
CS–2007–03

Predictable Semiautomata

Janusz Brzozowski and Nicolae Santean

Technical Report 03

David R. Cheriton School of Computer Science

University of Waterloo

2007

Predictable semiautomata⋆

Janusz Brzozowski and Nicolae Santean

David R. Cheriton School of Computer Science
University of Waterloo,

Waterloo, ON, Canada N2L 3G1
{brzozo, nsantean}@uwaterloo.ca

Abstract

We introduce a new class of nondeterministic semiautomata:A nondeterministic semiau-
tomatonS is predictableif there exists an integerk≥ 0 such that, ifS knows the present
input a and the nextk inputs, then the transition undera is deterministic. Nondetermin-
ism may occur only when the length of the unread input is less thank+ 1. We develop a
comprehensive theory of predictable semiautomata. Using anovel semiautomaton, called
the core, we present a test for predictability. We then introduce the predictor semiautoma-
ton, based on a look-ahead semiautomaton, that is essentially deterministic. We describe
two ways of using the predictor to simulate a nondeterministic semiautomaton. The first
simulation predicts the set of states reachable by every prefix of the input word as long as
the prefix is in the language of the semiautomaton. The secondsimulation is similar, but it
stops as soon as it infers that the input word is not in the language of the semiautomaton.
Moreover, the membership of a word in the language of a semiautomaton can be decided
completely deterministically. Finally, we show that, if a semiautomaton withn states over
a one-letter alphabet isk-predictable,k being the smallest such integer, thenk≤ n−1, and
this bound can be reached. For semiautomata over arbitrary alphabets,k≤ (n2−n)/2, and
this bound can be reached for a suitable input alphabet.

Key words: Automaton, delegator, look-ahead, nondeterminism, predictor, selector,
semiautomaton, simulation

⋆ This research was supported by the Natural Sciences and Engineering Research Council
of Canada under grant No. OGP0000871 and fellowship No. PDF-32888-2006.

8 May 2007

1 Introduction

Nondeterministic automata are ubiquitous in theoretical computer science. They
serve as models for various nondeterministic processes, constitute valuable de-
sign tools (often more convenient than their deterministiccounterparts), and are
inevitable in many applications. On the other hand, they also have some draw-
backs, such as increased simulation time and space, and inefficient minimization
algorithms.

Several attempts have been made recently to overcome the disadvantages of non-
determinism. Nondeterministic finite automata (NFA) have been used as formal
models for service-oriented computing [1], and as tools forautomated web service
composition [2]. In both of these applications, it became imperative to overcome
the problems introduced by nondeterminism. For this purpose, the concept of a
“delegator” of an NFA was informally introduced in [2]. A delegator is an equiva-
lent deterministic finite automaton (DFA) based on the transition graph of an NFA.
It has a look-ahead buffer of a fixed length, and the look-ahead word permits it to
determine which of several possible nondeterministic steps should be taken. This
concept, also known as “look-ahead delegation”, was studied systematically and in
a more abstract framework in [5].

We address a problem similar to delegation, but we formulateit in the more general
model of semiautomata. We introduce semiautomata, called “predictable”, in which
it is possible to replace a nondeterministic step by a deterministic one, with the
aid of a bounded number of input letters from a look-ahead buffer. Our goal is to
compute the set of states reached from the initial set of states of a semiautomaton
by a given input word. Although our development is in terms ofsemiautomata, our
results extend to automata as well, without resorting to thetheory of delegators.

Our theory is substantially different from the work in [2,5]. Since our model ad-
dresses nondeterministic semiautomata, rather than automata, it takes advantage
of their special properties, notably of the prefix-closure of their languages. Con-
sequently, problems left open in [5] for NFAs are resolved inour framework. For
example, the decidability of the NFA delegation is still open, whereas predictability
of semiautomata is decidable, and we provide an algorithm for it. This algorithm
uses a novel semiautomaton called “core”.

As observed in [5], delegation appears to be a global automaton property, whereas
our concept of predictability is a local property of nondeterministic branches that
we call “forks”. Consequently, our method can be applied at the fork level even to
semiautomata which are not globally predictable, whereas an NFA which has no
delegator cannot be partially determinized.

We modify a given semiautomaton by adding to it some look-ahead information;
the resulting semiautomaton is called a “predictor”. In contrast to [5], we do not

2

always use the entire buffer content, but only as much information as is needed;
hence we reduce the predictor’s complexity. Moreover, a predictor computing the
set of states reachable by a word does not completely determinize a semiautoma-
ton, but may leave some nondeterminism at the end of its computations, when the
remaining input is shorter than the buffer length. However,the decision concerning
the membership of a word in the language of a semiautomaton can be made com-
pletely deterministically. Unlike delegators, for which simulation is determined by
their definition, predictors can be simulated in two ways. The first simulation pre-
dicts the set of next states, as long as the input word has a prefix that is in the
language of the semiautomaton. The second simulation stopsas soon as it infers
that the input word is not in the language of the semiautomaton.

Another difference between predictors and delegators is the uniqueness of the pre-
dictor: there is a bijection between semiautomata and predictors. In contract to this,
an NFA can have many delegators that may be homomorphically unrelated.

We give a precise upper bound for the size of the predictor’s look-ahead buffer; the
bound is linear in the number of states of the semiautomaton for unary alphabets
and quadratic for larger alphabets; nothing similar is known for delegators.

In view of these and other differences, our predictor has little in common with the
delegation model, beside the motivation and the look-aheadparadigm.

The remainder of the paper is structured as follows. In Section 2, we introduce the
terminology for semiautomata. Predictable semiautomata are defined in Section 3.
The properties of certain types of words, called “minimal selectors” and “maximal
nonselectors”, and their relation to predictability are studied in Section 4. In Sec-
tion 5, we define a deterministic semiautomaton, called “product”, which provides
a test for predictability. A simpler version of the product semiautomaton, called a
“core”, is described in Section 6; the core is used for findingminimal selectors and
maximal nonselectors. The process of predicting reachablestates is developed in
Section 7, where a “predictor” of a semiautomaton is defined and two methods of
simulating nondeterministic semiautomata are characterized. In Section 8 we de-
rive bounds on the size of the look-ahead buffer, and Section9 concludes the paper.

2 Semiautomata

We base our notation loosely on that of Eilenberg [4]. Iff : X → Y (also denoted

X
f
→ Y) is a function, we writex f for the value off at x. If g : Y → Z is another

function, thenx f g is unambiguous without parentheses. Also, an elementx∈X can
be interpreted as a functionx : S→ X, whereS is some singleton, and the value of

this function isx. Thenx f g is the composition of functionsS
x
→ X

f
→Y

g
→ Z. For a

setX, we denote its cardinality byX#.

3

If Σ is an alphabet, thenΣ+ andΣ∗ denote the free semigroup and the free monoid,
respectively, generated byΣ. The empty word is 1. Fork≥ 1, letΣ≤k = 1∪Σ∪ . . .∪
Σk. For w ∈ Σ∗, |w| denotes the length ofw. If w = uv, for someu,v∈ Σ∗, thenu
is aprefixof w andv is asuffixof w. A languageL is prefix-freeif no word of L is
a prefix of another word ofL. It is prefix-closedif uv∈ L impliesu∈ L. If u∈ Σ∗,
v∈ Σ+, thenuv is anextensionof u.

A semiautomaton[3] S = (Σ,Q,P,E) consists of analphabetΣ, a setQ of states,
a setP⊆ Q of initial states,and a setE of edgesof the form(q,a, r), whereq, r ∈ Q
anda∈ Σ. An edge(q,a, r) beginsatq, endsat r, and haslabel a. It is also denoted
asq

a
→ r. A pathπ is a finite sequenceπ = (q0,a1,q1)(q1,a2,q2) . . .(qk−1,ak,qk)

of consecutive edges,k > 0 being itslength, q0, its beginning, qk, its end, and
w = a1 . . .ak, its label. We also writeq0

w
→ qk for π . Each stateq has anull path1q

from q to q with label 1.

If T ⊆ Q andw∈ Σ∗, thenTw= {q∈ Q | t
w
→ q, for somet ∈ T}. If T = {t}, we

write tw for Tw; if Tw= {q}, we writeTw= q. A stateq of a semiautomatonS
is accessibleif there existsp∈ P,w∈ Σ∗ such that there is a pathp

w
→ q, that is, if

q∈ pw. A semiautomaton isaccessibleif all of its states are accessible.

The language|S | of a semiautomatonS = (Σ,Q,P,E) is the set of all labels
of paths starting in initial states ofS , that is, |S | = {w ∈ Σ∗ | Pw 6= /0}. Note
that |S | is prefix-closed; in particular, if|S | 6= /0, then 1∈ |S |. If q is a state of
S = (Σ,Q,P,E), the language of qis Rq = {w∈ Σ∗ | qw 6= /0}. Thelanguage of a
set T⊆ Q is RT =

⋃
t∈T Rt . In particular,RP = |S |.

A semiautomaton iscompleteif P 6= /0 and, for everyq∈ Q anda∈ Σ, there is an
edge(q,a, r) ∈ E, for somer ∈ Q. In a complete semiautomaton,qw 6= /0, for all
q∈ Q,w∈ Σ∗. The language of a complete semiautomaton isΣ∗. If S is complete,
eachw∈ Σ∗ belongs to every languageRq, q∈ Q.

