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ABSTRACT

Most contemporary database systems perform cost-based
join enumeration using some variant of System-R’s bottom-
up dynamic programming method. The notable exceptions
are systems based on the top-down transformational search
of Volcano/Cascades. As recent work has demonstrated,
bottom-up dynamic programming can attain optimality with
respect to the shape of the join graph; no comparable re-
sults have been published for transformational search. How-
ever, transformational systems leverage benefits of top-down
search not available to bottom-up methods.

In this paper we describe a top-down join enumeration
algorithm that is optimal with respect to the join graph.
We present performance results demonstrating that a com-
bination of optimal enumeration with search strategies such
as branch-and-bound yields an algorithm significantly faster
than those previously described in the literature. Although
our algorithm enumerates the search space top-down, it does
not rely on transformations and thus retains much of the
architecture of traditional dynamic programming. As such,
this work provides a migration path for existing bottom-up
optimizers to exploit top-down search without drastically
changing to the transformational paradigm.

Categories and Subject Descriptors: H.2.4 [Database
Management|: Systems—query processing, relational data-
bases; F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General

General Terms: Algorithms, Design, Experimentation,
Performance

Keywords: join enumeration, query optimization, top-down,
dynamic programming, memoization, branch-and-bound

1. INTRODUCTION

Cost-based query optimization is central to the perfor-
mance of database management systems. Traditionally, ei-
ther logical optimization is completed prior to physical op-
timization [17], or the logical optimizer invokes the physi-
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cal optimizer as needed to optimize isolated select-project-
join query blocks within a more complex query [1]. With
this stratified approach, the enumeration strategy of the
logical optimizer (heuristic vs. cost-based, bottom-up vs.
top-down) may differ completely from that of the physical
optimizer. Whereas top-down application of transforma-
tions is a natural paradigm for logical optimization, phys-
ical optimization is still widely performed using variations
of the bottom-up dynamic programming method pioneered
by Selinger et al. in System-R [19]. In contrast, the Vol-
cano [8]/Cascades [6] model seamlessly integrates both log-
ical and physical steps into a single top-down application
of transformations; however, this introduces a significant
paradigm shift for physical optimization.

Top-down search enables several enhancements that are
not compatible with bottom-up dynamic programming:

1. demand-driven interesting orders
2. branch-and-bound pruning
3. exploiting partial information

In this paper we emphasize performance benefits resulting
from branch-and-bound, although interesting orders and ex-
ploiting partial information will be discussed briefly in Sec-
tions 3 and 5, respectively. These benefits have been pointed
out before within other top-down systems, but our paper is
novel in showing that they can be attained within an op-
timizer that retains many characteristics of the traditional
bottom-up dynamic programming paradigm. In particular,
ours is the first paper to demonstrate that top-down search
can be wedded with optimal enumeration of the space of join
plans that avoid cartesian products—a space with ongoing
importance for large queries because of the Q(3") cost of
considering cartesian products [14, 13].

We focus narrowly on the traditional problem of enumer-
ating join orders for a single select-project-join query block.
The computational complexity of this problem was detailed
by Ono and Lohman [14] for a variety of join graph shapes.
However, recent analysis by Moerkotte and Neumann [11]
shows that traditional bottom-up join enumeration algo-
rithms do not achieve Ono and Lohman’s lower bounds. Mo-
erkotte and Neumann go on to describe a new bottom-up
enumeration algorithm that is optimal over any join graph.

Join enumeration has received significant attention in the
literature, and so we begin with a taxonomy of existing al-
gorithmic approaches (Section 2). Following this, our paper
makes several contributions. We present the first join enu-
meration algorithm that both achieves the computational
lower bound for any query graph and—unlike Moerkotte and
Neumann’s algorithm—enumerates the search space top-down



instead of bottom-up (Section 3). Second, we demonstrate
empirically that combining optimal enumeration with branch-
and-bound pruning made possible by the top-down search
yields algorithms that are significantly faster than previ-
ous approaches for search spaces that avoid cartesian prod-
ucts (Section 4). Third, we point out a tension between
dynamic programming and the style of branch-and-bound
implemented in several existing systems, opening the pos-
sibility that the branch-and-bound pruning in those sys-
tems does not behave as expected (also Section 4). Fi-
nally, we describe why ours is the first dynamic program-
ming/memoization algorithm to provide a flexible trade-off
between CPU time and memory usage, and we detail how
the top-down search can be used to exploit partial informa-
tion that may be available to an optimizer (Section 5).

2. EXISTING APPROACHES

This section gives an overview of existing join enumera-
tion algorithms, classified according to search strategy. An
algorithm is called bottom-up if it considers small logical ex-
pressions before large ones; otherwise it is top-down. We
restrict our focus to search strategies that can guarantee
optimality of the result. We assume that the input to each
algorithm is a connected join graph G = (V, E) where V
represents the set of relations to be joined, and each edge in
FE represents a join predicate.

2.1 Compositional Dynamic Programming

Compositional dynamic programming is a bottom-up tech-
nique that represents logical expressions as sets of relations,
and then enumerates over choices for already optimized sets
Vi and V; to obtain a new plan for V' = V; U Va. System-
R [19] used this approach for left-deep plans without carte-
sian products (CPs hereafter), relying solely upon expres-
sion size to dictate the enumeration order of Vi and V5s; the
generalization of this strategy to bushy plans is given by
Moerkotte and Neumann [11].

Although widely used, size-driven enumeration is far from
optimal because of attempted compositions of overlapping
sets [22]. For CP-free search spaces the inefficiency is even
worse because of the generate-and-test approach to avoiding
CPs [11]. Moerkotte and Neumann propose another com-
positional dynamic programming algorithm for the space of
bushy plans without CPs that achieves Ono and Lohman’s
lower bounds on the number of join operators considered.
Their algorithm drives the enumeration of Vi and V2 by us-
ing the graph structure to incrementally grow “Connected-
subgraph Complement Pairs”.

2.2 Partitioning Dynamic Programming

Partitioning dynamic programming drives the enumera-
tion by the choice of V', which is then partitioned into all
choices for Vi and V5 such that V = V3 U V5. This is still a
bottom-up framework, however, so the enumeration order of
V must be carefully designed so that for any valid partition
of V' the sub-expressions have already been optimized.

This method was invented by Vance and Maier [22], who
proposed searching the space of bushy plans with CPs using
an efficient algorithm for generating subsets to drive the
ordering and partitioning of V. Moerkotte and Neumann
present a modification of this algorithm for the space of
bushy plans without CPs, but the algorithm is inefficient
for this space because the subset generation is naive—that

is, oblivious to the query graph—and hence generates large
numbers of CPs which all are discarded.

2.3 Prefix Search

Prefix search is a bottom-up algorithm, but uses back-
tracking search instead of dynamic programming. Left-deep
join trees are abstracted as sequences of relations joined left
to right, and the plan space is enumerated by extending pre-
fixes incrementally. Bushy join trees can be abstracted as
sequences containing nested parenthesis; however, the search
space becomes too large for this approach to be practi-
cal. Unlike other algorithms discussed in this section, prefix
search does not use divide-and-conquer and so is incompat-
ible with dynamic programming/memoization. It is used in
the Sybase SQL Anywhere optimizer [3] which targets small-
footprint environments that cannot afford the memory cost
of dynamic programming. The lack of dynamic program-
ming leads to a search space containing ©(n!) left-deep join
trees. To address this, the SQL Anywhere optimizer relies
heavily on very aggressive branch-and-bound pruning that
sacrifices optimality for the sake of efficiency.

2.4 Transformational Search

Transformational search represents logical expressions as
trees of ordered binary joins. After converting a query to
an arbitrary logical (ordered) join tree, the space of possible
join plans is searched by top-down application of logical-to-
logical (join ordering) and logical-to-physical (join method
selection) transformations. Memoization—the top-down vari-
ant of dynamic programming—avoids redundant work.

Transformational search is used in the Volcano [8], Cas-
cades [6], OPT++ [9], and Columbia [20] systems, as well
as in Microsoft SQL Server [7]. EROC [10] is a hybrid sys-
tem that uses (top-down) transformational search for join
method selection and costing but (bottom-up) compositional
dynamic programming for the enumeration of join orders.

Transformational search is amenable to top-down enhance-
ments such as demand-driven interesting orders and branch-
and-bound. Strengths such as extensibility of the optimizer,
online modification to the search space, and early generation
of complete physical plans are additional features specifically
due to the transformational paradigm.

Unfortunately, this paradigm has two weaknesses com-
pared to traditional bottom-up join enumeration. The first
weakness is well documented in the literature: memory cost.
Transformational search requires storing all generated plans,
not just optimal plans. For search spaces including CPs, this
results in (n2") (left-deep) or ©(3™) (bushy) storage, com-
pared to the (2") (left-deep or bushy) storage required by
bottom-up join enumeration [14].

