
l 1

Software System Generation from an Enterprise Service Model
D.D. Cowan, 1 P.S.C. Alencar,1 D.B. Brown,2 H.D. Covvey,1 I. Gimenes,3 C.J.P. Lucena,4

W.J. Malyk,1 D.W. Mulholland,1 A. Robins,1 K. Young1
Abstract
This paper introduces an approach to constructing information systems based on
enterprise service architectures (ESAs). An ESA model is specified using declarative
business process modeling or workflow commands in conjunction with service
framework instances where the business process model and the instances are captured in
a data structure. A service framework is an outline of different types such as reports,
databases, agents, diagrams and maps and an instance is produced by completing a
framework’s adaptation points. Adaptation points are defined by an adaptation interface
specified in a declarative language and presented through forms. The business process or
workflow is specified similarly. An automatic transformation is then applied to convert
the model into an operational information system.

This approach can be viewed as model-driven software development without the
necessity of writing code to complete the implementation. Thus, we avoid the symptoms
of architectural drift that occur when applications evolve independently from their model.
The control structure is declarative and separate, clearly delineating the concerns, thus
making it easier to address future anticipated, unanticipated and crosscutting concerns.

We have created tools to support this approach, and although many of the tools are
general, we have concentrated our efforts on the Web because of its pervasive nature.
Thus, we have produced the Web-based Informatics Development Environment (WIDE)
technology, a set of tools and processes used to transform a model based on ESA
principles into a web-based information system. We have designed and implemented over
30 operational web-based systems to validate our approach.
Introduction
Models of enterprise service architectures (ESAs) form the foundation for many of the
information systems currently under development, particularly those based on the Web.
This form of architecture uses loosely coupled independent software services accessed
without knowledge of the underlying implementation. A wide variety of services and
legacy technologies such as databases, content management systems, and geographic
information systems (GIS) compose such systems. There are many approaches to the
construction and composition of information systems based on ESAs; however, they still
often embed low-level programming constructs [1, 2], rather than higher-level models.

This paper introduces a new approach to constructing information systems based on
enterprise service architectures (ESAs). A model of the system is specified using
declarative workflow or business process modeling concepts in conjunction with
instances of service frameworks. The process is data-driven in that the workflow or
business process model and the instances are captured in a data structure rather than a
program. Once the details of the system are complete, an automatic transformation is then

1 David R. Cheriton School of Computer Science and Computer Systems Group, University of Waterloo,
Waterloo, Ontario Canada.
2 Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario Canada.
3 Departamento de Informática, Universidade Estadual de Maringá, Paraná, Brasil
4 Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro Brasil

 2

applied to convert the model into an operational information system; there is no need to
provide further detailed code other than that generated directly from the outlines.

In this context, a service framework is an outline of different types such as reports,
databases, agents, diagrams and maps and an instance is produced by completing a
framework’s adaptation points. Adaptation points are defined by an adaptation interface
which is specified in a declarative language and presented through forms. The concept of
frameworks in this paper is general and not restricted to object-oriented frameworks.

Derivation of many different underlying implementations from enterprise service
architectures is possible and we have created tools to assist with this process. Although
many of the tools are general, we have concentrated our efforts on the Web because of its
pervasive nature. Thus, we have spent significant effort on the Web-based Informatics
Development Environment (WIDE) technology, a set of tools and processes used to
transform a model based on ESA principles into a web-based information system. WIDE
consists of a workflow service framework plus a number of other service frameworks that
can be configured and composed to generate a broad range of web-based information
systems.

We have designed and implemented over 30 web-based systems using this approach,
and extended the WIDE technology to encompass new application domains and
associated services when required. Three current systems under development using the
WIDE approach show its power and are briefly described in this paper. The first such
system, the performance indicator monitoring system (PIMS), supports gathering of
indicator and work planning data related to smoking cessation programs and is being
developed in partnership with the Ontario Ministry of Health Promotion and the Ontario
Tobacco Research Unit. The second system, the Stewardship Tracking System, supports
inventories of ecosystem restoration projects and is being developed in partnership with
the Ontario Ministry of Natural Resources, with the support of GeoConnections, the Oak
Ridges Moraine Foundation and the Metcalfe Foundation, and in collaboration with
conservation authorities and non-government-organizations in natural heritage
conservation. The third system, Project NOW, is an interactive multi- lingual web-based
system which provides information and support for immigrants to Waterloo Region and
is created in partnership with the Waterloo Public Library.

The original motivation behind the work reported in this paper was to seek ways to
lower technology barriers to the implementation, evolution and maintenance of enterprise
systems based on services. Lowering technology barriers would make modern
information and communications technology (ICT) more accessible to small-to-medium
enterprises (SMEs) and non-governmental organizations (NGOs). These organizations
often do not make effective use of ICT because of its apparent complexity and associated
cost. With this approach, it becomes possible for an application developer with domain
knowledge to specify and create an application without knowing all the arcane
knowledge associated with ESA and web development.

The systematic approach described in this paper integrates enterprise service
architectures with workflow technology. Both the workflow and the adaptation interfaces
of service frameworks are declarative in nature and can be implemented using a forms-
based approach. The model proposed by Jackson and Twaddle [3] provides a foundation
for the declarative workflow where it is captured in a data structure based on entity
relationship models rather than as a sequence of program steps.

 3

The method described in this paper, which we call enterprise service systems
generation (ESSG), is novel because it derives an implementation directly from a service
model; changes are always made to the model and then the transformations are applied.
Since the transformations are automatic, there is no need to modify or augment the
operational code when a change is required. If there is an error in the workflow (control
structure) then the underlying data structure is easily modified. If there is an error in an
instance of a service framework then the service framework or its adaptation interface are
modified and substituted back into the system without modifying the workflow.

Two other benefits accrue from the ESSG approach. The workflow in conjunction
with the service-oriented nature of our approach leads to a methodology for creating
pluggable and easily re-usable components for ESSs. As well, the use of the workflow
approach brings a discipline to the design of ESSs helping to identify the types of
services that need to be present for a complete system.

The control structure is declarative, clearly delineating the various existing concerns
in the system. Because control and services are separate, it becomes much easier to
identify how to modify the system to address new concerns as they arise. Thus both
anticipated and unanticipated system evolution is more manageable.

The approach just described can be viewed as a model-driven software development
approach as characterized in [1, 2] without the necessity of writing code to complete the
implementation. Thus, we avoid the symptoms of architectural drift that occur when
applications evolve independently from their model. ESSG supports isolation of concerns
and can handle crosscutting concerns, a topic that has attracted interest in recent years
usually through aspect-oriented programming technologies [4]. In our approach
crosscutting concerns are incorporated into the model, rather than the detailed code, an
approach that supports ease of evolution and maintenance as noted in [5].

In this paper, we first discuss how a software system based on an enterprise service
architecture maps into a workflow model, and how the workflow further maps into an
entity-relationship form. We then outline the steps in the process of describing the design
and implementation of a service-oriented system followed by an overview of how the
system can be transformed into operational code. We then focus on the instances of the
service frameworks and provides examples of how the ir adaptation interfaces might be
specified. We then describe a specific mapping of the service-oriented paradigm for the
web and describe a simple example to illustrate many of the concepts. Subsequent
sections contain a description of the WIDE toolkit and a brief description of many of the
operational web-based systems that have been implemented using the ESSG approach.
The paper concludes with related work and possible future directions for this research.
Background
Before providing details of the ESSG approach, we examine data-driven design, service
frameworks and an entity relationship approach to workflow/business process modeling.
Data-driven design versus process-driven design
We follow Jackson and Twaddle’s approach to data-driven design where all entities in
the system, including the workflow processes and services that manipulate those entities,
are first captured in an entity relationship model and then transformed to a set of data
structures. An “engine” then interprets or compiles the data structure into an operational
format such as that used on the web. In contrast, process-driven design usually relies on a

 4

procedural language [6] such as Java, BPEL [7] or UML State Machine Diagrams [8] to
express the process or control flow with corresponding programming techniques.
Service frameworks versus object-oriented frameworks
In [9] the authors define a framework as a set of components working together to address
a number of problems in one or more domains. In the book “Design Patterns,” [10] the
authors define an object-oriented framework as a set of cooperating classes that make up
a reusable design for a specific class of software. The service frameworks described in
this paper fit this definition in that they are a set of components that together compose a
service and whose adaptation interface consists of a collection of adaptation points
specified in a declarative format. The components can be, but are not necessarily, object-
oriented.
Workflow/Business Process Modeling
Workflow describes the composition of services performed by individuals with some
automation to support them. In contrast, business process modeling (BPM) describes the
composition of transactional services, activities that are primarily automated and
dynamically coordinated, and used to deliver a business process [11]. Except for the
degree of automation, both workflow and business process modeling address the same
issues and encompass the same concepts [12]. Thus, we use one notation to describe both
workflow and business process modeling. Services are often interactive and involve both
manual and automated operations. For example, selecting a method of payment is
manual, but the action of performing the payment is automatic when a credit card is used.

