Succinct Data-Structures for Labeled Graphs

Jérémy Barbay

David R. Cheriton School of Computer Science
University of Waterloo, Canada.

Technical Report CS-2006-48

Abstract. Succinct data-structures support efficient search queries while using space asymptotically
optimal. Such data-structures are known for structures such as binary strings, ordinal and cardinal
trees, graphs, binary relations, labeled and multi-labeled trees. We consider graphs where each node
is associated to an arbitrary number of labels. We show that some categories of such graphs have a
succinct encoding which supports efficiently label-based navigation and search operators.

Keywords: Labeled Graphs, Succinct Data-Structures.

1 Introduction

Succinct data-structures support efficient search queries while using space asymptotically optimal.
Such data-structures are known for structures such as binary strings, ordinal [13] and cardinal trees,
unlabeled graphs [13], and binary relations |1]. Those structures are not only asymptotically smaller
and faster than the pointer based data-structures, they were also shown to be more efficient in
practice [6, 8, 15].

Succinct data-structures can be divided in two categories: succinct integrated encodings, which
encode the whole data itself in such a way to support operators efficently [1, 11]|; and succinct
indezes, which describe only the additional information required in order to support efficiently some
operators |2, 5]. Succinct indexes and succinct integrated encodings are closely related, but they are
different concepts: succinct indexes make assumptions only on the ADT through which the given
data is accessed, while succinct encodings represent data in specific formats. The consequences of
this difference of concept are that succinct indexes are more difficult to design (one can design a
succinct encoding from a succinct index, but the converse is not true); succinct indexes support
operators in sligthly worse times than succinct integrated encodings [2|, lower bounds are easier to
define for succinct indexes [10]; and succinct indexes can be freely combined whereas in general two
succinct integrated encodings cannot be combined in a single one.

Combining the succinct data-structure (integrated encoding or index) for binary relations with
another basic data-structure yields labeled versions of those structures. For instance, a multi-labeled
tree is the combination of an ordinal tree with a binary relation which associates each node of the tree
to a set of labels [1]. It is sufficient to combine the succinct encodings of the binary relation and the
basic structure to encode the labeled structure, but supporting interesting operators requires extra
work. For instance, in the case of multi-labeled trees, the support of the search for descendants
of a node x with a given label « is reduced to a search in the binary relation which associates
nodes to label, provided that the nodes are ordered in an order where all the descendants of x are
consecutive |1].

! Contact the Corresponding Author at jbarbay@uwaterloo.ca

Jacobson, who introduced the concept of succinct encodings, defined an encoding for undirected
planar graphs, and more generally for graphs of bounded book-thickness [13]. This encoding is based
on the decomposition of the graph in a finite number of “pages”, where each page can be encoded
as a binary string of opening and closing parenthesis: the navigation in the graph is reduced to
operators on these strings. This encoding uses space within a constant factor of the lower bound
suggested by information theory.

We consider multi-labeled graphs, defined as graphs where each node is associated to a set of
labels from a finite alphabet. Our main results are twofold:

— Combining the succinct index for binary relations with Jacobson’s encoding for graphs of
bounded book-thickness, we define an encoding for multi-labeled graphs of bounded book depth,
which supports efficiently label-based navigation operators such as finding the nodes labeled «
connected (resp. directly connected) to a node x.

— Observing that a bipartite graph is exactly a binary relation between two sets of nodes, we
apply a scheme similar to the one described above to define a succinct encoding for multi-labeled
bipartite graphs, which supports the same label-based operators. Similarly, observing that an
oriented graph on n nodes is a n X n binary relation, we define a succinct encoding for multi-
labeled orirented graphs, which supports the same label-based operators.

This paper is organized as follows: we outline the design of succinct data structures for several
data types that we either use or relate to in Section 2. We describe the general scheme to combine a
graph representation with a binary relation representaion in order to support label-based navigation
operators on labeled graphs in Section 3, applying it to Jacobson’s basic structure for graphs of
bounded book-thickness. We conclude with some research perspective in Section 4.

