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tures.1 Introdu
tionSu

in
t data-stru
tures support e�
ient sear
h queries while using spa
e asymptoti
ally optimal.Su
h data-stru
tures are known for stru
tures su
h as binary strings, ordinal [13℄ and 
ardinal trees,unlabeled graphs [13℄, and binary relations [1℄. Those stru
tures are not only asymptoti
ally smallerand faster than the pointer based data-stru
tures, they were also shown to be more e�
ient inpra
ti
e [6, 8, 15℄.Su

in
t data-stru
tures 
an be divided in two 
ategories: su

in
t integrated en
odings, whi
hen
ode the whole data itself in su
h a way to support operators e�
ently [1, 11℄; and su

in
tindexes, whi
h des
ribe only the additional information required in order to support e�
iently someoperators [2, 5℄. Su

in
t indexes and su

in
t integrated en
odings are 
losely related, but they aredi�erent 
on
epts: su

in
t indexes make assumptions only on the ADT through whi
h the givendata is a

essed, while su

in
t en
odings represent data in spe
i�
 formats. The 
onsequen
es ofthis di�eren
e of 
on
ept are that su

in
t indexes are more di�
ult to design (one 
an design asu

in
t en
oding from a su

in
t index, but the 
onverse is not true); su

in
t indexes supportoperators in sligthly worse times than su

in
t integrated en
odings [2℄, lower bounds are easier tode�ne for su

in
t indexes [10℄; and su

in
t indexes 
an be freely 
ombined whereas in general twosu

in
t integrated en
odings 
annot be 
ombined in a single one.Combining the su

in
t data-stru
ture (integrated en
oding or index) for binary relations withanother basi
 data-stru
ture yields labeled versions of those stru
tures. For instan
e, a multi-labeledtree is the 
ombination of an ordinal tree with a binary relation whi
h asso
iates ea
h node of the treeto a set of labels [1℄. It is su�
ient to 
ombine the su

in
t en
odings of the binary relation and thebasi
 stru
ture to en
ode the labeled stru
ture, but supporting interesting operators requires extrawork. For instan
e, in the 
ase of multi-labeled trees, the support of the sear
h for des
endantsof a node x with a given label α is redu
ed to a sear
h in the binary relation whi
h asso
iatesnodes to label, provided that the nodes are ordered in an order where all the des
endants of x are
onse
utive [1℄.1 Conta
t the Corresponding Author at jbarbay�uwaterloo.
a



Ja
obson, who introdu
ed the 
on
ept of su

in
t en
odings, de�ned an en
oding for undire
tedplanar graphs, and more generally for graphs of bounded book-thi
kness [13℄. This en
oding is basedon the de
omposition of the graph in a �nite number of �pages�, where ea
h page 
an be en
odedas a binary string of opening and 
losing parenthesis: the navigation in the graph is redu
ed tooperators on these strings. This en
oding uses spa
e within a 
onstant fa
tor of the lower boundsuggested by information theory.We 
onsider multi-labeled graphs, de�ned as graphs where ea
h node is asso
iated to a set oflabels from a �nite alphabet. Our main results are twofold:� Combining the su

in
t index for binary relations with Ja
obson's en
oding for graphs ofbounded book-thi
kness, we de�ne an en
oding for multi-labeled graphs of bounded book depth,whi
h supports e�
iently label-based navigation operators su
h as �nding the nodes labeled α
onne
ted (resp. dire
tly 
onne
ted) to a node x.� Observing that a bipartite graph is exa
tly a binary relation between two sets of nodes, weapply a s
heme similar to the one des
ribed above to de�ne a su

in
t en
oding for multi-labeledbipartite graphs, whi
h supports the same label-based operators. Similarly, observing that anoriented graph on n nodes is a n × n binary relation, we de�ne a su

in
t en
oding for multi-labeled orirented graphs, whi
h supports the same label-based operators.This paper is organized as follows: we outline the design of su

in
t data stru
tures for severaldata types that we either use or relate to in Se
tion 2. We des
ribe the general s
heme to 
ombine agraph representation with a binary relation representaion in order to support label-based navigationoperators on labeled graphs in Se
tion 3, applying it to Ja
obson's basi
 stru
ture for graphs ofbounded book-thi
kness. We 
on
lude with some resear
h perspe
tive in Se
tion 4.All our results are in the Random A

ess Memory (RAM) model where words are of size Θ(lg n),where n denotes the number of nodes in the graph. We assume that the nodes are all distinguishable,and in parti
ular our use of the term �labeled graph� should not be 
onfused with the de�nition of�unlabeled graphs� from Naor [17℄.2 Previous WorkSu

in
t data stru
tures were introdu
ed by Ja
obson [13℄, to en
ode bit ve
tors, tree stru
tures andplanar graphs in spa
e essentially equal to the information-theoreti
 lower bound, while supportingappropriate operators on them e�
iently. For bit ve
tors, Ja
obson de�ned two useful operators:given a bit ve
tor B[1, . . . , n], a bit α ∈ {0, 1}, an obje
t1 x ∈ [n] and an integer r ∈ [n], theoperator bin_rank
B