We have chosen the workflow notation as presented by Jackson and Twaddle [3] to
describe the models that support workflow or a set of business process activities as
epitomized by service-based systems. This approach maps workflow onto entities and
relations among services applied to those entities. Thus, the entire control structure
related to the workflow maps onto an entity-relationship model. Because the abstractions
represented by data are identified clearly, it becomes easier to understand the relationship
among entities and services applied to those entities. In the next few paragraphs, we
introduce this notion of workflow. A more complete description appears in [3].
Entities
The first step in producing a workflow representation is to develop a data model in terms
of entities that are central to the description of the business processes. The data model
consists of entities such as customer, product and order. These entities usually have
corresponding entries in the information system database.
Lifecycles, Stages and Services
Each entity in an operational system has an associated lifecycle. Each lifecycle goes
through a number of sequential stages and each stage contains a number of services,
applied to the entity, some of which may be performed in parallel. For example, a
customer buying a book online has a lifecycle as he/she proceeds from the stage of
identifying and choosing the book, to the stage of payment to checkout. One can think of
those stages as “birth,” “life” and “death” where the “life” stage might be further divided
into sequential stages such as “youth,” “early adult,” “middle age” and “old age.”

Services provide the actual processing associated with entities. Services are
interdependent in that the application of one service may have to wait for the completion
of services in other stages or lifecycles. Figure 1 illustrates the relationship among an
entity, lifecycle, stages and services. Although not shown in the Figure 1, services can be

 5

executed conditionally or repeatedly. The model also supports parallel execution through
the splitting (fork) and joining (join) of services.

Figure 1

Workflow/Business processes as lifecycles, stages and services
Groups of Services
Services are often closely related. For example, identifying a book and then saving
information about that book’s identity. Such related services are in the same stage of the
lifecycle. Closely related services are often enclosed in a group as a direction to the
designer that these services belong together. A group appears in Figure 1 in Stage 2.
Grouping not only serves as documentation but is also of value in the generation of
applications for environments such as the web where several services may be assigned to
the same page.
Workflow as an Entity Relationship Model
Workflow or business process models can be represented as a program structure
connecting services, but the lifecycles, stages, groups, services and interdependencies can
also be represented in the form of an entity-relationship (E-R) model [13] based on the
diagram in Figure 1. Although not exactly identical, entity-relationship models can then
be further mapped into a relational database where the concepts in the system (entity,
lifecycle, stage and group) and the relations among them each correspond to a table.

Thus except for the operational code associated with services, workflow is
represented as a large data structure. Such a data structure makes it possible to present
easily the entire process in a graphical format, thus supporting a significant degree of
visualization. In the model presented in Jackson and Twaddle [3] the name task is used
for service. We have chosen to generalize the notion of task in our approach and part of
this generalization is to use the word service.

The structural relationship between lifecycles, stages, groups and services in a
workflow or business process model can be modified by changing the values in a data
structure rather than changing a program structure. Modifying workflow is much easier,
because the abstractions corresponding to the workflow or control structure are clearly
identified. Further E-R models can be easily represented by XML tagged structures thus
allowing the development of a declarative domain specific language (DDSL) for the
description of workflow or business processes.

The declarative representation of the workflow can be transformed into other
representations such as BPEL [7], UML [8] or XMI [14] through transformations defined
in languages such as XSL [15]. This approach has been demonstrated in [16] where
XML-based declarations for agents were transformed into code written in C.
Complex Services

 6

To this point we have described workflow in terms of entities, lifecycles, stages, groups
and services. Each service can itself be quite complex. For example, if the service is
“clean the house,” then the entity house can acquire its own lifecycle, stages and services
such as “wash the dishes” and “clean the floor.” There are several different ways to
model this larger-scale service using variants of this model.

To generalize the concepts of lifecycle, stage, group and service, we designate a task
as an atomic or elemental service. In the previous example the service “wash the dishes”
could consist of several elemental services or tasks such as “load the dishwasher,” “start
the dishwasher” and “unload the dishwasher.” In our use of the model, a task corresponds
to an instance of a service framework such as a specific report or agent.
Constructing Service-oriented Information System Using Workflow Concepts
In this section, we use a top-down approach to outline the structure and steps involved in
creating an enterprise service information system. Subsequent sections provide details on
the representation and methods for defining service frameworks and workflow.
An Enterprise Service Information System as a Set of Applications
A service-based information system is composed from a number of interdependent
applications, which are themselves composed from services. Each application is
delimited by the collection of services that are applied to one class of entity in the system.
Entity classes represent collections such as people, organizations, orders, contracts or
inventory items. In other words, entities are collections of different objects that form the
data model for the information system.
Services as Instances of Service Frameworks
Services are instances of service frameworks, where a service framework is a partially
completed software structure intended to be instantiated by adding further structure or
program code segments. A framework defines the architecture for a family of services
and provides the basic building blocks to create them. The definition of a service is left to
the reader, although our definition of service should become apparent from the context.

Categories of service frameworks include reports, agents, geomatic services,
multimedia and workflow. For example, the report collection could consist of different
types of report service frameworks such as invoices, purchase orders or report cards.
Similarly, agents could be classified into copying agents, typing agents or matching
agents. Each member of a collection of service frameworks is stored in and retrieved
from a related global framework repository. Each instance of a service framework
produced for an application is stored in a repository associated with the information
system composed from the set of applications.

Certain parts of a service framework constitute adaptation points that are not
completely specified when the framework is defined. We call the collection of adaptation
points for a service framework an adaptation interface. For example, an agent that copies
files does not have the names of specific files and related information such as whether it
is a text or binary file. Similarly, a report service framework would not have the query
statements defined and a geomatics framework would not specify the initial map to be
displayed or what controls should be on the map display. Controls allow the user to
manipulate the map display, such as positioning or zoom-in and zoom-out.

The adaptation interface for each service framework is specified using an XML-
based declarative domain-specific language (DDSL), which can be transformed into a set
of forms to be completed. A corresponding workflow connects those forms and thus

 7

prescribes the order of completion. Thus, the forms define the adaptation interface for the
service framework and completing the forms in the order prescribed by the workflow
produces an instance of a service framework.

Adding a new service framework to an existing collection of service frameworks is
straightforward since a new framework is likely an extension of an existing one and only
requires some modification and merging of one or more framework descriptions.
Producing a new collection of service frameworks is a more creative act as both the
framework and the DDSL for the adaptation interface for the collection need to be
defined. However, we have produced a large number of frameworks and therefore we
expect that the structure of most new frameworks may be inferred from existing ones.

An instance of a service framework is created by completing the forms to specify the
adaptation points. For example, an instance of an invoice could have extra columns added
or renamed. An application is composed from services, which are instances of service
frameworks. The composition mechanism to create applications uses the workflow or
business modeling approach already described. This workflow composition mechanism is
itself a service framework and its adaptation interface is described in an XML-based
DDSL. There is only one such service framework for workflow, which is described more
completely later in the paper. Figure 2 provides an overview of how an application is
built.

Based on the previous description we describe a detailed sequence of steps to build a
collection of applications that can be combined into a service-based information system.
Although we describe the steps sequentially, they can be implemented in many different
orders and can be re-visited at any time to modify the information system.
[1] Determine the entities in the data model. This step is a modeling activity and
requires an in-depth understanding of the domain and the entities required to represent
the domain adequately. Customers, inventory items and orders are typical entities.
[2] Construct the database corresponding to the data model. Database tables
corresponding to the data model are designed and implemented. Constructing a set of
database tables is an instance of a service framework where the framework adaptation
interface is described as a DDSL. In this case, the tables and their columns are the
framework adaptation points. After the adaptation points are specified they are processed
by an XSL transformation to produce the SQL commands to construct the database.