A semiautomatonS is deterministicif it has at most one initial state, and for every
q∈ Q, a∈ Σ, there is at most one edge(q,a, r). If S is deterministic and has initial
statep, we writeS = (Σ,Q, p,E).

3 Predictable semiautomata

We introduce nondeterministic semiautomata, called “predictable”, in which the
knowledge of a limited number of symbols read ahead from the input tape removes
nondeterminism. We restrict our attention to finite semiautomata.

Let S = (Σ,Q,P,E) be a semiautomaton. Ifq∈ Q, a∈ Σ, then afork (with origin
q and inputa) is the set〈q,a〉= {(q,a, r1), . . . ,(q,a, rh)} consisting of all the edges

4

from q labeleda. The set〈〈q,a〉〉 = {r1, . . . , rh} is called thefork setof 〈q,a〉. We
assume thath > 0, since empty forks are of no interest. Note, however, that forks
with single edges are permitted; they are calleddeterministic transitions.Allowing
such forks has the advantage that a semiautomaton can be viewed as a set of initial
states and a set of forks.

A set T ⊆ Q is critical if either T = P or T = 〈〈q,a〉〉, for a fork 〈q,a〉 in S .
A critical set is the set of all possible next states in a step of a (deterministic or
nondeterministic) computation.

The following definition states the conditions under which it is possible to decide
which state of a critical set, if any, should be chosen, if we know the nextk symbols
on the input tape:

Definition 1 LetS = (Σ,Q,P,E) be a semiautomaton, and let k≥ 0 be an integer.
A set T⊆ Q is k-predictableif any two distinct states s, t of T satisfy

Rs∩Rt ∩Σk = /0.

A semiautomatonS is k-predictableif every critical set ofS is k-predictable, and
S is predictableif it is k-predictable for some k.

The condition ofk-predictability can be satisfied in two ways. First, ifRT has no
words of lengthk, then the condition cannot be violated. This means that no path of
lengthk spellingw can originate in any state ofT. Second, ifw∈ Rs∩Σk for some
s∈ T, andw does not belong to anyRt , with s 6= t, then the condition holds again.
Now states is the only state inT from which there is a path spellingw.

A set is 0-predictable if and only if it consists of a single state. Consequently,
a semiautomaton is 0-predictable if and only if it is deterministic. A predictable
semiautomaton is either deterministic or incomplete, because in a complete semi-
automaton,Rs = Rt = Σ∗ and henceRs∩Rt ∩Σk = Σk 6= /0, for all statess andt.

Example 1 The fork{(p,a,q)} in Fig. 1 (a) is a deterministic transition, and
the fork 〈q,a〉 = {(q,a,q),(q,a, r)} has fork set〈〈q,a〉〉 = {q, r}. This set is1-
predictable, since a word of length 1 (here, only a) belongs only to Rq, and not to
Rr . The fork set{q, r} in Fig. 1 (b) is 1-predictable, because there are no words of
length 1 in Rq or Rr . Thus the semiautomata of Fig. 1 (a) and (b) are 1-predictable.
The fork set{p,q} in Fig. 1 (c) is not k-predictable for any k≥ 0, because ak ∈
Rp∩Rq∩Σk for all k.

Remark 1 If a set is k-predictable, then it is k′-predictable for all k′ > k.

By the definition ofk-predictable sets, testing fork-predictability is reduced to
testing whether a finite language is empty, and this problem is decidable.

5

(a) (c)(b)

a

a

p q r

a

a
p

q

r

a a

a qpa

Fig. 1. Illustrating predictability.

4 Selectors and nonselectors

We now define two types of words that play an important role in predictability:
“selectors” and “nonselectors”. Selectors are look-aheadwords that permit us to
choose only one state from a setT, whereas nonselectors limit the choice to a
subset ofT that has at least two states.

Definition 2 If S = (Σ,Q,P,E) is semiautomaton, and T⊆ Q, then a word w∈ Σ∗

is a t-selector inT if w∈ σ(t,T), where

σ(t,T) =
(

Rt \
⋃

s∈T,s6=t

Rs

)
.

A word w is aselector inT if it is a t-selector in T for some t. The set of all selectors
in T is

σ(T) =
⋃

t∈T

σ(t,T).

A selector w in T isminimal if no prefix of w is a selector in T .

We also define the complementary setσ(t,T) of t-nonselectorsin T :

σ(t,T) = Rt \σ(t,T).

The set of allnonselectorsin T is

σ(T) =
⋃

t∈T

σ(t,T) = RT \σ(T) =
⋃

s,t∈T,s6=t

(Rs∩Rt).

A t-nonselector u ismaximalif no extension of u is in Rt .

Example 2 In Fig. 1 (a), the set of q-selectors in the fork set〈〈p,a〉〉 = {q} is a∗,
and 1 is the only minimal q-selector in{q}. There are no q-nonselectors in{q}.
Fork 〈q,a〉 has critical set T= {q, r}. The set of q-selectors in T is a+, and a is a
minimal q-selector in T . The empty word1 is the only q-nonselector in T , and it is
not maximal because a= 1a∈ Rq. There are no r-selectors in T , and1 is the only
r-nonselector in T ; it is maximal because no extension of1 is in Rr .

6

In Fig. 1 (b), the fork set of fork〈p,a〉 is T = {q, r}. Here RT = {1}, there are no
selectors, and1 is a maximal q-nonselector in T and a maximal r-nonselector in T .
Thus, there exist sets that are predictable and yet have no selectors. Also, a set that
is not predictable may have selectors, as we shall see later.

In Fig. 1 (c), there is a fork〈p,a〉 with fork set T= {p,q}. There are no selectors,
since Rp∩Rq = a∗. Every word in a∗ is a p-nonselector and a q-nonselector, and
there are no maximal nonselectors.

Example 3 The semiautomatonS of Fig. 2 illustrates the usefulness of minimal
selectors and maximal nonselectors. The only critical set with more that one ele-
ment is P= {p1, p2, p3}. One verifies thatS is 2-predictable. There is a minimal
p1-selector aa, and maximal nonselectors a for p2, and1 for p3. Minimal selectors
and maximal nonselectors are indicated by square brackets and “floor” brackets,
respectively; thus[aa] is a minimal selector and⌊a⌋ is a maximal nonselector.

If the input word toS is 1, then any state in P can be the initial state, and there is
no further computation. If the input word is a, then the initial state could not be p3,
but is limited to{p1, p2}. Finally, if the input word begins with aa, then the initial
state is necessarily p1.

a a

a

q1 r1

p2

p1

p3

[aa]

q2

⌊1⌋

⌊a⌋

Fig. 2. Selectors and nonselectors.

Selectors and nonselectors have the following prefix properties:

Proposition 1 LetS = (Σ,Q,P,E) be a semiautomaton and T⊆ Q.

(1) The set of all nonselectors in T is prefix-closed.
(2) If an s-selector u is a prefix of a t-selector w, then s= t.
(3) The set of all minimal selectors in T is prefix-free.
(4) No selector is a prefix of a nonselector.
(5) For any t∈ T, no maximal t-nonselector is a prefix of a t-selector.
(6) For any t∈ T, the set of all maximal t-nonselectors is prefix-free.

Proof:

(1) If w is a nonselector, there exists, t ∈ T, such thatw∈ Rs∩Rt . SinceRs and
Rt are prefix-closed, we haveu∈ Rs∩Rt , for every prefixu of w.

(2) This follows becausew∈ Rt impliesu∈ Rt , sinceRt is prefix-closed.
(3) This follows from the definition of minimal selector.

7

(4) This follows from (1).
(5) If u is a maximalt-nonselector, thenua 6∈ Rt , for all a∈ Σ. Hence no extension

of a maximalt-nonselector is inRt .
(6) This follows by the same reasoning as (5). ⊓⊔

The next result provides three characterizations ofk-predictability.

Theorem 1 Let S = (Σ,Q,P,E) be a semiautomaton and T= {t1, . . . , th} ⊆ Q.
The following are equivalent:

(1) T is k-predictable.
(2) Every word of length k in RT is a selector in T .
(3) Every word of length≥ k in RT is a selector in T , and hence has a minimal

selector in T as a prefix.
(4) Every nonselector in T is of length< k.

Proof:

(1)⇒ (2) Supposew∈ Σk. If w is nonselector inT, thenw∈ Rs∩Rt ∩Σk, for some
s, t ∈ T, contradicting (1). Hencew must be a selector inT.

(2)⇒ (3) Every wordw of length≥ k in RT has a prefixu of lengthk, andu is a
selector inT by (2). By Proposition 1 (4),w must be a selector. Thenu andw
have a minimal selector inT as prefix.

(3)⇒ (4) If w is a nonselector inT, thenw∈RT . Thus|w|< k; otherwise,w would
be a selector by (3).

(4)⇒ (1) If a longest nonselector inT is of length< k, thenRs∩Rt ∩Σk = /0, for
all s, t ∈ T,s 6= t, andT is k-predictable. ⊓⊔

It follows that testing whether a set is predictable is equivalent to testing whether
the regular languageσ(T) is finite, and the latter property is decidable.

Corollary 1 If T is a k-predictable set of a semiautomatonS , then every minimal
selector in T is of length≤ k.