(α, x) returns the number of o

urren
es of α in B[1, ..., x], and the operator
bin_select

B
(α, r) returns the position of the r-th label α in B, or −∞ if it does not exist. For

α ∈ {0, 1}, the operator bin_rank
B

(α, x) returns the number of o

urren
es of α in B[1..x], andthe operator bin_select
B
(α, r) returns the position of the r-th α in B. For 
on
iseness, we omitthe subs
ript B when it is 
lear from the 
ontext. En
odings for binary strings supporting thoseoperators have been extensively studied, and we 
onsider several 
omplementary solutions dependingof the appli
ation.Lemma 1. A bit ve
tor B of length n with v 1s 
an be represented using either: (a) n + o(n)bits [5, 13℄; or (b) lg

(

n

v

)

+ O(n lg lg n/ lg n) bits [18℄, to support the a

ess to ea
h bit, bin_rankand bin_select in O(1) time.1 We use [i] to denote the set {1, 2, ..., i}. 2



A less powerful version of bin_rank(1, x), whi
h we denote bin_rank′(1, x), returns −1 insteadof the the number of 1s in B[1..x] when B[x] = 0. It is still useful in some appli
ation, and uses lessspa
e:Lemma 2 ([18℄). A bit ve
tor B of length n with v 1s 
an be represented using lg
(

n

v

)

+ o(v) +
O(lg lg n) bits to support the a

ess to ea
h bit, bin_rank′(1, x) and bin_select(1, r) in O(1) time.2.1 Ordinal Trees and Planar GraphsAn ordinal tree is a rooted tree in whi
h the 
hildren of a node are ordered and spe
i�ed by theirranks. Preorder and postorder traversals of su
h trees are well-known. We also use a di�erentorder for traversals, namely DFUDS, whi
h is the order asso
iated with the depth �rst unary degreesequen
e [3℄ representation, where all the 
hildren of a node are listed before its other des
endants.Various su

in
t data stru
tures were designed to represent ordinal trees [3, 9, 13, 14, 16℄.Benoit et al. [3℄ proposed the DFUDS representation of an ordinal tree using 2n + o(n) bits tosupport various navigational operations, whi
h is 
lose to the lower bound suggested by informationtheory (2n − Θ(lg n) bits). Jansson et al. [14℄ extended this representation to support a ri
her setof navigational operations. The operations that we 
onsider in this paper are as follows (we refer toea
h node by its preorder number):� child(x, i), i-th 
hild of node x for i ≥ 1;� child_rank(x), number of left siblings of node x;� depth(x), depth of node x, i.e. the number of edges in the rooted path to x;� level_anc(x, i), i-th an
estor 2 of node x for i ≥ 0;� nbdesc(x), number of des
endants of node x;� degree(x), degree of node x, i.e. the number of its 
hildren.Benhart and Kainen [4℄ de�ned book embeddings of undire
ted graphes, whi
h spe
ify a uniqueordering of the verti
es of the graph, and partition the edges into pages su
h that the edges on anygiven page do not interse
t. Using his su

in
t en
oding for binary strings, Ja
obson [13℄ showedhow to en
ode ea
h page of su
h a de
omposition as a binary string of well balan
es parenthesis.In this en
oding, the support for navigation operators in the subgraph 
orresponding to ea
h pageis redu
ed to operation on parenthesis, whi
h are supported in 
onstant time: As four pages aresu�
ient to represent planar graphs [19℄, this en
oding supports the navigation operators in 
onstanttime.2.2 Strings and Binary RelationsGrossi et al. [12℄ generalized the operators bin_rank and bin_select to a string (or a sequen
e)
S of length n over an alphabet of arbitrary size σ, and the operations in
lude: string_rank(α, x),whi
h returns the number of o

urren
es of α in S[1..x]; string_select(α, r), whi
h returns theposition of the r-th o

urren
e of α in the string; and string_access(x), whi
h returns the
hara
ter at position x in the string. They gave an en
oding that takes nH0 + o(n lg σ) bits tosupport these three operators in O(lg σ) time, where n is the length of the string. Golynski etal. [11℄ gave an en
oding that uses n (lg σ + o(lg σ)) bits and supports string_rank(α, x) and
string_access(x) in O(lg lg σ) time, and string_select(α, r) in 
onstant time.2 Given a node x at depth d, its i-th an
estor is the an
estor of x at depth d − i.3



