CS-2007-03

Predictable Semiautomata

Janusz Brzozowski and Nicolae Santean

Technical Report 03

David R. Cheriton School of Computer Science
University of Waterloo

2007

Predictable semiautomata

Janusz Brzozowski and Nicolae Santean

David R. Cheriton School of Computer Science
University of Waterloo,
Waterloo, ON, Canada N2L 3G1
{brzozo, nsantean}@uwaterloo.ca

Abstract

We introduce a new class of nondeterministic semiautonfatzondeterministic semiau-
tomaton. is predictableif there exists an integée> 0 such that, it knows the present
input a and the nexk inputs, then the transition undaris deterministic. Nondetermin-
ism may occur only when the length of the unread input is Ileask+ 1. We develop a
comprehensive theory of predictable semiautomata. Usimgval semiautomaton, called
the core, we present a test for predictability. We then duoe the predictor semiautoma-
ton, based on a look-ahead semiautomaton, that is essexgabrministic. We describe
two ways of using the predictor to simulate a nondeternmmsemiautomaton. The first
simulation predicts the set of states reachable by evefixmkthe input word as long as
the prefix is in the language of the semiautomaton. The sesiomalation is similar, but it
stops as soon as it infers that the input word is not in thedagg of the semiautomaton.
Moreover, the membership of a word in the language of a sdorizaton can be decided
completely deterministically. Finally, we show that, if ensiautomaton withn states over
a one-letter alphabet ispredictablek being the smallest such integer, tHed n— 1, and
this bound can be reached. For semiautomata over arbitigrglzetsk < (n? —n)/2, and
this bound can be reached for a suitable input alphabet.

Key words: Automaton, delegator, look-ahead, nondeterminism, ptediselector,
semiautomaton, simulation

* This research was supported by the Natural Sciences anddgngig Research Council
of Canada under grant No. OGP0000871 and fellowship No. BZ#88-2006.

8 May 2007

1 Introduction

Nondeterministic automata are ubiquitous in theoreticahputer science. They
serve as models for various nondeterministic processestitte valuable de-
sign tools (often more convenient than their deterministianterparts), and are
inevitable in many applications. On the other hand, thep &alave some draw-
backs, such as increased simulation time and space, aritigr@f minimization
algorithms.

Several attempts have been made recently to overcome thaveigtages of non-
determinism. Nondeterministic finite automata (NFA) haeer used as formal
models for service-oriented computing [1], and as toolsafdomated web service
composition [2]. In both of these applications, it becam@enative to overcome
the problems introduced by nondeterminism. For this pugptse concept of a
“delegator” of an NFA was informally introduced in [2]. A dmgator is an equiva-
lent deterministic finite automaton (DFA) based on the fiteorsgraph of an NFA.
It has a look-ahead buffer of a fixed length, and the look-diveard permits it to
determine which of several possible nondeterministicssfould be taken. This
concept, also known as “look-ahead delegation”, was stigletematically and in
a more abstract framework in [5].

We address a problem similar to delegation, but we formul&#ehe more general
model of semiautomata. We introduce semiautomata, cgtlesdiictable”, in which
it is possible to replace a nondeterministic step by a detestic one, with the
aid of a bounded number of input letters from a look-aheatehuDur goal is to
compute the set of states reached from the initial set céstaita semiautomaton
by a given input word. Although our development is in termse&rhiautomata, our
results extend to automata as well, without resorting tdlikery of delegators.

Our theory is substantially different from the work in [2,5ince our model ad-
dresses nondeterministic semiautomata, rather than ateoi takes advantage
of their special properties, notably of the prefix-closuféheir languages. Con-
sequently, problems left open in [5] for NFAs are resolvedumn framework. For
example, the decidability of the NFA delegation is still apethereas predictability
of semiautomata is decidable, and we provide an algorithmit.f@his algorithm
uses a novel semiautomaton called “core”.

As observed in [5], delegation appears to be a global auttim@bperty, whereas
our concept of predictability is a local property of nondgtmistic branches that
we call “forks”. Consequently, our method can be appliedatfork level even to
semiautomata which are not globally predictable, whereaNBA which has no
delegator cannot be partially determinized.

We modify a given semiautomaton by adding to it some lookadhaformation;
the resulting semiautomaton is called a “predictor”. Intcast to [5], we do not

always use the entire buffer content, but only as much inébion as is needed;
hence we reduce the predictor's complexity. Moreover, aipter computing the
set of states reachable by a word does not completely detezera semiautoma-
ton, but may leave some nondeterminism at the end of its ctatipas, when the
remaining input is shorter than the buffer length. Howethax,decision concerning
the membership of a word in the language of a semiautomatobeanade com-
pletely deterministically. Unlike delegators, for whidmsilation is determined by
their definition, predictors can be simulated in two wayse Tirst simulation pre-
dicts the set of next states, as long as the input word hasfix phat is in the
language of the semiautomaton. The second simulation st®gson as it infers
that the input word is not in the language of the semiautomato

Another difference between predictors and delegatorseisitiiqueness of the pre-
dictor: there is a bijection between semiautomata and gi@di. In contract to this,
an NFA can have many delegators that may be homomorphicaigtated.

We give a precise upper bound for the size of the predictodk-dahead buffer; the
bound is linear in the number of states of the semiautomatonrfary alphabets
and quadratic for larger alphabets; nothing similar is kndar delegators.

In view of these and other differences, our predictor hdlg lih common with the
delegation model, beside the motivation and the look-alpeaaidigm.

The remainder of the paper is structured as follows. In 8e@j we introduce the
terminology for semiautomata. Predictable semiautomataefined in Section 3.
The properties of certain types of words, called “minim&és®rs” and “maximal

nonselectors”, and their relation to predictability aneds¢d in Section 4. In Sec-
tion 5, we define a deterministic semiautomaton, calleddpot’, which provides

a test for predictability. A simpler version of the produetrsautomaton, called a
“core”, is described in Section 6; the core is used for findimigimal selectors and
maximal nonselectors. The process of predicting reachsthtes is developed in
Section 7, where a “predictor” of a semiautomaton is defimatitav'o methods of

simulating nondeterministic semiautomata are charaeériln Section 8 we de-
rive bounds on the size of the look-ahead buffer, and Se6étmncludes the paper.

2 Semiautomata

We base our notation loosely on that of Eilenberg [4]f tfX — Y (also denoted

f . . : .
X —Y) is a function, we writexf for the value off atx. If g:Y — Z is another
function, therx f gis unambiguous without parentheses. Also, an elemen can
be interpreted as a functiort S— X, whereSis some singleton, and the value of

this function isx. Thenxfgis the composition of function8 = X - Y2 Z Fora
setX, we denote its cardinality b)(#.

If X is an alphabet, theh™ and=* denote the free semigroup and the free monoid,
respectively, generated By The empty word is 1. Fd¢> 1, let>~kK=1UXU...U

>k, Forw € =*, |w| denotes the length af. If w = uv, for someu,v € =*, thenu

is aprefixof w andv is asuffixof w. A languaged. is prefix-freeif no word of L is

a prefix of another word df. It is prefix-closedf uve L impliesue L. If ue ¥,

v e X1, thenuvis anextensiorof u.

A semiautomatofB] .7 = (Z,Q,P,E) consists of aralphabetz, a setQ of states,
a setP C Q of initial states,and a seE of edgeof the form(q,a,r), whereg,r € Q
anda € Z. An edge(q,a,r) beginsatq, endsatr, and hadabel a It is also denoted
asq 21 A path it is a finite sequence = (qp,a1,01)(0A1,a2,02) - - - (Ok—1, &, Gk)
of consecutive edgeg > 0 being itslength qo, its beginning g, its end and
w=aj...a, itslabel. We also writegg 2 ok for 1. Each statg has anull pathl,
from g to q with label 1.

If T C Qandwe 3*, thenTw= {ge Q |t q, for somet € T}. If T = {t}, we
write tw for Tw; if Tw= {q}, we writeTw= ¢. A stateq of a semiautomatory’
is accessibléf there existsp € P,w € =* such that there is a path-~ g, that is, if
g € pw. A semiautomaton iaccessiblef all of its states are accessible.