Proposition 2 Let S = (Σ,Q,P,E), T ⊆ Q, and t∈ T. If T is k-predictable, t has
either a minimal t-selector in T or a maximal t-nonselector in T .

Proof: If t has a selector inT, then it has a minimal selector inT. Assume now
thatt has no selectors inT. If Rt is finite, letw be a longest word inRt , necessarily
a nonselector. Thenwa 6∈ Rt for all a∈ Σ, andw is a maximalt-nonselector inT.
By Theorem 1 (4), the case whereRt is infinite is impossible. ⊓⊔

8

5 Product semiautomata

We now describe a semiautomaton construction which leads toa test for predictabil-
ity. To determine the predictability of a setT = {t1, . . . , th} ⊆ Q in a semiautomaton
S = (Σ,Q,P,E), we need to find intersections of the languagesRti , whereRti is the
language of the semiautomatonSi = (Σ,Q, ti,E), ti ∈ T. For this, we could deter-
minizeSi , and construct their direct product̂D(T). However, it is also possible to
obtain a deterministic direct product by using the subset construction in each step
of the direct product construction.

WhenT is fixed, and there is no danger of ambiguity, we use the term “selector”
and “nonselector” instead of “selector inT” and “nonselector inT”.

For a setQ, let 2Q be the set of all subsets ofQ. The direct product ofh copies of
2Q is denoted(2Q)h.

Definition 3 LetS = (Σ,Q,P,E) be a semiautomaton and let T= {t1, . . . , th}⊆Q.
Define the deterministic semiautomaton

D̂(T) = (Σ,(2Q)h,γ0, ÊD),

whereγ0 = ({t1}, . . . ,{th}), and, for every h-tuple(S1, . . . ,Sh) of sets of states ofS
and every a∈ Σ, there is an edge((S1, . . . ,Sh),a,(S1a, . . . ,Sha)) ∈ ÊD , where Sia is
the set of successor states of the set Si under input a in the semiautomatonS .

The product semiautomatonfor T is the accessible subsemiautomaton ofD̂(T),
and it is denoted by

D(T) = (Σ,Γ,γ0,ED).

Note thatD̂(T) andD(T) are complete.

We distinguish several types of states inΓ:

• The stateγ /0 = (/0, . . . , /0) ∈ (2Q)h is callednull.
• A state in which only theith component is nonempty is calledti-singular.A state

is singular if it is ti-singular for somei.
• Any state in which at least two components are nonempty is calledplural. A plu-

ral state in which theith component is nonempty is calledti-plural.
• A stateγ is ti-ultimateif it is ti-plural and, for alla∈ Σ, theith component ofγa

is empty. A state isultimateif it is ti-ultimate for somei.
• A state iscyclic if it appears in a cycle; otherwise, it isnoncyclic.

SinceD(T) is deterministic, each word defines a unique path. We define several
types of words:

9

• A word w defining a path(γ0,a1,γ1) . . .(γm−1,am,γm), whereγ0, . . . ,γm−1 are
plural andγm = γ /0, is callednullary.

• A word w defining a path(γ0,a1,γ1) . . .(γm−1,am,γm), whereγ0, . . . ,γm−1 are
plural andγm is ti-singular, is calledti-primary. If such a word exists, stateγm is
also calledti-primary.A word or state isprimary if it is ti-primary for somei.

• A word w is ti-plural if γ0w is ti-plural; it isplural if γ0w is plural.

The types of states in a product semiautomaton are illustrated in Fig. 3. The “core”
part is discussed in the next section.

plural

ultimate

γ /0

core

initial

primary

other singular

null

Fig. 3. States in a product semiautomaton.

The next result states some basic properties of product semiautomata and their re-
lations to selectors and nonselectors.

Proposition 3 Let D(T) be the product semiautomaton of a set T in a semiau-
tomatonS . Then the following hold:

(1) Letγ = (S1, . . . ,Sh) andγ ′ = (S′1, . . . ,S
′
h) be two states inΓ such thatγ ′ = γw,

for some w∈ Σ∗. If Si = /0, for some i∈ {1, . . . ,h}, then also S′i = /0.
(2) A word w is in the language RT if and only ifγ0w 6= γ /0.
(3) A word w is a ti-selector if and only ifγ0w is ti-singular.
(4) A word is a minimal ti-selector if and only if it is ti-primary.
(5) A word w is a ti-nonselector if and only ifγ0w is ti-plural.
(6) A word w is a maximal ti-nonselector if and only ifγ0w is ti-ultimate.

Proof: Properties (1)–(3) and (5) follow from the definition ofD(T). For (4), if
w is a minimalti-selector, thenγ0w is ti-singular by (3). Ifw has a proper pre-
fix u, then u it must be a nonselector. Thus every state of the formγ0u is plu-
ral, and hencew is primary. Conversely, ifw is primary, then it defines a path
(γ0,a1,γ1) . . .(γm−1,am,γm), whereγ0, . . . ,γm−1 are plural andγm is singular. There-
fore no proper prefix ofw is a selector, andw is minimal.

For (6), if γ = γ0w is ti-ultimate, thenγ is ti-plural. Sincew is not ati-selector and
w∈ Rti , w is a ti-nonselector. Because every extensionwa leads to a state with an

10

emptyith component,wa 6∈ Rti , and no extensionwau is in Rti , sinceRti is prefix-
closed. Hencew is maximal. Conversely, ifw is a maximalti-nonselector, then
w∈ Rti andw∈ Rt j for somej 6= i. Henceγ0w is a state with nonemptyith and jth
components. Ifγ0w is not ti-ultimate, then there existsa∈ Σ such thatγ0wa has a
nonemptyith component. But thenwa∈ Rti andw is not maximal. Thereforeγ0w
is ti-ultimate. ⊓⊔

Example 4 Figure 4 (a) shows a semiautomaton with one initial state andone
fork 〈p,b〉, with fork set T= {p,q}. The product semiautomatonD(T) is given in
Fig. 4 (b), where, for simplicity, we represent sets of states as words; for example,
{p,q} is written pq. There is an infinite number of primary words (and hence of
minimal selectors); the set of all such words is denoted by the regular expression:
(aab)∗(b+ab+aaa). However, there are only three primary states(pq, /0), (/0,q),
and (/0, t). Note that a primary state may be also reached by words that are not
primary. For example,(/0, t) can be reached by aba. There are no nullary words.

p

t

sr

b

a

b

(q, /0)(rt , /0)(pq, /0)

(/0,q)(r,t)

(/0, /0)

(s,t)

(p,q)

(a)

(st, /0)

b

a

a
(t, /0)

(/0,t)
a

b

a b

b

b

b

a

b

a b

b

a

a

a

b

a

a,b

(b)

b

b

a

a

a

q

Fig. 4. An unpredictable semiautomaton and its product semiautomaton.

Product semiautomata that do not have any cyclic plural states are of particular
interest, since they lead to a test for predictability.

Theorem 2 LetS = (Σ,Q,P,E) and T⊆ Q. The following are equivalent:

(1) The length of a longest plural word inD(T) is k−1.
(2) T is k-predictable, but not(k−1)-predictable.

Moreover, T is predictable if and only ifD(T) does not have cyclic plural states.

Proof: Let k− 1 be the length of a longest plural wordw in D(T). Thenw is a
nonselector inT, by Proposition 3 (5). By Theorem 1,T is not(k−1)-predictable.
Since there are no plural words of lengthk in D(T), every wordu of lengthk is
either nullary or singular. In the first case,u 6∈RT by Proposition 3 (2). In the second

11

case,u is a selector by Proposition 3 (3). Thus every word of lengthk in RT is a
selector, andT is k-predictable by Theorem 1. Hence (1) implies (2).

If T is k-predictable, then all nonselectors inT and (by Proposition 3 (5)) all plural
words inD(T) are of length< k, by Theorem 1. IfT is not (k− 1)-predictable,
thenRT must have a nonselector of lengthk−1, and hence there is a plural word
of that length inD(T). Hence (2) implies (1).

If D(T) has a cyclic plural stateγ, thenγ has two nonempty components, sayi
and j. SinceS is accessible,γ is reachable by some wordu∈ Σ∗ from the initial
stateγ0. Sinceγ is cyclic, there is a wordv ∈ Σ∗ such thatγv = γ. This implies
that uvn ∈ Rti ∩Rt j for all n. Sincen can be arbitrarily large, the setσ(T) of all
nonselectors inT is not finite andT is not predictable, by Theorem 1. Thus, ifT is
predictable, thenD(T) has no cyclic plural states.

If D(T) has no cyclic plural states, then the length of a longest plural word (and
hence of the longest nonselector) isk− 1, for somek. By Theorem 1,T is k-
predictable and hence predictable. This proves the second claim. ⊓⊔

6 Core semiautomata

We now show that, for predictable semiautomata, a part of theproduct semiautoma-
ton D(T) = (Σ,Γ,γ0,ED) suffices to give us all the information we need. LetΓpl

(respectively,Γpr) be the set of all plural (respectively, primary) states ofΓ.

Definition 4 Thecore semiautomatonof a product semiautomatonD(T) is an in-
complete deterministic semiautomatonC (T) = (Σ,Ω,γ0,EC), where

Ω =





Γpl ∪Γpr ∪{γ /0} if there is an edge from a plural state toγ /0,

Γpl ∪Γpr otherwise,

and EC consists of edges ofD(T) that join a plural state to a plural state, a primary
state, orγ /0.