Barbay et al. [1℄ extended the problem to the en
oding of sequen
es of n obje
ts where ea
h obje
t
an be asso
iated with a subset of labels from [σ], this asso
iation being de�ned by a binary relationof t pairs from [n]×[σ]. The operations in
lude: label_rank(α, x), whi
h returns the number ofobje
ts labeled α up to (and in
luding) x; label_select(α, r), whi
h returns the position of the
r-th obje
t labeled α; and label_access(x, α), whi
h 
he
ks whether obje
t x is asso
iated withlabel α. Their representation supports label_rank and label_access in O(lg lg σ) time, and
label_select in 
onstant time using t(lg σ + o(lg σ)) bits.Barbay et al. [2℄ de�ned a su

in
t index whi
h does not 
onstraint how the string or binaryrelation is en
oded, and whi
h supports the same operators in time only slightly worse. This isparti
ularly important when using binary relations to 
ode the asso
iation between the labels andthe nodes of a tree or graph, as various operators require the support for operators in various orderson the nodes, the binary relation is en
oded only on
e while ea
h order 
orresponds to a di�erentsu

in
t index.Barbay et al. [2℄ also showed how to extend the data-stru
ture to support a limited version of�negative� sear
hes, ons string and binary relations:De�nition 1. An obje
t x ∈ [n] mat
hes the literal α ∈ [σ] if x mat
hes the label α, and mat
hesthe literal ᾱ if it does not mat
h the label α. For simpli
ity, we de�ne [σ̄] to be the set {1, . . . , σ}.Their en
oding does not support the sele
t operator on literals, but rather the operators
string_succ(α, x) and string_pred(α, x), whi
h return the �rst obje
t mat
hing the label αrespe
tively after and before x: those operators are su�
ient for most appli
ations.2.3 Labeled and Multi-Labeled TreesA labeled tree is an ordinal tree in whi
h ea
h node is asso
iated with a label from a given alphabet
[σ]; while in a multi-labeled tree, ea
h node is asso
iated with at least one label. We use n to denotethe number of nodes in a tree, and t to denote the total number of node-label pairs in a multi-labeledtree.Geary et al. [9℄ de�ned labeled extensions of the �rst six operators de�ned in Se
tion 2.1. Theirdata stru
tures support those in 
onstant time, but use 2n + n(lg σ + O(σ lg lg lg n/ lg lg n)) bits,whi
h is mu
h more than the asymptoti
 lower bound of n (lg σ − o(lg σ)) suggested by informationtheory when σ is large. Ferragina et al. [7℄ proposed another stru
ture for labeled trees that supportslo
ating the �rst 
hild of a given node x labeled α in 
onstant time, and �nding all the 
hildren of xlabeled α in 
onstant time per 
hild. But it does not e�
iently support the retrieval of the an
estorsor des
endants by labels. Also it uses 2n lg σ + O(n) bits, whi
h is almost twi
e the minimum spa
erequired to en
ode the tree. Barbay et al. [1℄ gave an en
oding for labeled trees using n (lg σ + o(lg σ))bits to support the retrieval of the an
estors or des
endants by labels in O(lg lg σ) time, whi
h isgeneralized to represent multi-labeled trees in t (lg σ + o(lg σ)) bits. Barbay et al. [2℄ applied thesame s
heme using a su

in
t index for binary relations, and gave an en
oding for multi-labeledtrees whi
h, in addition to the retrieval of the an
estors or des
endants by labels, also supports theretrieval of the 
hildren by label, using one su

in
t index to support the string operators on thepreorder traversal of the tree and another su