The language|.”| of a semiautomator” = (%,Q,P,E) is the set of all labels
of paths starting in initial states of’, that is,|.| = {w € ¥* | Pw # 0}. Note
that|.~| is prefix-closed; in particular, if7| # 0, then 1€ |.7|. If qis a state of
< = (%,Q,P,E), thelanguage of 4s Ry = {w € Z* | qw# 0}. Thelanguage of a
set TC QisRr = Uit R In particular,Rp = |.7].

A semiautomaton isompletaf P # 0 and, for everyg € Q anda € Z, there is an
edge(q,a,r) € E, for somer € Q. In a complete semiautomatoaqw # 0, for all
g€ Q,we Z*. The language of a complete semiautomatadtiidf . is complete,
eachw € >* belongs to every languadgy, q € Q.

A semiautomatotr” is deterministidf it has at most one initial state, and for every
g€ Q,ac 2, there is at most one edge, a,r). If . is deterministic and has initial
statep, we write. = (Z,Q, p, E).

3 Predictable semiautomata

We introduce nondeterministic semiautomata, called “jotatlle”, in which the
knowledge of a limited number of symbols read ahead fromrthatitape removes
nondeterminism. We restrict our attention to finite senoeata.

Let.¥ = (Z,Q,P,E) be a semiautomaton. ¢f€ Q, a € Z, then afork (with origin
g and inputa) is the setq,a) = {(g,a,r1),...,(q,a,rn) } consisting of all the edges

from g labeleda. The set((q,a)) = {r1,...,rn} is called thefork setof (q,a). We
assume thah > 0, since empty forks are of no interest. Note, however, thikisf
with single edges are permitted; they are calleterministic transitionsAllowing
such forks has the advantage that a semiautomaton can bedvésaa set of initial
states and a set of forks.

A setT C Q is critical if either T =P or T = ((q,a)), for a fork (g,a) in .7.
A critical set is the set of all possible next states in a step (@eterministic or
nondeterministic) computation.

The following definition states the conditions under whitlsipossible to decide
which state of a critical set, if any, should be chosen, if wew the nexk symbols
on the input tape:

Definition 1 Let. = (Z,Q,P,E) be a semiautomaton, and letk0 be an integer.
A set TC Q is k-predictableaf any two distinct states sof T satisfy

R.NRNZK = 0.

A semiautomatory’ is k-predictabldaf every critical set of¥ is k-predictable, and
< is predictabléf it is k-predictable for some k.

The condition ofk-predictability can be satisfied in two ways. FirstRf has no
words of lengthk, then the condition cannot be violated. This means that ttogfa
lengthk spellingw can originate in any state @f. Second, ifw € RsN =K for some
se T, andw does not belong to arfy, with s#t, then the condition holds again.
Now statesis the only state il from which there is a path spelling

A set is O-predictable if and only if it consists of a singlatst Consequently,
a semiautomaton is O-predictable if and only if it is detemstic. A predictable
semiautomaton is either deterministic or incomplete, beean a complete semi-
automatonRs = R = £* and henc&®sNR N =K = X £ P, for all states andt.

Example 1 The fork{(p,a,q)} in Fig. 1 (a) is a deterministic transition, and
the fork (g,a) = {(q,a,0),(q,a,r)} has fork set((q,a)) = {q,r}. This set isl-
predictable, since a word of length 1 (here, only a) belongly o Ry, and not to

R/. The fork sefq,r} in Fig. 1 (b) is 1-predictable, because there are no words of
length 1 in R or R;. Thus the semiautomata of Fig. 1 (a) and (b) are 1-predietabl
The fork set{p,q} in Fig. 1 (c) is not k-predictable for any k 0, because ac
Rp N RyN =X for all k.

Remark 1 If a set is k-predictable, then it isHpredictable for all k > k.

By the definition ofk-predictable sets, testing fdepredictability is reduced to
testing whether a finite language is empty, and this probsedecidable.

(a) (b) (€)
Fig. 1. lllustrating predictability.

4 Selectors and nonselectors

We now define two types of words that play an important role redgtability:
“selectors” and “nonselectors”. Selectors are look-ahgadds that permit us to
choose only one state from a skt whereas nonselectors limit the choice to a
subset ofT that has at least two states.

Definition 2 If .7 = (Z,Q,P,E) is semiautomaton, and T Q, then a word we >*
is a t-selector inT ifwe o(t,T), where

a(t,T):<R\ U Rs>.

seT,s#t

A word w is aselector inT ifitis at-selectorin T for somet. The set of all selectors
inT is
a(T)=]Ja(tT).
teT
A selector win T igninimalif no prefix of w is a selector in T.

We also define the complementary@ét T) of t-nonselectorsn T
o(t,T)=R\o(t,T).

The set of alhonselectorsm T is

oM =ot,T)=Rr\o(M= |J (RNR).

teT steT,s#t

A t-nonselector u isnaximalif no extension of u is In{R

Example 2 In Fig. 1 (a), the set of g-selectors in the fork $@t,a)) = {q} is a",
and 1 is the only minimal g-selector ifiq}. There are no g-nonselectors {}.
Fork (g,a) has critical set T= {q,r}. The set of g-selectors in T iSaand a is a
minimal g-selector in T. The empty wdlkds the only g-nonselector in T, and it is
not maximal because-a la ¢ Ry. There are no r-selectors in T, arids the only
r-nonselector in T; it is maximal because no extensiohigfin R..

In Fig. 1 (b), the fork set of forkp,a) is T = {q,r}. Here R- = {1}, there are no
selectors, and is a maximal g-nonselector in T and a maximal r-nonselegtar.i
Thus, there exist sets that are predictable and yet havelrotses. Also, a set that
is not predictable may have selectors, as we shall see later.

In Fig. 1 (c), there is a fork p, a) with fork set T= {p,q}. There are no selectors,
since RN Ry = a*. Every word in & is a p-nonselector and a g-nonselector, and
there are no maximal nonselectors.

Example 3 The semiautomator’ of Fig. 2 illustrates the usefulness of minimal
selectors and maximal nonselectors. The only critical s&t more that one ele-
ment is P= {p1, p2, p3}. One verifies that” is 2-predictable. There is a minimal
p1-selector aa, and maximal nonselectors a for gnd1 for p3. Minimal selectors
and maximal nonselectors are indicated by square brackeds‘#oor” brackets,
respectively; thugaa) is a minimal selector angla| is a maximal nonselector.

If the input word to” is 1, then any state in P can be the initial state, and there is
no further computation. If the input word is a, then the @listate could not be{
but is limited to{ p1, p2}. Finally, if the input word begins with aa, then the initial

state is necessarily1p
[aal
EY . a .
[1)
Fig. 2. Selectors and nonselectors.

Selectors and nonselectors have the following prefix ptaser
Proposition 1 Let. = (Z,Q,P,E) be a semiautomaton andd Q.

(1) The set of all nonselectors in T is prefix-closed.

(2) If an s-selector u is a prefix of a t-selector w, thea s

(3) The set of all minimal selectors in T is prefix-free.

(4) No selector is a prefix of a nonselector.

(5) Foranyte T, no maximal t-nonselector is a prefix of a t-selector.
(6) Foranyte T, the set of all maximal t-nonselectors is prefix-free.

Proof:

(1) If wis a nonselector, there exist € T, such thaiv € RsNR;. SinceRs and
R are prefix-closed, we havwec RsNR;, for every prefixu of w.

(2) This follows because € R; impliesu € R;, sinceR; is prefix-closed.

(3) This follows from the definition of minimal selector.

(4) This follows from (1).

(5) If uis a maximat-nonselector, thena¢ R;, for alla € Z. Hence no extension
of a maximalt-nonselector is ifR;.

(6) This follows by the same reasoning as (5). O

The next result provides three characterizations pffedictability.

Theorem 1 Let . = (Z,Q,P,E) be a semiautomaton and = {tj,...,t,} C Q.
The following are equivalent:

(1) T is k-predictable.

(2) Every word of length k inRis a selectorin T.

(3) Every word of length> k in Rr is a selector in T, and hence has a minimal
selectorin T as a prefix.

(4) Every nonselectorin T is of lengthk.

Proof:

(1) = (2) Supposev e 2X. If wis nonselector i, thenw € RsN R, N X, for some
s,t € T, contradicting (1). Hencer must be a selector if.

(2) = (3) Every wordw of length> k in Ry has a prefixu of lengthk, andu is a
selector inT by (2). By Proposition 1 (4)w must be a selector. Thenandw
have a minimal selector ih as prefix.