All our results are in the Random Access Memory (RAM) model where words are of size ©(lgn),
where n denotes the number of nodes in the graph. We assume that the nodes are all distinguishable,
and in particular our use of the term “labeled graph” should not be confused with the definition of
“unlabeled graphs” from Naor [17].

2 Previous Work

Succinct data structures were introduced by Jacobson [13], to encode bit vectors, tree structures and
planar graphs in space essentially equal to the information-theoretic lower bound, while supporting
appropriate operators on them efficiently. For bit vectors, Jacobson defined two useful operators:
given a bit vector B[l,...,n], a bit a € {0,1}, an object! x € [n] and an integer r € [n], the
operator bin_rankg(o,x) returns the number of occurrences of a in B[, ..., x|, and the operator
bin selectp(a,r) returns the position of the r-th label av in B, or —oo if it does not exist. For
a € {0,1}, the operator bin_ rankg(a,z) returns the number of occurrences of a in Bll..z], and
the operator bin selectg(a,r) returns the position of the r-th o in B. For conciseness, we omit
the subscript B when it is clear from the context. Encodings for binary strings supporting those
operators have been extensively studied, and we consider several complementary solutions depending
of the application.

Lemma 1. A bit vector B of length n with v 1s can be represented using either: (a) n + o(n)
bits [5, 13]; or (b) 1g (7)) + O(nlglgn/lgn) bits [18], to support the access to each bit, bin_rank
and bin select in O(1) time.

! We use [i] to denote the set {1,2,...,4}.

A less powerful version of bin rank(1,x), which we denote bin rank’(1,z), returns —1 instead
of the the number of 1s in B[l..x] when B[z] = 0. It is still useful in some application, and uses less
space:

Lemma 2 ([18]). A bit vector B of length n with v 1s can be represented using 1g (7)) + o(v) +
O(lglgn) bits to support the access to each bit, bin_rank’(1,z) and bin_select(1,r) in O(1) time.

2.1 Ordinal Trees and Planar Graphs

An ordinal tree is a rooted tree in which the children of a node are ordered and specified by their
ranks. Preorder and postorder traversals of such trees are well-known. We also use a different
order for traversals, namely DFUDS, which is the order associated with the depth first unary degree
sequence |3] representation, where all the children of a node are listed before its other descendants.

Various succinct data structures were designed to represent ordinal trees [3, 9, 13, 14, 16].
Benoit et al. [3] proposed the DFUDS representation of an ordinal tree using 2n + o(n) bits to
support various navigational operations, which is close to the lower bound suggested by information
theory (2n — ©(Ign) bits). Jansson et al. [14] extended this representation to support a richer set
of navigational operations. The operations that we consider in this paper are as follows (we refer to
each node by its preorder number):

— child(xz,1), i-th child of node x for i > 1;

— child_rank(z), number of left siblings of node z;

— depth(x), depth of node z, i.e. the number of edges in the rooted path to z;
— level anc(z,i), i-th ancestor 2 of node z for i > 0;

— nbdesc(z), number of descendants of node z;

— degree(z), degree of node z, i.e. the number of its children.

Benhart and Kainen [4] defined book embeddings of undirected graphes, which specify a unique
ordering of the vertices of the graph, and partition the edges into pages such that the edges on any
given page do not intersect. Using his succinct encoding for binary strings, Jacobson [13] showed
how to encode each page of such a decomposition as a binary string of well balances parenthesis.
In this encoding, the support for navigation operators in the subgraph corresponding to each page
is reduced to operation on parenthesis, which are supported in constant time: As four pages are
sufficient to represent planar graphs [19], this encoding supports the navigation operators in constant
time.

2.2 Strings and Binary Relations

Grossi et al. [12] generalized the operators bin_rank and bin_select to a string (or a sequence)
S of length n over an alphabet of arbitrary size o, and the operations include: string rank(q,z),
which returns the number of occurrences of « in S[l..x|; string select(a,r), which returns the
position of the r-th occurrence of « in the string; and string access(z), which returns the
character at position z in the string. They gave an encoding that takes nHy + o(nlgo) bits to
support these three operators in O(lgo) time, where n is the length of the string. Golynski et
al. |11] gave an encoding that uses n (lgo + o(lgo)) bits and supports string rank(a,z) and
string access(z) in O(lglgo) time, and string select(a,r) in constant time.