Figure 2

An Overview of Application Building
[3] Construct any new service frameworks needed in the development of the
information system. New service frameworks and declarative representations for their
adaptation interfaces are defined in this step. Examples of service frameworks are

 8

presented later in the paper. Several different types of service frameworks can be used to
compose an information system. We have developed declarative representations for the
adaptation interfaces for all that we have encountered so far.
[4] Activate the workflow service framework. Describing the model for an application is
itself workflow. We call workflow applied to describing applications “meta-workflow.”
The meta-workflow is straightforward and is illustrated in Figure 12 with the details
appearing in Figure 13.
[5] Start creating an application by producing an instance of a workflow by filling in
the forms associated with the adaptation interface of the workflow service framework.
In this step, the workflow service framework prompts us to define an entity, a lifecycle,
stages within the lifecycle, and groups within stages and services within those groups.
Note that a partial workflow can be saved and completed later.
[6] At specific stages of the creation of the workflow instance there is a requirement
for an instance of a service. At this point in the development of an application, the need
for a service is identified. The appropriate service framework is chosen and the details of
the adaptation interface are specified to create an instance.
[7] Steps [4] through [6] are repeated for every application that is needed to compose
the information system. This step just ensures that all applications for the information
system have been produced.
[8] The services that compose an application can be interdependent and must have
dependencies specified. For example, a book order cannot be completed while quantities
of the same book are being added to inventory. Thus, creation of a service as part of the
workflow associated with an entity requires specification of its dependencies. Not all
dependencies are known when an application is being specified, but we ensure that each
service framework is defined to capture dependencies between services. Once all the
applications are complete then the entire information system is examined to complete any
outstanding dependencies. In this final step, the service in each application is examined to
determine if there are any dependencies between services (particularly those in other
applications) that have not been taken into account.
Compiling the Workflow Model into an Operational System
Workflow has now been converted to a data structure where only one type of component,
the atomic service or task encapsulates the work to be done. The remainder of the data
structure captures the relationships and dependencies among the tasks. How can the
services represented by those tasks be made operational?

Figure 3

The workflow engine/machine

 9

The approach, which we use throughout this paper, is to create a workflow machine
or engine (compiler or interpreter) that is capable of traversing the workflow data
structure in the proper sequence including dealing with dependencies. As the machine
travels over the data structure it can either interpret the data in the structure or translate
the data into operational code, which can then be launched. The services can be manual,
meaning there is a requirement for human intervention as in completing a form, or
automatic as in processing a credit card payment.

The workflow engine shown in Figure 3 is driven by a set of rules. The rules, which
produce more complex behaviours are composed from three basic forms of command,
which are the language that drives the workflow engine. The fact that there are three
basic forms of command (sequence, conditional and iteration) corresponds to the result of
Bohm and Jacopini [17] and Ashcroft and Manna [18] on structured programming. By
simple changes to the semantics of these three rules, the engine can act either as an
interpreter or compiler.
Constructing Service Frameworks
We describe a set of basic Web service frameworks that can be used to build a large
number of applications to form the foundation for our discussion. For example, these
service types can be used to build e-commerce or e-health systems using access control,
catalogues and shopping carts. Some basic service types are shown in Figure 4.

Figure 4

Some basic services
Each service type shown in Figure 4 defines a service domain that includes service

types for creation and operation of: databases, multimedia reports, agents, interactive
structured reports and input forms, interactive visual- interfaces (including maps and
diagrams) and workflow. A service framework is an outline for an instance of a service
type and a service type may have several service frameworks. For example, there are
many different forms of structured reports and each form can correspond to a service
framework.

Constructing an instance from a service framework consists of completing the
adaptation interface of the framework. This interface is declarative and represented by a
set of forms which is completed in a prescribed order and is itself workflow. Thus, the
same set of tools that are used to complete an application can be used to specify the steps
in producing an instance from a service framework.
Creating instances of specific service frameworks
In this section we outline a general approach to defining adaptation interfaces for service
frameworks and producing specific instances of those services. Since the service
framework for workflow forms the foundation of our approach, we describe it separately.

Each service framework is assigned to a service type and is then defined through an
appropriate development approach. The adaptation interface consisting of adaptation
points is specified in a declarative domain specific language (DDSL) related to that
service type. The DDSL is written as a set of XML declarations that can easily be
converted to a forms driven interface. These forms are used when an instance of a
framework is produced. Each service framework and its declarative adaptation interface

 10

are stored in the service framework repository shown in Figure 5. In this section, we only
describe the adaptation interface to the service framework; we do not describe its
underlying implementation. For example, a framework implementation could be in
object-oriented or procedural languages, web pages with scripts and applets or
combinations of these technologies.
An instance of a service framework is produced by:
[1] providing the identifier that selects the appropriate service framework adaptation
interface declaration from the service framework repository;
[2] following the associated workflow steps to complete or modify the adaptation
interface of the service framework by filling in the forms accompanying the service
framework and produced by the workflow;
[3] translating the service framework and the values specified in the form representing
the adaptation interface into an operational form;
[4] and storing a form of the service instance with the system being developed.
It should be noted here that the form of the instance being stored may be compiled into
operational code or need further interpretation at run-time. For example, reports are
stored in an intermediate form, which is further interpreted at runtime, and this allows
dynamic modification to both the structure and appearance of reports.

Figure 5

Defining and Instantiating Services
There are two different versions of the instantiation engine as shown in Figure 5

depending on whether the intention is to produce operational code or code that needs
further interpretation at runtime. For operational code the instantiation engine is an XSL
interpreter and an accompanying XSL script that describes a transformation to be applied
to an instance of a specific service framework. When further interpretation is required
then the parameters captured in the adaptation interface are stored in a data structure and
processed at runtime by an interpreter.

The transformations for the adaptation interfaces for each class of service framework
are different, but the frameworks and transformations have any similar characterisitics.
Thus, producing a new service framework, its adaptation interface and corresponding
transformation should not be a difficult task since a number of sample service
frameworks exist and can be followed. Outlines of specific examples of declarative
adaptation interfaces are presented in this section.
Databases
The service framework for relational databases contains entity, relation and column
adaptation points with optional constraints on the values that can appear in any given
column. An instance is created through the adaptation interface by naming specific

 11

entities, relations and columns within those entities and relations. Each column is also
assigned a value type and constraints on those values. Instead of just using tables, we
distinguish between entities and relations as this makes it easier for the designer to map
an E-R representation into a relational database consisting only of tables. It also may
make it possible to perform validation on the representation at a later stage.

The completed adaptation interface is then input to the instantiation engine which
produces a script containing SQL create commands to convert entities and relations into
tables. This script can be fed to an SQL engine to instantiate the system tables that
represent the database.

Creating the database instance from the service framework can be defined as
workflow and one possible workflow is illustrated in Figure 6. Note that there can be
several different workflows, which depend on how the adaptation interface for the service
framework is declared. Creating a service framework that provides a workflow amenable
to a web-based representation is part of the art of creating frameworks.

Figure 6

Workflow for a Database Instance

Figure 7

A Service Framework Adaptation Interface for Databases
The workflow provided in Figure 6 implies a data model and corresponding database

description that consists of five separate tables: one for each of the database, the entities,
the entity columns, the relations and the relation columns. An outline of these five tables
is illustrated in Figure 7. The question mark character (?) designates a parameter that
must be completed to produce a complete instance.

The XML description for the database service framework adaptation interface is used
to generate a set of forms and a workflow that supports the definition of a database
instance. The forms are used to capture the names of the database, the entities and
relations (tables), and the name of the columns, their type and length and whether a

 12

column is part of a primary key. Other parameters are also collected although we have
described the basic ones. The forms are generated using the structured reports service
framework presented in the next section.
Structured Reports
The service framework for reports contains structures such as headers, bodies and footers
each of which is composed of detail lines that contain one or more columns. A simple
adaptation interface for a service framework for a general structured report is shown in
Figure 8. In this case the parameters of the report are stored in a data structure, which is
then interpreted at runtime. The question mark (?) designates parameters that must be
completed to construct an instance and the designation “Y/N” indicates whether that
specific section is to be included in the report.

 Figure 8

A general service framework for structured reports
One could base all reports on this single simple service framework, since report

cards, invoices, purchase orders, and even simple listings can all be derived from the
same report format. However, since this format must satisfy all possible reports, the
queries would be quite complex and would be a significant barrier to the creation of
instances of frameworks by a domain expert who had only a moderate familiarity with
the nuances of SQL. For example, the query in a simple listing may just access all
elements in a single table with certain parameter values, whereas a query for a detail line
in an invoice has to join the order information with the product information and then
multiply the quantity of the product by the cost to produce a price for each product detail
line. For these reasons, we have chosen to create several report service frameworks that
match common report categories. An adaptation interface for a service framework for a
simple report card is illustrated in Figure 9.

Figure 9

 13

A Report Card Service Framework
The question mark (?) and question mark (?) immediately followed by a name

designate parameters that must be completed to construct an instance. The use of the
question mark name combination allows the person building the service framework to
construct a complete SQL query and identify related elements, thus simplifying the task
of later instantiating the framework.
A Geomatic Service Framework
Geomatic services can be quite complex but the corresponding adaptation interface for
this service framework is relatively simple because the details of many of the complex
controls needed for dealing with maps are hidden from the applications designer. Figure
10 contains an example of a definition of such a service framework called “interactive
map” where the map to be displayed initially is a parameter designated by a question
mark (?). The remaining parameters are controls that can be activated to add functionality
to the basic map. In this case, the controls can be used to:
• locate places on the map and the type of coordinates to be used,
• move closer or farther away (zoom),
• search for locations inside an outline such as a circle, rectangle or polygon,
• post points or areas on a map with associated attribute information.
• support the Web Map Service (WMS) [19] and Web Feature Service (WFS) [20]

which are wrappers that allow geographic information systems to be easily accessed
over the web.