The second weakness of the transformational approach
is less well known, but relevant to the contribution of our
paper: there is no published transformational method that
optimally enumerates CP-free join plans (either left-deep or
bushy) of arbitrary queries. Pellenkoft et al. [15, 16] pub-
lished one of the few analyses of transformational search;
they show that by using a mechanism governing the applica-
tion of transformations to guarantee that every expression
has a unique derivation path, transformational search can
achieve the lower bounds derived by Ono and Lohman [14]
for both left-deep and bushy plans containing CPs. They
also describe mechanisms for acyclic queries that guarantee
the unique derivation path of every CP-free plan contains



only CP-free plans. When combined with a simple generate-
and-test approach to discarding plans containing CPs, the
number of discarded CPs is proportional to the number of
join operators; hence, for acyclic queries the search is opti-
mal with respect to number of operators enumerated. It is
easy to show, however, that that there exist simple cyclic
queries for which the derivation path of at least one bushy
CP-free plan must pass through a plan containing a CP; thus
the generate-and-test approach fails to enumerate the com-
plete space of CP-free plans. It is an open problem whether
transformational search can enumerate either left-deep or
bushy CP-free plans optimally for arbitrary join graphs.

Because of the prominence of transformational systems
relative to the remaining top-down algorithms discussed in
this section, top-down transformational search has been re-
ferred to by the unfortunate name “top-down search” in
some of the literature (e.g. [20]). This can lead to strengths
and weaknesses that specifically result from the transforma-
tional nature of these particular systems being incorrectly
attributed to all top-down search methods.

2.5 Partitioning Search

Partitioning search is a top-down algorithm similar to
the bottom-up algorithm described in Section 2.2: a given
V' is partitioned into all choices for Vi and V2 such that
V = Vi U Va. Instead of requiring a strict enumeration or-
der for V' that obeys the bottom-up constraints of dynamic
programming, the enumeration order follows directly from
recursion on Vi and V5 and is combined with memoization.

Chaudhuri et al. [4] present a top-down partitioning algo-
rithm for left-deep trees with CPs. The purpose of their pa-
per is to integrate join enumeration with cost-based rewrit-
ings over materialized views, and so they ignore the top-
down nature of their algorithm, referring to it as a “simpli-
fication and abstraction” of the System-R algorithm. This
characterization is not quite apt, because the algorithmic
complexity is actually akin to bottom-up partitioning, not
size-driven enumeration—an important distinction when the
approach is extended to bushy plans [11]. The authors do
not consider interesting orders, branch-and-bound, or avoid-
ing cartesian products.

3. OPTIMAL TOP-DOWN PARTITIONING

In this section we study in more detail the top-down par-
titioning search strategy just introduced. After describing
the basic algorithmic framework, we show that achieving op-
timality in the join enumeration requires a non-trivial par-
titioning algorithm that exploits the graph structure.

The main contribution of this section is to prove both
analytically and empirically that the performance of top-
down partitioning search with memoization is comparable to
bottom-up search with dynamic programming. This point
deserves emphasis, because there have been several previ-
ous comparisons drawn between bottom-up dynamic pro-
gramming and top-down transformational search [10, 9, 20]
that can lead to the misconception that bottom-up search
strategies are inherently more efficient—especially for CP-
free search spaces—and that top-down search algorithms
need to rely on branch-and-bound or demand-driven inter-
esting orders to be competitive. In contrast, our results show
that there is no inherent performance penalty in changing
from bottom-up to top-down search.

3.1 Algorithmic Framework

Algorithm 1 provides a skeleton framework for join enu-
meration via top-down partitioning search. This skeleton
generalizes the algorithm given by Chaudhuri et al. [4] both
by incorporating demand-driven interesting orders and by
replacing the enumeration over singleton relations with an
abstract PARTITION function on line 4 of CALCBESTJOIN.
The search space of the optimizer—Ileft-deep vs. bushy,
with or without cartesian-products—is controlled simply by
changing the implementation of PARTITION.

As mentioned, our skeleton incorporates demand-driven
interesting orders which are desirable because they limit op-
timization to expressions that are actually useful [8]. How-
ever, because the approach is essentially the same as has
been demonstrated in transformational systems and because
it is somewhat orthogonal to the actual enumeration of join
orders which is the focus of this paper, we will not con-
sider interesting orders further in this paper. In particu-
lar, we intentionally did not implement interesting orders as
part of our experimental apparatus so that our comparisons
between comparable bottom-up and top-down search algo-
rithms are testing the enumeration of the search space only,
not the handling of interesting orders. This is a valid ab-
straction because although top-down search enables demand-
driven interesting orders, it does not require them; one could
integrate a top-down search for enumerating join orders with
existing techniques for bottom-up handling of interesting or-
ders within each enumerated join operator.

Algorithm 1 represents a join query as a graph G = (V, E);
therefore, its analysis depends upon how G is encoded. The
traditional edge-list encoding is asymptotically optimal; how-
ever, we contend that for most join enumeration contexts it
is valid to assume that the ratio of query size (typically much
smaller than 100 relations) to machine word size (typically
32 or 64 bits) is bounded by a small constant. Under this
assumption, the most efficient encoding for G is as an array
of bitmaps, which is the encoding we used in our implemen-
tation. To account for this, our analysis in this section uses
a “bitmap” model of computation that assumes that the set
operations containment, union, intersection, and difference
can be performed in constant time using bit-wise machine
instructions. Although we will use asymptotic notation,
the accuracy of our computational model (and hence our
analysis) depends upon the assumption that W
is bounded; for the true asymptotic case one should use an
edge-list encoding and charge set operations at higher than
constant cost, which would introduce at most a linear factor.

Our model of computation has two notable implications.
First, testing graph connectivity (time ©(|E|) with an edge-
list encoding) costs only time ©(|V]) because using depth-
first search, it takes constant time on each step to remove
edges pointing to previously-visited nodes using set differ-
ence. Second, given a graph G = (V, F) and some V' C V,
the induced subgraph G|y can be generated in constant
time by lazily intersecting V' with each original bitmap on
demand, adding constant overhead to each read. In contrast,
generating an induced subgraph using an edge-list encoding
eventually incurs O(|E|) cost whether the generation is ea-
ger or lazy.

Finally, we need to define what we mean by an “opti-
mal” join enumeration algorithm. Ono and Lohman’s lower
bounds [14] quantify only the number of join operators that



must be enumerated and are not necessarily tight in terms of
time complexity. Following the lead of Moerkotte and Neu-
mann [11], we will call an enumeration algorithm “optimal”
if it incurs no more than linear time overhead between enu-
merated join operators'. Algorithm 1 invokes PARTITION at
most once for each unique V' (due to the memoization); for
each returned partition, the loop at line 5 of CALCBESTJOIN
considers a unique join operator in the search space (by
enumerating a constant number of physical join methods).
Hence, an algorithm constructed in this framework is opti-
mal if the partitioning function requires no more than linear
time between outputting successive partitions. For compar-
ison, Moerkotte and Neumann’s bottom-up algorithm for
bushy join trees requires O(]V]) per join operator under our
bitmap model, or O(|E|) per join operator using an edge-
list encoding. Their algorithm is thus optimal for any join
graph, and so in this section our goal is simply to create an
algorithm that is competitive with theirs.

3.2 Naive Partitioning

Consider the graph partitioning algorithm shown in Algo-
rithm 2; this algorithm is “naive” in the sense that it ignores
the edges of the join graph. When substituted into Algo-
rithm 1, the resulting search algorithm enumerates left-deep
operator trees with cartesian products. Each invocation of
Algorithm 2 outputs |V/| partitions and has a total cost of
O(|V]); hence, the search algorithm is optimal for the space
of left-deep operator trees with CPs.

Now consider avoiding cartesian products. The obvious
approach is to add to Algorithm 2 a test that G|u\ (o))
remains connected. This increases the total work per in-
vocation of PARTITION to ©(|V|?); however, the number of
partitions output now depends upon the graph structure and
could be as few as two (chains). In the worst-case, the par-
titioning algorithm uses quadratic time between outputting
successive partitions, and so the search algorithm is a linear
factor worse than optimal for left-deep CP-free join trees.

To enumerate bushy plans with CPs, we modify line 1 of
Algorithm 2 to enumerate all non-empty strict subsets of V.
The total work per invocation of PARTITION is ©(2/V'1), and
the number of partitions output is 2Vl 2; therefore, the
search algorithm is optimal for bushy join trees with CPs.

The obvious extension for bushy CP-free plans is to insert
two connectivity tests. The total partitioning cost per invo-
cation increases to O(|V| % 2/V!), and the number of parti-
tions output again depends upon the graph structure, rang-
ing from 2!V -2 (cliques) to |V|—1 (acyclic graphs). Hence,
the search algorithm is optimal only for near cliques and can
be exponentially sub-optimal in general.

In summary, naive partitioning strategies provide optimal
top-down search algorithms for both left-deep and bushy
spaces containing cartesian products, but provide sub-opti-
mal search algorithms for CP-free spaces. This is not sur-
prising because there is a one-to-one correspondence be-
tween each pair (Vi, V) considered by top-down naive par-
titioning a pair enumerated by the bottom-up naive parti-
tioning from Section 2.2. Moerkotte and Neumann present
a more precise analysis of the number of pairs enumerated

1Simply identifying a logical expression requires linear bits,
so this definition of optimality is tight under the traditional
model of computation. We concede that it may be slightly
generous for certain graph topologies under an amortized
analysis within our bitmap model.

by bottom-up naive partitioning.

3.3 Minimal Cuts

The generate-and-test approach for avoiding cartesian prod-
ucts used by the naive partitioning algorithms does not ex-
ploit information present in the join graph. In this sub-
section we present algorithms that utilize graph-theoretic
properties to partition a graph in linear time per partition.