2 Given a node z at depth d, its i-th ancestor is the ancestor of x at depth d — .

Barbay et al. [1] extended the problem to the encoding of sequences of n objects where each object
can be associated with a subset of labels from [o], this association being defined by a binary relation
of ¢ pairs from [n|x[o]. The operations include: label rank(a,z), which returns the number of
objects labeled « up to (and including) x; label select(a,r), which returns the position of the
r-th object labeled «; and label access(x,«), which checks whether object x is associated with
label . Their representation supports label rank and label access in O(lglgo) time, and
label select in constant time using t(lgo + o(lg o)) bits.

Barbay et al. |2] defined a succinct index which does not constraint how the string or binary
relation is encoded, and which supports the same operators in time only slightly worse. This is
particularly important when using binary relations to code the association between the labels and
the nodes of a tree or graph, as various operators require the support for operators in various orders
on the nodes, the binary relation is encoded only once while each order corresponds to a different
succinct index.

Barbay et al. [2] also showed how to extend the data-structure to support a limited version of
“negative” searches, ons string and binary relations:

Definition 1. An object x € [n] matches the literal o € [o] if © matches the label a, and matches
the literal & if it does not match the label . For simplicity, we define [] to be the set {1,...,T}.

Their encoding does not support the select operator on literals, but rather the operators
string succ(a,z) and string pred(a,z), which return the first object matching the label «
respectively after and before x: those operators are sufficient for most applications.

2.3 Labeled and Multi-Labeled Trees

A labeled tree is an ordinal tree in which each node is associated with a label from a given alphabet
[o]; while in a multi-labeled tree, each node is associated with at least one label. We use n to denote
the number of nodes in a tree, and ¢ to denote the total number of node-label pairs in a multi-labeled
tree.

Geary et al. |9] defined labeled extensions of the first six operators defined in Section 2.1. Their
data structures support those in constant time, but use 2n + n(lgo + O(olglglgn/lglgn)) bits,
which is much more than the asymptotic lower bound of n (Igo — o(lg o)) suggested by information
theory when o is large. Ferragina et al. [7] proposed another structure for labeled trees that supports
locating the first child of a given node x labeled « in constant time, and finding all the children of x
labeled « in constant time per child. But it does not efficiently support the retrieval of the ancestors
or descendants by labels. Also it uses 2nlg o + O(n) bits, which is almost twice the minimum space
required to encode the tree. Barbay et al. [1] gave an encoding for labeled trees using n (g o + o(lg o))
bits to support the retrieval of the ancestors or descendants by labels in O(lglg o) time, which is
generalized to represent multi-labeled trees in ¢ (lgo + o(lgo)) bits. Barbay et al. [2] applied the
same scheme using a succinct index for binary relations, and gave an encoding for multi-labeled
trees which, in addition to the retrieval of the ancestors or descendants by labels, also supports the
retrieval of the children by label, using one succinct index to support the string operators on the
preorder traversal of the tree and another succinct index to support the string operators on the
DFUDS traversal of the tree.

3 Multi-Labeled Graphs

Graphs have too many applications to list them here, and in many of them each node is associated
to one or more labels.

Definition 2. A multi-labeled graph is a graph where each node is associated to a set of labels from
a finite alphabet.

We do not consider simple labeled graphs as they are just a particular case of the multi-labeled
case, where the binary relation can be encoded as a string. General graphs can have many edges,
which makes them difficult to encode in small space, and makes the navigation operators difficult
to support in efficient time. We consider instead several restrictions of graphs: graphs of bounded
book-thickness, bipartite graphs and a oriented graphs of bounded degree.

3.1 Undirected Graphs of Bounded Book-Thickness

We first consider graphs of bounded book-thickness [4], i.e. which can be represented on k pages.
Without loss of generality, we suppose that the ordering on the nodes of the book representation of
the graph is the identity (1,...,n).