Figure 10

A geomatics service framework adaptation interface definition
Figure 10 is an illustration of a simple geomatics framework adaptation interface. It

could also include input forms to collect attributes associated with search or post on map
parameters.
Agents
In the context of ESSG, agents are small programs that work almost autonomously to
complete housekeeping or background tasks. In general, agents are defined by four basic
properties: beliefs, goals, actions and plans [16]. The DDSL for an agent service
framework adaptation interface uses these four properties for its definition.

 The XSL script first acquires an instance of a specific agent service framework and
then produces a script that converts it into a program requiring parameters to operate. The
final program is usually in a language such as C, C++ or Java.

 14

Figure 11

An agent service framework adaptation interface description
We illustrate our approach by defining a database agent that connects to two

databases and performs consistency operations between them [16]. Operations consist of
tasks such as comparing and copying database content. The service framework definition
for the database agent is shown in Figure 11. We could use question marks (?) to
represent the parameters but in this case have chosen to use question marks (?) followed
by a name for purposes of documentation.

Service frameworks could be defined for many other agents such as an indexing
agent framework that indexes words in a document. The only information that needs to
be supplied is the set of names of the specific files or Web sites to be indexed.
Service Frameworks for Initiating each Application
At specific times during the operation of an application, there occurs a need to initialize
an application or the entire system. Such initialization may require the setting of specific
global variables. There are frameworks provided for such activities, which are usually
incorporated in the “home” page of the application or the system; we do not provide
details here. It should be noted that in a service-based environment, connections to
databases are opened and closed as needed and so are incorporated into reports rather
than as part of the initialization of an entire application.
Constructing a Service Framework to Support Exceptions
An information system based on an enterprise service architecture can discover, access
and use external services. Such an information system must contain instances of service
frameworks that can discover services, access them and can handle exceptions in an
organized manner. We do not provide details of such service frameworks in this paper.
Constructing a Workflow Service Framework
Describing the model for an application is itself workflow. We call workflow applied to
describing applications “meta-workflow.” Since the workflow consists of creating a
lifecycle that contains several sequential stages where each stage can contain groups and
each group can contain several services, the meta-workflow description is quite
straightforward. The meta-workflow is illustrated in Figure 12 and Figure 13 where we
use the terms meta-entity, meta- lifecycle, meta-stage, meta-group and meta-service.

 15

In Figure 12 a meta-entity can take many forms such as a user, an order, an inventory
item, an application, or a form. Each meta-entity has only one meta- lifecycle, one meta-
stage and one meta-group consisting of five meta-services. The five meta-services shown
in Figure 13 generate an entity, its lifecycle, all the stages in the lifecycle, and all the
groups in a stage each of which can contain multiple services.

Figure 12

Meta-workflow

Figure 13

Meta-concern description
The meta-workflow is quite simple; it can be easily converted to a relational database

format using the tools provided. The conditions needed to determine if there are more
stages, groups or services to be added to a workflow do not need any complicated logic
since they are determined by the application designer.
Dealing with Concerns
Separation of concerns is a basic activity in building robust and maintainable software
systems [21]. Simply stated it is “divide and conquer;” you deal with complex problems
by dividing them into sub-problems that can be solved separately and then combined into
a complete solution.

Many concerns can be handled with modularization techniques using modules such
as procedures or classes. However, there are certain concerns for which these modules
are inadequate. These concerns are called crosscutting as they intersect or crosscut
several different modules or building blocks. Typical crosscutting concerns include
logging, synchronization and distribution.

Ideally, all concerns should be isolated and handled as early as possible in the
specification to avoid costly reworks later when the system is deployed. Further, a well-
written requirements specification is characterized by a set of requirements statements
where each statement represents a single requirement or concern. Such an argument is
presented in [22] where the authors recommend expressing each requirement in one

 16

sentence and avoiding complex sentences since they might inadvertently contain more
than one requirement.

The approach presented earlier in this paper follows these guidelines for
requirements. Concerns that can be described simply are separated into modules such as
reports, databases and graphics. These modules are implemented separately as instances
of service frameworks and then combined using workflow techniques. Web-based
software systems also contain crosscutting concerns. Our approach described in the next
subsection deals with this type of concern as well.

Software systems usually evolve over time to meet new requirements that may or
may not have been anticipated in the original specification. Subsequent design and
implementation need to be revised when these anticipated or unanticipated concerns
appear. We address these concerns in the context of our model in the next section.
Anticipated and Unanticipated Concerns
Even though the functional and non-functional requirements for a system are specified,
there may be specific ones that cannot be implemented. For example, it may be
recognized that there is a future need for creating an audit trail for all accesses to the
database but the business rules or legislation may not be in place to specify the detailed
audit requirements. Similarly it may be noted that one or more reports may need to
display results in both a tabular and graphical format, but users must be extensively
consulted through demonstrations to determine the best approach.

These two examples represent concerns that have been anticipated and their eventual
incorporation could be built into the initial design of the system. The audit trail concern
must be related to every database access, is distributed over the entire design and is
known as a crosscutting concern. The graphics concern could be embedded in one or
several reports. If this concern is in one report then it is an isolated or local concern, if it
is distributed across several reports then it is crosscutting.

Similarly, the two examples of audit trails and graphic reports could have been
ignored in the initial requirements specification and thus could have been unanticipated in
the initial design. If the designers did not anticipate the appearance of audit trails and
graphics, the design might not be as amenable to change to include these concerns.
In the next section, we address isolated and crosscutting concerns and how they might be
incorporated into our approach.
Isolated Concerns
Isolated concerns are restricted to one location in the system and can involve changing
the structure, changing or introducing an instance of a service framework or a
combination of both.

Changing the control structure is quite simple, since it is explicitly described in the
workflow structure that has been captured in a database. Introducing an instance of a
service framework is straightforward as long as a DDSL for the framework adaptation
interface exists. Changing or augmenting an instance of a service framework is a function
of the robustness of the implementation that defines the framework.
Crosscutting Concerns
Crosscutting concerns are aspects of a program which affect other concerns and cannot
be cleanly decomposed from the rest of the system in the design and implementation. For
example, in an application involving medical or financial records, core concerns are
examining and changing the records, while logging accesses to those records, or

 17

authenticating appropriate access, would be crosscutting concerns since they interact with
more parts of the program.

Working with crosscutting concerns when a software system is implemented in a
programming language involves several steps. The first step requires identifying all
occurrences of the concern with which the crosscutting concern interacts. This
identification is usually performed by a search process based on a search pattern known
to the program implementer and described in a regular expression. Obviously, the author
of the search requires an in-depth knowledge of the program if they are going to identify
all such concerns. Once these concerns have been isolated, they all can be modified to
reflect the needs of the crosscutting concern.

We believe our approach is much simpler. Since all components are declarative and
described with tags, it should be much easier to identify concerns that are being crosscut.
Of course, this does require a disciplined approach to choosing tag sets, but is still easier
than an equivalent disciplined and less obvious approach to program structure.
Crosscutting concerns are usually characterized as coming before, coming after, or
replacing a concern with which they interact. Since the control structure is explicitly
defined, it is easy to find all points of insertion. Once the concerns are identified, they can
be separated into a new lifecycle as described earlier in the paper. Treating the concern as
a new entity with accompanying lifecycle makes it quite easy to insert new stages and
concerns, thus enabling crosscutting concerns in a very natural way

Replacing instances of a service framework may mean modifying some existing
frameworks or augmenting the current ones. For example introducing graphics into
several reports may mean modifying several different service frameworks. As stated in
the previous paragraph, the ability to make these modifications easily, relates to the
robustness of the framework.

Some crosscutting concerns are related to performance issues. For example, the
response to every query must occur within ten seconds. Many crosscutting issues related
to performance can be controlled through system deployment. In this example,
performance can be improved by distributing data and web services over several servers.
Deployment itself can be described through workflow in much the same way that the
entire system is built, although we do not address that here.
Augmenting Existing Service Types
In the previous section we discussed both isolated and crosscutting concerns and we
discussed how to modify the code to incorporate new concerns. Specifically we
mentioned replacing a service framework that would incorporate a concern. In this
section, we demonstrate how a service framework can be designed to allow for inclusion
of new concerns. We use a report service framework to demonstrate the approach, but it
is completely general.