Consider the left-deep plan space. Graph G|\ (v}) is dis-
connected precisely when v is an articulation vertex of G.
Using the DFS algorithm of Aho et al. [2, p. 180-187] the set
of articulation vertices can be identified (and hence avoided)
in ©(|E|) time, eliminating the need for a connectivity test.
The resulting search algorithm is optimal for left-deep trees
without cartesian products.

Now consider the bushy space. Whereas left-deep parti-
tioning is naturally viewed as choosing individual vertices to
delete from G without disconnecting it, this vertex-deletion
perspective is a bit clumsy for bushy partitioning because
it implies an undesired asymmetry between what is deleted
and what remains. An equivalent edge-centric way to per-
ceive a partition is as a graph cut—that is, a set of edges
whose deletion divides G into two or more components. A
cut is called minimal if it contains no other cut as a subset;
a well-known corollary is that a minimal cut divides G into
precisely two connected components. Hence, there is a du-
ality between the set of all minimal cuts of G and the set of
all partitions of V into (Vi,Vr) such that G|v, and G|v,
are each connected. For the left-deep case considered above,
each non-articulation vertex is the dual of a minimal cut in
which one component is unary.

Minimal cuts are of long-standing interest to the network-
ing community because of the obvious applications to net-
work reliability [12]. Within that community, much atten-
tion has been given to the (s,t)-cut problem, formulated
as follows: given a connected graph G = (V| E), a source
s € V, and a sink ¢t € V| find all minimal subsets of F
which, if removed from G, would disconnect s from ¢. One
of the first linear-delay algorithms for the (s, ¢)-cut problem
is described by Tsukiyama et al. [21]. Provan and Shier [18]
present a recursive paradigm and show how it can be used
to solve several variations of the (s,t)-cut problem. One
such variation—K -connectivity cutsets—finds all minimal
cuts that partition an arbitrary K C V. For our purposes,
we are interested in the case when K = V, which corre-
sponds to finding all minimal cuts of G.

Provan and Shier’s algorithm depends upon a data struc-
ture called a biconnection tree. The biconnection tree T for
a given connected graph G = (V, E) and vertex t € V' con-
tains two types of nodes: vertexr nodes correspond one-to-one
with the vertices in V', and set nodes correspond one-to-one
with the biconnected components of G [2]. For every ver-
tex v € V that participates in a biconnected component (3,
there is an edge in T between the corresponding vertex and
set nodes. Finally, the vertex node corresponding to ¢ is des-
ignated as the root of T. A biconnection tree can be built in
time O(|E|) the procedure BUILDBCCTREE shown in Algo-
rithm 3, which is a straightforward modification of Aho et
al.’s DF'S algorithm for identifying biconnected components
of a graph. The reader is referred to Aho et al.’s text [2] for
an explanation of how the algorithm works. Figure 1 shows
an example of a graph G and its corresponding biconnec-
tion tree T. Observe that the non-articulation nodes of G
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Figure 1: Graph G with corresponding tree T

are precisely the leaves of T, and would also include the root
if t had only one child in T.

In the remainder of this section, we present our own mod-
ification of Provan and Shier’s algorithm which we have tai-
lored to the join enumeration context by tuning it specifi-
cally for the common case of graphs with low cyclicity.

3.3.1 Lazy TreeBuilding

Algorithm 4 is a recursive algorithm that maintains two
disjoint, connected sets of vertices S and T. S is grown
incrementally on each recursive invocation. Meanwhile 7',
seeded with an arbitrary vertex ¢, records vertices that have
already been added to S in a different branch of the recur-
sion. N (S) is the set of neighbours of S within G. Each re-
cursive invocation outputs one minimal cut (two symmetric
partitions) corresponding to the given S and then attempts
to extend S with one of its neighbours while not causing
G|(v\s) to become disconnected. For each vertex node v in
the biconnection tree T (we’ll ignore T°? for the moment)
the set Dr(v) contains v and all its descendant vertex nodes
in T, and the set Ar(v) contains v and all its ancestor vertex
nodes in T. More formally,

Dr(v) = {u €V |uoccurs in subtree of T rooted at v}

Ar(v) = {u €V |uis a vertex node on path t ~ v}

For example, in Figure 1 the nodes a, b, ¢ have the following
descendant and ancestor sets.

Dr(a) ={a,b,c,d, e} Ar(a)={a,t}
Dr(b) = {b} Ar(b) ={a,b,t}
Dr(c) = {c} Az(c) = {a,c, t}

P is the “pivot set” containing the neighbours of S not yet in
T that are maximally-distant from ¢ in T (line 8 exploits the
fact that T" is connected in order to identify the maximally-
distant pivots). For each pivot, the extension of S using that
pivot is then explored recursively.

Algorithm 4 has been created by tuning Provan and Shier’s
generic paradigm for our particular graph cutting problem.
Some simple structural changes (replacing pure binary re-
cursion with some iteration, adding the early exit test on
line 3, etc.) yield at least a factor of four improvement
in execution time over their original algorithm. However,
the most expensive operation is the call to BUILDBCCTREE;
therefore, the most important optimization we have added
to MINCUTLAZY is to pass in the tree T°“ from the parent
invocation and to lazily construct a new tree only if T is
not “usable” for G|\g). For the purposes of Algorithm 4,
T is usable if it allows us to compute Dr(v) and Ar(v).
Although not shown, we define MINCUTEAGER as a version

of Algorithm 4 which does not pass T° forward for re-use
and instead calls BUILDBCCTREE on every invocation.

Definition 3.1 (Usability) Given a graph G = (V,E),
two sets Vo C Vi C V that induce connected graphs G|v,
and Glv,, a distinguished vertex t € Va, and the biconnec-
tion tree T1 rooted at t corresponding to G|y, : we say that
T, is usable for G|v, if the mapping from each biconnected
component in Glv, to the set node in Ty that contains it is
injective.

The shape of a biconnection tree is determined only by
the choice of ¢ and the (singleton) intersections between the
biconnected components. Therefore, Definition 3.1 guaran-
tees that the mapping into T preserves the same relative
positions of the biconnected components as constructing T2
from G|v,. Hence, Dr, (v) and Ar, (v)—which depend upon
the relative positions of the set nodes in Te—can be calcu-
lated lazily in constant time as Dr, (v) := Dr, (v) N V2 and
-ATz (’U) = -ATl (U) NV

Using Definition 3.1 to test usability requires computing
the biconnected components of G|y, which is as expensive
as constructing T2. The following lemma provides a conser-
vative test for usability that requires examining T only.

Lemma 3.2 A biconnection tree Ty for connected graph G|v,
is usable for connected graph G|v, (V2 C Vi) if for each set
node B € T1 such that BN (V1 \ V2) # @ all of the children
of B in T1 are contained in (V1 \ Va).

Algorithm 5 implements the usability test from Lemma 3.2.
For example, consider graph G and tree T from Figure 1. If
vertex b is deleted from G, T would be still be usable because
the deletion simply removed a biconnected component from
G; the test using Lemma 3.2 returns true because b is the
only child of set node {a,b}. If vertex c is instead deleted, T
would not be usable because the resulting biconnected com-
ponents {a,d} and {d, e} are both contained in {a,c,d,e};
our test catches this because d and e are un-deleted chil-
dren of set node {a,c,d,e}. If e is instead deleted, T would
still be usable (according to Definition 3.1) because the re-
sulting biconnected component {a, ¢, d} can map to set node
{a, ¢, d, e}; however, our test returns a false negative because
T does not contain enough information? to distinguish this
from the deletion of c.

Analysis: Provan and Shier prove that their algorithm
costs ©(|E|) per cut, which is primarily due to the call to
BUILDBCCTREE on every recursive invocation. Our refine-
ments do not change worst-case complexity: the usability
test on line 5 can be implemented in time O(|V|) using Algo-
rithm 5 and in the worst-case (a clique) T is never usable
so BUILDBCCTREE gets called on (almost) every recursive
invocation (except for those caught by line 3). Therefore,
both MINCUTEAGER and MINCUTLAZY take time ©(|E|) per
cut.

Even though this bound is already optimal for our pur-
poses, using an amortized analysis we can show a better
result for MINCUTLAZY over certain acyclic graphs.

On each invocation, let $° be the value of S in the parent
invocation, which satisfies $°* C S. Then, N(S) can be

2This test can be tweaked to avoid false negatives for bicon-
nected components of size three.



calculated incrementally as
N(8) = N(S™)U{N(v) [v e (S\ S\ S

which takes time O(|S\ S°®|) because N (v) can be obtained
in constant time from the bitmap representation of G. The
usability test on line 5 can also be performed in time O(|S'\
S°|) using Algorithm 5. On invocations in which T°* is
reused, Dr(v) and Ar(v) can be calculated lazily as

Dr(v) = Droa(v)N(V\S)
Ar(v) = Apoa(v) N (V\ S)

which incurs only a constant overhead. On invocations in
which BUILDBCCTREE is called to build a new T, a single
depth-first traversal of T suffices to precompute Dr(v) and
Ar(v) for all v € (V'\ S) in time O(|E|); alternatively, this
precomputation can be added into BUILDBCCTREE without
affecting its O(|E|) time complexity. Calculation of P can
be done in time proportional to |[N'(S)|. Therefore, the total
time for Algorithm 4 to output all of the cuts of an arbitrary
graph has the form O(s + N + t|E|) where s is the sum of
the new nodes added to S over all invocations, N is the sum
of [N(9)| over all invocations, and ¢ is the total number of
biconnection trees built.