Example 5 Consider the semiautomaton of Fig. 4 (a). State(p,q) is cyclic in the
product semiautomatonD(T) of Fig. 4 (b). The construction ofD(T) could stop
as soon as this cycle is detected. By Theorem 2, the semiautomaton of Fig. 4 (a) is
not predictable.

Example 6 The semiautomatonS of Fig. 5 (a) has one critical set that is not a
singleton, namely, T= {p,q}, corresponding to the fork〈p,a〉. The product semi-
automaton is shown in Fig. 5 (b). Since no plural state is cyclic, S is predictable.
The core semiautomatonC (T) is shown in Fig. 6. Since the length of a longest plu-

12

(b)(a)

a,b,c

a

ca,b

p q r
ba,c

(/0, /0)

(pr, /0)(pq, /0)

b

(p,q)

(p, r)

(/0, r)
c

b

(q, r) b

c

a

a

(r, /0)

b

c

b

c
b,c

ca

acc

b

b

a

a

c

a,b

a,b

(q, /0)

(qr, /0)(p, /0) a,c

Fig. 5. A predictable semiautomaton and its product semiautomaton.

ral word is 2, the set{p,q} andS are 3-predictable by Theorem 2. The primary
words are: a, c, ba, bb, bcb, and bcc. The minimal p-selectorsin T are a, c, ba, bb
and bcb, and the only minimal q-selector in T is bcc. The nonselectors in T are1, b,
and bc, and none is maximal. There is one nullary word bca. In each deterministic
transition in Fig. 5 (a),1 is a minimal selector.

(p,q)

b

(q, /0)

(pq, /0)

(q, r) (r, /0)

(/0, /0)

(p, /0)(p, r)

b

c

a

a

b

c
a

c
(/0, r)

Fig. 6. The core semiautomaton of the product semiautomatonin Fig. 5 (b).

Example 7 In the semiautomaton of Fig. 7 there are two initial states q1 and q6
and two forks. The core semiautomata corresponding to the critical sets are shown
in Fig. 8. The critical set{q1,q6} has minimal q1-selectors a, ba, and bb, and max-
imal q6-nonselector b. In Fig. 7, minimal selectors and maximal nonselectors of a
state are shown on the arrows leading to the state. The critical set{q2,q3} has min-
imal q2-selectors a and bb, and minimal q3-selector ba. The critical set{q4,q5,q6}
has minimal q4-selector a, minimal q6-selector b, and maximal q5-nonselector1.
The empty word1 is a minimal selector in each deterministic transition. Thesemi-
automaton is 2-predictable.

13

q3q7

q1 q6

a [ba]

b [1]

a [1]

a [a]

a [a,bb]

b [1]

[a,ba,bb] ⌊b⌋

b [1]
a [b]

a ⌊1⌋

a [1]

b [1]

q4 q5q2

Fig. 7. Illustrating selectors and nonselectors.

(a)

(b)

(c)

a

b

(q1, /0, /0)

a

(q1, /0)

b
(q1,q5)

(q1,q6)

(q2q3, /0)

(/0, /0,q5)

(q4q5q6, /0)

b
(q2,q3)

(q4,q5,q6)

b
(q5, /0)(q6,q7)

a

(/0,q1)

b

a

a

Fig. 8. Core semiautomata for Example 7.

7 Predictors

The concepts of the previous sections are now used to simulate a predictable semi-
automaton almost deterministically. Starting with a semiautomatonS , we define a
semiautomatonP that hasΣ×Σ≤k as input alphabet; the new input consists of the
current input lettera and up tok letters of look-ahead information.

Definition 5 Let S = (Σ,Q,P,E) be a k-predictable semiautomaton, k≥ 0. The
predictorof S is a semiautomatonP(S) = P = (Σ×Σ≤k,Q,P,EP), where

(1) The set of initial states is P. The sets of minimal p-selectors and maximal
p-nonselectors in P are associated with each state p∈ P.

(2) If 〈q,a〉 is a fork, and(q,a, r), an edge inS , then(q,(a, [u]), r)∈EP , if u is a
minimal r-selector, and(q,(a,⌊u⌋), r) ∈ EP , if u is a maximal r-nonselector.

By Proposition 2, each statet in any setT ⊆ Q has either a minimal selector or a
maximal nonselectoru. In particular, each state inP and in〈〈q,a〉〉, for eachq∈ Q,
a∈ Σ, has a minimal selector or a maximal nonselector.

14

Remark 2 There is a bijective correspondence between predictable semiautomata
and predictors. Each predictable semiautomaton uniquely defines a predictor. To
reconstruct the semiautomaton from the predictor replace all edges of the form
(q,(a, [u]), r) and(q,(a,⌊u⌋), r) by a single edge(q,a, r).

7.1 Keys

One objective of a predictor is to find the set of all states reachable from the set
of initial states, and to do this with as little nondeterminism as possible. For this
purpose, we first study prefixes of the input word that provideuseful look-ahead
information.

Definition 6 In a predictorP, for a word w∈ Σ∗ and T⊆ Q, the longest prefix
x of w which is also a prefix of a minimal selector or a maximal nonselector of a
state in T is thekey of w in T . The keyappliesto a state t∈ T if it is a prefix of a
minimal t-selector or a maximal t-nonselector.

The key always exists, since 1 is a prefix of every word. For every T ⊆ Q and
w∈ Σ∗, there is always at least one statet ∈ T to which the key applies.

Remark 3 If T is a k-predictable set and w is an arbitrary word, then thekey of w
in T must belong to RT . Consequently, if w′ is the longest prefix of w that is in RT ,
then the keys of w and w′ in T coincide.

The next result characterizes words inRt , wheret ∈ T, andT is k-predictable.

Lemma 1 LetS =(Σ,Q,P,E) be a semiautomaton, and let T⊆Q be k-predictable.
If w ∈ Rt , for some state t∈ T, then one of the following conditions holds:

(1) A prefix u of w is a minimal t-selector.
(2) |w| < k, and w is a prefix of a minimal t-selector.
(3) |w| < k, and w is a prefix of a maximal t-nonselector.

Proof: If |w| ≥ k, thenw has a prefix which is a minimal selector, by Theorem 1 (3).
If |w|< k, andw is a selector, then it has a prefix which is a minimal selector,by the
definition of the latter. Assume now thatw is at-nonselector and|w| < k. Consider
any extensionwx of w. This extension can be at-selector, at-nonselector, or not
in Rt . If wx is a t-selector, then it has a prefixu which is a minimalt-selector.
Now u cannot be a prefix ofw, since no selector is a prefix of a nonselector, by
Proposition 1 (4). Henceu is an extension ofw, and (2) holds. If neither (1) nor (2)
holds, then all extensions ofw are eithert-nonselectors or are not inRt . If, for all
a∈ Σ, the extensionwa is not inRt , thenw is a maximalt-nonselector. Otherwise,
there is ana such thatwa is a t-nonselector. Continuing with this argument we
obtain longer and longert-nonselectors. By Theorem 1 (4), every nonselector is of

15

length less thank. Therefore we must eventually reach a maximalt-nonselector,
and (3) holds. ⊓⊔

The next lemma provides a characterization of keys.

Lemma 2 Let S = (Σ,Q,P,E) be a semiautomaton, let T⊆ Q be k-predictable
and let w∈ Σ∗ be an input word. Then the following holds:

(1) If w′ is the longest prefix of w that is in RT , then the key of w in T is either a
minimal selector or it is w′ itself.

(2) If w′ is an arbitrary prefix of w that is in RT , and t∈ T, then w′ ∈ Rt if and
only if the key of w′ in T applies to t.

Proof: Let w′ be the longest prefix ofw that is inRT . Then there existst ∈ T such
thatw′ ∈ Rt , and Lemma 1 applies; thus one of the three cases occurs. If a prefix u
of w′ is a minimal selector, thenu is the key ofw′, and also ofw, in T. This follows
from Remark 3 and the fact that no minimal selector or maximalnonselector can
be an extension of a minimal selector, by Proposition 1. If one of the other two
conditions of Lemma 1 holds,w′ is a prefix of a minimalt-selector or of a maximal
t-nonselector. Then clearlyw′ is the key ofw in T, since no prefix ofw longer than
w′ is in RT , again by Remark 3. This proves (1).

For the second claim, supposew′ is an arbitrary prefix ofw that is inRT . We con-
sider two main cases:

• If w′ has a prefixu which is a minimal selector inT, by the reasoning used in the
proof of (1) above,u is the key ofw′ in T. Now, if w′ ∈ Rt , for somet ∈ T, then
u is a minimalt-selector andu applies tot, sinceu is its own prefix. Conversely,
if the keyu of w′ in T applies tot, thenw′ can only be inRt , sinceu is then a
minimal t-selector, being a minimal selector inT.

• Now suppose thatw′ does not have a prefix which is a minimal selector. By
Theorem 1 (3), we must have|w′| < k.

If w′ ∈ Rt for somet ∈ T, either condition (2) or condition (3) of Lemma 1
holds. Hencew′ is a prefix of a minimalt-selector or a maximalt-nonselectoru
in T. Sincew′ is its own longest prefix, the key in this case isw′ itself, andw′

applies tot.
Conversely, assume that the keyx of w′ in T applies tot ∈ T; thenx is a prefix

of a minimalt-selectoru or of a maximalt-nonselectoru′. In either case,u and
u′ are inRt , and so is the prefixx. We claim thatx = w′; from this it follows that
w′ ∈ Rt .