(3) = (4) If wisanonselector i, thenw € Rr. Thus|w| < k; otherwisew would
be a selector by (3).

(4) = (1) If alongest nonselector il is of length< k, thenRsN R NZX = 0, for
all s;t € T,s=#t, andT is k-predictable. O

It follows that testing whether a set is predictable is egl@nt to testing whether
the regular language(T) is finite, and the latter property is decidable.

Corollary 1 If T is a k-predictable set of a semiautomatef; then every minimal
selector in T is of lengtk< k.

Proposition 2 Let. = (Z,Q,P,E), T CQ,andte T. If T is k-predictable, t has
either a minimal t-selector in T or a maximal t-nonselectoffi.

Proof: If t has a selector i, then it has a minimal selector ih. Assume now
thatt has no selectors if. If R; is finite, letw be a longest word iR, necessarily
a nonselector. Thewa ¢ R; for all a € 2, andw is a maximak-nonselector inT .
By Theorem 1 (4), the case whdRreis infinite is impossible. ad

5 Product semiautomata

We now describe a semiautomaton construction which leaaltetst for predictabil-
ity. To determine the predictability of a SBt= {ts,...,ty} C Q in a semiautomaton
< = (Z,Q,P,E), we need to find intersections of the languaBeswvhereR,; is the
language of the semiautomatofi = (%, Q,tj,E), t € T. For this, we could deter-
minize.#;, and construct their direct produ@(T). However, it is also possible to
obtain a deterministic direct product by using the subsestraction in each step
of the direct product construction.

WhenT is fixed, and there is no danger of ambiguity, we use the teetetsor”
and “nonselector” instead of “selectorTii and “nonselector inm™”.

For a seQ, let R be the set of all subsets @ The direct product of copies of
2Q is denoted 29)".

Definition 3 Let. = (Z,Q,P,E) be a semiautomaton and letF {ty,...,ty} C Q.
Define the deterministic semiautomaton

~

2(T) = (£,(29)" .Eq),

whereyy = ({t1},...,{tn}), and, for every h-tupl€S,,. .., &) of sets of states o’
and every & 2, there is an edgé(Sy, ..., Sh),a, (S8, ...,$a)) € Ey, where & is
the set of successor states of the setrffler input a in the semiautomatos.

The product semiautomatofor T is the accessible subsemiautomator@z{ﬂ'),
and it is denoted by

‘@(T) - (Zv [, Yo, E@)

Note thatZ(T) andZ(T) are complete.
We distinguish several types of stateg'in

e The statgp = (0,...,0) € (29)"is callednull.

e A state in which only théth component is nonempty is callgesingular.A state
is singularif it is tj-singular for some.

e Any state in which at least two components are nonempty isatplural. A plu-
ral state in which thé&h component is nonempty is callgeplural.

e A stateyistj-ultimateif it is tj-plural and, for alla € Z, theith component ofa
is empty. A state islltimateif it is tj-ultimate for some.

e A state iscyclicif it appears in a cycle; otherwise, itimncyclic.

SinceZ(T) is deterministic, each word defines a unique path. We definerale
types of words:

e A word w defining a path(yo,a1,¥1) - .. (Ym-1,8m, ¥m), Whereyp, ..., ym-1 are
plural andym = yp, is callednullary.

e A word w defining a path(yp,a1,y1) - .- (¥m-1,@m, ¥m), Whereyp,...,ym-1 are
plural andy, is tj-singular, is called;-primary. If such a word exists, statg, is
also called;j-primary. A word or state igprimaryif it is ti-primary for some.

e Awordw istj-plural if yww isti-plural; it is plural if yow is plural.

The types of states in a product semiautomaton are illestiatFig. 3. The “core”
part is discussed in the next section.

~——.__ other singular
primary, (O

. ultimate

Fig. 3. States in a product semiautomaton.

The next result states some basic properties of productstkomata and their re-
lations to selectors and nonselectors.

Proposition 3 Let Z(T) be the product semiautomaton of a set T in a semiau-
tomaton.. Then the following hold:

(1) Lety=(Sy,...,S) andy =(8,,...,S,) be two states ift such thaty = yw,
for some we Z*. If § = 0, for some i€ {1,...,h}, then also 5= 0.

(2) Aword w is in the languageRf and only if yow # yp.

(3) Aword w is ajtselector if and only ifpw is t-singular.

(4) A word is a minimalitselector if and only if it isjtprimary.

(5) Aword w is ajtnonselector if and only ifpw is t-plural.

(6) A word w is a maximalionselector if and only ifpw is t-ultimate.

Proof: Properties (1)—(3) and (5) follow from the definition 6f(T). For (4), if
w is a minimaltj-selector, thengw is tj-singular by (3). Ifw has a proper pre-
fix u, thenu it must be a nonselector. Thus every state of the fegmis plu-
ral, and hencev is primary. Conversely, ifv is primary, then it defines a path
(yo,81,¥1) - - - (Vm—1,@m, Ym), Whereyp, . . ., yim—1 are plural ands, is singular. There-
fore no proper prefix olv is a selector, and is minimal.

For (6), if y = yow is tj-ultimate, thery is t;-plural. Sincew is not atj-selector and
w € Ry, wis atj-nonselector. Because every extensileads to a state with an

10

emptyith componentwa & R;, and no extensiowauis in Ry, sinceR;, is prefix-
closed. Hencav is maximal. Conversely, ifv is a maximalti-nonselector, then
w e R; andw € R;; for somej # i. Henceyw is a state with nonempfigh andjth
components. Ifpw is nottj-ultimate, then there existse % such thatpwa has a
nonemptyith component. But thewa € R, andw is not maximal. Thereforgow
is tj-ultimate. O

Example 4 Figure 4 (a) shows a semiautomaton with one initial state and
fork (p,b), with fork set T= {p,q}. The product semiautomatdn(T) is given in
Fig. 4 (b), where, for simplicity, we represent sets of state words; for example,
{p,q} is written pg. There is an infinite number of primary wordsddrence of
minimal selectors); the set of all such words is denoted byégular expression:
(aab)*(b+ ab+ aaa). However, there are only three primary statgxy, 0), (0,q),
and (0,t). Note that a primary state may be also reached by words thatat
primary. For example(0,t) can be reached by aba. There are no nullary words.

—(p,a) (0,0)

w .
a (st)—=(0,
/1
) b
(b)

041
b
N
(0

,0)

(@)

Fig. 4. An unpredictable semiautomaton and its product @etoimaton.

Product semiautomata that do not have any cyclic pluraéstate of particular
interest, since they lead to a test for predictability.

Theorem 2 Let. = (£,Q,P,E) and T C Q. The following are equivalent:

(1) The length of a longest plural word #(T) is k— 1.
(2) T is k-predictable, but ndk — 1)-predictable.

Moreover, T is predictable if and only #(T) does not have cyclic plural states.

Proof: Let k— 1 be the length of a longest plural wowdin 2(T). Thenw is a
nonselector ifT, by Proposition 3 (5). By Theorem T,is not(k— 1)-predictable.
Since there are no plural words of lendtiin 2(T), every wordu of lengthk is
either nullary or singular. In the first caseZ Ry by Proposition 3 (2). In the second

11

case,u is a selector by Proposition 3 (3). Thus every word of lerigth Ry is a
selector, and is k-predictable by Theorem 1. Hence (1) implies (2).

If T is k-predictable, then all nonselectorsTirand (by Proposition 3 (5)) all plural
words inZ(T) are of length< k, by Theorem 1. IfT is not (k— 1)-predictable,
thenRr must have a nonselector of lendth- 1, and hence there is a plural word
of that length inZ(T). Hence (2) implies (1).

If 2(T) has a cyclic plural statg, theny has two nonempty components, say
andj. Since.¥ is accessibley is reachable by some worde Z* from the initial
stateyp. Sincey is cyclic, there is a word € * such thatyv = y. This implies
thatuv' € R; N Ry for all n. Sincen can be arbitrarily large, the set(T) of all
nonselectors i is not finite andT is not predictable, by Theorem 1. ThusTifis
predictable, the(T) has no cyclic plural states.