Now consider acyclic graphs. Let ¢ be the total number
of minimal cuts. First of all, |E| = ¢. Next, it is easy to
verify that the usability test always returns true; therefore,
MINCUTLAZY requires only one call to BUILDBCCTREE (i.e.
t = 1). Finally, when Dr(v) is added to S on line 12, it
entails that S will contain precisely a subtree of G rooted at
v, and so |[N(S)| = 1. The only exception is the root invo-
cation where S = &, in which case |[N(@)] = [V \ {t} = ¢
Therefore, the value of N does not exceed twice the number
of cuts, which means that for any acyclic graph the total
time required for MINCUTLAZY is O(s + ¢).

In the worst case, s € ©(|V|?) for acyclic graphs. The
reader can verify that if G is a left-deep binary tree rooted
at ¢ and line 10 always enumerates the child nodes in order
from the top-right to the bottom-left, then there are ‘V‘TH
recursive invocations at depth one which each add one node
to S, but there are ‘V‘T*B recursive invocations at depth two
which each add an entire subtree of G to S. This yields

2
s=1+ ‘V‘Tfl , which means that MINCUTLAZY can re-

quire Q(|V|) amortized time per cut even though only one
biconnection tree is built.

For chains, the biconnection tree T is degenerate and never
branches except at the root. This has the effect that on every
recursive iteration the pivot set contains only leaves, and so
|Dr(v)] = 1 on every execution of line 12. Therefore s = ¢,
which means that MINCUTLAZY runs in O(1) amortized time
per cut for chains.

Now consider stars. If ¢ is the hub, then there are |V|—1
recursive invocations at depth one which each add one node
to S, and they all terminate at line 3. Therefore s = |V| —
1 = c. If ¢ is not the hub, then there are |V| — 2 recursive
invocations at depth one which each add one node to .S, but
only the first one makes it past line 3. On that invocation the
only pivot is the hub, and so on line 12 the rest of the star is
added to S, which causes the child invocation to terminate
at line 3. Therefore s = (|V|—2)+(|V|—-2) = 2(c—1), which
means that MINCUTLAZY runs in O(1) amortized time per
cut for stars.
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Figure 2: Minimal Cuts of Acyclic Graphs (C=0)

3.3.2 Optimistic Cutting

Algorithm 6 shows a much simpler partitioning algorithm
that replaces the use of biconnection trees with a connec-
tivity test. Although it uses a generate-and-test paradigm
to some extent, the recursive backtracking used to grow S
limits the number of failed tests to neighbours of S and so
avoids the potential exponential number of failures of the
naive partitioning algorithm in Section 3.2.

Analysis: Each invocation outputs one cut and performs
up to O(|V'|) connectivity tests costing O(|V]) each, yielding
a bound of O(|V|?) per cut. This analysis is not necessarily
tight in an amortized sense, however, because the cost of
each successful connectivity test on line 6 can be charged
forward to the recursive invocation on line 7.

The total cost to output all cuts has the form O((c+F)|V])
where c is the total number of cuts (and successful connec-
tivity tests), and F is the total number of failed connectivity
tests. F' depends heavily on both graph topology and the
order in which line 4 is enumerated. For cliques F' = 0,
while for acyclic graphs F' < ¢; both of these cases the yield
an amortized cost for Algorithm 6 of ©(|V]) per cut. In the
worst case (e.g. a spoked wheel in which the hub is the first
element added to S), F' € ©(c|V|) and so Algorithm 6 has
an amortized cost of @(|V|?) per partition.

3.3.3 Minimal Cut Evaluation

To validate the performance of Algorithm 4 empirically,
we report on our experimental comparison between algo-

rithms MINCUTEAGER, MINCUTLAZY, and MINCUTOPTIMISTIC.

Some of our datasets contain randomly-generated graphs.
These random graphs are generated incrementally with dif-
ferent values for the factor C, which controls the degree of
cyclicity—with probability C' a generated edge connects two
existing vertices, while with probability 1 — C it connects a
new vertex to the graph.

Figures 2-5 compare the total CPU time required by each
algorithm to enumerate all minimal cuts for random acyclic
graphs (C=0), random cyclic graphs (C=.4), cliques, and
spoked wheels. Note the drastically varying scales on these
graphs, caused by the relationship between cyclicity and
number of minimal cuts. Because the number of minimal
cuts (and hence the CPU time) of random graphs can vary
significantly, for Figures 2 and 3 we generated 100 random
graphs for each size and report mean performance.
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"MincutOptimistic —— cliques MINCUTLAZY performs identically to MINCUTEAGER
F MincutLazy - i (albeit much worse than MINCUTOPTIMISTIC). The experi-
MincutEager - i ments on spoked wheel graphs demonstrate that there do ex-
{ ist topologies for which the MINCUTOPTIMISTIC scales worse
than both MINCUTEAGER and MINCUTLAZY. However, the
,,7 effect only shows up for large graphs; as well, in all exper-
| % | iments on random graphs MINCUTOPTIMISTIC always out-
performed MINCUTEAGER.

Because the degree of cyclicity in real-world database work-
loads is very low, we conclude that MINCUTLAZY is the best
partitioning algorithm for join enumeration. By combin-
ing Algorithm 4 with Algorithm 1 we obtain an optimal
top-down join enumeration algorithm for the space of bushy
trees without CPs. Note that MINCUTOPTIMISTIC would
also be a viable alternative as it is much simpler to imple-
ment and appears to perform well in practice; however, in
the worst case it is a linear factor worse than optimal.
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Figure 4: Minimal Cuts of Clique Graphs

3.4 Join Enumeration Experiments

We have just shown how to optimally generate the set
of partitions that a top-down join enumeration algorithm
needs to examine on each recursive call. In this subsection
we demonstrate empirically that top-down search algorithms
created using Algorithm 1 are competitive with comparable
bottom-up dynamic programming algorithms.

We implemented several algorithms within a shared opti-
mization framework that we wrote in Java, using as many
12 T T T T T shared classes as possible to make comparisons equitable.
Table 1 shows the search algorithms that we implemented
and the names by which we will refer to them. Our frame-
work implemented three different physical join operators, as
well as a simple I/O cost model based on textbook formu-
lae [5]; interesting orders were not implemented. All algo-
rithms were tuned using a Java profiler.

For ease of comparison, throughout this subsection we
report normalized CPU times relative to the optimal top-
down partitioning search algorithm.

As predicted by our previous analysis, MINCUTLAZY is
vastly superior for acyclic graphs. As the degree of cyclicity
increases, the benefits of lazy construction degrade grace-
fully: for random cyclic queries (C=.4) MINCUTLAZY is
only slightly worse than MINCUTOPTIMISTIC but still much
better than MINCUTEAGER, whereas in the extreme case of

[ee]
T

CPU Time (sec)
[e2]

2 r MincutQ ""‘m_i_s_,tic"’ 1 CP-Free Left-Deep Plans. Figure 6 compares the per-
R/ImcutEager ; formance of the optimal top-down partitioning algorithm
0 ‘ = ! TLNwMc with the algorithms TLNNAIVE and BLNSIZE over

0 20 40 60 80 100 120 chain queries.
Graph Size (vertices) In theory, both TLNNAIVE and BLNSIZE are suboptimal
for chain queries because for every enumerated join opera-
Figure 5: Minimal Cuts of Wheel Graphs tor they incur a ©(|V|?) cost testing connectivity on a lin-
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Left-Deep Bushy
Type | Enumeration Style No CPs | CPs No CPs | CPs
Bottom | Size Driven (Section 2.1) BLNSIZE BLCsI1ZE BBNSIZE BBCsIZE
Up Naive Partitioning (Section 2.2) - - BBNNAIVE | BBONAIVE
Connected-subgraph Complement Pairs (Section 2.1) - - BBNccp -
Top Naive Partitioning (Section 3.2) TLNNAIVE | TLCONAIVE | TBNNAIVE | TBCNAIVE
Down | Minimal Cuts (Section 3.3) TLNMC - TBNMC -
Table 1: Implemented Algorithms
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ear number of cartesian products (compared with TLNMC’s
O(|E|) cost to identify the articulation points). In prac-
tise, for every join operator enumerated in our experimental
framework an algorithm must expend a significant constant
overhead using floating-point operations to cost three phys-
ical join operators. Figure 6 demonstrates that for query
sizes of practical interest in join enumeration, the difference
between expending ©(|V|?) and ©(|E|) per join operator in
the enumeration is modest due to the high constant over-
head.

Figures 7 and 8 show similar experiments over star queries
and randomly-generated cyclic queries, respectively. We ob-
serve that the results are similar to those observed for chain
queries, and so we conclude that the added value of optimal
partitioning is negligible for CP-free left-deep plans.

CP-Free Bushy Plans. Consider the bottom-up algo-
rithms BBNsize, BBNccp, and BBNNAIVE in comparison
to the top-down algorithms TBNNAIVE and TBNmc. A
comparison of their performance on star queries is shown in
Figures 9. Based on these results, we make two observations.

First, the behaviour of the BBNsizE, BBNNAIVE, and
BBNccp matches published analytical and empirical re-
sults [11], although the effect of the suboptimal enumeration
takes longer to show up in our experiments. This latent ef-
fect is likely due to the (realistic) constant overhead for plan
generation and costing in our optimization framework.