Since all service frameworks adaptation interfaces are specified in a DDSL based on
XML it is easy to insert new declarations at any point between the atomic elements that
constitute the adaptation interface of a service framework. Further, a form can be
generated from the service framework that can hide the DDSL statements and yet allow
insertion between the elements of the framework.

An instance of a partial service framework for a report is shown in Figure 14. We
have chosen to change the adaptation interface for the framework by inserting a diagram
that illustrates the data reported in the body of the report. This is easily done by inserting

 18

a reference to a completed diagram in the report instance. When the instance is accessed
during program execution, the graphic instance is substituted in a manner similar to
executing a macro instruction. Such an approach works for both isolated and crosscutting
concerns. In the case of crosscutting concerns, it is simply a case of determining where
the graphics are to be placed and inserting the name of the instance. Locating the graphics
is a matter of looking for the reports in which a graphic should appear.
Understanding Workflow in the Context of a Web-based System
Everything described to this point is directed to general enterprise service architectures.
However, most service-oriented systems are currently web-based. In this section we
describe how our approach can be applied to the production of web-based information
systems. We do this in two stages by showing how the web maps into a workflow-based
system and then demonstrating the techniques through a simple example.

Figure 14

An instance of a partial adaptation interface declaration for a report service framework
Mapping the Web into a Workflow-Based System
How does workflow fit into the design of a web-based information system? We propose
to answer that question in this section. There are four primary concerns that arise in a
hypermedia or web-based information system namely content, style or appearance of that
content, structure, and navigation [23]. A good design should keep these four concerns
separate so that changes to any one occur with minimal or no effect on the others.
Content
A web-based information system is composed of pages where each page Pi contains
content copied from local or remote files containing tagged text. The web browser and
related web server interpret the tags to produce the content that is visible on the screen.
Some pages may contain mini-applications or applets that exhibit complex behaviour
such as querying a database and processing the results of the query. Some pages may not
produce any visible content as they are dealing with background services that are not
directly relevant to the user.
Style or Appearance
The visible content in each page has an associated appearance or style sheet Si. The style
sheet specifies the appearance of content of a page and can be modified separately from
the content.
Structure

 19

Each web-based information system has an initial starting page or “home” page that
contains hyperlinks to a number of other pages, which themselves are hyperlinked to
other pages and so on. Thus each page Pi has a set of k hyperlinks <Hi,j>j=1,k where k can
be different for each page. Usually one member of the set of hyperlinks on a page is a
hyperlink to the home or initial page. These sets of hyperlinks form the structure of the
web site.
Navigation
From any given page it is usually possible to:
• jump to a preceding or succeeding page through web browser controls (such as

forward or back buttons),
• go directly to a random page in a website using a hyperlink that has been saved and

perhaps shared with others (a favorite).
We call these two methods of moving within a web site navigation.
The original design of the web did not support the passing of state information between
pages. However, modifications to the web now allow state information transfer between
pages through mechanisms such as hyperlink parameters, posting or cookies.
The forward and back buttons and favorites can refer to a web page, which may need
state information from a previous page that is no longer available. Thus, a “favorites”
page or the page succeeding the use of a forward or back button may have to contain an
applet that determines if the required state information is available.
Workflow
Workflow can be divided into two words work and flow. In a web-based information
system, the content of the pages corresponds to the work, while the flow maps directly
onto the structure of the web-based system. In effect, the flow corresponds to the
hyperlinks.
Verifying State Information
Although the web was originally stateless, it is now possible to pass state information
from page to page through different sharing mechanisms. It is also possible to navigate to
pages in a web-based system through the back and forward buttons on the browser or
through a favorites page. Thus, a page could be entered without the appropriate state
information. Each page that relies on having state information from previous pages in a
web-based system should contain web code that ensures that the state information is
available. Our system contains service frameworks that can be tailored to ensure that each
page has appropriate state information before completing its associated service.
An Example - Constructing a Web-based Information System
In this section, we use a web-based system that evolves as two simple interdependent
applications to illustrate the basic concepts. We use a simplified version of our approach
so as not to overwhelm the reader with details that are not relevant to understanding the
methods. The system provides a tour of historic buildings within a city and viewers
operate the tour through a web browser on either a standard personal computer or a
wireless device. The two applications provide:
1. a list of historic buildings with descriptions.
2. a list of tours which groups historic buildings together based on districts.
Application 1 – a list of historic buildings
This application consists of a set of historic buildings and so there is only one type of
data entity, namely historic building, in this initial application. Each member of the set is

 20

one such building and has a unique identifier, a name, an address and a detailed
descrip tion. The address includes geo-referencing information such as a postal code or
geo-coordinates. The description of the building could include a history, audio-visual
materials, by- laws, interior layout and outstanding architectural features. Each row in a
single database contains the parameters of one historic building.

This first application called “buildings” supports access to a specific building in the
list and a display of the relevant description, which we assume, can fit on one web page.
There is also a map accompanying the description that shows the location of the building.
Since there is only one application, the application and the system are synonymous.

Creating the application requires the completion of each step in Figure 13. This
application has two stages that we call the “welcome stage” and the “view stage.” As the
application develops, it is apparent that the welcome stage has one group while the view
stage has two groups.

The first step in producing an application consists of a form, shown in Figure 15 that
requires the definition of an entity; in this case, the entity is named “Buildings.” Only a
name is required for the entity and that name is stored in the database table corresponding
to entities.

Figure 15

A form for defining an entity
We use a similar form to define the lifecycle for the entity and each stage in the

lifecycle and slightly different forms for defining groups. Where we choose multiple
stages and groups, we must choose names that are unique within the corresponding
lifecycle and stage. In the database, we must link the lifecycle to the entity, each stage to
its corresponding lifecycle and each group to its related stage. Thus, the entity-to-
lifecycle relationship is one-to-one, while the lifecycle-to-stage and stage-to-group
relationships are each one-to-many. The form for defining a lifecycle is in Figure 16 and
in this application, its name is “Building.”

Figure 16

A form for defining the lifecycle

 21

Figure 17

A form for defining a group
Since the form for stages is similar, we will skip it and move on to the form for

creating a group which is in Figure 17. Note that as well as providing the group name
there is an opportunity to specify a style for the text or other material that appears
explicitly on the page, since a group in our context corresponds to page. In addition, there
is an opportunity to specify whether the link to this group (web page) should appear in
every other group (web page). One can think of this specific group as the “home page”
and every other page should contain a link to the home page. Similarly, the developer can
create a table of contents by checking the same box in other groups. The style sheet
accompanying each group or web page controls the appearance of the table of contents.
The form as it appears is on the left with the style chosen and the indication of a presence
on every page shown on the right in Figure 17.

Once the initial basic structure is established then we define the tasks in a specific
group. The first group, which is the “Welcome Group,” corresponds to a welcome page,
which contains one task shown in Figure 18 consisting of a block of text, which says
“welcome” where the text also provides the hyperlink to the list of historic properties.
This link is specified by the “onclick” annotation beside the name of the service
framework.

Since the link specifies a database access, we must also specify the name of the
database including its location, the name of the table, the names of the columns from
which data is to be extracted, and the form of the link between this task and the
succeeding one. In this case the link specified as “report” specifies that the next task
receives the data from a database query. In this example, the database name is “Tours,”
the table name is “Buildings,” and the column name(s) is “Address.”

Figure 18

Form for creating a hyperlink text box task

 22

The task to display a list of buildings is in Figure 19. Of course, this task is in a
different stage, namely the viewing stage and in a different group, the description of
which is similar to the one described earlier and therefore not repeated. The task for
displaying a list of buildings is quite similar to the task in Figure 18 except that the
service framework is of type “listing.” Note the modifier “onclick,” which indicates that
the mouse can activate each entry in the listing. This type of framework requires a second
step in defining the task, namely the description of the columns in the report. Thus
pushing the submit button on the task produces a second set of forms for defining the
name and types associated with each column in the report and providing a title for the
column. The column form is repeated as many times as there are columns in the form.
Since this step is quite straightforward, we do not show it in a Figure.

Figure 19

Steps in creating a report listing task
The final task in the application displays the description for a single building. It just

contains pictures and text and is shown in Figure 20 and like other web pages will contain
a table of contents. The style of the page is governed by the style accompanying the
group enclosing this task.

Before completing this task, we must insert a map task into group2, the group that
contains the description of the building. The form to produce a map task is in Figure 21.
There are no links to a succeeding task as this is the last task in the lifecycle. Note that
the Next Task Link in Figure 20 is “Submit,” which implies that the map is only activated
when requested from the previous task. There are also check boxes to indicate which
features are requested for the map.

