disallows multiple inheritance,
common-descendent can only be true for a pair of interfaces.

5.6.3 Deterministic deconstructors

We need to briefly define the notion of deconstructors be-
ing deterministic; all deconstructors should be so, though
the compiler isn’t required to check this because it’s unde-
cidable. Informally, it means that a deconstructor always re-
turns the same set of values for a given object; i.e. it acts like
a function. Formally, a deconstructor is said to be determin-
istic if it does not modify the heap, and for any object passed
to it, it always returns the same values every time it executes.

5.6.4 Claims of safety

Given the above notation and definitions, we can now make
the following claims for an OOMatch program which is
well-formed, i.e. which has passed the typechecking de-
scribed above and whose classes are valid.

CLAIM 5.2. A no-such-method error cannot occur at run-
time unless one of the following occurs.

• A deconstructor returns false.
• A deconstructor returnsnull in one of its “out” param-

eters.
• null is passed to a pattern parameter.

Proof This claim follows from Condition 5.2 and Lemma 5.3.
Since for each call site, there is a method for which
always-matches( ~Ts, ~p) is true, where~Ts are the static types
of the arguments of the call, and~p are the parameters of the
method. Lemma 5.3 says that this method is applicable.

CLAIM 5.3. An ambiguity error cannot occur at runtime
unless one of the following conditions is true.

• common-descendent-list is true for the parameters of
some pair of methods with the same name.

• There is an undecidable equivalence between the param-
eter lists of a pair of methods applicable to the same call
site.

• Some deconstructor is not deterministic.

Proof
Let o.n(~r) be any method call site. LetA be the set of

methods applicable for the call. We assume that at least
one method is applicable (otherwise, a no-such-method error
occurs). LetB be any nonempty subset ofA. We will show
by induction on|B| that for every setB, there is a method in
A that is preferred over all methods inB.

Base case:|B| = 1. By reflexivity of the preference
relation, the single method inB is preferred over all methods
in B.

Inductive case: Suppose that for every subsetC of size
|C| = k of A, there is a method inA that is preferred over
every method inC.

University of Waterloo Technical Report CS-2007-05 — Submitted to OOPSLA 2007 14 2007/3/19



Let B be any subset ofA of size |B| = k + 1. Select
any methodm1 from B. Since the setB \ {m1} is of sizek,
there is a methodm2 in A that is preferred over all methods
in B \ {m1}. We have three cases to consider:

1. m1 ≺M m2. Thenm1 is preferred over all methods in
B, since≺M is transitive.

2. m2 ≺M m1. Thenm2 is the unique method preferred
over all methods inB.

3. m1 6≺M m2 andm2 6≺M m1. Then, letting~p1 and ~p2 be
the parameter lists ofm1 andm2, the intersection~p1u ~p2

is defined, by Lemma 5.4 which will be proven below.
By the definition of the≺M relation,m1 andm2 must
be in the same class (otherwise, one would be preferred
over the other). By Condition 5.5.3, there is a method
m3 implemented in the same class asm1 andm2 whose
parameters are~p1 u ~p2. An additional consequence of
Lemma 5.4 is thatm3 is applicable, and therefore inA.
By Lemma 5.5 (given below),m3 is preferred overm1

andm2. By transitivity of the preference relation,m3 is
preferred over all methods inB.

By induction, for every subsetB of A, includingA itself,
there is a method inA preferred over all methods inB.

LEMMA 5.4. Let ~p1 and ~p2 be a pair of parameter lists with
|~p1| = |~p2|. Additionally, suppose that
common-descendent-list(~p1, ~p2) and
undecidable-equivalence-list(~p1, ~p2) are both false. Also,
suppose that all deconstructors associated with all patterns
in ~p1 and ~p2 and all of their subpatterns are deterministic.
Finally, suppose that there is a list of actual Java values~r
such that each value is admissible for the corresponding pa-
rameter in bothp1 andp2. Then the intersection~p1 u ~p2 is
defined, and the same values~r are admissible for the inter-
sected parameters~p1 u ~p2.

Proof
Let α be any parameter of~p1 andβ be the corresponding

parameter of~p2. Let r be the actual argument admissible for
both α andβ. We will show by structural induction on the
forms ofα andβ thatα u β is always defined.

• Supposeα = C[v1, θ1] andβ = C[v2, θ2]. Since both
methods are applicable for the call,v1 == r andv2 == r.
There are 3 cases forr.

1. r is a non-nullString literal. SinceString literals
only == otherString literals,v1 andv2 must be the
sameString literal, sov1==v2. Therefore,α u β =
α = β.

2. r is null. Sincenull is only== to null (see section
of [8, Section 15.21.3]),v1 and v2 are bothnull.
Thereforev1==v2, soα u β = α = β.