Second, the performance of each top-down algorithm ex-
actly mirrors the analogous bottom-up algorithm. TBNNAIVE
and BBNNAIVE have the same suboptimal time complexity,
and their performance is indistinguishable. TBNMcC and
BBNccp are both optimal, and their performance is also
indistinguishable. There is no top-down algorithm analo-
gous to BBNSIZE; it is shown here for comparison because

Figure 8: Left-Deep Optimization of Cyclic Queries
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Figure 9: Bushy Optimization of Star Queries
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Figure 11: Bushy Optimization of Clique Queries

bottom-up size-based enumeration is widely implemented.
We also tested chains, cliques, cycles, and randomly gen-
erated queries (C = 0,.1,.4) and found the results to con-
sistent with previous work [11]; some of these results are
shown in Figures 10-12. Notably, for cliques the algorithms
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Figure 12: Bushy Optimization of Cyclic Queries
(C=.4)

BBNNaA1vE, TBNNAIVE, BBNccp and TBNMc are all opti-
mal, and Figure 11 shows them all to be competitive within
a small constant (10-15%). This shows that the overhead
in Algorithm 4 is negligible even for cliques, which are its
worst-case input.

4. BRANCH-AND-BOUND PRUNING

In the previous section we showed that optimal bottom-up
dynamic programming and top-down partitioning search al-
gorithms have virtually identical performance when exhaus-
tively enumerating a space of join plans. In this section we
show that by integrating branch-and-bound pruning into the
backtracking search, top-down partitioning search can avoid
exhaustive enumeration while still guaranteeing optimality.

Branch-and-bound pruning is a well-known technique for
backtracking search optimization algorithms. The algorithm
maintains the cost of the best solution found so far (the up-
per bound U) and estimates the cost of the best solution ob-
tainable from the current partial solution (the lower bound
L). As long as L is a conservative estimate, the current
partial solution can be safely abandoned whenever U < L.
The beauty of branch-and-bound is that it is risk-free—in
the worst case, it degrades gracefully into exhaustive search
with a small constant overhead for the estimation function.

We report on our experience with two different bounding
strategies found in the join enumeration literature, which we
call accumulated-cost and predicted-cost bounding. One of
these techniques yielded significant performance gains, while
the surprisingly dismal performance of the other raises some
interesting questions.

4.1 Accumulated-Cost Bounding

Backtracking search join enumeration algorithms build
physical plans incrementally by optimizing one join oper-
ator at each node of the search tree. In accumulated-cost
bounding, U is the cost of the best complete join plan found
so far, and L is the accumulated cost of the join operators
fixed as the algorithm traverses down its search tree; both
of these quantities are passed down on each step. This ap-
proach is used explicitly in the prefix search of Sybase SQL
Anywhere [3]. An equivalent variant preferable for divide-
and-conquer approaches is implicit in the search of Volcano,
Cascades, and Columbia [8, 6, 20]. Rather than passing
down both U and L, those systems pass down a “budget”
(i.e. the quantity U — L). At each step the budget is decre-
mented by the cost of the current join operator, and search
is curtailed if the budget reaches zero.

Partitioning search uses divide-and-conquer, so accumu-
lated-cost bounding can be integrated by modifying each
procedure in Algorithm 1 to accept a cost budget B and
to return a failure if a plan with cost meeting B cannot
be found. The resulting algorithm is shown in Algorithm 7.
Observe that whenever the modified GETBESTPLAN receives
a failure on lines 6 or 7, it stores B in the (empty) cell
Memo[V,0]; this allows future invocations to immediately
return failure if the given budget does not exceed B.

4.2 Predicted-Cost Bounding

Whereas accumulated-cost bounding is based on passing
down information from above, predicted-cost bounding is
based on hypothesizing what lies below. The upper bound
U is the cost of the best plan found for the current logical
expression; every time the search algorithm descends, it be-
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gins anew with U = oo until the first plan for that logical
expression is obtained. A lower bound L is predicted for
each possible branch, and only promising ones are explored.
Without exploring a subtree, cost prediction can only be
based on logical properties of the subexpression.

Given a lower bound function, adding predicted-cost bound-

ing to top-down partitioning search requires only replacing
line 5 of CALCBESTJOIN in Algorithm 1 as follows.

do if LOWERBOUND(G, GRr) < CoST(BestPlan)

Predicted-cost bounding can also be easily combined with

then for each operator G, X; Gr satistying o

accumulated-cost bounding. To do so, line 8 of CALCBESTJOIN

in Algorithm 7 is modified as follows.

do if LoWERBOUND(Gr,GRr) <
MIN(B, CosT(BestPlan))

Clearly the definition of a lower bounding function is com-
pletely dependent upon the cost model. As mentioned ear-
lier, our cost model was based on I/O [5]. Because our
formulae include the I/O cost of reading the join inputs, we
implemented a simple lower bound based on intermediate
result size; in other words, the lower bound for G X GR is
proportional to the I/O cost of scanning G and Ggr, with
base relations given a cost of zero®.

Predicted-cost bounding was the main contribution of the
Columbia system [20]. Because Columbia was built on top
of Cascades, its branch-and-bounding is a actually combi-
nation of accumulated-cost and predicted-cost—notably, it
passes in the upper bound as a cost budget, rather than
initializing U = oo as we describe here.

4.3 Branch-and-Bound Experiments

In order to compare the two different bounding strate-
gies just presented, we extended the optimal top-down algo-
rithms TLNMC and TBNMC from Table 1 with accumulated-
cost bounding, with predicted-cost bounding, and with a
combination of accumulated- and predicted-cost bounding.
We identify each variant by appending the algorithm name
with an A, P, or AP, respectively. We present here only
the results for CP-free search spaces; results for cartesian-
products are reported in Section 5.

Unlike exhaustive enumeration, the enumeration time of a
branch-and-bound algorithm depends not only on the graph
topology, but also on the relation cardinalities and join selec-
tivities. Hence, for all of our experiments involving branch-
and-bound algorithms the input is given as a (vertex and
edge)-weighted graph. Vertex weights are generated as 10%,
where X is drawn from a Gaussian distribution with 4 =25
and o = 2. This distribution gives a realistic mixture of re-
lation cardinalities: 66% between 1k and 10M, 17% <1k,
and 17% >10M (which roughly describes a TPC-H instance
with scale-factor 10). The distribution of edge weights, rep-
resenting join selectivities in the range [0,1), was carefully
chosen based on the ratio of edges to vertices so that the ex-
pected cardinality of the final result (I],., cardinality(v) *

[1.c selectivity(e)) is described by 10" where Y follows a

3Base relations are given zero cost because by using an in-
dex, a join plan could avoid touching every tuple in the
relation. This is not true for intermediate results.
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Figure 13: Storage Size: Star Queries, Left-Deep

Gaussian distribution with g =5 (albeit with ¢ > 2, which
is unavoidable). Such edge selectivities yield join inputs and
join results with the same expected cardinalities, which is
aesthetically pleasing, and also pose a worst-case scenario
for branch-and-bound pruning. These selectivities minimize
the impact of subexpression size (number of relations) on ex-
pected cardinality?, thereby reducing the variance in the ex-
pected costs of the different possible partitions. In contrast,
overly small edge selectivities bias the cost model towards
left-deep join trees, while overly large edge selectivities bias
towards balanced bushy trees.

431 SworageSze

We first consider how branch-and-bound pruning affects
the number of plans stored in the memo table. Figures 13
and 14 show the (normalized) storage cost of optimizing star
queries within the left-deep and bushy spaces, respectively.
For the exhaustive and predicted-cost algorithms we count
the number of table cells storing a plan, while for accu-
mulated-cost algorithms the line labelled “(p)” counts cells
storing a plan, while the line “(p+1b)” counts cells storing ei-
ther a plan or a lower bound. We only report our results for
star queries; experiments on other graph topologies yielded
similar results. Because the branch-and-bound pruning de-
pends upon the randomly generated weights, all data points
for branch-and-bound algorithms reported in this paper are
the mean value over 25 different weighted graphs, normal-
ized by the mean value for the optimal exhaustive algorithm
(which grows ©(2") for both left-deep and bushy spaces).

The pattern is identical in the left-deep and bushy spaces:
accumulated-cost bounding drastically reduces the number
of stored plans, with the reduction steadily increasing with
expression size. The total pruning of storage (plans + lower
bounds) is much less, however, and reaches a plateau around
80% reduction in these experiments. This plateau is likely
due to an increasing number of suboptimal plans that are
good enough as to require exploration of most of the plan be-
fore the bound is strong enough to allow pruning. The num-
ber of stored plans for predicted-cost bounding has a curve
similar to the total storage for accumulated-cost bounding,
but the pruning is consistently weaker, reaching a plateau
around 70% reduction in these experiments. The combina-

4This bias cannot be completely eliminated because the av-
erage edge-to-vertex ratio varies with subexpression size.
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Figure 15: CPU Time: Star Queries, Left-Deep

tion of the two techniques is no more effective than accu-
mulated-cost bounding by itself.

It is to be expected that accumulated-cost bounding yields
better pruning. Accumulated-cost lower bounds are derived
from actual physical plan costs, while predicted-cost lower
bounds are based solely upon logical properties and are nec-
essarily weak in order to guarantee that the estimate remains
conservative. Our experiments use a simple I/O cost model;
as the complexity of the cost model increases, the difference
in pruning between accumulated- and predicted-cost bound-
ing is expected to grow (due to the increasing difficulty of
predicting costs using only logical properties).