To prove the claim, note that, ifw′ 6∈ Rt , thenw′ ∈ Rs for somes∈ T, since
w′ ∈ RT . Sincew′ ∈ Rs, either (2) or (3) of Lemma 1 holds, andw′ is a prefix of
a minimals-selector or a maximals-nonselector. It is its own key inT, since it is
its own longest prefix. Thus our claim thatx = w′ holds. ⊓⊔

16

7.2 Maximal Simulation

The purpose of the first simulation is to compute the set of states that can be reached
by any prefixw′ ∈ |S | of the input wordw; if a prefixw′ is not in|S |, then the set
of states reached is empty. The predictor continues lookingfor the next state, until
it reaches the longest prefix ofw that is in|S |. This is done even though in some
cases the predictor may know that the remaining input word isnot in the language
of the semiautomaton; we call thismaximalsimulation.

Definition 7 Given a predictorP = (Σ×Σ≤k,Q,P,EP) of a k-predictable semi-
automatonS = (Σ,Q,P,E) and an input word w, a prefix y of wderivesa state
s∈ Q, written y⇒ s, as follows:

(1) Basis Step (Step 0):
1⇒ s if s∈ P and the key of w in P applies to s.

(2) Induction Step (Step m+1, m≥ 0):
The induction is on the number m≥ 0 of derivation steps. Assume now that
w = yaz, for some a∈ Σ, y,z∈ Σ∗; then ya⇒ s if y⇒ r, for some r∈ Q,
s∈ 〈〈r,a〉〉, and the key of z in〈〈r,a〉〉 applies to s.

There may be more that one state that can be derived in each step. We pick an arbi-
trary state, and continue the derivation. If we wish to find all the states derivable by
a given word, then we must backtrack and eventually considerall the choices. How-
ever, that most of the derivation turns out to be deterministic, and nondeterminism
may occur only when the input word is of length≤ k.

Next, we show that all the words that derive a state are in the language of|S |.

Proposition 4 If w ⇒ s, for some s∈ Q, then w∈ |S |.

Proof: If w = 1, then 1⇒ s impliess∈ P, showing thatP is not empty. But then
1∈ Rs ⊆ |S |. Now assume thaty⇒ r impliesy∈ |S |, and considerya, for some
a ∈ Σ. If ya derivess, thens∈ 〈〈r,a〉〉, and there is an edge(r,a,s) in S . Hence
ya∈ |S |, and our claim follows. ⊓⊔

The next result deals with correctness and termination of maximal simulation.

Theorem 3 LetS =(Σ,Q,P,E) be a k-predictable semiautomaton, andP =(Σ×
Σ≤k,Q,P,EP), its predictor. Given an input w∈ Σ∗, let w′ be the longest prefix of
w that is in|S | = RP. Also, let w′ = yv, where y is an arbitrary prefix of w′. Then

(1) The predictor operation is correct in the sense that y⇒ q in predictorP if
and only if q∈ Py and v∈ Rq.

(2) The simulation stops with the remaining input v if and only if y⇒ q, for some
q∈ Q, and one of the following holds:

17

(a) v= 1; this implies that w∈ |S |.
(b) v= az, for some a∈ Σ, z∈ Σ∗ and there is no fork〈q,a〉 in S ; this implies

that w 6∈ |S |.

Proof: First, we show that, ify ⇒ q, thenq ∈ Py andv ∈ Rq. We proceed by in-
duction on the length of the prefixy. If 1 ⇒ s, thens∈ P by Definition 7 (1). Thus
s∈ P1= P. Sincew′ is in RP by assumption, and the key ofw′ in P applies tos, we
havew′ ∈Rs, by Lemma 2 (2). Therefore the claim holds for the basis. Now assume
that, for an arbitrary prefixy of w′ = yaz, if y⇒ r, thenr ∈ Pyandv∈ Rr . Suppose
thatya⇒ s. Theny⇒ r, for somer ∈ Q, s∈ 〈〈r,a〉〉, and the keyx of z in 〈〈r,a〉〉
applies tos. By the induction hypothesis,r ∈Pyandaz∈Rr . Sinces∈ 〈〈r,a〉〉, there
is an edge(r,a,s) ∈ E; hences∈ Pya. Sincez∈ R〈〈r,a〉〉 becauseaz∈ Rr , and the
key of z in 〈〈r,a〉〉 applies tos, by Lemma 2 (2) we havez∈ Rs. Thus the induction
goes through, and the claim holds.

Second, assume thatq ∈ Py andv ∈ Rq; we show thaty⇒ q. Again, we proceed
by induction on the length of the prefix. Consider first the factorizationw′ = yv=
1w′. By Lemma 2 (2), ifp ∈ P andw′ ∈ Rp, then the key ofw′ in P applies top.
By Definition 7 (1), the empty prefix 1 ofw′ derivesp. Now assume that, for an
arbitrary prefixy of w′ = yv, if r ∈ Py andv ∈ Rr , theny ⇒ r. Suppose now that
w′ = yaz. Sincew′ ∈RP, there existsr ∈Pysuch thataz∈Rr , and hence a fork〈r,a〉.
Let sbe any state inT = 〈〈r,a〉〉 such thatz∈Rs. By the induction hypothesis,y⇒ r.
Sinces∈ T andz∈ Rs, the key ofz in T applies tos by Lemma 2 (2). Therefore
ya⇒ s, and the claim holds.

Now consider termination. Since 1 is a prefix of all words, theinput word always
has a key inP, and Step 0 of Definition 7 is always executed. Consequently,the
derivation can stop only ifw = yvand some stateq has been derived byy.

If v = 1, thenv does not begin with a letter, the induction step cannot be carried
out, and the derivation stops. Herew = y is clearly in|S |, sinceq∈ Py by Theo-
rem 3 (1), and that impliesy∈ RP = |S |.

If v = az, for somea ∈ Σ, z∈ Σ∗, and there is a fork〈q,a〉 in S , the derivation
continues, sincez always has a key in〈〈q,a〉〉. Thus the derivation can stop only
if v = az, but there is no fork〈q,a〉 in S . Clearly, az 6∈ Rq. Suppose now that
w = yaz∈ |S |. Sincey⇒ q, we haveq∈ Py andaz∈ Rq, by Theorem 3 (1). This
is a contradiction, andw 6∈ |S |. ⊓⊔

The predictor is optimal in the sense that there is no unnecessary nondeterminism,
that is, no prefixy of w′ = yazderives a state from which it is impossible to continue
the derivation. Moreover, ifw′ = yaz, and|z| ≥ k in ak-predictable semiautomaton
S , the induction step of the predictor is deterministic, becausez is guaranteed to
have a prefixu which is a minimal selector, by Theorem 1. Thus nondeterminism
occurs only for words of length less than or equal tok. As the next result shows,
even that nondeterminism can be avoided, if one is interested only in determin-

18

ing whetherw∈ |S |, rather than in finding all the states reached byw. Thus, for
the membership problem, one can arbitrarily select any possible next state in any
nondeterministic step, and always reach the same conclusion.

Corollary 2 In a predictorP, w∈ |S | if and only if w⇒ q, for some q∈ Q.

Proof: By Proposition 4, ifw ⇒ q, thenw ∈ |S |. Conversely, ifw ∈ |S |, then
w′ = w; also there existsq∈ Pw, by definition of|S |. Since 1∈ Rq, by Theorem 3,
applied withy = w′ andv = 1, we havew = w′ ⇒ q. ⊓⊔

Example 8 Figure 7 without the minimal selectors and maximal nonselectors rep-
resents a semiautomatonS . With the minimal selectors and maximal nonselec-
tors added, it can be interpreted as the predictor as follows: The incoming edge
of q1 is labeled with minimal selectors[a], [ba], and [bb], and that of q6, with
maximal nonselector⌊b⌋. The edge(q1,a,q2) is replaced by edges(q1,(a, [a]),q2)
and(q1,(a, [bb]),q2), while the edge(q1,a,q3) is replaced by(q1,(a, [ba]),q3). In
the fork〈q2,a〉, edge(q2,a,q4) is replaced by(q2,(a, [a]),q4), edge(q2,a,q5), by
(q2,(a,⌊1⌋),q5), and edge(q2,a,q6), by(q2,(a, [b]),q6). All other edges are deter-
ministic transitions and have minimal selectors1.

Suppose the input word is w= aaababaab. We use the notation a(z) instead of az for
a word in aΣ∗ to make it easier to identify the key of z. The following computation
takes place, where q indicates the current state, and v, the remaining input: In Step
0, v= w = aaababaab, and the key of w in{q1,q6} is a. We have1⇒ q1, since a
applies only to q1. The next seven steps are deterministic:

(1) q= q1, v= a(aababaab), the key of aababaab in{q2,q3} is a.
a⇒ q2, since a applies only to q2; a is consumed from the input.

(2) q= q2, v= a(ababaab), the key of ababaab in{q4,q5,q6} is a.
aa⇒ q4, since a applies only to q4; a is consumed.

(3) q= q4, v= a(babaab), the key of babaab in{q1} is 1.
aaa⇒ q1, since1 applies to q1; a is consumed.