If 2(T) has no cyclic plural states, then the length of a longestaplword (and
hence of the longest nonselector)kis- 1, for somek. By Theorem 1,T is k-
predictable and hence predictable. This proves the sedaim.c O

6 Core semiautomata

We now show that, for predictable semiautomata, a part giithéuct semiautoma-
ton 2(T) = (Z,T, v, E») suffices to give us all the information we need. Lef
(respectivelyl pr) be the set of all plural (respectively, primary) state$ of

Definition 4 Thecore semiautomatoof a product semiautomata#(T) is an in-
complete deterministic semiautomatéT) = (X, Q, yo, Ex), where
o_ FpUlMprU{y} if there is an edge from a plural state §p,
CptUT pr otherwise,

and B, consists of edges ¢f(T) that join a plural state to a plural state, a primary
state, oryp.

Example 5 Consider the semiautomaton of Fig. 4 (a). Stgteq) is cyclic in the
product semiautomato@ (T) of Fig. 4 (b). The construction a¥(T) could stop
as soon as this cycle is detected. By Theorem 2, the semiatatowf Fig. 4 (a) is
not predictable.

Example 6 The semiautomatos’ of Fig. 5 (a) has one critical set that is not a
singleton, namely, F {p,q}, corresponding to the forkp,a). The product semi-
automaton is shown in Fig. 5 (b). Since no plural state isicycl is predictable.
The core semiautomatdfi(T) is shown in Fig. 6. Since the length of a longest plu-

12

(@) (b)

Fig. 5. A predictable semiautomaton and its product seroimaton.

ral word is 2, the se{p,q} and.” are 3-predictable by Theorem 2. The primary
words are: a, ¢, ba, bb, bcb, and bcc. The minimal p-selegtofsare a, ¢, ba, bb
and bcb, and the only minimal g-selector in T is bcc. The nlessars in T arel, b,
and bc, and none is maximal. There is one nullary word bcaabhealeterministic
transition in Fig. 5 (a),1 is a minimal selector.

©,r) ¢ (ar) b (r,0)

—~(p,9) a (pg,0)

\
(9,0)

Fig. 6. The core semiautomaton of the product semiautomatbig. 5 (b).

Example 7 In the semiautomaton of Fig. 7 there are two initial statesagd ¢
and two forks. The core semiautomata corresponding to tiiearsets are shown
in Fig. 8. The critical se{qs,gs} has minimal g-selectors a, ba, and bb, and max-
imal gs-nonselector b. In Fig. 7, minimal selectors and maximalseactors of a
state are shown on the arrows leading to the state. The atisiet{d, gz} has min-
imal gp-selectors a and bb, and minimaj-gelector ba. The critical s€iqy, 0s, s }
has minimal g-selector a, minimal gtselector b, and maximalsgnonselector.
The empty word. is a minimal selector in each deterministic transition. Hesni-
automaton is 2-predictable.

13

Yo

Fig. 7. lllustrating selectors and nonselectors.

(0203,0) (940506, 0) (0,q1)
y a a
%(ql,qe)\ a /(ql,(D) — (O2,08) (QG7Q7)—>b (gs,0)
b b
(Q1,05) (b)
(01,0,0)
(@) a
—~(04,05,096)
" 0.0.05)
(c)

Fig. 8. Core semiautomata for Example 7.

7 Predictors

The concepts of the previous sections are now used to siealjatedictable semi-
automaton almost deterministically. Starting with a serreenatons”’, we define a
semiautomator?” that hass x =K as input alphabet; the new input consists of the
current input lettea and up tok letters of look-ahead information.

Definition 5 Let.¥ = (£,Q,P,E) be a k-predictable semiautomaton>k0. The
predictorof .7 is a semiautomato? () = & = (X x =K, Q,P,E »), where

(1) The set of initial states is P. The sets of minimal p-g¢efescand maximal
p-nonselectors in P are associated with each stagefp

(2) If (q,a) isafork, and(qg,a,r), an edge in¥, then(q, (a,[u]),r) e Ex, ifuisa
minimal r-selector, anddq, (a, |u]),r) € E, if u is a maximal r-nonselector.

By Proposition 2, each statan any setT C Q has either a minimal selector or a

maximal nonselectau. In particular, each state and in{(q, a)), for eachq € Q,
a € Z, has a minimal selector or a maximal nonselector.

14

Remark 2 There is a bijective correspondence between predictalhesagomata
and predictors. Each predictable semiautomaton uniqueljnés a predictor. To
reconstruct the semiautomaton from the predictor replaitee@dges of the form

(g, (a,[u]),r)and(q,(a, |u]),r) by a single edgéq, a,r).

7.1 Keys

One objective of a predictor is to find the set of all statesmable from the set
of initial states, and to do this with as little nondeterramias possible. For this
purpose, we first study prefixes of the input word that provideful look-ahead
information.

Definition 6 In a predictor &2, for a word we ¥* and T C Q, the longest prefix
x of w which is also a prefix of a minimal selector or a maximahselector of a
state in T is the&key of w in T. The kewyppliesto a state tc T if it is a prefix of a

minimal t-selector or a maximal t-nonselector.

The key always exists, since 1 is a prefix of every word. ForneleC Q and
w € 2*, there is always at least one state T to which the key applies.

Remark 3 If T is a k-predictable set and w is an arbitrary word, then Key of w
in T must belong to R Consequently, if (s the longest prefix of w that is infR
then the keys of w and'iwm T coincide.

The next result characterizes wordsHp wheret € T, andT is k-predictable.

Lemmal Let.” = (Z,Q,P,E) be a semiautomaton, and letT Q be k-predictable.
If w € R;, for some state & T, then one of the following conditions holds:

(1) A prefix u of w is a minimal t-selector.
(2) |w| <k, and w is a prefix of a minimal t-selector.
(3) |w| <k, and w is a prefix of a maximal t-nonselector.

Proof: If |w| > k, thenw has a prefix which is a minimal selector, by Theorem 1 (3).
If |w| <k, andw is a selector, then it has a prefix which is a minimal selebipthe
definition of the latter. Assume now thatis at-nonselector anflv| < k. Consider
any extensiorwx of w. This extension can betaselector, &-nonselector, or not

in R.. If wx is at-selector, then it has a prefixwhich is a minimalt-selector.
Now u cannot be a prefix ofv, since no selector is a prefix of a nonselector, by
Proposition 1 (4). Hence s an extension ofv, and (2) holds. If neither (1) nor (2)
holds, then all extensions @f are eithert-nonselectors or are not R. If, for all

ac 2, the extensiomvais not inR;, thenw is a maximak-nonselector. Otherwise,
there is ana such thatwa is at-nonselector. Continuing with this argument we
obtain longer and longérnonselectors. By Theorem 1 (4), every nonselector is of

15

length less thaik. Therefore we must eventually reach a maximabnselector,
and (3) holds. O

The next lemma provides a characterization of keys.

Lemma 2 Let.¥ = (£,Q,P,E) be a semiautomaton, let T Q be k-predictable
and let we ¥* be an input word. Then the following holds:

(1) If W is the longest prefix of w that is infRthen the key of w in T is either a
minimal selector or it is Witself.

(2) If W is an arbitrary prefix of w thatisin R andte T, then We R, if and
only if the key of Win T applies to t.

Proof: Let W be the longest prefix of that is inRr. Then there existsc T such
thatw € R, and Lemma 1 applies; thus one of the three cases occursréfia p
of W is a minimal selector, themis the key ofw/, and also ofv, in T. This follows
from Remark 3 and the fact that no minimal selector or maxinmaiselector can
be an extension of a minimal selector, by Proposition 1. & ofthe other two
conditions of Lemma 1 holdsy is a prefix of a minimat-selector or of a maximal
t-nonselector. Then clearly is the key ofwin T, since no prefix ofv longer than
W is in Ry, again by Remark 3. This proves (1).

For the second claim, suppogéis an arbitrary prefix ofv that is inRy. We con-
sider two main cases:

e If W has a prefixu which is a minimal selector ifi, by the reasoning used in the
proof of (1) aboveu is the key ofw/ in T. Now, if W € R, for somet € T, then
uis a minimalt-selector andi applies ta, sinceu is its own prefix. Conversely,
if the keyu of W in T applies tot, thenw can only be inR;, sinceu is then a
minimalt-selector, being a minimal selectorTn

e Now suppose thatv does not have a prefix which is a minimal selector. By
Theorem 1 (3), we must haye/| < k.

If w € R for somet € T, either condition (2) or condition (3) of Lemma 1
holds. HencaV is a prefix of a minimat-selector or a maximaknonselectou
in T. Sincew is its own longest prefix, the key in this casensitself, andw
applies ta.