432 CPU Time

We now consider the effect of branch-and-bound pruning
on algorithm run time. Figures 15 and 16 compare the CPU
cost of optimizing star queries within the left-deep and bushy
spaces, respectively. Because the exhaustive algorithms for
both left-deep and bushy spaces consider ©(n) join opera-
tors per cell in the memo table, it is reasonable to expect
that pruning of storage directly translates into comparable
reductions in CPU time. In fact, the study of branch-and-
bound effectiveness within Columbia reports only the num-
ber of stored expressions, contending it allows for a platform-
independent comparison of system performance [20].

In both the left-deep and bushy spaces, observed-cost
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Figure 17: CPU Time: Chain Queries, Left-Deep

bounding initially leads to improvements in CPU time, but
as query size increases this improvement quickly disappears
until the bounding has devastating negative effects! These
results are shocking, considering both our earlier character-
ization of branch-and-bound as “risk-free” and the preva-
lence of accumulated-cost bounding in the literature! In con-
trast, predicted-cost bounding reduces CPU time approxi-
mately in proportion to the pruning of stored plans, hit-
ting a plateau around 90% reduction in these experiments.
The combination of the two methods is almost as bad as
accumulated-cost bounding by itself.

Upon further study, we observe that by passing down
upper and lower bounds from above (equivalently, a bud-
get), accumulated-cost bounding contextualizes the opti-
mization of each subexpression, which undercuts the divide-
and-conquer foundation of memoization. The optimality of
TBNMC depends upon exploring the search tree of each log-
ical expression once only. By changing the search algorithm
to leave a subtree in defeat when the budget is exhausted,
we allow for the same logical expression to be re-optimized
multiple times; this shatters the optimality of the enumera-
tion.

Figures 17 and 18 present results for experiments over
chain queries. In general, branch-and-bound pruning is not
particularly effective for chain queries due to the small search
space. For left-deep plans the three bounding strategies have
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Figure 18: CPU Time: Chain Queries, Bushy
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Figure 19: CPU Time: Cyclic Queries (C = .4), Left-
Deep

similar performance, but for bushy plans we observe that
accumulated-cost pruning performs worse than predicted-
cost, although it never has negative effects. Figures 19
and 20 show the results for random cyclic queries. For left-
deep plans the bounding strategies again perform similarly,
with the combination performing slightly better than each
strategy on its own. For bushy plans we again see that
accumulated-cost bounding performs much worse, eventu-
ally achieving a negative effect.

Our results raise the interesting question of why accu-
mulated-cost bounding is implemented in several existing
systems. SQL Anywhere’s prefix search does not use memo-
ization, and so our findings do not apply—without branch-
and-bound that algorithm already incurs redundant compu-
tation. The more intriguing question is what the true effect
of accumulated-cost bounding is within transformational op-
timizers. From the previous section we know that the num-
ber of unique logical expressions enumerated is remaining
fairly constant at around 20% of the table, so the spike in
CPU time in Figures 15 and 16 is due to a drastic increase
in the number of times that each logical expressions is being
re-enumerated; this pattern of increasing frequency of re-
enumeration is likely to exist in any search algorithm com-
bining accumulated-cost bounding with memoization. In
top-down partitioning search, each time a logical expression
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Figure 20: CPU Time:
Bushy

Cyclic Queries (C = .4),

is re-enumerated it incurs the full price of the partition-
ing function as well as the expense of creating and costing
physical join operators that may have been previously dis-
carded. Without a more detailed study, it is unclear the
extent to which similar costs are incurred within transforma-
tional enumeration. On one hand, it might be possible that
by saving every derived plan in the memo (as compared to
only optimal plans) a transformational optimizer minimizes
the redundant work performed by re-enumeration. On the
other hand, previous experiments [20, 8] may not have been
detailed enough to uncover adverse performance due to re-
dundancy in the enumeration if it exists.

5. FURTHER EXTENSIONS

The foundation of bottom-up dynamic programming is
the assumption that the optimal plan must be precalculated
for every logical subexpression. In contrast, it is by making
these calculations in a demand-driven fashion that top-down
algorithms enable the branch-and-bound pruning discussed
in the previous section. In this section we discuss another
benefit of demand-driven computations: the ability to ex-
ploit pre-existing partial information to shape the search.
As part of this discussion, we also give performance results
over search spaces containing cartesian-products.

5.1 Flexible Memo Tables

Consider the chain query Q1 = A X B X C. After opti-
mization, the dynamic programming table contains optimal
plans for the expressions A, B, C, AB, BC, and ABC.
Now suppose that a second chain query Q2 = BX C X D is
submitted to the optimizer. A bottom-up dynamic program-
ming optimizer cannot avoid re-deriving plans for B, C, and
BC. In contrast, consider a top-down optimizer that begins
its search using the table left over from @1: upon descending
from ABC to BC it finds a plan already in the table and so
avoids optimizing an entire subtree.

The above example raises questions about the proper struc-
turing of a dynamic programming/memo table. All algo-
rithms presented in Section 2 require a data structure pro-
viding constant-time lookup by logical expression. Whereas
all of the bottom-up methods write blindly and later per-
form a guaranteed read, top-down partitioning search uses
the table as a cache. This caching analogy questions the
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Figure 22: CPU-Storage Trade-off, TLNMCA

traditional assumption that a fresh table should be used for
optimizing each query.

One reason to use a separate data structure per query
is to simplify the access. For example, in Algorithm 1 we
assume that the memo is keyed only by the set of relations;
obviously this would introduce errors if the queries 1 and
Q2 shown above had different predicates on tables B or C.
Solving this problem simply requires keying the access using
a canonical representation of the entire logical expression,
which introduces only a minor penalty per access.

The other main reason to use separate tables is to make it
easy to delete the contents after optimization completes. All
previous algorithms in the literature require that all optimal
subplans be retained until the algorithm has finished using
them. Bottom-up methods would fail if an intermediate
expression was deleted before a larger expression depending
upon it was calculated. Even top-down transformational
systems are rigid on this point, because transformations are
applied against expressions already in the memo table, so
deleting an expression too early causes transformations to be
missed and the search space to be curtailed. In contrast, top-
down partitioning search degrades gracefully if a subplan
goes missing; it simply recalculates it.

A system could realize two potential benefits by treating
the memo table as a global plan cache. First, it would pro-
vide a simple method for avoiding redundant computations
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Figure 24: CPU-Storage Trade-off, TLNMCAP

between optimization of similar queries. In Section 1 we mo-
tivated our focus on SPJ queries by noting that we expect
the physical optimizer to be called repeatedly by the logi-
cal optimizer. Chaudhuri et al. [4] noted that integrating
view rewriting directly into the physical join enumeration
led to sizable gains over generating all the logical rewritings
and optimizing them independently. Using our proposed ap-
proach, however, view rewriting could be implemented as a
logical optimization, yet avoid performing redundant work
between the physical optimization of different rewritings.

The second benefit would be flexible memory manage-
ment. There is a disparity in the memory cost of the ap-
proaches discussed in Section 2. Bottom-up dynamic pro-
gramming uses 2(2") memory for storing optimal plans,
but top-down transformational algorithms are significantly
worse, using (3™) memory because they require storing ev-
ery plan. On the other extreme, prefix search uses O(n)
memory but blows up the search space of left-deep join
trees to ©(n!). Partitioning search requires £2(2") memory
to attain optimal time complexity, but the graceful memory
degradation means that depending upon available memory
it can be tuned to trade space for time. The memo could be
implemented with any cache eviction policy, possibly using
the logical descriptions of the current queries in the system
to weight the eviction priorities.

To illustrate the effect of trading space for time, we per-



formed a series of experiments using the four left-deep algo-
rithms tested in Section 4.3. Each algorithm was modified to
accept as input an integer indicating the maximum number
of cells in the table it was allowed to populate, and a simple
LRU eviction policy was added to keep the number of popu-
lated cells in the memo table below the given maximum. A
cell is considered populated if it stores either a query plan
or (for accumulated-cost variants only) a lower bound. For
each query size, we precalculated the number of populated
cells required for optimal enumeration of a star query using
Ono and Lohman’s formulae [14]. For each algorithm, we
optimized star queries of varying size using thresholds that
were 100%, 25%, 10%, 5%, 1%, and 0% of the precalculated
requirement. When the threshold is 100% an algorithm is
maintaining the LRU list but never evicts anything, while
with 0% it never stores anything and recomputes every ex-
pression on demand.

Figures 21 through 24 show for each algorithm how the
execution time increases as the allowable storage is reduced.
For consistency with results previously reported in the pa-
per, these graphs report the mean execution normalized
against the optimal top-down left-deep algorithm TLNMC
(original version). We make two observations. First, in Fig-
ure 21 we see that reduction of storage leads to an expo-
nential increase in the CPU time of exhaustive enumeration
due to re-computation of evicted plans, with the base of the
exponential factor dependent upon the relative reduction
in storage. Second, the other figures show that all three
branch-and-bound algorithms exhibit a similar exponential
increase as storage is reduced, although the relative increase
is slightly less than for the exhaustive case. This is likely
because the branch-and-bound pruning already reduces the
number of cells populated in the table (see Section 4.3.1),
so the impact of a fixed storage limit is lessened.