(4) q= q1, v= b(abaab), the key of abaab in{q1} is 1.
aaab⇒ q1, since1 applies to q1; b is consumed.

(5) q= q1, v= a(baab), the key of baab in{q2,q3} is ba.
aaaba⇒ q3, since ba applies only to q3; a is consumed.

(6) q= q3, v= b(aab), the key of aab in{q7} is 1.
aaabab⇒ q7, since1 applies to q7; b is consumed.

(7) q= q7, v= a(ab), the key of ab in{q1} is 1.
aaababa⇒ q1, since1 applies to q1; a is consumed.

In the next step, there are two possibilities:

(8a) q= q1, v= a(b), the key of b in{q2,q3} is b.
aaababaa⇒ q2, since b applies to q2; a is consumed. Go to 9a.

19

(8b) q= q1, v= a(b), the key of b in{q2,q3} is b.
aaababaa⇒ q3, since b applies to q3; a is consumed. Go to 9b.

(9a) q= q2, v= b(1), the key of1 in {q6} is 1.
aaababaab⇒ q6, since1 applies to q6; b is consumed. Go to 10.

(9b) q= q3, v= b(1), the key of1 in {q7} is 1.
aaababaab⇒ q6, since1 applies to q7; b is consumed. Go to 10.

(10) q∈ {q6,q7}, v= 1. The input word v= 1 no longer satisfies the condition that
w = yaz in the induction step, and the computation stops. The setof states derived
by w= aaababaab is{q6,q7}.

In view of Corollary 2, if we were interested only in decidingthe membership of
w, we could pick either Step 8a followed by 9a, or Step 8b followed by 9b. In
either case, the derivation terminates when the remaining input is the empty word,
showing acceptance of w byS .

In the following discussion, let c represent all the lettersthat might appear on the
input tape, but for which our semiautomaton has no edges. In general, the predictor
P of Fig. 7 has the following properties;

• If w ∈ {1,b} or w begins with c or bc, then1⇒ q1 and1⇒ q6, that is, the initial
state set is{q1,q6}.

• If w begins with a, ba or bb, then1⇒ q1, and the initial state is q1.

In the fork〈q1,a〉, we have the set T= 〈〈q1,a〉〉 = {q2,q2}. If we treat T as the
initial state set ofS , then

• If w ∈ {1,b} or w begins with c or bc, then1 ⇒ q2, and1 ⇒ q3; hence the set
of states derived by1 is {q2,q3}. Consequently, we have to consider both q2 and
q3 as possible successors of q1 under input a.

• If w begins with a or bb, then we only have1⇒ q2. Thus q2 is the only successor
of q1 under a.

• If w begins with ba, then we only have1⇒ q3. Thus q3 is the only successor of
q1 under a.

In the fork〈q2,a〉, we have the set T= 〈〈q2,a〉〉 = {q4,q5,q6}. If we treat T as the
initial state set ofS , then

• If w = 1 or w begins with c, then1 ⇒ q4, 1 ⇒ q5, and1 ⇒ q6. Thus all three
states are possible successors of q2 under a.

• If w begins with a, then1⇒ q4. Thus q4 is the only successor of q2 under a.
• If w begins with b, then1⇒ q6. Thus q6 is the only successor of q2 under a.

20

7.3 Minimal Simulation

The mandate of maximal simulation was to exhibit the longestcomputation of the
semiautomaton, regardless of the ultimate acceptance or rejection of the input word.
In contrast to this, the second simulation decides as soon aspossible whether the
input is accepted or rejected; for this and other reasons it is more efficient than
maximal simulation.

Definition 8 In a predictorP, for a word w∈ Σ∗ and T⊆ Q, we define thehandle
of w in T as follows. If a minimal selector x in T is a prefix of w, then x is the
handle. If w is a prefix of a minimal selector or a maximal nonselector in T , then
w itself is the handle. Otherwise, w does not have a handle. Ifw has a handle in T ,
the handleappliesto a state t∈ T if either the handle is a minimal t-selector, or it
is a prefix of a minimal t-selector or of a maximal t-nonselector.

Remark 4 In contrast to the computation of keys in maximal simulation, finding
a handle does not involve looking for common prefixes, since ahandle is either
the input word or a minimal selector. Note also that a word canhave at most one
handle in a set T .

We now define minimal simulation by a predictor.

Definition 9 Given a predictorP = (Σ×Σ≤k,Q,P,EP) of a k-predictable semi-
automatonS = (Σ,Q,P,E) and an input word w, a prefix y of wyields a state
s∈ Q, written y→ s as follows:

(1) Basis Step (Step 0):
1→ s if s∈ P and the handle of w in P applies to s.

(2) Induction Step (Step m+1, m≥ 0):
Assume now that w= yaz, for some a∈ Σ, y,z∈ Σ∗. Then ya→ s if y→ r, for
some r∈ Q, s∈ 〈〈r,a〉〉 and the handle of z in〈〈r,a〉〉 applies to s.

Proposition 5 If w → s for some s∈ Q, then w∈ |S |.

Proof: The proof is parallel to that of Proposition 4. ⊓⊔

Remark 5 If w has a handle in T , then that handle is also a key of w in T . Thus,
w → q implies w⇒ q, but the converse is false in general. Using handles may
shorten the time for the membership decision, since the absence of a handle stops
a minimal derivation before maximal derivation reaches thelongest prefix in|S |.

Lemma 3 Let P = (Σ×Σ≤k,Q,P,EP) be the predictor of a k-predictable semi-
automatonS , and w= yv∈ |S |. Then y⇒ q if and only if y→ q.

21

Proof: If y→ q, theny⇒ qby Remark 5. For the converse, we proceed by induction
on the length of a prefix ofw.

If y = 1 andy⇒ q, then, by definition,q∈ P and the key ofw in P applies toq. By
Lemma 2 (1), the key ofw in P is either a minimal selector orw itself, sincew is
the longest prefix ofw which is inRP = |S |. If the key is a minimal selector, then it
is also a handle ofw in P, by definition. If the key isw itself, then, by the definition
of a key,w is a prefix of a minimal selector or of a maximal nonselector inP. In
either case,w is a handle as well, by definition. Thus,y→ q, since the handle ofw
in P applies toq.

Assume now thatw= yazand the implication holds fory. We prove that, ifya⇒ q,
thenya→ q. Let r be a state such thatq∈ 〈〈r,a〉〉= T andy⇒ r. Then the key ofz
in T applies toq. Sinceya⇒ q, we havez∈ RT by Theorem 3. By Lemma 2 (1),
this key is eitherzor a minimal selector; in either case, the key is also the handle of
z in T, which applies toq. By definition,ya→ q, and the induction is complete.⊓⊔

Theorem 4 Let S = (Σ,Q,P,E) be a k-predictable semiautomaton,P = (Σ×
Σ≤k,Q,P,EP), its predictor, and w= yv∈ Σ∗, an input word ofS . Then the pre-
dictor operation is correct in the following sense:

(1) If w∈ |S |, then y→ q in P if and only if q∈ Py and v∈ Rq in S .
(2) The simulation stops with the remaining input v if and only if one of the fol-

lowing holds:
(a) It is Step 0 and w has no handle in P; this implies w6∈ |S |.
(b) It is a Step> 0 and v= 1; this implies that w∈ |S |.
(c) It is a Step> 0 and v= az, for some a∈ Σ, z∈ Σ∗ and there is no fork

〈q,a〉 in S ; this implies that w6∈ |S |.
(d) It is a Step> 0 and v= az, for some a∈ Σ, z∈ Σ∗ there is a fork〈q,a〉 in

S , but z has no handle in〈〈q,a〉〉; this implies w6∈ |S |.

Proof: If w ∈ |S | theny → q if and only if y ⇒ q, by Lemma 3. By Theorem 3,
y⇒ q if and only if q∈ Pyandv∈ Rq. Hence (1) holds.

For (a), ifw has no handle inP, then 1→ p is false for allp∈ P, by Definition 9,
and the simulation stops. Now ifw ∈ |S |, thenw ∈ RP; hencew ∈ Rp, for some
p ∈ P. Since alsop ∈ P1, Part (1) of the theorem applies, and 1→ p, which is a
contradiction, andw 6∈ |S |.

For (b), if the minimal simulation has consumedy, y→ q, andv = 1, thenw = y,
and the entire input has been processed. Sincev does not have the formaz, the
simulation stops. Sincew = y→ q, we havew∈ |S |, by Proposition 5.

For (c), assume thatw = yv= yaz, the minimal simulation has consumedy, y→ q,
but there is no fork〈q,a〉 in S . Clearly, the induction step cannot be carried out,
andaz 6∈ Rq. Suppose now thatw∈ |S |. Sincey→ q, we haveq∈ Pyandaz∈ Rq,

22

p1 q1 r1 s2

s1

r3q2p2

⌊aba⌋

⌊aba⌋

r2

b[1] a[1]a[1]

b[a]a[1] a⌊1⌋

s3

a⌊1⌋

b⌊1⌋

Fig. 9. Illustrating maximal and minimal simulations.

by Theorem 4 (1). This is a contradiction, andw 6∈ |S |.