Conversely, assume that the kegf W in T applies ta € T; thenx s a prefix
of a minimalt-selectoru or of a maximak-nonselectot!. In either casey and
U are inR, and so is the prefix. We claim thatx = w/; from this it follows that
W eR.

To prove the claim, note that, W ¢ R;, thenw € Rs for somes e T, since
W € Rr. Sincew € R, either (2) or (3) of Lemma 1 holds, and is a prefix of
a minimals-selector or a maximanonselector. It is its own key if, since it is
its own longest prefix. Thus our claim that= w holds. ad

16

7.2 Maximal Simulation

The purpose of the first simulation is to compute the set éésthat can be reached
by any prefixw’ € |.| of the input wordw; if a prefixw’ is not in|.#|, then the set
of states reached is empty. The predictor continues lodkinthe next state, until
it reaches the longest prefix wfthat is in|.~|. This is done even though in some
cases the predictor may know that the remaining input wordisn the language
of the semiautomaton; we call thisaximalsimulation.

Definition 7 Given a predictor? = (X x =K Q,P,E») of a k-predictable semi-
automatony’ = (£,Q,P,E) and an input word w, a prefix y of @erivesa state
se Q, written y=-s, as follows:

(1) Basis Step (Step 0):
1= sif se P and the key of win P applies to s.

(2) Induction Step (Step #a1, m> 0):
The induction is on the number mO of derivation steps. Assume now that
w = yaz, for some & Z, y,z€ Z*; then ya= s if y=r, for some re Q,
se ((r,a)), and the key of z if(r,a)) applies to s.

There may be more that one state that can be derived in egciVéteick an arbi-
trary state, and continue the derivation. If we wish to fildte states derivable by
a given word, then we must backtrack and eventually consitigre choices. How-
ever, that most of the derivation turns out to be determmiahd nondeterminism
may occur only when the input word is of lengthk.

Next, we show that all the words that derive a state are inghguage of.7|.
Proposition 4 If w = s, for some & Q, then we |.7|.

Proof: If w= 1, then 1=- simpliess € P, showing thaP is not empty. But then
1€ Rs C |.|. Now assume that=r impliesy € |.#|, and consideya, for some
ac . If yaderivess, thens € ((r,a)), and there is an edgg,a,s) in .. Hence
yae ||, and our claim follows. O

The next result deals with correctness and termination oiimma simulation.

Theorem 3 Let. = (Z,Q, P, E) be a k-predictable semiautomaton, afitl= (X x
s=<k Q,P, E»), its predictor. Given an input w X*, let W be the longest prefix of
w thatis in|.| = Rp. Also, let W = yv, where y is an arbitrary prefix of wrhen

(1) The predictor operation is correct in the sense thatyg in predictor & if
and only if g Py and ve Ry.

(2) The simulation stops with the remaining input v if andyahy = q, for some
g € Q, and one of the following holds:

17

(@) v= 1, this implies that we |.7|.
(b) v=az, forsome & Z, z€ ~* and there is no forKg, a) in .; this implies
that w¢ |.7].

Proof: First, we show that, iff = g, theng € Py andv € R;. We proceed by in-
duction on the length of the prefix If 1 = s, thens € P by Definition 7 (1). Thus
se P1=P. Sincew is in Rp by assumption, and the keywf in P applies tcs, we
havew € Rs, by Lemma 2 (2). Therefore the claim holds for the basis. Nssuee
that, for an arbitrary prefiy of W = yaz if y=-r, thenr € Pyandv € R;. Suppose
thatya=- s. Theny =-r, for somer € Q, s< ((r,a)), and the key of zin ((r,a))
applies tcs. By the induction hypothesis,c Pyandaze R;. Sinces € ((r,a)), there
is an edg€r,a,s) € E; hences € Pya Sincez € Ry,) becaus@ze Ry, and the
key ofzin ((r,a)) applies tos, by Lemma 2 (2) we havee Rs. Thus the induction
goes through, and the claim holds.

Second, assume thgtc Py andv € Ry; we show thaty = g. Again, we proceed
by induction on the length of the prefix. Consider first thedazationw = yv=
1w'. By Lemma 2 (2), ifp € P andw € Ry, then the key ofv' in P applies top.
By Definition 7 (1), the empty prefix 1 of/ derivesp. Now assume that, for an
arbitrary prefixy of w = yv, if r € Pyandv € R;, theny = r. Suppose now that
w =yaz Sincew € Rp, there exists € Pysuch thaaze R;, and hence a fork, a).
Letsbe any state i = ((r,a)) such that € Rs. By the induction hypothesig=r.
Sincese T andz € R, the key ofzin T applies tos by Lemma 2 (2). Therefore
ya=-s, and the claim holds.

Now consider termination. Since 1 is a prefix of all words, itiqgut word always
has a key inP, and Step 0 of Definition 7 is always executed. Consequetthiy,
derivation can stop only v = yvand some statg has been derived by

If v=1, thenv does not begin with a letter, the induction step cannot beechr
out, and the derivation stops. Hese=y is clearly in|.#|, sinceq € Py by Theo-
rem 3 (1), and that impliege Rp = |.7|.

If v=az for somea € Z, z< ¥, and there is a forkg,a) in .7, the derivation
continues, since always has a key if{qg,a)). Thus the derivation can stop only
if v=az but there is no forkg,a) in .. Clearly, az¢ Ry. Suppose now that
w = yaze |.|. Sincey = g, we haveg € Pyandaze Ry, by Theorem 3 (1). This
is a contradiction, and/ ¢ |.~|. 0

The predictor is optimal in the sense that there is no unsacgsnondeterminism,
that is, no prefiy of W = yazderives a state from which it is impossible to continue
the derivation. Moreover, iV = yaz and|z| > k in ak-predictable semiautomaton
<, the induction step of the predictor is deterministic, hesez is guaranteed to
have a prefixu which is a minimal selector, by Theorem 1. Thus nondetesnini
occurs only for words of length less than or equakt@s the next result shows,
even that nondeterminism can be avoided, if one is intetestdy in determin-

18

ing whethemw € |.#|, rather than in finding all the states reachedabyT hus, for
the membership problem, one can arbitrarily select anyiplessext state in any
nondeterministic step, and always reach the same connlusio

Corollary 2 In a predictorZ?, w € |.#| if and only if w=- g, for some & Q.

Proof: By Proposition 4, ifw = g, thenw € |.#|. Conversely, ifw € |.7|, then
w = w; also there existg € Pw, by definition of|.#|. Since 1€ Ry, by Theorem 3,
applied withy = w andv = 1, we havevn =w = q. O

Example 8 Figure 7 without the minimal selectors and maximal nongdelsaep-
resents a semiautomato#f. With the minimal selectors and maximal nonselec-
tors added, it can be interpreted as the predictor as foltoWse incoming edge
of o is labeled with minimal selectorg], [ba], and [bb|, and that of g, with
maximal nonselectofb|. The edgéaqs, a,qp) is replaced by edge®, (a, [a]),d2)

and (g, (a,[bb]),02), while the edgéqs,a, gz) is replaced by(qs, (a,[bd),qs3). In

the fork<q27a>' edge(q27a7 CI4) is replaced bxq27 <a7 [a])7q4)’ edge(q27a7 q5>' by
(02, (a,1]),0s), and edg€a,a,0e), by (02, (a,[b]), gs). All other edges are deter-
ministic transitions and have minimal selectdrs

Suppose the input word iswaaababaab. We use the notatiofzpinstead of az for
a word in &* to make it easier to identify the key of z. The following catiajon
takes place, where g indicates the current state, and v.ghmaming input: In Step
0, v=w = aaababaab, and the key of w {1, s} is a. We havd =- qy, since a
applies only to g. The next seven steps are deterministic:

(1) g=q1, v= a(aababaab, the key of aababaab ifqp, gz} is a.
a=- Qp, since a applies only toxja is consumed from the input.
(2) g= g2, v= a(ababaal), the key of ababaab ifqs,0s,gs} is a.
aa=- (4, Since a applies only tosa is consumed.
(3) g=q4, v=a(babaal, the key of babaab ifig: } is 1.
aaa= (1, sincel applies to g; a is consumed.
(4) g=q1, v=Db(abaab, the key of abaab ifiq; } is 1.
aaab=- 1, sincel applies to q; b is consumed.
(5) g= a1, v=a(baab), the key of baab iRq>,q3} is ba.
aaaba=- qz, since ba applies only tosga is consumed.
(6) =gz, v=b(aab), the key of aab ifq} is 1.
aaabab=- g7, sincel applies to g; b is consumed.
(7) g=0q7, v=a(ab), the key of ab i{q1 } is 1.
aaababa=- (1, sincel applies to q; a is consumed.