Figures 25 through 30 show the results of the same ex-
periments, this time grouped by storage threshold and nor-
malized by the execution time of the exhaustive algorithm
with that threshold. This allows us to compare the four
algorithms in each storage context. With 100% storage the
results are identical to those in Section 4.3. As the amount of
allowed storage is decreased to 25%, predicted-cost bound-
ing improves relative to exhaustive enumeration because,
as just described, the reduction in storage impacts it less.
However, this effect tapers off as the storage limit decreases
further, and the relative performance of TLNMCP is similar
for all storage limits below 10%.

In contrast, accumulated-cost bounding (TLNMCA and
TLNMCAP) exhibits a steady relative improvement as stor-
age is decreased. There are several factors in play here.
Much of the improvement from 100% to 25% is likely for the
same reason as described above—the reduction has less im-
pact because accumulated-cost algorithms never used 100%
of the table in the first place due to pruning; however,
as with predicted-cost pruning, we would expect that ef-
fect to taper off for lower storage limits. As described in
Section 4.3.2, with 100% storage there is interference be-
tween accumulate-cost pruning and memoization because an
accumulated-cost algorithm potentially visits a logical ex-
pression multiple times (with different cost budgets), while
the exhaustive algorithm TLNMC only visits each expression
once; this accounts for the poor performance of TLNMCA
and TLNMCAP in Figure 25. However, as the storage limit
decreases, TLNMC also begins re-visiting logical expressions
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Figure 30: Star Queries, 0% Storage
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that have been evicted. Therefore, as the storage limit de-
creases, the interference between accumulated-cost pruning
and memoization also decreases because memoization is be-
coming less effective. In the extreme case of 0% storage
(Figure 30), no memoization takes place and TLNMC re-
visits an expression for every possible use; in this case any
pruning performed by accumulated-cost bounding is guar-
anteed to reduce the number of expressions visited.

As observed in Section 4.3.1, accumulated-cost bounding
uses actual physical plans to derive lower bounds, and so
the bounds are significantly stronger than those derived by
predicted-cost bounding, which uses only logical properties.
Therefore, with no storage we expect that accumulated-cost
bounding will always be superior to predicted-cost bound-
ing, which is indeed the case in Figure 30 (and in Fig-
ure 29 with 1% storage). One of the most interesting re-
sults of these experiments, however, is that accumulated-
cost bounding is only dominant over predicted-cost bound-
ing when using very low amounts of storage (j5% in our
experiments). For contexts where more memory is used, the
interference between accumulated-cost bounding and mem-
oization is significant enough that savings due to stronger
pruning are eventually out-weighed by an increased frequency
in re-visiting logical expressions.

5.2 Multi-Phase Optimization

Query optimization requires balancing the conflicting goals
of optimization speed and plan quality. One way to manage
this trade-off is to optimize a query in an iterative fashion,
using successively larger search spaces until a plan of de-
sired quality is found. This raises the interesting question of
whether the optimizer can exploit the results of one phase
to speed up a later phase. Before we explore that question,
we will first compare the different search spaces directly.

Table 2 presents enumeration costs of various search spaces
for stars and randomly generated queries. Enumeration al-
gorithms are grouped by search space; the first row of each
group shows the number of join operators in the search
space® (for randomly generated queries, we report the mean
across 25 random instances). Subsequent rows show the
mean CPU time required to optimize the queries by differ-
ent algorithms implemented in our Java prototype; timings
are for a P4 3.0GHz machine with 1GB RAM.

The first algorithm in each group uses the optimal top-
down partitioning algorithm from Section 3.4 to explore
the respective space exhaustively. While making no claims
about transferability of absolute CPU times, we posit that
the first algorithm is conceptually competitive with any ex-
haustive algorithm over the same search space, which in-
cludes all bottom-up dynamic programming methods.

The second algorithm in each group extends the first with
predicted-cost bounding (Section 4.2). Note that the prun-
ing is dependent on many factors, including the cost model,
the lower bound function, the statistical properties of both
the queries and the data, and the distribution of plan qual-
ity within the chosen search space. Section 4 only showed
results for the CP-free spaces, but pruning is actually much
more effective in spaces containing CPs because CPs gener-
ally introduce very many bad plans that are easy to prune
away early. Relative comparisons between predicted-cost
pruning in the space of bushy plans with CPs (TBCNAIVEP)

SNumbers vary slightly from earlier formulae [14] because
we count A X B and B X A separately.



Search Space (join ops) Star Queries Random Acyclic (C=0) Random Cyclic (C=.4)
Algorithm (sec) 5 10 15 20 5 10 15 20 5 10 15 20
Left-Deep CP-free 36.0 2318 1.1e5 5.0e6 | 24.2  }15 5.8e3  71.8e4 | 31.8 856 2.1ed  4.7e5
TLNwMmc 1.2e-4 8.9e-3 0.51 21.0 7.5e-5 1.7e-3 3.6e-2 0.51 1.0e-4 4.2e-3 0.17 3.50
TLNwMmcP 7.1le-5 2.5e-3 0.14 4.81 5.6e-5 7.8e-4 1.4e-2 0.17 7.3e-5 1.5e-3 4.3e-2 0.85
Bushy CP-free 64.0 4.6e3  2.3e5  1.0e7T | 47.0 1.2¢8 1.8¢4 2.5e5 | 63.5 3.0e3 1.4e5  5.0e6
TBNwMmC 2.1e-4 1.7¢-2 0.91 36.5 1.3e-4 4.0e-3 7.9e-2 1.14 2.0e-4 1.4e-2 0.88 30.6
TBNwMmcP 1.1e-4 4.6e-3 0.22 7.14 9.1e-5 1.5e-3 2.2e-2 0.26 1.2e-4 2.5e-3 9.4e-2 3.50
Left-Deep with CPs 75.0 5.1e8  2.5e5 1.0e7 | 75.0 5.1e38  2.5e5  1.0e7 | 75.0 5.1e8  2.5e5  1.0e7
TLCNAIVE 2.0e-4 2.4e-2 1.72 89.9 1.8e-4 2.3e-2 1.76 89.4 2.0e-4 2.5e-2 1.89 96.8
TLCNAIVEP 8.0e-5 2.7e-3 0.18 5.60 8.0e-5 3.8¢-3 0.15 3.63 9.8¢-5 3.5¢-3 0.16 5.03
TLNMC+TLCNAIVE 3.3e-4  3.6e-2 2.19 111 2.7e-4  2.6e-2 1.82 90.2 3.1e-4  3.1e-2  2.09 100
TLNMCP+TLCNAIVEP 1.2e-4 4.5e-3 0.23 7.87 1.0e-4 2.8e-3 0.12 2.85 1.2e-4 2.5e-3 0.12 4.14
Bushy with CPs 180 5.7¢4 1.4e7 3.5¢9 | 180  5.7e4 14e7 3.5¢9 | 180  5.7¢4 1.4e7  3.5¢9
TBCNAIVE 5.1e-4 0.27 99.9 3.1e4 | 3.8e-4 0.25 97.6 2.8e4 | 5.7e-4 0.31 97.3 3.1ed
TBCNAIVEP 1.4e-4 14e-2 2.30 452 l.4e-4 1.4e-2 1.26 183 1.5e-4 1.0e-2 1.12 195
TBNMCc+TBCNAIVE 7.1e-4 0.30 100 3.0e4 | 4.9e-4 0.26 97.0 2.8e4 | 8.1e-4 0.34 98.5 3.1ed
TBNMCP+TBCNAIVEP || 2.1e-4 1.6e-2 1.82 335 1.8e-4 1.1e-2 0.92 153 2.0e-4 6.9e-3 0.77 148

Table 2: Absolute Cost of Enumerating Various Search Spaces

versus exhaustive search of the left-deep (TLCNAIVE) or CP-
free spaces (TBNMC) are consistent with those reported by
Shapiro et al. [20] for the Columbia system (they report the
number of join operators enumerated instead of CPU time,
but similar patterns are evident).

The disparity between search space sizes in Table 2 re-
inforces the efficacy of incremental optimization. Consider,

however, an application demanding the globally optimal plan.

A bottom-up optimizer has no reason to search a smaller
space before exploring bushy plans with CPs, because any
optimal plan in a smaller space may be suboptimal relative
to the larger space and needs to be recalculated. This is not
true for a top-down algorithm that uses branch-and-bound.
Any suboptimal plan provides an upper bound that could
enhance the pruning, especially if this upper bound is some-
what close to globally optimal (as we might expect of the
optimal plan in one of the smaller spaces).

For each space containing cartesian products we consider a
two-phase optimization strategy where the first phase finds
optimal CP-free plans that are used only as initial upper
bounds for the second phase. The third algorithm in each
group performs exhaustive enumeration in both phases, il-
lustrating the worst-case scenario where no pruning occurs
so the first phase was completely wasted. The only timings
in Table 2 where a significant overhead is observed is for
left-deep plans over star queries. In all other cases, the first
phase adds only a small percentage to the overall cost. The
fourth algorithm in each group uses predicted-cost pruning
in both phases. Except for the left-deep plans over star
queries, all other timings show that the first phase pays for
itself with about a 20% improvement in the second phase for
larger queries. Considering that there are other compelling
reasons to optimize a query progressively, this performance
gain is effectively free for a top-down optimizer that can
leverage the partial information from a previous phase.