For (d), assume thatw = yv= yaz, the minimal simulation has consumedy, y→ q,
andzhas no handle in〈〈q,a〉〉. Then the simulation stops because the induction step
cannot be carried out. Ifw∈ |S |, sincey→ q, we know by Part (1) of the theorem
thatq∈ Pyandv∈ Rq. Also, there existsr ∈ 〈〈q,a〉〉 such that(q,a, r) is an edge in
S andz∈ Rr . But nowr ∈ Pyaandz∈ Rr implies thatya→ r, again by Part (1).
Thusz must have a handle in〈〈q,a〉〉, which is a contradiction, and sow 6∈ |S |.

One verifies that, if none of the conditions (a)–(d) holds, then the derivation con-
tinues. This concludes the proof of the second claim. ⊓⊔

Corollary 3 In a predictorP, w∈ |S | if and only if w→ q, for some q∈ Q.

Proof: By Proposition 5,w→ q impliesw∈ |S |. Conversely, ifw∈ |S |, then there
existsq ∈ Pw, by definition of|S |. Since also 1∈ Rq, by Theorem 4 (1) applied
with y = w andv = 1, we havew→ q. ⊓⊔

Example 9 Consider the semiautomaton of Fig. 9, which is4-predictable. The in-
put word w= abab has no prefix which is a minimal selector in P, and w is not a
prefix of a minimal selector or of a maximal nonselector in P. Hence minimal sim-
ulation immediately yields the empty set of states, which isequivalent to rejecting
w. This is correct, since w6∈ RP. In contrast to this, maximal simulation has the
following paths corresponding to derivations:

(1) p1
a
→ q1

b
→ r1

a
→ s1

(2) p1
a
→ q1

b
→ r1

a
→ s2

(3) p2
a
→ q2

b
→ r3

a
→ s3

It stops after consuming aba, because there is no fork of the form 〈si,b〉, for any
i ∈ {1,2,3}. Thus, for w= abab, maximal simulation derives the empty set of states,
rejecting w as well.

On the other hand, for w= aba, both simulations have the same three deriva-

23

tions/yields corresponding to the paths above.

Example 10 In the semiautomaton of Fig. 7, for w= abba, both simulations have
only one derivation/yield corresponding to the path:

q1
a
→ q2

b
→ q6

b
→ q5.

Then both stop. Look-ahead does not provide enough information to stop the mini-
mal simulation earlier. The handle of abba in{q1,q2} is a, yielding q1 as the initial
state. The handle of bba in{q2,q3} is bb, yielding q2. The handle of ba in{q6} is
1, which yields q6. The handle of a in{q5} is 1, which yields q5. Since there is no
fork 〈q6,a〉, and the next input letter is a, minimal simulation stops.

We have seen in Lemma 3 that minimal simulation of a semiautomatonS has
the same behavior as the maximal one on words in|S |. The observation can be
extended, as follows:

Remark 6 If minimal and maximal simulations run in parallel on the same input
word, then the keys and handles coincide on the run of the minimal simulation.

This observation leads to the idea of anoptimal simulationof S , which combines
minimal and maximal simulations. Start a minimal simulation and let it run as long
as it finds handles. If the entire input is consumed during this simulation, then the
input has been accepted, and a successful computations ofS has been identified.
Otherwise, when minimal simulation stops because the inputword has no handle,
maximal simulation takes over. In this case, we know that theinput is not accepted;
however, minimal simulation keeps running as far as the longest prefix of the input
word that is inS . Thus, optimal simulation takes advantage of both the efficiency
of minimal simulation and the information provided by maximal simulation.

Both maximal and minimal simulations operate “almost deterministically” in find-
ing next states, that is, determinism is guaranteed as long as the look-ahead buffer
is full (the remaining input has length at leastk). However, by Corollary 3, we can
achieve total determinism concerning acceptance. Run minimal simulation until
more than one choice appears, and then choose an arbitrary branch in every step.
Then minimal simulation is completely deterministic.

8 Predictability Bounds

We now derive bounds on the size of the look-ahead buffer in terms of the number
of states in the semiautomaton. We first consider the case of aone-letter alphabet.

Proposition 6 Let S = (Σ,Q,P,E) be a semiautomaton over a one-letter alpha-
bet. IfS has n states, and k≥ 0 is the smallest integer for whichS is k-predictable,

24

then k≤ n−1.

Proof: If k = 0, the bound is trivially satisfied. Hence assume that there is at least
one critical setT = {t1, . . .th}, h≥ 2, which isk-predictable.

We claim thatT is predictable if and only if at most one of the languages{Rti}1≤i≤h

is infinite. Note first that, if a languageL over one lettera is prefix-closed, thenL
is infinite if and only ifL = a∗. For 1≤ i 6= j ≤ h, if Rti andRt j are infinite then
Rti ∩Rt j = a∗, sinceRti andRt j are prefix-closed. HenceT is not predictable by
Theorem 1, andRti andRt j cannot both be infinite.

Without loss of generality, assume now thatRt1, . . . ,Rth−1 are finite. We distinguish
two cases:

(1) Rth is infinite. Letw be a longest word in
⋃

1≤i<hRti , and assume thatw∈ Rt j ,
j 6= h. SinceRt j is finite, no path originating int j and spellingw can have
a state repeated. For suppose thatw = uxv, for somex ∈ Σ+,u,v ∈ Σ∗, and
t ju = t jux. Then alsoux2v∈ Rt j , contradicting thatw is a longest word ofRt j .
We also observe that a pathπ from t j spellingw cannot visitth, otherwiseRt j

would be infinite, sinceRth is infinite. Thusπ has at mostn− 1 states, and
|w| ≤ n−2. NowT cannot be|w|-predictable, becausew∈ Rt j ∩Rth, but it is
(|w|+1)-predictable. Thus we must havek = |w|+1≤ n−1.

(2) Rth is finite. Letw be a longest word in
⋃

1≤i≤hRti , and assumew ∈ Rt j . As
above, a path originating int j and spellingw can involve at mostn states; thus
|w| ≤ n−1. If |w|< n−1 then clearlyk≤ |w|+1≤ n−1. When|w| = n−1,
a pathπ originating int j and spellingw uses all the states ofS . There cannot
be another path originating inti, i 6= j, spellingw; for then there would be a
loop, contradicting the finiteness ofRt j . Thus,k = |w| = n−1 in this case.

The semiautomaton in Fig. 10 hasn states and is(n−1)-predictable; thus the bound
can be reached when|S | is infinite. If we remove the loop in Fig. 10 and make
states 1 and 2 initial, we reach the bound when|S | is finite. ⊓⊔

. . .
a a

n
a

21

a

Fig. 10. An-state unary semiautomaton which is(n−1)-predictable.

Before addressing the case of a general alphabet, we developsome necessary con-
ditions on paths originating from critical sets in predictable semiautomata.

Lemma 4 LetS = (Σ,Q,P,E) be predictable, let Q= {1, . . . ,n}, and let r1,s1 be
distinct states of a critical set inS . If w = a1 . . .am−1 is a longest word in Rr1∩Rs1,
let π1 = (r1,a1, r2) . . .(rm−1,am−1, rm) andπ2 = (s1,a1,s2) . . .(sm−1,am−1,sm) be
two paths spelling w, originating from r1 and s1, respectively. Then the sequence

25

L = (r1,s1), . . . ,(rm,sm) of ordered pairs of states encountered byπ1 andπ2 must
satisfy the following conditions: First, r1 6= s1, and, for all i, j ∈ {1, . . . ,m}, i 6= j,

(1) either ri 6= r j or si 6= sj ,
(2) either ri 6= sj or r j 6= si ,
(3) if r i = si, then rj 6= r i and sj 6= r i .

Proof: By our hypothesis,r1 6= s1. For the remaining conditions we have:

(1) If there existi, j, 1≤ i < j ≤ t, with r i = r j andsi = sj , let x be the label of the
pathr i , . . . , r j in π1. Thenw = uxv for someu,v∈ Σ∗, andux2v ∈ Rr1 ∩Rs1,
contradicting the maximality of|w|.

(2) If there existi, j, 1≤ i < j ≤ t, such thatr i = sj andr j = si , let x be the la-
bel of the pathr i , . . . , r j in π1, and hence also the label of the pathsi, . . . ,sj in
π2. Then one verifies thatux3v∈Rr1∩Rs1, contradicting the maximality of|w|.

(3) If there existi, j, 1 ≤ i < j ≤ t, such thatr i = si and r j = r i , let x be the
label of the pathr i , . . . , r j = r i in π1, and letw = uxv. Thenux2v∈ Rr1 ∩Rs1,
contradicting the maximality of|w|. Similarly, if sj = r i , let x be the label of
the pathsi , . . . ,sj in π2, and letw = uxv. Sincesi = sj = r i , there is a loop
labeledx on r i and againux2v∈ Rr1 ∩Rs1. ⊓⊔

Next we prove a combinatorial result about sequencesL = (r1,s1), . . . ,(rm,sm)
satisfying the conditions of Lemma 4.

Lemma 5 Let n> 0 be an integer and letL = (r1,s1), . . . ,(rm,sm) be a sequence
of ordered pairs of elements from{1, . . . ,n}. If L satisfies the conditions of Lemma 4,
then m≤ (n2−n)/2 and the bound is sharp.