In the next step, there are two possibilities:

(8a) q= a1, v=a(b), the key of b ifgy,q3} is b.
aaababaa= qp, since b applies tog a is consumed. Go to 9a.

19

(8b) q= g1, v=a(b), the key of b ifqy,q3} is b.
aaababaa=- g3, since b applies to4] a is consumed. Go to 9b.

(9a) g=qp, v=Db(1), the key ofL in {ge} is 1.
aaababaab= gg, sincel applies to @; b is consumed. Go to 10.

(9b) q= a3, v=Db(1), the key ofL in {q7} is 1.
aaababaab= gg, sincel applies to g; b is consumed. Go to 10.

(10) g€ {ge,q7}, v= 1. The input word ¥= 1 no longer satisfies the condition that
w = yaz in the induction step, and the computation stops. Thefstates derived
by w= aaababaab i qgs, q7}.

In view of Corollary 2, if we were interested only in deciditng membership of
w, we could pick either Step 8a followed by 9a, or Step 8bviatb by 9b. In
either case, the derivation terminates when the remainipgt is the empty word,
showing acceptance of w by'.

In the following discussion, let ¢ represent all the lettdrat might appear on the
input tape, but for which our semiautomaton has no edgesmerl, the predictor
& of Fig. 7 has the following properties;

e Ifw e {1,b} or w begins with c or bc, theh=- g; and1 = gg, that is, the initial

state setigqi,0s}-
¢ If w begins with a, ba or bb, theh=- g1, and the initial state is g

In the fork(qi,a), we have the set E ((q1,a)) = {qz,02}. If we treat T as the
initial state set of, then

e If w € {1,b} or w begins with c or bc, thefh = g, and1 = gs; hence the set
of states derived by is {q, g3}. Consequently, we have to consider botfagd
gs as possible successors afunder input a.

¢ If w begins with a or bb, then we only hates g. Thus g is the only successor
of gz under a.

¢ If w begins with ba, then we only hate=- g3. Thus g is the only successor of
g1 under a.

In the fork(qg,a), we have the set F ((qp,a)) = {0s,05,06}. If we treat T as the
initial state set of, then

e If w=1 or w begins with c, thed = q4, 1 = g5, and1 = gg. Thus all three
states are possible successors ptigder a.

e If w begins with a, thed = g4. Thus @ is the only successor opginder a.

e If w begins with b, thed = gg. Thus @ is the only successor opginder a.

20

7.3 Minimal Simulation

The mandate of maximal simulation was to exhibit the longestputation of the

semiautomaton, regardless of the ultimate acceptancgection of the input word.

In contrast to this, the second simulation decides as sopossible whether the
input is accepted or rejected; for this and other reasors ntare efficient than
maximal simulation.

Definition 8 In a predictor&?, for aword we =* and T C Q, we define thbandle
of win T as follows. If a minimal selector x in T is a prefix of Wwen x is the
handle. If w is a prefix of a minimal selector or a maximal ndest@r in T, then
w itself is the handle. Otherwise, w does not have a handlehiéis a handle in T,
the handleappliesto a state tc T if either the handle is a minimal t-selector, or it
is a prefix of a minimal t-selector or of a maximal t-nonsedect

Remark 4 In contrast to the computation of keys in maximal simulatfording
a handle does not involve looking for common prefixes, sinbaralle is either
the input word or a minimal selector. Note also that a word ta@ve at most one
handleinasetT.

We now define minimal simulation by a predictor.

Definition 9 Given a predictor? = (3 x 3K Q,P,E») of a k-predictable semi-
automaton¥ = (£,Q,P,E) and an input word w, a prefix y of wields a state
se Q, written y— s as follows:

(1) Basis Step (Step 0):
1 — sif se P and the handle of w in P applies to s.

(2) Induction Step (Step #al, m> 0):
Assume now that w yaz, forsome & %, y,z€ >*. Thenya— sify—r, for
some re Q, se ((r,a)) and the handle of z i{(r,a)) applies to s.

Proposition 5 If w — s for some & Q, then we |.7|.

Proof: The proof is parallel to that of Proposition 4. O
Remark 5 If w has a handle in T, then that handle is also a key of w in T sThu
w — @ implies w=- q, but the converse is false in general. Using handles may
shorten the time for the membership decision, since thenglsaf a handle stops

a minimal derivation before maximal derivation reachesltreest prefix in.~|.

Lemma 3 Let & = (X x 25K Q,P,E») be the predictor of a k-predictable semi-
automaton’, and w=yv € |.¥|. Then y= q if and only if y— Q.

21

Proof: If y— g, theny=- qby Remark 5. For the converse, we proceed by induction
on the length of a prefix of.

If y=1 andy = q, then, by definitiong € P and the key ofvin P applies tag. By
Lemma 2 (1), the key olv in P is either a minimal selector av itself, sincew is
the longest prefix ofv which is inRp = |.#|. If the key is a minimal selector, then it
is also a handle ok in P, by definition. If the key isvitself, then, by the definition
of a key,w is a prefix of a minimal selector or of a maximal nonselectolP.irin
either casew is a handle as well, by definition. Thus— q, since the handle of
in P applies tag.

Assume now thalv = yazand the implication holds for. We prove that, iya=- q,
thenya— q. Letr be a state such thgte ((r,a)) = T andy = r. Then the key of
in T applies tog. Sinceya=- g, we havez € Ry by Theorem 3. By Lemma 2 (1),
this key is eithez or a minimal selector; in either case, the key is also the leaofd
zin T, which applies ta. By definition,ya— @, and the induction is complete O

Theorem 4 Let .¥ = (£,Q,P,E) be a k-predictable semiautomato¥ = (X x
=<k Q,P, E~), its predictor, and w= yv € Z*, an input word of¥. Then the pre-
dictor operation is correct in the following sense:

(1) Ifwe ||, theny— g in & if and only if ge Py and ve Ry in .~7.
(2) The simulation stops with the remaining input v if andyahlne of the fol-
lowing holds:
(a) Itis Step 0 and w has no handle in P; this impliegw?|.
(b) Itis a Step> 0 and v= 1; this implies that we |.7|.
(c) Itis a Step> 0 and v= az, for some & X, z€ >* and there is no fork
(g,a) in .; this implies that w¢ |.|.
(d) Itis a Step> 0 and v= az, for some & 2, z€ 2* there is a fork(g,a) in
<, but z has no handle i{g, &)); this implies w¢ |.7|.

Proof: If w € |.#| theny — q if and only ify = g, by Lemma 3. By Theorem 3,
y = qif and only if g € Pyandv € Ry. Hence (1) holds.

For (a), ifw has no handle i, then 1— pis false for allp € P, by Definition 9,
and the simulation stops. Now\ € ||, thenw € Rp; hencew € R, for some
p € P. Since also € P1, Part (1) of the theorem applies, and-lp, which is a
contradiction, anav ¢ |.7|.

For (b), if the minimal simulation has consumgdy — g, andv = 1, thenw =y,
and the entire input has been processed. Sindees not have the forraz the
simulation stops. Since =y — ¢, we havew € |.|, by Proposition 5.

For (c), assume that = yv = yaz the minimal simulation has consumgd/ — q,
but there is no forkq,a) in .. Clearly, the induction step cannot be carried out,
andaz¢ Ry. Suppose now that € |.7|. Sincey — g, we haveq € Pyandaze Ry,

22

al1]
|abal al

o)

o b

] 3 El
(1)

b 1 b
)

Fig. 9. lllustrating maximal and minimal simulations.

all]
S

a[1]

(%)
by Theorem 4 (1). This is a contradiction, ang |.|.

For (d), assume that = yv= yaz the minimal simulation has consumgd/ — q,
andzhas no handle iK(g, a)). Then the simulation stops because the induction step
cannot be carried out. \f € ||, sincey — g, we know by Part (1) of the theorem
thatq € Pyandv € R;. Also, there exists € ((g,a)) such thai(g,a,r) is an edge in

< andz € R;. But nowr € Pyaandz € R, implies thatya— r, again by Part (1).
Thusz must have a handle ifig, a)), which is a contradiction, and so¢ |.7|.