Jacobson’s encoding supports the enumeration of the neighbors of a node [13, Section 4.2.2].
We consider instead some operators, implictly supported by Jacobson’s encoding, which permit to
describe at once the enumeration of all the nodes matching a request, and the extraction of the first
node matching the request, given the nodes x,y € [n] and an integer r € [n]:

— neighbor nb(z), the number of neighbors of node x;
— neighbor rank(zx,y), the position of node y among the neighbors of node z;
— neighbor select(x,r), the r-th node among the neighbors of node z;

We extend those operators to labeled trees for a given label or literal a to the label-based operators
on undirected graphs:

— lab neighbor nb(q,z), the number of neighbors of node x matching literal «;

— lab_neighbor rank(q,z,y), the position of node y among the neighbors of node x matching
litteral a;

— lab_neighbor select(w,z,r), the r-th node among the neighbors of node = associated with
label «;

— lab neighbor succ(a,x,y) (resp. lab neighbor pred(a,z,y)), the first neighbor of node
matching literal « after (resp. before) node y;

For the sake of generality, we further add the following operators, in the context where the graph
is not connected:

— lab connected nb(a,x), the number of nodes matching literal « in the same connected
component as node x ;

— lab connected rank(a,x,y), the position of node y among the nodes matching literal « in
the same connected component as node x;

— lab_connected select(a,z,7), the r-th node associated with label « in the same connected
component as node x;

— lab_connected succ(a,z,y) (resp. lab_connected pred(a,z,y)), the first node matching
literal « in the connected component of x after (resp. before) node y;

All those operators can be supported by an encoding combining Jacobson’s encoding for graphs
and Barbay et al.’s succinct index for binary relations:

Theorem 1. Consider a labeled graph of book-thickness k over n nodes, associated with o labels
in t pairs (t > m), so that it can be accessed in time f(n,o,t). One can build in time
O(ktf(n,o,t)) a succinct index using kt - o(lg o) bits which supports each label-based operators in
time O((lglglgo)?k(f(n,0) +1glgo)).

Proof (draft). The proof is based on defining several orders on the nodes of the graph. For
each order, we build a succinct index [2, Theorem 2| using ¢ - o(lgo) bits that supports the
operators label rank and label access in O(lglgolglglgo(f(n,o,t) + lglgo)) time, and
label select in O(lglglgo(f(n,o,t) +1glgo)) time.

We first show how to support the label-based operators on the connected components. In linear
time, assign each node to a connected component, and order the nodes so that all the nodes of the
same connected component are consecutive. For each connected component, represent in unary3
the number of nodes in this connected component minus one (by definition, there is no connected
component of size zero). The concatenation of those representations forms a binary string of lenght n.
Encoded in n 4 o(n) bits using the encoding (a) from Lemma 1, it indicates for each node of the
graph the range occupied in the order by its connexted component. Supporting the number, rank,
select, predecessor and successor labeled operators on the connected component is then reduced to
the corresponding operators in the binary relation.

We now show how to support the label-based operators on neighbors. By definition, there is an
ordering on the nodes and a partition of the edges in k£ pages, such that on each page the edges
do not cross [4]. As noted by Jacobson, each page can be considered as a forest of ordinal trees
or, in combination with a binary relation, as a forest of multi-labeled trees. On each page, traverse
each tree in DFUDS order, so that its children are consecutive, and build an index for the binary
relation relative to this order of the nodes. Note that this order is possibly different from the book
embedding and different from page to page. Hence we build one succinct index per page: this is
fine for graphs of bounded book-thickness. Encode all the pages using any encoding for ordinal
trees which supports the DFUDS rank and select operators [3, 14] and uses at most 2n bits. As
the neighbors of a node x are its parent followed by its children, the label-based neighbor operators
are then reduced to a combination of operators on the binary relation in the order defined on each
page.