Proof: We first show that the bound can be achieved. Consider the sequence

L = (1,1), . . . ,(1,n),(2,1), . . .,(2,n), . . . ,(n,1), . . .,(n,n),

which hasn2 elements and satisfies Condition (1). If we remove the pairs(i, i),
for all 1 ≤ i ≤ n, we have a sequence ofn2−n pairs, in whichr1 6= s1 and which
satisfies Condition (3) as well, sincer i is never equal tosi . Finally, for all i 6= j,
remove either(i, j) or (j, i). Now the sequence also satisfies Condition (2). Since
there are(n2−n)/2 pairs removed in the last step, the final sequence has(n2−n)/2
elements. Thus the bound can be reached.

Next, we prove that(n2−n)/2 is an upper bound by induction onn. If n = 1, then
only the empty sequence satisfies all the conditions. Hencem= 0 = (n2−n)/2. If
n = 2, then the empty sequence,(1,2) and(2,1) are the only sequences satisfying
the conditions. Herem≤ 1 = (n2−n)/2.

26

For anyn> 0, letM(n) be the length of a longest sequence of pairs of elements from
{1, . . . ,n} satisfying all the conditions. Assume thatM(n−1) ≤ [(n−1)2− (n−
1)]/2, for some(n−1)≥ 2. LetL be a sequence withM(n) pairs of elements from
{1, . . . ,n} satisfying all the conditions, and assume for the sake of contradiction that
M(n) > (n2−n)/2.

If M(n) > (n2−n)/2 andn ≥ 3, thenM(n) > n. ThusL contains at leastn+ 1
pairs. There are at most 2n− 1 pairs involving the elementn, namely the pairs
of the form (n, i) and (i,n). However, if both(n, i) and (i,n) appear inL , then
Condition (2) is violated. Hence there are at mostn pairs involvingn, and at least
one pair(i, j) not involvingn. Without loss of generality we may assume that the
first pair ofL does not containn, for if it did, we could interchange it with(i, j).

Let L ′ be the sequence withm′ elements obtained fromL by removing all the
pairs containingn. ThenL ′ satisfies all the conditions as well, and its elements
are from the set{1, . . . ,n−1}. By the induction hypothesis,m′ ≤ M(n−1)≤ [(n−
1)2− (n−1)]/2= (n2−n)/2− (n−1).

In addition to the elements ofL ′, L contains elements from the set

{(1,n),(2,n), . . .,(n,n),(n,1),(n,2), . . .,(n,n−1)}.

If L contains(n,n), then it cannot contain any other pair involvingn, for this would
violate Condition (3). Hence, in this case, we haveM(n) = m′ +1≤ (n2−n)/2−
(n−2) < (n2−n)/2, which contradicts our assumption.

If L does not contain(n,n), it contains at most(n−1) pairs involvingn. In this
caseM(n) ≤ m′ +(n−1) ≤ (n2−n)/2, which is again a contradiction.

Consequently,M(n) ≤ (n2−n)/2 and the induction step goes through. ⊓⊔

Theorem 5 If a semiautomatonS = (Σ,Q,P,E) has n states and k is the smallest
integer for whichS is k-predictable then k≤ (n2−n)/2. Moreover, this bound can
always be reached for a suitableΣ.

Proof: For k = 0, S is deterministic and the inequality is trivially satisfied.If k≥
1 thenS has at least onek-predictable critical setT. Let r1,s1 be two distinct
states ofT. By Lemma 4, every sequenceL = (r1,s1), . . . ,(rm,sm) must satisfy
all the conditions of the lemma, and by Lemma 5, the length of alongest word
w∈Rr1∩Rs1 is |w|= m−1≤ (n2−n)/2−1. This implies that, ifT isk-predictable,
then necessarilyk ≤ |w|+ 1 ≤ (n2− n)/2. Since this holds for all critical sets, it
holds forS .

Next we prove that this bound is achievable for a suitable alphabet. Letn≥ 1, and
let L = (r1,s1), . . . ,(rk,sk) be a sequence satisfying the conditions of Lemma 5,
with k = (n2−n)/2. LetS = (Σ,Q,P,E), whereΣ = {a1, . . . ,ak}, Q = {1, . . . ,n},

27

P = {r1}, E = E1∪Er ∪Es, E1 = {(r1,a1, r1),(r1,a1,s1)}, Er = {(r i,ai+1, r i+1) |
1≤ i < k}, andEs = {(si,ai+1,si+1) | 1≤ i < k}. We show thatS is k-predictable,
but not(k−1)-predictable.

Observe thatE1 = 〈r1,a1〉 is a fork inS and its fork set〈〈r1,a1〉〉 = {r1,s1} is a
critical set inS . Consider the wordw = a2 . . .ak; clearly,w∈ Rr1 ∩Rs1, implying
that the automaton is not(k−1)-predictable, since|w| = k−1. Observe now that
Rrk ∩Rsk = /0; for if both (rk,a j , r) and(sk,a j ,s) were inE for somer,s∈ Q and
j ∈ {1, . . . ,m}, then either(rk,sk) = (r j−1,sj−1) for j > 1, or (rk,sk) = (r1,s1) for
j = 1. In both cases, this would violate Condition (1) of Lemma 4.Thusw is a
longest word inRr1 ∩Rs1, implying that〈〈r1,a1〉〉 is k-predictable.

SinceP#= 1, P is 0-predictable. If there exists a fork other than〈r1,a1〉 in S , then
there must be a pair(r i,si) with r i = si , since only such states have outgoing edges
with a same label, by the construction ofS . But then, by an argument used in the
proof of Lemma 5, the sequenceL cannot be of maximal length. Hence there are
no other forks inS , andS is k-predictable, wherek = (n2−n)/2 is the smallest
such integer.

In summary, the minimal predictability bound of(n2−n)/2 can be reached at the
cost of a large alphabet. ⊓⊔

The theorem implies that, to test whetherS is predictable, it suffices to test whether
it is (n2−n)/2-predictable.

Example 11 For n = 4, the semiautomata in Fig. 11(a) and 11(b) correspond to
the sequences

L1 = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}

and

L2 = {(2,3),(3,4),(1,4),(2,4),(1,3),(2,1)},

respectively. Both sequences obey the conditions of Lemma 5and are of maximal
length. Therefore, both semiautomata are6-predictable, and reach the upper-bound
for 4 states.

Remark 7 For fixed alphabets, the bounds may turn out to be much smaller. The
semiautomaton in Fig. 12 over a two-letter alphabet has n states and is k-predictable,
where

k =
⌊n

2

⌋⌊n+1
2

⌋
.

This bound may be tight for binary alphabets. In this particular case, predictability
is maximized precisely for i= ⌊n/2⌋ and j= ⌊(n+1)/2⌋ or vice versa, since the
product i j, with i+ j = n, is maximized for these values only.

28

(a)

(b)

3

4

c,d

f

c,eb, fa,d

a,b,c e

d, f

a,b
c, f

e

d

a

e

b

1 2 3 4

1

2

Fig. 11. Semiautomata reaching the predictability bound.

a

a

b
a a

b
a

a

b

a

. . .

. . .

i =
⌊

n
2

⌋

j =
⌊

n+1
2

⌋

k =
⌊

n
2

⌋⌊
n+1

2

⌋
1 2 i

j21

Fig. 12. Ak-predictable semiautomaton over a two-letter alphabet.

9 Conclusions

We have introduced the class of predictable semiautomata, which have a rich math-
ematical structure. In such semiautomata, it is possible toremove most of the non-
determinism by using a finite amount of look-ahead information from the input
tape.

We have presented an algorithm for testing for predictability using a new construct:
the core semiautomaton. To reduce nondeterminism, we have used predictor semi-
automata with look-ahead buffers. In the worst case, the minimal lengthk of a
predictor’s look-ahead buffer is quadratic in the numbern of states of the semiau-
tomaton.

We have considered two objectives of simulation of a nondeterministic semiau-
tomaton: finding the set of states reachable by an input word in a semiautomaton,
and testing whether the input word belongs to the language ofthe semiautomaton.
We have also introduced two types of simulation, maximal andminimal. In both
simulations, as long as the input word has length greater than k, the computation is
deterministic. For testing for membership, both simulations can be completely de-
terministic. In finding the set of states reachable by a word,some nondeterminism
is unavoidable, but it is limited to the lastk letters of the input word. Moreover,

29

if the remaining input word is not in the language, minimal simulation stops the
computation before reaching this residual nondeterminism.

The application of this theory to nondeterministic automata (semiautomata with
accepting states) is straightforward. To determine whether a wordw is accepted by
an automaton, find the set of states reached byw and check whether any of these
states are accepting. The look-ahead information ensures that these computations
are fewer than in the standard NFA simulation, since many computation paths are
pruned, having been detected as unsuccessful by the look-ahead information.

References

[1] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, M., Mecella, Automatic
composition of e-services that export their behavior. In E.Orłowska, M. Papazoglou,
S. Weerawarana, J. Yang, eds., ICSOC 2003,LNCS 2910(2003) 43–58.

[2] Z. Dang, O. H. Ibarra, J. Su, Composability of infinite-state activity automata, ISAAC
2004, R. Fleischer, G. Trippen, eds.,LNCS 3341(2004) 377–388.

[3] A. Ginzburg,Algebraic Theory of Automata,Academic Press, New York (1968).

[4] S. Eilenberg,Automata, Languages, and MachinesA, Academic Press, New York
(1974).

[5] B. Ravikumar, N. Santean,Deterministic simulation of NFA withk-symbol lookahead,
Int. J. of Foundations of Computer Science, to appear.

30