3. r is of a primitive numeric type (includingchar).
Now, for numeric types,== is an equivalence, be-

cause [8, Section 15.21.1] states “The value produced
by the == operator is true if the value of the left-
hand operand is equal to the value of the right-hand
operand; otherwise, the result is false.”, with the ex-
ception of NaN, which is not equal to itself. But NaN
cannot appear as a constant parameter, because there
is no floating point constant that can represent it (see
[8, Section 3.10.2]). This means thatv1 == v2. And it
cannot happen that two numeric values are equal un-
less the type of one is a subtype of another, or one is
short or byte. But there is no constant parameter of
typeshort or byte, because all integer literals have
typeint (see [8, Section 3.10.1]); thereforeθ1 <: θ2

or θ2 <: θ1. Therefore,α u β is defined to be one of
α or β.

• Supposeα is a literalC[v, θ1] andβ is a formalF [θ2].
LettingTd be the run-time type ofr, we know thatTd <:
θ2 andr == v. Now, there are three cases for the typeθ1

of the constant parameterv.

1. v is a non-null String literal. In this case, the
only values for r such thatr == v is another
String literal; in other words,θ2 = String. But
(String)v==v for any String literal v. Therefore
C[v, θ1] u F [θ2] is defined to beC[v, θ1].

2. v is null, andθ1 = NullType. But the only value
that’s equal tonull isnull (see [8, Section 15.21.3]),
and (NullType)null == null. Therefore,C[v, θ1]u
F [θ2] is defined to beC[v, θ1].

3. v andr are numeric types. For numeric types,== is
an equivalence (see above). Since testing equality in-
volves binary numeric promotion ([8, Section 5.6.2]),
it is also the case that == holds ifr andv are treated as
having the type that they’re both widened to. Hence,
there are 3 further sub-cases.

θ1 <: θ2.

Then (θ2)v == v because, by binary numeric
promotion this is the same as(θ2)v == (θ2)v,
which is true.

θ2 <: θ1.

Then we know that(θ1)r==(θ1)v, sincer == v
and by binary numeric promotion.

Therefore,(θ2)(θ1)r==(θ2)(θ1)v, because the val-
ues being narrowed are equal, so will still be equal
after narrowing.

Therefore,(θ2)(θ1)r==(θ2)v, sincev has typeθ1.

Therefore,r==(θ2)v, since this means that same
as the previous form because of binary numeric
promotion.

Therefore, by transitivity,v==(θ2)v.
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θ2 and θ1 are unrelated, and have the common
supertypeint.

Then binary numeric promotion says thatr == v
is the same as(int)r == (int)v.

Therefore,(θ2)(int)r == (θ2)(int)v, because the
values being narrowed are equal, so will still be
equal after narrowing.

Therefore,r == (θ2)(int)v, since this means
the same as the previous form because of binary
numeric promotion.

Therefore,r == (θ2)v, for the same reason. (Val-
ues smaller thanint are always widened toint).

Therefore, by transitivity,v==(θ2)v.

So in each case,(θ2)v == v. Therefore,C[v, θ1] u
F [θ2] is defined to beC[v, θ1].

• It is not possible forα to be a literal andβ to be a
pattern, because there are no values admissible to both
a literal and a pattern. The only values admissible to a
literal are values of primitive types,null, or values of
type String. Patterns never match values of primitive
type ornull. Since the classString is final, it is not
possible to add a deconstructor to it, so it also cannot be
matched by a pattern.

• Supposeα and β are both formalsF [θ1] and F [θ2].
Let Td be the run-time type ofr. SinceTd <: θ1 and
Td <: θ2, the lack of a common descendent ofα and
β implies thatTd = θ1 or Td = θ2. Without loss of
generality, assume the former. Thenθ1 <: θ2, soαuβ is
defined to beα.

• Supposeα is a patternP [θ1, n, ~φ] andβ is a formalF [θ2].
By the same reasoning as in the previous case, either
θ1 <: θ2, or θ2 <: θ1. In both of these cases, the inter-
section is defined, specifically as eitherα or P [θ2, n, ~φ].
Now, P [θ1, n, ~φ] andP [θ2, n, ~φ] must be associated with
the same deconstructor; otherwise,
undecidable-equivalence(P [θ1, n, ~φ], P [θ2, n, ~φ]) would
be true. Sincer is admissible to bothα andβ, and since
deconstructors are deterministic, it is also admissible to
P [θ2, n, ~φ].

• Supposeα = P [θα, nα, ~pα] andβ = P [θβ , nβ , ~pβ ] are
both patterns. By the same reasoning as in the previ-
ous two cases,θα <: θβ or θβ <: θα. Without loss
of generality, assume the former. Nowα and β must
be associated with the same deconstructor; otherwise,
undecidable-equivalence(α, β) would be true. Sinceα
andβ are associated with the same deconstructor,| ~pα| =
| ~pβ |. Since the deconstructor is deterministic, evaluat-
ing it returns the same values for both patterns. There-
fore, Lemma 5.4 can recursively be applied to~pα and
~pβ . Therefore,α u β is defined, specifically toγ =
P [θα, nα, ~pα u ~pβ ]. Since deconstructors are determin-

istic andr is admissible to bothα andβ, it is also admis-
sible to their intersectionγ.