6. SUMMARY

Top-down partitioning search is a framework for join enu-
meration analogous to bottom-up dynamic programming.
By taking existing algorithms for the minimal cut prob-
lem and tuning them for the join enumeration context, we
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have presented the first top-down join enumeration algo-
rithm with space and time complexity that is optimal with
respect to the join graph. Our optimal enumeration inte-
grates easily with branch-and-bound pruning or demand-
driven interesting orders, yielding an algorithm for enumer-
ating bushy join trees that is significantly faster than previ-
ous methods. Finally, we have described techniques for ex-
ploiting partial information that are unavailable to bottom-
up methods, and we have explained how top-down partition-
ing search is the first dynamic programming-based algorithm
to be robust to memory constraints, allowing for a flexible
trade-off between storage size and optimization time.
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Algorithm 1 Top-Down Partition Search

GETBESTPLAN(G, 0)

1
2
3
4
5

> Input: join graph G = (V, E)

> Input: interesting order o

> Returns: optimal plan satisfying o

if MemolV, o] is empty

then if |[V| =1

then Memo[V, o] < CALCBESTSCAN(G, 0)
else MemolV, 0] «— CALCBESTJOIN(G, 0)

return MemolV, o]

CALCBESTSCAN(G, 0)

1
2
3
4
5
6
7
8

> Input: trivial join graph G = ({R},9)
> Input: interesting order o
> Returns: optimal scan satisfying o
BestPlan <« NULL > Let COST(NULL) = 0o
if 0 # @ > Start with plan that enforces o by sorting
then BestPlan «— SORT,(GETBESTPLAN(G, 9))
for each operator OpScan;(R) satisfying o
do CurrPlan <+ OpScan;(R)
if CosT(CurrPlan) < CoST(BestPlan)
then BestPlan < CurrPlan
return BestPlan

CALCBESTJOIN(G, 0)

0 ~JO Uik W

©

10
11
12
13

> Input: non-trivial join graph G = (V, E)
> Input: interesting order o
> Returns: optimal join plan satisfying o
BestPlan <+ NULL > Let COST(NULL) = 0o
if o #@ > Start with plan that enforces o by sorting
then BestPlan < SORT,(GETBESTPLAN(G, @))
for each partition (Gr,Ggr) in PARTITION(G)
do for each operator G, X; Gr satisfying o
do or, + order for Gr, required by X;
pr «— GETBESTPLAN(GL,01)
or < order for G required by X;
pr < GETBESTPLAN(GR, 0R)
CurrPlan <— pr X; pr
if CosT(CurrPlan) < CosT(BestPlan)
then BestPlan < CurrPlan
return BestPlan

Algorithm 2 Naive Partitioning

PARTITION(G)

1
2

> Input: join graph G = (V, E)
> Output: left-deep partitions of G
forveV

do output (G| (v}), Glew})




Algorithm 3 Build Biconnection Tree

BUILDBCCTREE(G, t)

© 00O Ui W

> Input: connected join graph G = (V, E)

> Input: vertex t e V

> Output: biconnection tree T for G rooted at ¢
declare set of vertices VISITED = @

declare integer COUNT = 1

declare map:vertex—int DEFNUM

declare map:vertex—int LOW

declare map:vertex—vertex FATHER

declare stack of graph edges ESTACK

declare stack of biconnection tree vertex nodes VSTACK
declare stack of biconnection tree set nodes SSTACK
return DFSEARCH(t)

DFSEARCH(v)
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> Input: vertex v € V
> Output: subtree of T rooted at v

VISITED « VISITED U {v}
DFNUM[v] « COUNT++
LOW|[v] « DFNUM|[v]
for each neighbour w of v in G
do if w ¢ VISITED
then push (v, w) onto ESTACK
FATHER[w] <« v
push DFSEARCH(w) onto VSTACK
if LOW[w] > DFNUM|[v]
then > completed bcc
bec — @

repeat (e, ez2) < pop ESTACK

add e1, ez to bee
until (e1, e2) = (v,w)
create set node ny.. for bee
while top of VSTACK € bee
do n. «— pop VSTACK
make n. a child of npee
push 74 onto SSTACK
LOW|[v] « MIN(LOW/[v], LOW[w])
elseif w # FATHER[v]
and DFNUM[v] > DFNUM|uw]
then push (v, w) onto ESTACK
LOW|[v] « MIN(LOW/[v], DENUM|w])
create vertex node n, for v
while set node at top of SSTACK contains v
do npe. < pop SSTACK
make npe. a child of n,
return n,
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Algorithm 4 Minimal Cut Partitioning

PARTITION(G)
> Input: connected join graph G = (V, E)
> Output: all minimal cuts of G

1 t « arbitrary element of V'

2 MincuTLAzY(@, {t}, NULL)

MiNcuTLAzY(S, T, T°?)

> Input: disjoint sets S, T CV
> Input: biconnection tree from parent invocation
> Output: minimal cuts extended from S

1 ifS#o
2 then output (G|s, G|\s)) and (G|v\s), G|s)
3 ifN(S)CT > Define N'(@) = V' \ {¢}
4 then return > S cannot be extended
5 if T°“ is usable for Glv\s)
6 then T « T
7 else T «— BUILDBCCTREE(G|(v\s),t)
8 P—{veN(S)|ve(V\(SUT))
AD:z(v) NN(S)) = {v}}
9 T «T
10 forve P
11 do MiNncuTLAzY(S U Dr(v), T',T)
12 T — T U Ar(v)

Algorithm 5 Biconnection Tree Usability

1SUSABLE(T, V1, V2)

> Input: biconnection tree T
> Input: set Vi such that T is usable for G|v,
> Input: set Vo C V)
> Output: boolean indicating if T is usable for G|y,
if Vo =0
then return TRUE
if V5 does not contain root (vertex) node of T
then return FALSE
Vdeleted — Vl \V2
fOI‘ v E Vdcletcd
do n, < vertex node in T corresponding to v
Npee < parent (set) node of n, in T
Ny < parent (vertex) node of npe. in T
10 if (bCC \{U}) g Vdeleted
11 then return FALSE
12 return TRUE

© 00 O ULk Wi




Algorithm 6 Optimistic Partitioning

PARTITION(G)
> Input: connected join graph G = (V, E)
> Output: all minimal cuts of G

1 t« arbitrary element of V'

2 MINCUTOPTIMISTIC(&, {t})

MiNcuTOPTIMISTIC(S, T')
> Input: disjoint sets S,7 C V
> Output: minimum cuts extended from S
if S#o
then output (G|s, G|\s)) and (G|v\s), G|s)
T T
for v e (W(S)\T)
do S — SU{v}
if G|\ sy is connected
then MiNcUTOPTIMISTIC(S, T")
T — T U{v}

> Define V(@) = V' \ {t}

0 ~JO Uik WN
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Algorithm

7 Top-Down Partition Search with

Accumulated-Cost Bounding

GETBESTPLAN(G, 0, B)

0O Uk W

Ne

10
11

> Input: join graph G = (V, E)
> Input: interesting order o
> Input: cost budget B
> Returns: optimal plan satisfying o with cost not
exceeding B, or NULL if no such plan exists
BestPlan <+ NULL
if MemolV, o] contains plan with cost < B
then BestPlan «— MemolV, o]
elseif Memo|V, o] is empty or contains lower bound < B
then if |[V| =1
then BestPlan < CALCBESTSCAN(G, o, B)
else BestPlan «+ CALCBESTJOIN(G, o, B)
if BestPlan = NULL
then Memol|V, o] < lower bound B
else MemolV, o] < BestPlan
return Memo[V, o]

CALCBESTSCAN(G, o, B)
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> Input: trivial join graph G = ({R}, @)
> Input: interesting order o
> Input: cost budget B
> Returns: optimal scan satisfying o and B, or NULL
BestPlan < NULL > Let COST(NULL) = 0o
if o # @ © Start with plan that enforces o by sorting
then C < cost of sorting tuples in G by o
UnsortedPlan < GETBESTPLAN(G, @, B — C)
if UnsortedPlan # NULL
then BestPlan «— SORT,(UnsortedPlan)
for each operator OpScan;(R) satisfying o
do CurrPlan «— OpScan;(R)
if CosT(CurrPlan) < CosT(BestPlan)
and Cost(CurrPlan) < B
then BestPlan < CurrPlan
return BestPlan

CALCBESTJOIN(G, 0, B)
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> Input: non-trivial join graph G = (V, E)
> Input: interesting order o
> Input: cost budget B
> Returns: optimal join plan satisfying o and B, or NULL
BestPlan <+ NULL > Let COST(NULL) = 0o
if o # @ © Start with plan that enforces o by sorting
then C < cost of sorting tuples in G by o
UnsortedPlan < GETBESTPLAN(G, @, B — C)
if UnsortedPlan # NULL
then BestPlan «— SORT,(UnsortedPlan)
for each partition (Gr,Ggr) in PARTITION(G)
do for each operator G, X; Gg satisfying o
do Ci; « cost of operator X;
B’ «— MIN(B, CosT(BestPlan)) — Ch,
or, < order for Gy, required by X;
pr «— GETBESTPLAN(GL,or, B')
if pr # NULL
then B’ «+ B’ — CosT(pL)
or < order for G required by X;
pr — GETBESTPLAN(GR,0R, B)
if pr # NULL
then BestPlan < pr, M; pr
return BestPlan