The data-structure can be computed in time linear in the number of pages and associations
between nodes and labels, and the space it requires is dominated by the cost of the succinct indexes
for the binary relation, kt - o(lg o) bits. Each label-based operator is supported by a finite number
of operations on binary relations, hence the time of O((Iglglgo)?k(f(n,o) +1glgo)). 0

As four pages are sufficient to represent planar graphs [19], the encoding is within a constant
factor of the optimal for labeled planar graphs:

Corollary 1. Consider a planar labeled graph over n mnodes, associated with o labels in t pairs
(t > n), so that it can be accessed in time f(n,o,t). One can build in time O(ktf(n,o,t)) a succinct
index using t-o(lg o) bits which supports each label-based operators in time O((1glglg 0)*k(f(n, o)+

lglgo)).

3 The unary encoding of z is the string composed of z zeroes followed by a one.

4 Conclusion

Barbay et al. [1] showed how ordinal trees, combined with binary relations, yields powerful labeled
structures such as multi-labeled trees, through an adequately chosen order on the nodes of the tree.
Barbay et al. |2] showed that one can use more than one orders on the nodes of the tree, which
permits to support even more operators on multi-labeled trees. We extend those results to some
classes of graphes, by combining the data-structures encoding various types of graphes with succinct
indexes of a binary relation associating nodes and labels.

This demonstrates the importance of encodings for binary relations. Basic succinct data-
structures such as binary strings or ordinal trees have been implemented and proved to be more
efficient than pointer based representations [6, 8, 15]: a practical implementation of binary relations
will trigger the use of succinct encodings in many practical applications were labeled structures are
required.

1

2]

3]
[4]
[5]
(6]

7l

8]

19]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

Bibliography

J. Barbay, A. Golynski, J. I. Munro, and S. S. Rao. Adaptive searching in succinctly encoded
binary relations and tree-structured documents. In Proceedings of the 17th Annual Symposium,
on Combinatorial Pattern Matching, pages 24-35. Springer-Verlag LNCS 4009, 2006.

J. Barbay, M. He, J. I. Munro, and S. S. Rao. Succinct indexes for strings, binary relations and
multi-labeled trees. In Proceedings of the 18th ACM-SIAM Symposium On Discrete Algorithms
(to appear), 2007.

D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representing
trees of higher degree. Algorithmica, 43(4):275 292, 2005.

F. Bernhart and P. Kainen. The book thickness of a graph. Journal of Combinatorial Theory,
B(27):320-331, 1979.

D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage. In Proceedings of the
7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 383 391, 1996.

O. Delpratt, N. Rahman, and R. Raman. Engineering the louds succinct tree representation. In
C. Alvarez and M. J. Serna, editors, WEA, volume 4007 of Lecture Notes in Computer Science,
pages 134-145. Springer, 2006.

P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees for
optimal succinctness, and beyond. In Proceedings of the 46th IEEE Symposium on Foundations
of Computer Science, pages 184-196, 2005.

R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation for
balanced parentheses. In S. C. Sahinalp, S. Muthukrishnan, and U. Dogruséz, editors, CPM,
volume 3109 of Lecture Notes in Computer Science, pages 159-172. Springer, 2004.

R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor queries. In
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1 10,
2004.

A. Golynski. Optimal lower bounds for rank and select indexes. In Proceedings of the
International Colloquium on Automata, Languages and Programming, 2006.

A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets: a tool
for text indexing. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 368 373, 2006.

R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 841—
850, 2003.

G. Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th Annual
Symposium on Foundations of Computer Science, pages 549 554, 19809.

J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representation of ordered trees. In
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007.

G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction algorithm.
Algorithmica, 40(1):33 50, 2004.

J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.
SIAM Journal on Computing, 31(3):762-776, 2001.

M. Naor. Succinct representation of general unlabeled graphs. Discrete Appl. Math., 28(3):303—
307, 1990.

[18] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to
encoding k-ary trees and multisets. In Proceedings of the 13th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 233 242, 2002.

[19] M. Yannakakis. Four pages are necessary and sufficient for planar graphs. In Proeedings of the
18th ACM Symposium on Theory of Computing, pages 104 108, 1986.