 23

Figure 20

Steps in creating a description
Application 2 –creating tours of historic buildings
We now introduce a second concept called the tour. The tour groups buildings by districts
so that the user can view all buildings in one area. The tour requires the addition of a
second entity in the data model and two more tables in the corresponding database. The
two tables are an entity table called “tours” which describes the tour and the related
district and a relation table called building- tours that relates the tours or districts to
groups of buildings. In the “tour” application, we introduce a new entity called the “tour,”
which has its own lifecycle, stages, groups and tasks. Since the Figures for these artifacts
are very similar to the ones already presented, we only describe the differences in the
text.

In the lifecycle, we introduce a “welcome” stage followed by a “view” stage similar
to the “building” lifecycle. In the first or “welcome” stage, we introduce a welcome
group where the “welcome” group contains a “welcome” task similar to the “welcome
task” in the “building” group in Figure 18. The view stage contains a view group and a
single task labeled “Tours.” This task is connected to the preceding “welcome” task and
then connects to the “Building” task shown in Figure 19. This connection illustrates a
simple dependency between two tasks in different lifecycles.

If the system now uses the “welcome” task in the “tours” application as the starting
point we can eliminate the welcome step from the “buildings” application since it is no
longer reachable code. However, this does raise an interesting question: “What if we
want both the “tour” and the building applications available?”

The answer to the question lies in introducing a new entity called “system;” this
entity represents a collection of interrelated applications. The entity system has one value
namely the URI for the entire system. As before, we introduce a lifecycle, a stage, a
group and a task. In this case, the task is the welcome page already described. This
approach allows us to capture a number of applications in a single “welcome” page.
Thus, we create two dependencies in this application. We can also remove the “welcome”
page from each application as this web code is now unreachable.

As we demonstrated, there are dependencies between services in this application and
other applications within the information system. If other applications exist then these
dependencies can be completed. The user can complete the information about the

 24

dependencies as the service is selected. If dependencies appear later, as the information
system is developed, the applications can be revisited, since they are completely stored in
the workflow database, and the dependency information can be completed. Such a
possibility occurred in the application just completed, where a decision was made to
make both tour and building applications accessible from the home page.

Figure 21

Forms for a task for creating a map
The structure of the information system including lifecycles, stages and services, and

their pattern of interconnection and dependency are stored in the workflow database. The
workflow engine is now used to traverse the entire system structure and produce a set of
interdependent operational applications. In the example just described the workflow
engine compiles the application by filling in the links between the various forms and adds
the style sheet to each form and connects the initial task of the application to a Web page.

Of course, the information systems may be incomplete or there may be bugs because
not all dependencies have been defined. If there are bugs in the service frameworks, they
are dealt with outside the context of the system development.

As can be seen from the previous description our approach clearly separates structure
(workflow) and services applied to entities in the data model. Further, the structure is
captured in a data structure rather than a programming structure, which makes the
structure easier to identify and modify. If the services involve style, then that is easily
separated from content as already been discussed.

Modification or maintenance of the workflow-based system is in two steps. If the
structure of the system is to be changed, then the data structure representing the workflow
is modified. If a service is to be changed then another service framework is substituted,
the current one in use is modified, or values are changed in the corresponding adaptation
interface. If a service framework is modified then it can be given a new identity within
the framework repository. In this way, applications that use the old version of the service
framework only use the modified version if desired.
The WIDE Toolkit and Service Frameworks
The Web Informatics Development Environment (WIDE) toolkit was developed to
produce software systems from models based on enterprise service architectures. WIDE
is primarily based on open source software technology and consists of a number of
service frameworks. The frameworks are outlines of functionality for a specific service

 25

that are specialized using different approaches. For example if the frameworks are
developed using object-oriented technology then they would be specialized using
hotspots and similar concepts, although this information would still be captured using a
declarative form-based adaptation interface.

Applications built using the WIDE toolkit can include input forms or reports
containing extensive multimedia materials such as imaginative use of maps or any 2-
dimensional diagram, databases, indexing and searching methods, agents, and push
technologies. WIDE also contains a knowledge management system that supports
documentation of technical information and best practices.

The adaptation interface for the service frameworks are expressed in a declarative
XML-based DDSL. In the WIDE context, “programming” has effectively been replaced
with a declarative methodology thus making it possible to provide a wizard or forms-
based approach to building Web-based systems. Thus, WIDE has often eliminated the
need for programming in the construction of complex Web-based systems.
Internally WIDE uses a bootstrap approach; its extensions are implemented using its own
declarative technology. WIDE supports a rapid development paradigm and new
applications can be built and demonstrated quickly. The structure of the WIDE
environment also supports evolution thus addressing new concerns as they arise. The next
few subsections contain descriptions of the service frameworks in WIDE.
A mapping services framework. This framework supports the creation of interactive
maps which are delivered from a database-driven map-server. The interactive maps can
provide zoom-in or zoom-out functionality and positioning over areas of interest. The
mapping service framework does not use traditional geographic information system (GIS)
software to support any of the mapping functionality. The mapping service framework
minimizes complexity, support, cost, and time usually associated with creating and
operating map-based applications.

The supported map services do support the new Canadian Geographic Data Initiative
(CGDI) thus allowing exchange of information between the WIDE mapping services and
most GISs. The mapping service can be used to:
• provide multi-layered maps when connected through the CGDI standard to a source
of map layers such as a GIS;
• display and interact with the location of geo-referenced objects such as a building or
park that is stored in a database;
• find geo-referenced data in databases or Web sites based on an area on the map
defined by the user. The map area searches can be defined by a circle, rectangle or
general polygon;
• attach an “electronic pushpin” and accompanying data to a map location or area and
then store that data in a database or Web site.

The maps can represent any spatial or map-based concept including thematic maps
such as ones showing environmental or demographic data, roadmaps or even floor plans.
Combinations of maps can be displayed such as a road map with a superimposed
thematic map. Vector-based maps can also be displayed where required.

The simple API (application program interface) to the maps provided by the server
supports rapid development of map-based applications. The mapping functionality is
based on the Scalable Vector Graphics (SVG) open W3C standard [24]. Data can be geo-

 26

referenced or located using various forms of geo-coding including Lat- long, UTM,
address-range, or postal code.

The mapping framework also supports the OpenGIS® Web Map Service (WMS) [19]
and Web Feature Service (WFS) [20] thus supporting two-way interchange of maps and
features between instances of the mapping framework and operating geographic
information systems that support the services.
A diagram and chart services framework. This framework manages and delivers
specified interactive diagram and chart types upon request for presentation of data on the
Web or in other formats. The diagram and chart services are also based on the Scalable
Vector Graphics (SVG) open W3C standard and so provide similar functionality to the
mapping service framework.
An XML-based metadata framework. The adaptation interfaces to databases, Web sites,
agents, and applications including reports and input forms with maps and diagrams are
described using XML. They are transformed into operating applications through the use
of XSL “programs.”
A report services framework. This framework supports the creation and management of
interactive report and input form types and delivers them on request for presentation on
the Web or in other formats. The user specifies the form type or service framework while
creating an instance for an application. The instance is specified by completing an
adaptation interface, which is part of the framework. The instance is stored with the
application and is interpreted at runtime to produce the required report.
A content management services framework. This framework supports the management
of text and multimedia information in a database where it can be viewed, searched,
maintained and then published for use on the Web or in other formats.
A role-based access control service framework. Access to any content such as a
database, Web site or other text and multimedia content can be provided with multi- level
role-related access controls to determine who can read or change data. For example, each
entry in a database can be accessed by the individual or role that “owns” the data and has
the authority to make changes.
A Web and database searching service framework. This service framework contains an
indexing agent and search engine that indexes known Web sites and databases and
supports searching. The results from Web searches are categorized based on different
search criteria such as the proximity of words in a phrase. The results of combined
database and Web searches can be presented together. Temporal searches are also
possible where the results of a search can be saved and the search re-executed at a later
time. The results of the two searches can be compared to see if new results have appeared
in the intervening time interval. The searching framework includes the ability to rank
search results.
A push/notification service framework. The Web is naturally a pull medium. A user
must look for information by pulling it out of the Web. The general push/notification
service framework allows developers to create systems that allow users to specify
conditions under which they wish to be notified or have information pushed at them. For
example, someone who is buying a house could request notification if a house meeting
his/her specifications becomes available.
An agent service framework. The agent service framework supports the description of
agents that act autonomously to perform utility tasks within an application. Agents are

 27

often defined to manage redundancy. For example, agents could be defined to verify the
content of “local” databases against authoritative sources or to allow a user to type
information once while submitting the data to multiple databases or Web sites.
A knowledge management framework – the academy. The academy framework is used
to support widespread dissemination of “documentation” and knowledge describing how
applications can be built from the WIDE Toolkit. Documentation includes best practices
as well as principles of proper design for the Web and the Internet. The academy uses the
StudySpace [25] educational interface that allows individual users to keep and manage
personal annotations related to the document being read.
A workflow framework. – The workflow framework and its related workflow engine
support the construction of an application from the previously described service
frameworks. The application is formed by composing workflow patterns involving
services. The workflow engine then “walks” over the composed patterns and interacts
with the application developer to complete the tasks associated with the workflow.
Recent and Current Portal Projects by Sector
Complex web-based information systems sometimes called portals have been created to
evaluate different versions of the WIDE toolkit and its constituent service frameworks as
they have evolved. These designs have created the evidence-base to indicate the
robustness of the approach. These portals cover several different areas including urban
and rural community information, economic development, health, environment, and
cultural heritage.