One verifies that, if none of the conditions (a)—(d) holdgntlthe derivation con-
tinues. This concludes the proof of the second claim. O

Corollary 3 In a predictor#?, w € |.#| if and only if w— ¢, for some & Q.

Proof: By Proposition 5w — gimpliesw € |.|. Conversely, ifv € ||, then there
existsq € Pw, by definition of|.#|. Since also k& Ry, by Theorem 4 (1) applied
with y=wandv =1, we haverv — q@. O

Example 9 Consider the semiautomaton of Fig. 9, whiclipredictable. The in-
put word w= abab has no prefix which is a minimal selector in P, and w is not a
prefix of a minimal selector or of a maximal nonselector in Bnkle minimal sim-
ulation immediately yields the empty set of states, whigugtigvalent to rejecting

w. This is correct, since W Rp. In contrast to this, maximal simulation has the
following paths corresponding to derivations:

Opl2a>nds
b
@ pon—=n>s
B rpiernis
It stops after consuming aba, because there is no fork ofdhma {s,b), for any

i € {1,2,3}. Thus, for w= abab, maximal simulation derives the empty set of states,
rejecting w as well.

On the other hand, for w= aba, both simulations have the same three deriva-

23

tions/yields corresponding to the paths above.

Example 10 In the semiautomaton of Fig. 7, forwabba, both simulations have
only one derivation/yield corresponding to the path:

a b b
dr— g2 — (s — Os.

Then both stop. Look-ahead does not provide enough infemtd stop the mini-
mal simulation earlier. The handle of abbafig:, g2} is a, yielding g as the initial
state. The handle of bba i1, gz} is bb, yielding g. The handle of ba iqgg} is
1, which yields g. The handle of a ifgs} is 1, which yields g. Since there is no
fork (gs, @), and the next input letter is a, minimal simulation stops.

We have seen in Lemma 3 that minimal simulation of a semiaatom¥ has
the same behavior as the maximal one on wordsAi. The observation can be
extended, as follows:

Remark 6 If minimal and maximal simulations run in parallel on the samput
word, then the keys and handles coincide on the run of themairgimulation.

This observation leads to the idea of@ptimal simulatiorof ., which combines
minimal and maximal simulations. Start a minimal simulatémd let it run as long
as it finds handles. If the entire input is consumed during simulation, then the
input has been accepted, and a successful computatio#shats been identified.
Otherwise, when minimal simulation stops because the imoudl has no handle,
maximal simulation takes over. In this case, we know thatrtpat is not accepted;
however, minimal simulation keeps running as far as thedshpgrefix of the input
word that is in.. Thus, optimal simulation takes advantage of both the eficy
of minimal simulation and the information provided by maginsimulation.

Both maximal and minimal simulations operate “almost datarstically” in find-
ing next states, that is, determinism is guaranteed as Istigealook-ahead buffer
is full (the remaining input has length at le&$t However, by Corollary 3, we can
achieve total determinism concerning acceptance. Runmmainsimulation until
more than one choice appears, and then choose an arbitearghbin every step.
Then minimal simulation is completely deterministic.

8 Predictability Bounds

We now derive bounds on the size of the look-ahead buffermmgef the number
of states in the semiautomaton. We first consider the caseédetter alphabet.

Proposition 6 Let . = (Z,Q,P,E) be a semiautomaton over a one-letter alpha-
bet. If.¥ has n states, andk 0 is the smallest integer for whicl is k-predictable,

24

then k< n—1.

Proof: If k=0, the bound is trivially satisfied. Hence assume that theed ieast
one critical sefl = {ty,...ty}, h> 2, which isk-predictable.

We claim thafT is predictable if and only if at most one of the languafigs}1<j<n
is infinite. Note first that, if a languadeover one letter is prefix-closed, theh
is infinite if and only ifL = a*. For 1<i# j <h, if R, andR;; are infinite then
Ry NR; = &, sinceR; andRy; are prefix-closed. Hence is not predictable by
Theorem 1, an; anthj cannot both be infinite.

Without loss of generality, assume now tiRgt, . .., R, , are finite. We distinguish
two cases:

(1) Ry, isinfinite. Letw be a longest word ify); i, R;, and assume that € Ry,
j # h. SinceR; is finite, no path originating in; and spellingw can have
a state repeated. For suppose that uxy, for somex € =+, u,v € =*, and
tju=tjux Then alsaix®v € R, contradicting thatvis a longest word oR;.
We also observe that a pathfrom tj spellingw cannot visitty,, otherwiseR;,
would be infinite, sinceR,, is infinite. Thusrm has at mosh — 1 states, and
W] <n—2.NowT cannot bgw|-predictable, because € R; N Ry, butitis
(|w| + 1)-predictable. Thus we must hake= |w| +1<n-—1.

(2) Ry, is finite. Letw be a longest word i), i<y R;, and assuma ¢ Ry;. As
above, a path originating i and spellingv can involve at most states; thus
lw] <n—1.1If |w| < n—1then clearljk < |w|+1<n—1. Whenjw| =n—1,
a pathrr originating int; and spellingv uses all the states of’. There cannot
be another path originating i i # j, spellingw; for then there would be a
loop, contradicting the finiteness Bf;. Thus,k = |w| = n— 1 in this case.

The semiautomaton in Fig. 10 hastates and isn— 1)-predictable; thus the bound
can be reached whew”| is infinite. If we remove the loop in Fig. 10 and make
states 1 and 2 initial, we reach the bound whefj is finite. O

2 a

—~{1)—~2) 0

Fig. 10. An-state unary semiautomaton which(is— 1)-predictable.

Before addressing the case of a general alphabet, we des@ho@ necessary con-
ditions on paths originating from critical sets in predid&asemiautomata.

Lemma 4 Let. = (Z,Q,P,E) be predictable, let @= {1,...,n}, and let r, s be
distinct states of a critical setu¥’. Ifw=a; ...am_1 isalongestword in RNRg,,

let 7 = (r1,a1,r2) ... (fm-1,8m-1,rm) and 7 = (s1,81,%) .. (Sn-1,8m-1,Sm) be
two paths spelling w, originating from rand g, respectively. Then the sequence

25

< =(r1,%1),--.,(rm,Sm) of ordered pairs of states encounteredmyand 75 must
satisfy the following conditions: Firsty £ 1, and, for all i j € {1,...,m},i # |,

(1) either #rjors #sj,
(2) either #sjorrj #s,
(3) ifri=s,thenr #riandg #r;.

Proof: By our hypothesis;; # ;. For the remaining conditions we have:

(1) Ifthere exist, j, 1<i < j <t,withrj =rj ands =s;j, letx be the label of the
pathri,....rj in 1. Thenw = uxvfor someu,v € >*, andux’v € R, N Rg,,
contradicting the maximality gfw|.

(2) If there exist, j, 1 <i < j <t, such that; = sj andrj = s, letx be the la-
bel of the pathrj,...,rj in rm, and hence also the label of the path..,s; in
7. Then one verifies thabév € R, NR,, contradicting the maximality dfv|.

(3) If there existi, j, 1 <i < j <t, such thatrj = s andrj =r;, let x be the
label of the pathj,...,rj =rj in 1, and letw = uxv. Thenuxdv € R, NRsy,
contradicting the maximality ofw|. Similarly, if s; = r;j, letx be the label of
the paths,...,sj in ™, and letw = uxv. Sinces = sj = rj, there is a loop
labeledx onr; and agairux®v € Ry, NR,. O

Next we prove a combinatorial result about sequengés- (r1,s1), ..., (fm,Sm)
satisfying the conditions of Lemma 4.

Lemma5 Let n> 0 be an integer and letZ = (r1,s1), ..., (fm,Sm) be a sequence
of ordered pairs of elements frofa, ..., n}. If £ satisfies the conditions of Lemma 4,
then m< (n?—n)/2 and the bound is sharp.