We have shown that for all possible forms ofα andβ,
α u β is defined andr is admissible to it.

LEMMA 5.5. For a pair of parametersa andb whose inter-
section is defined, if undecidable-equivalence(a, b) is false,
thenc ≺P a andc ≺P b, wherec = a u b.

Proof There are six cases to consider.

1. a = F [θ1], b = F [θ2]. If θ1 <: θ2 thenc ≺P b holds
from case 1 of its definition, andc ≺P a is true by
reflexivity. WLOG, the case whereθ2 <: θ1 is the same.

2. a = F [θ1], b = C[v2, θ2]. The only possibility for their
intersection to not be⊥ is for it to be b. b ≺ a from
case 2 of the definition of≺P , which is the same as the
conditions ofu, andb ≺P b by reflexivity.

3. a = C[v1, θ1], b = C[v2, θ2]. If θ1 <: θ2 andv1 == v2,
then the intersection isa. a ≺P b by rule 3 of≺P , and
a ≺P a by reflexivity. WLOG, the case whereθ2 <: θ1

is the same.

4. a = F [θ1], b = P [θ2, n2, ~β]. If θ2 <: θ1 anda u b = b,
thenb ≺P a by case 4 of≺P , andb ≺P b by reflexivity.

Supposeθ1 < θ2 anda u b = P [θ1, n2, β] = c. Then
we havec ≺P a by case 4 of≺P again. The only ques-
tion is whetherc ≺P b, i.e. whetherP [θ1, n2, ~β] ≺P

P [θ2, n2, ~β], whereθ1 < θ2. If the deconstructors are dif-
ferent, then by definition there is an undecidable equiv-
alence, sinceθ1 <: θ2; but we have assumed there are
none. Therefore deconstructor(c) = deconstructor(b).
And ~β ≺P

~β by reflexivity. So, all the conditions for
case 6 of≺P are applicable, andc ≺P b.

5. This case is always⊥, so it doesn’t apply.

6. a = P [θ1, n, ~α], b = P [θ2, n2, ~β]. From the rules for
u, we know thata and b are associated with the same
deconstructor and that eitherθ1 <: θ2 or θ2 <: θ1.
If deconstructor(c) 6= deconstructor(a), then there is
an undecidable equivalence betweenc and a, since
θ1 <: θ2 or θ2 <: θ1; but we have assumed undecidable
equivalences don’t occur. Therefore deconstructor(c) =
deconstructor(a). ~αu~β ≺P ~α is true by induction. There-
fore,c ≺P a, because all the conditions of case 6 of≺P

are met.

WLOG, c ≺P b for the same reasons.

Therefore, in an OOMatch program, there can be no am-
biguities at run-time other than those caused by undecid-
able equivalences, a class inheriting from multiple classes
that are part of a set of multi-methods, or deconstructors be-
having non-deterministically. Furthermore, one could write
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program analyses to find even these errors in many common
cases statically.

6. Implementation
OOMatch is being implemented as an extension to the Poly-
glot extensible compiler framework [15]. Polyglot is a com-
piler that translates Java to Java; it is intended to be extended
so that it translates a language similar to Java to Java (which
can of course be compiled to bytecode using javac).

7. Conclusion and Future Work
We have presented OOMatch, a mostly backwards com-
patible extension to Java that allows dispatch to take place
by pattern matching. Unlike most pattern matching done in
“case” statements, our matching allows the ordering of cases
to be determined automatically by the compiler. It also al-
lows regular objects to be matched, without exposing the
implementation details of classes.

Some possible future work that could be done for this
feature is as follows.

• There is currently no way for programmers to resolve
ambiguities between methods, i.e. to specify that one
method should be preferred over another. Syntax to allow
manual specification of override relationships would help
them fix these situations. In particular, allowing methods
in superclasses to override those in subclasses (when
specified) would be quite worthwhile.

• The regular parameters to a method can be deconstructed,
but the implicit “this” parameter currently cannot. Spe-
cial syntax to allow “this” to be deconstructed and
matched would come in handy in many situations.

• A general “where” clause for a method, to allow methods
to apply on any arbitrary boolean value (basically a pre-
condition), would be useful, and trivial to add. Of course,
arbitrary “where” clauses could not override each other
in general, as their value is undecidable, in general, at
compile time.

• Unification would be useful; i.e. the ability to re-use a
matched variable later in the pattern. That is:

void f(Point x, x);

would only be called if two equalPoint variables are
passed tof.

• The ability to match against variables that are in scope
(e.g. instance variables) would be useful. For example, it
would greatly simplify writing “equals” methods:

class Point {
public Point(private int x,

private int y) {}
public boolean equals(Point(x, y))

{ return true; }
}

• The automatic analyses to catch the possible run-time
errors mentioned in Section 4.7 have yet to be imple-
mented.

• Some form of list matching like that found in TOM
[13], or even more general pattern matching (e.g. reg-
ular expressions), would further increase the power of
OOMatch.
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