All of the portals are still operational, but may not be accessible to external users at
this time, either because they are still waiting final publication approval, are
experimental, or use older versions of the WIDE toolkit that are no longer supported.
However the URIs are given for portals that can be accessed. This section provides a list
of many of the systems that have been developed.
Urban and Rural Community Information
There are several web-based systems that have been developed to support urban and rural
community information. We describe them in the order in which they were developed.
The Waterloo Information Network (WIN) – This portal was developed in 1998-99 as a
portal for the City of Waterloo. It had a complete business directory for the City, which
was searchable by keyword, name of business and similar properties and also provided
timed advertising of local events. Mapping, which was not based on a geographic
information system (GIS), was used to provide the functionality described previously.
County of Oxford Online (COOL http://www.cooloxford.ca/) – The County of Oxford
adopted an early version of the WIDE toolkit to develop their portal. The COOL portal
has features similar to the WIN portal, but has used a different organization. The COOL
portal chose to use a mapping system based on GIS and developed by the GeoGraphics
Information Systems (GGIS) Group of the County of Oxford.
The Rural Switchboard (http://learningspace.uwaterloo.ca/rs) - The Rural Switchboard
system contains information related to business, tourism, arts and culture in the rural
communities in Waterloo, Perth and Oxford counties. The Rural Switchboard uses the
mapping functionality described earlier.
Project NOW (http://www.newcomerswaterloo.ca/) – The Waterloo Public Library as the
lead agency and our research team have been building a multi- lingual portal for

 28

newcomers to Waterloo Region, particularly immigrants under the title Project NOW.
There are over 1400 web pages of information of interest to newcomers.
Waterloo Regional Arts Council (WRAC - http://learningspace.uwaterloo.ca/wrac) -
The WRAC site provides a comprehensive overview of arts and culture in Waterloo
Region. There are databases of all the individuals and organizations involved in the arts
and all the venues that are available to artists for presentations, displays and similar
activities. The portal contains profiles of some local artists with interactive multimedia
presentations of their work, a database of press releases that can be automatically sent to
subscribers who register and indicate their preferences, and a planning calendar. This
calendar can be used to download to multiple local event calendars. The WRAC system
incorporates some of the mapping functionality described earlier.
Social Planning Council of Kitchener Waterloo - The Quality of Life portal provides
information from the Social Planning Council of Kitchener Waterloo. It contains a
number of community based resources including the Blue Book, a detailed listing of all
community resources in Kitchener Waterloo.
Volunteer Action Centre (VAC) of Kitchener Waterloo (http://volunteerkw.ca/) - The
VAC portal provides individuals with an opportunity to discover and apply for various
volunteer opportunities within the greater Kitchener-Waterloo community and to provide
related support services.
Economic Development
Canada’s Technology Triangle (CTT) – CTT is an economic development organization
for the Region of Waterloo in Ontario Canada. The site uses the mapping functionality
described earlier. The site contains a business directory of all its members and a directory
of commercial real estate (buildings and land) and uses the mapping to create a
geographically searchable database of available buildings and land.
Health
Rapid Visualization Environment for Health Data – This experimental project
incorporates maps and databases that can be used to visualize and understand better the
operation of the Ontario Health System. It is intended that this portal might be used as a
management “dashboard” for operational assessment purposes.
A Web-Based Tool for Defining Bandwidth Requirements of PACS Networks -
Hospital groups are often faced with the problem of transmitting digital images such as
Xrays, MRI or CAT scans to expert teams of radiologists in different locations. Thus, it
becomes necessary to calculate present and future loads to determine when there is a need
to purchase additional network capacity. This portal incorporates databases of network
capacity and a calculator that can be used to compute network traffic based on assumed
network input.
‘Point of View’ Intelligent Middleware – Our research team worked with DataGlider, a
Canadian company specializing in Enterprise Healthcare Portal technology. Using their
own technology and parts of the WIDE toolkit, the two groups built a prototype health
care portal to support the display of multiple medical reports (portlets).
Health Informatics (http://hi.uwaterloo.ca) – Our research team has produced a Web
portal for the Waterloo Institute for Health Informatics Research (WIHIR) at the
University of Waterloo that describes the institute and its members.
Health Informatics Competencies (http://learningspace.uwaterloo.ca/hi/) – A research
program on assessing competencies for people interested in a career in health informatics

 29

has been underway for a number of years. Those interested in this type of career can
access the Web portal to learn about the various types of positions available in applied
health informatics. By completing a questionnaire an individual can be assessed on their
preparation for a specific occupation in the field.
VON CareNet: VON Caregiver Resource Network – This experimental system
sponsored by the Victorian Order of Nurses is conceived as an Internet-based Community
of Practice support tool to assist informal caregivers in providing effective and
sustainable care in the home setting and in achieving effective and efficient
communications with professional personnel.
The Regional Physician Webspace Project (http://www.family-medicine.ca) - The
Regional Physician Webspace project is intended to provide a virtual health community
with a wide array of support services for physicians in the Kitchener-Waterloo-
Cambridge (KWC) region. Among its purposes is to provide an information environment
that links physicians to each other, to the University of Waterloo, to regional healthcare
facilities, and to information resources.
Performance Indicators Monitoring System (PIMS) – PIMS involves gathering
indicator data and work planning related to smoking cessation programs, sponsored by
the Ontario Ministry of Health Promotion. Information about work planning and program
indicators is gathered from the 54 separate units across Ontario. Each unit has their
special characteristics, which make the system quite complex. There are currently over
150 different interfaces that must be constructed and managed.
Environment
COMWASH – The COMWASH experimental portal was created to understand how
portal technology could be used to support environmental remediation in the developing
world. Information about the quality of water in a district of the Republic of Malawi in
Africa has been used for illustrative purposes. There is a database of all water sources and
these are mapped using the mapping technology described earlier. Local citizens can
monitor existing water sources and change values such as water bacterial content, and
also add new water sources to the database.
The Muskoka Lakes Association (http://www.mla.on.ca/) – The Muskoka Lakes
Association system presents information about the quality of water in the Muskoka
Lakes, a tourist and vacation area in Ontario Canada. There is a database of all water
testing sites and accompanying test data and these are mapped using the mapping
technology described earlier. Local citizens can monitor existing water sources and
change values such as water bacterial content, and also add new water sources to the
database.
The Ontario Stewardship Tracking System - The Stewardship Tracking System supports
inventories of ecosystem restoration projects and is being developed in partnership with
the Ontario Ministry of Natural Resources, with the support of GeoConnections, the Oak
Ridges Moraine Foundation and the Metcalfe Foundation and in collaboration with
conservation authorities and non-government-organizations in natural heritage
conservation.
Cultural Landscape
Mapset (www.mapset.com) - The Mapset portal contains a number of examples of portals
based on the WIDE technology. One section illustrates the many buildings in the Galt

 30

section of Cambridge Ontario thus providing an overview of the cultural landscape of the
community.
Related Work
There has been other work on generating implementation from models. The ideas behind
this work are neatly captured in the book by Czarnecki and Eisnecker [28] in which they
describe methods of generating programs through the definition of domain specific
languages (DSLs). The work described restricts itself to a specific domain and only
generates domain specific applications. The methods described do not produce an entire
implementation from a model as we have described.

UML and xUML (executable UML) [29] have been described as producing an
implementation directly from a model. However the translation only produces code
outlines which must be completed by the programming team. Thus great discipline must
be exercised to avoid architectural drift where the implementation gradually deviates
from the model.

There has been other work on software factories [30] and software product lines [31]
where object-oriented frameworks are created using design patterns and specialized to
perform specific functions. These are still programming models that require a high degree
of expertise to understand and modify the framework. In fact there has been substantial
work on process languages to capture framework instantiation activities [32] so that they
can be replicated at a later time to minimize the extensive learning curve required of the
framework programmer.