Proof: We first show that the bound can be achieved. Consider thesequ
Z=(11),...,(4,n),(2,1),...,(2,n),...,(n,1),...,(n,n),

which hasn? elements and satisfies Condition (1). If we remove the p@ir3,

for all 1 <i < n, we have a sequence of —n pairs, in whichry # s; and which
satisfies Condition (3) as well, sinceis never equal ta. Finally, for alli # |,
remove eithe(i, j) or (j,i). Now the sequence also satisfies Condition (2). Since
there argn? —n) /2 pairs removed in the last step, the final sequencéritasn) /2
elements. Thus the bound can be reached.

Next, we prove thatn® —n)/2 is an upper bound by induction onlf n= 1, then
only the empty sequence satisfies all the conditions. Hemeed = (n? —n) /2. If

n = 2, then the empty sequendé, 2) and(2,1) are the only sequences satisfying
the conditions. Heren< 1 = (n?> —n)/2.

26

Foranyn> 0, letM(n) be the length of a longest sequence of pairs of elements from
{1,...,n} satisfying all the conditions. Assume thdtn—1) < [(n—1)?>— (n—
1)]/2, forsomegn—1) > 2. Let.Z be a sequence witt (n) pairs of elements from
{1,...,n} satisfying all the conditions, and assume for the sake dfadittion that
M(n) > (n®—n)/2.

If M(n) > (n? —n)/2 andn > 3, thenM(n) > n. Thus.Z contains at least + 1
pairs. There are at mosh2 1 pairs involving the elemermt, namely the pairs
of the form (n,i) and (i,n). However, if both(n,i) and (i,n) appear inZ, then
Condition (2) is violated. Hence there are at mogairs involvingn, and at least
one pair(i, j) not involvingn. Without loss of generality we may assume that the
first pair of £ does not contain, for if it did, we could interchange it witki, j).

Let .#’ be the sequence withf elements obtained fron¥ by removing all the
pairs containingn. Then ¢’ satisfies all the conditions as well, and its elements
are from the sef1,...,n—1}. By the induction hypothesisy <M(n—1) <[(n—
1)?—(n—1)]/2= (" —n)/2— (n—1).

In addition to the elements o¥’, . contains elements from the set

{(3,n),(2,n),...,(n,n),(n,1),(n,2),...,(n,n—1)}.

If £ containgn,n), then it cannot contain any other pair involvingor this would
violate Condition (3). Hence, in this case, we hawén) =’ +1 < (n>—n)/2—
(n—2) < (n®—n)/2, which contradicts our assumption.

If .2 does not contairin, n), it contains at mostn — 1) pairs involvingn. In this
caseM(n) < m + (n—1) < (n? —n)/2, which is again a contradiction.

ConsequentlyM(n) < (n®—n)/2 and the induction step goes through. O

Theorem 5 If a semiautomator” = (2, Q, P, E) has n states and k is the smallest
integer for which# is k-predictable then k (n? —n) /2. Moreover, this bound can
always be reached for a suitable

Proof: Fork =0, .7 is deterministic and the inequality is trivially satisfie¢tlk >

1 then. has at least onk&-predictable critical seT. Letry,s be two distinct
states ofT. By Lemma 4, every sequenc® = (r1,S1),. .., ('m,Sm) must satisfy
all the conditions of the lemma, and by Lemma 5, the length lmingest word
we R, MRy, is|w| =m—1< (n>—n)/2—1. Thisimplies that, il is k-predictable,
then necessarilik < |w| + 1 < (n?> —n)/2. Since this holds for all critical sets, it
holds for.7.

Next we prove that this bound is achievable for a suitablbathet. Leth > 1, and
let & = (r1,%1),...,(rk,Sk) be a sequence satisfying the conditions of Lemma 5,
with k= (n® —n)/2. Let.¥ = (%,Q,P,E), whereX = {ay,...,a}, Q= {1,...,n},

27

P={r}, E=EBUE UEs E1 = {(r1,a1,r1),(r1,a1,81)}, B = {(ri, @41, rita) |
1<i<Kk},andEs={(s,a+1,S+1) | 1 <i < k}. We show that” is k-predictable,
but not(k — 1)-predictable.

Observe thaE; = (rq1,as) is a fork in.” and its fork set((r1,a;)) = {r1,s1} is a
critical set in.. Consider the worav = a;..... a; clearly,w € R, N R, implying
that the automaton is ngk — 1)-predictable, sincéw| = k— 1. Observe now that
R NRs, = 0; for if both (r,aj,r) and (s, aj,s) were inE for somer,s € Q and

j € {1,...,m}, then eitherry,s) = (rj—1,Sj—1) for j > 1, or(ry,s) = (r1,s1) for

j = 1. In both cases, this would violate Condition (1) of LemmaBusw is a
longest word iR, NRs, implying that((r1,a1)) is k-predictable.

SinceP# =1, P is O-predictable. If there exists a fork other thapn a;) in .7, then
there must be a pair;,s) with r; = 5, since only such states have outgoing edges
with a same label, by the construction.af. But then, by an argument used in the
proof of Lemma 5, the sequenc€ cannot be of maximal length. Hence there are
no other forks in#, and.7 is k-predictable, wher& = (n?> —n)/2 is the smallest
such integer.

In summary, the minimal predictability bound @ — n)/2 can be reached at the
cost of a large alphabet. O

The theorem implies that, to test whetb#&ris predictable, it suffices to test whether
itis (n? —n)/2-predictable.

Example 11 For n = 4, the semiautomata in Fig. 11(a) and 11(b) correspond to
the sequences

£1={(1,2),(1,3),(1,4),(2.3),(2,4),(3,4)}
and

L = {(273)7(374)7(174)7<274)7(173)7(27 1)}7

respectively. Both sequences obey the conditions of Lemand &re of maximal
length. Therefore, both semiautomata éspredictable, and reach the upper-bound
for 4 states.

Remark 7 For fixed alphabets, the bounds may turn out to be much smaher
semiautomatonin Fig. 12 over a two-letter alphabet has testand is k-predictable,

where
nin+1
=315}
This bound may be tight for binary alphabets. In this pataccase, predictability

is maximized precisely for< [n/2| and j= [(n+1)/2] or vice versa, since the
productij, with i+ j = n, is maximized for these values only.

28

Fig. 12. Ak-predictable semiautomaton over a two-letter alphabet.

9 Conclusions

We have introduced the class of predictable semiautomaiahwave a rich math-
ematical structure. In such semiautomata, it is possibtertiove most of the non-
determinism by using a finite amount of look-ahead infororatirom the input
tape.

We have presented an algorithm for testing for predictighilsing a new construct:
the core semiautomaton. To reduce nondeterminism, we fsacepredictor semi-
automata with look-ahead buffers. In the worst case, themaihlengthk of a
predictor’s look-ahead buffer is quadratic in the numiverf states of the semiau-
tomaton.

We have considered two objectives of simulation of a nomdstastic semiau-

tomaton: finding the set of states reachable by an input woedsemiautomaton,
and testing whether the input word belongs to the languagigeaemiautomaton.
We have also introduced two types of simulation, maximal eaimal. In both

simulations, as long as the input word has length greaterkhéie computation is
deterministic. For testing for membership, both simulagican be completely de-
terministic. In finding the set of states reachable by a weodhe nondeterminism
is unavoidable, but it is limited to the laktletters of the input word. Moreover,

29

if the remaining input word is not in the language, minimahslation stops the
computation before reaching this residual nondeterminism

The application of this theory to nondeterministic autcem@emiautomata with
accepting states) is straightforward. To determine whetlveordw is accepted by
an automaton, find the set of states reachewlayd check whether any of these
states are accepting. The look-ahead information enshatshese computations
are fewer than in the standard NFA simulation, since manypegation paths are
pruned, having been detected as unsuccessful by the laddahformation.

References

[1] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini,, Mlecella, Automatic
composition of e-services that export their behavior. l©Howska, M. Papazoglou,
S. Weerawarana, J. Yang, eds., ICSOC 2QM3CS 2910(2003) 43-58.

[2] Z.Dang, O. H. Ibarra, J. Su, Composability of infinitetst activity automata, ISAAC
2004, R. Fleischer, G. Trippen, edsNCS 3341(2004) 377-388.

[3] A. Ginzburg,Algebraic Theory of Automatad\cademic Press, New York (1968).

[4] S. Eilenberg,Automata, Languages, and Machinas Academic Press, New York
(1974).

[5] B.Ravikumar, N. Santeaf)eterministic simulation of NFA witk-symbol lookahead,
Int. J. of Foundations of Computer Sciente appear.

30