There has been substantial research on developing web-based systems from models.
OOHDM [36] and WebML [23, 33] are two examples. However they are strictly focused
on the web and not the more general concept of enterprise service architectures as we
have demonstrated in this paper.
Conclusions and Future Work
In this paper, we have outlined an approach to building and generating software systems
from an enterprise service model and then shown how the approach can be used in a web
context. The approach proceeds from a model based on workflow patterns to an
operational application. There are no gaps in the derivation between the model and the
application. Any changes to the application are first specified in the model and then
carried over to the application through a well-defined process based on workflow. Thus,
the problem of architectural drift between model and operating application can be
avoided. In many cases, modifications to the model are straightforward and do not make
the entire derivation process inefficient and therefore open to circumvention.

There are a number of directions to be explored in future research.
1. We need to exercise our approach on many more examples in different enterprise

service-oriented domains to ensure that there are no serious gaps in our understanding
of the process.

2. Each task in our approach could encompass a crosscutting concern such as logging or
failure. We need to investigate how to handle these concerns in a manner similar to
aspect-oriented programming. Preliminary work on aspects related to workflow has
indicated a possible approach.

3. Although our approach describes the derivation of an application directly from the
model, we still need to describe a deployment strategy. We believe that this strategy
can be specified in a manner similar to the one described in this paper. Preliminary

 31

results support this view. Deployment strategies have significant effect on non-
functional requirements such as performance.

4. Model checking and other validation techniques are very important to ensure that the
behaviour of a software system meets certain criteria. We believe that we can
associate behaviour with each task and thus validate systems using the model with
this associated behaviour. Work is continuing on this theme.

5. As service-oriented architectures evolve, there will be many situations where services
will be obtained using technologies such as UDDI [37] and WSDL [38]. We will
have to expand our model to handle these methods of obtaining services and to handle
exceptions when services are not available. Preliminary investigation indicates that
the model can be expanded to handle this method of accessing and using services.

6. Although the systems are highly interactive already, we have observed that a higher
degree of interactivity is possible using Ajax [39] and should be incorporated into the
approach.

7. There is now a recognized body of work on business patterns [5]. We should
investigate finding a mapping between a representation of business patterns such as
the Resource, Event Agent (REA) model and the workflow and service framework
describe in this paper. Preliminary investigations look promising.

Acknowledgements
The research reported in this paper has evolved over a number of years and has been
funded by many businesses and government agencies including: Bell Canada,
Communications and Information Technology Ontario (CITO), Human Resources
Development Canada (HRDC), Human Resources and Skills Development Canada
(HRSDC), iAnywhere Solutions (Sybase), IBM, Natural Sciences and Engineering
Research Council of Canada (NSERC), Rogers Cable, and Oracle. As well we wish to
acknowledge our many partners who participated with us in developing web-based
systems that have allowed us to test our approach.
References
1. Schmidt, D.C. “Guest Editor's Introduction: Model-Driven Engineering.” IEEE

Computer Volume 39, Issue 2, pp 25- 31.
2. Balasubramanian, K.; Gokhale, A.; Karsai, G.; Sztipanovits, J.; Neema, S.

“Developing Applications Using Model-Driven Design Environments.” IEEE
Computer Volume 39, Issue 2, pp 33- 40.

3. Michael Jackson and Graham Twaddle “Business Process Implementation: Building
Workflow Systems.” Addison-Wesley, 1997.

4. Gregor Kiczales et al, "Aspect-Oriented Programming," Proceedings European
Conference on Object-Oriented Programming vol 1241, Springer-Verlag, Berlin,
Heidelberg, and New York pages 220--242, 1997.

5. Hruby Pavel. Model-Driven Design Using Business Patterns Springer, 2006.
6. John Reynold’s Blog

http://weblogs.java.net/blog/ johnreynolds/archive/2005/04/process_driven_1.html
(last accessed April 29, 2007).

7. Business Process Execution Language for Web Services version 1.1 http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/ (last accessed April 29,
2007).

 32

8. Rumbaugh, J., Jacobson, I., Booch, G., The Unified Modeling language Reference
Manual Addison Wesley 2004.

9. James Carey, Brent Carlson Framework Process Patterns: Lessons Learned
Developing Application Frameworks Addison Wesley 2002.

10. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley 1995.

11. Smith, H. and Fingar, P. “Business Process Management – the third wave” Meghan-
Kiffer Press 2002, Tampa, Florida, USA. ISBN 0-929652-33-9.

12. C. Plesums. “Workflow in the world of BPM: Are They the Same?” from The
Workflow Handbook 2005, Future Strategies Inc., 2005, ISBN 0-9703509-8-8.

13. Chen, P. P.-S. “The Entity-Relationship Model: Toward a Unified View of Data”,
ACM Transactions on Database Systems, 1, Vol 1, pp 9-36.

14. XML Metadata Interchange (XMI), v2.1
http://www.omg.org/technology/documents/formal/xmi.htm (last accessed April 29,
2007).

15. Extensible Stylesheet Language (XSL) http://www.w3.org/Style/XSL/ (last accessed
April 29, 2007).

16. P.S.C. Alencar, T. Oliveira, D.D. Cowan, D. Mulholland. “Towards Monitored Data
Consistency and Business Processing Based on Declarative Software Agents,
Software Engineering for Large-Scale Multi-Agent Systems – Research Issues and
Practical Applications,” Garcia, A., Lucena, C. et al. (Eds), Lecture Notes in
Computer Science (LNCS), vol. 2603, pp. 267-284, Springer, 2003.

17. Boehm, Corrado, & Jacopini, Giuseppe (1966), "Flow Diagrams, Turing Machines,
and Languages with only Two Formation Rules", Communications of the ACM 9(5):
366-371.

18. Ashcroft, E. & Manna, Z. The translation of go to programs to while programs,
Information Processing 71, Proceedings of IFIP congress 71 (Amsterdam, North
Holland, 1972) pp 250-255.

19. OpenGIS® Web Map Service http://www.opengeospatial.org/standards/wms (last
accessed April 29, 2007).

20. OpenGIS® Web Feature Service http://www.opengeospatial.org/standards/wfs (last
accessed April 29, 2007).

21. D. L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053–1058, 1972.

22. S. Robertson and J. Robertson. Mastering the Requirements Process. ACM Press
books. Addison-Wesley, Harlow et.al., 1999.

23. M. Matera, A. Maurino, S. Ceri, P. Fraternali: "Model-Driven Design of
Collaborative Web Applications".Software: Practice and Experience Volume 33,
Issue 8, 2003, Pages: 701-732.

24. Scalable Vector Graphics http://www.w3.org/Graphics/SVG/ (last accessed April 29,
2007).

25. StudySpace http://learningspace.uwaterloo.ca/rs (last accessed April 29, 2007).
26. Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2001). Web

Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl (last
accessed April 29, 2007).

 33

27. Simple Object Access Protocol http://www.w3.org/TR/soap (last accessed April 29,
2007).

28. Czarnecki, K. & Eisenecker. “Generative Programming: Methods, Tools, and
Applications.” Addison-Wesley, 2000 http://www.swen.uwaterloo.ca/~kczarnec/ (last
accessed April 29, 2007).

29. Chris Raistrick C., Francis, P., Wright, J., Carter, C., Wilkie, I., Model Driven
Architecture with Executable UML Cambridge University Press March 2004.

30. Greenfield & Short. “Software Factories: Assembling Applications With Patterns,
Models, Frameworks and Tools.” Wiley, 2004 http://www.softwarefactories.com/
(last accessed April 29, 2007).

31. Clements, P., Northrop, L., Software Product Lines : Practices and Patterns Addison-
Wesley Professional; 3Rev Ed edition (August 20, 2001).

32. Alencar, P.S.C., Oliveira, T., Cowan, D.,D., Filho, M., Lucena, C.J.P., Software
Process Representation and Analysis of Framework Instantiation, IEEE Transactions
on Software Engineering (IEEE TSE), vol. 30, no. 10, pp. 145-159, March 2004.

33. WebML Documentation at http://www.webml.org (last accessed April 29, 2007).
34. Martin Fowler. UML Distilled Third Edition. Addison Wesley 2004.
35. Jim Arlow, Ila Neustadt. UML 2 and the Unified Process Second Edition. Addison

Wesley 2005.
36. Daniel Schwabe and Gustavo Rossi, "An Object Oriented Approach to Web-Based

Application Design", Theory and Practice of Object Systems 4(4), 1998. Wiley and
Sons, New York, ISSN 1074-3224).

37. UDDI - http://www.uddi.org/ (last accessed April 29, 2007).
38. WSDL - http://www.w3.org/TR/wsdl (last accessed April 29, 2007).
39. Ajax - http://www.adaptivepath.com/publications/essays/archives/000385.php (last

accessed April 29, 2007).