in
t index to support the string operators on the
DFUDS traversal of the tree. 4



3 Multi-Labeled GraphsGraphs have too many appli
ations to list them here, and in many of them ea
h node is asso
iatedto one or more labels.De�nition 2. A multi-labeled graph is a graph where ea
h node is asso
iated to a set of labels froma �nite alphabet.We do not 
onsider simple labeled graphs as they are just a parti
ular 
ase of the multi-labeled
ase, where the binary relation 
an be en
oded as a string. General graphs 
an have many edges,whi
h makes them di�
ult to en
ode in small spa
e, and makes the navigation operators di�
ultto support in e�
ient time. We 
onsider instead several restri
tions of graphs: graphs of boundedbook-thi
kness, bipartite graphs and a oriented graphs of bounded degree.3.1 Undire
ted Graphs of Bounded Book-Thi
knessWe �rst 
onsider graphs of bounded book-thi
kness [4℄, i.e. whi
h 
an be represented on k pages.Without loss of generality, we suppose that the ordering on the nodes of the book representation ofthe graph is the identity (1, . . . , n).Ja
obson's en
oding supports the enumeration of the neighbors of a node [13, Se
tion 4.2.2℄.We 
onsider instead some operators, impli
tly supported by Ja
obson's en
oding, whi
h permit todes
ribe at on
e the enumeration of all the nodes mat
hing a request, and the extra
tion of the �rstnode mat
hing the request, given the nodes x, y ∈ [n] and an integer r ∈ [n]:� neighbor_nb(x), the number of neighbors of node x;� neighbor_rank(x, y), the position of node y among the neighbors of node x;� neighbor_select(x, r), the r-th node among the neighbors of node x;We extend those operators to labeled trees for a given label or literal α to the label-based operatorson undire
ted graphs:� lab_neighbor_nb(α, x), the number of neighbors of node x mat
hing literal α;� lab_neighbor_rank(α, x, y), the position of node y among the neighbors of node x mat
hinglitteral α;� lab_neighbor_select(α, x, r), the r-th node among the neighbors of node x asso
iated withlabel α;� lab_neighbor_succ(α, x, y) (resp. lab_neighbor_pred(α, x, y)), the �rst neighbor of node xmat
hing literal α after (resp. before) node y;For the sake of generality, we further add the following operators, in the 
ontext where the graphis not 
onne
ted:� lab_connected_nb(α, x), the number of nodes mat
hing literal α in the same 
onne
ted
omponent as node x ;� lab_connected_rank(α, x, y), the position of node y among the nodes mat
hing literal α inthe same 
onne
ted 
omponent as node x;� lab_connected_select(α, x, r), the r-th node asso
iated with label α in the same 
onne
ted
omponent as node x;� lab_connected_succ(α, x, y) ( resp. lab_connected_pred(α, x, y)), the �rst node mat
hingliteral α in the 
onne
ted 
omponent of x after (resp. before) node y;5



All those operators 
an be supported by an en
oding 
ombining Ja
obson's en
oding for graphsand Barbay et al.'s su

in
t index for binary relations:Theorem 1. Consider a labeled graph of book-thi
kness k over n nodes, asso
iated with σ labelsin t pairs (t > n), so that it 
an be a

essed in time f(n, σ, t). One 
an build in time
O(ktf(n, σ, t)) a su

in
t index using kt · o(lg σ) bits whi
h supports ea
h label-based operators intime O((lg lg lg σ)2k(f(n, σ) + lg lg σ)).Proof (draft). The proof is based on de�ning several orders on the nodes of the graph. Forea
h order, we build a su

in
t index [2, Theorem 2℄ using t · o(lg σ) bits that supports theoperators label_rank and label_access in O(lg lg σ lg lg lg σ(f(n, σ, t) + lg lg σ)) time, and
label_select in O(lg lg lg σ(f(n, σ, t) + lg lg σ)) time.We �rst show how to support the label-based operators on the 
onne
ted 
omponents. In lineartime, assign ea
h node to a 
onne
ted 
omponent, and order the nodes so that all the nodes of thesame 
onne
ted 
omponent are 
onse
utive. For ea
h 
onne
ted 
omponent, represent in unary3the number of nodes in this 
onne
ted 
omponent minus one (by de�nition, there is no 
onne
ted
omponent of size zero). The 
on
atenation of those representations forms a binary string of lenght n.En
oded in n + o(n) bits using the en
oding (a) from Lemma 1, it indi
ates for ea
h node of thegraph the range o

upied in the order by its 
onnexted 
omponent. Supporting the number, rank,sele
t, prede
essor and su

essor labeled operators on the 
onne
ted 
omponent is then redu
ed tothe 
orresponding operators in the binary relation.We now show how to support the label-based operators on neighbors. By de�nition, there is anordering on the nodes and a partition of the edges in k pages, su
h that on ea
h page the edgesdo not 
ross [4℄. As noted by Ja
obson, ea
h page 
an be 
onsidered as a forest of ordinal treesor, in 
ombination with a binary relation, as a forest of multi-labeled trees. On ea
h page, traverseea
h tree in DFUDS order, so that its 
hildren are 
onse
utive, and build an index for the binaryrelation relative to this order of the nodes. Note that this order is possibly di�erent from the bookembedding and di�erent from page to page. Hen
e we build one su

in
t index per page: this is�ne for graphs of bounded book-thi
kness. En
ode all the pages using any en
oding for ordinaltrees whi
h supports the DFUDS rank and sele
t operators [3, 14℄ and uses at most 2n bits. Asthe neighbors of a node x are its parent followed by its 
hildren, the label-based neighbor operatorsare then redu
ed to a 
ombination of operators on the binary relation in the order de�ned on ea
hpage.The data-stru
ture 
an be 
omputed in time linear in the number of pages and asso
iationsbetween nodes and labels, and the spa
e it requires is dominated by the 
ost of the su

in
t indexesfor the binary relation, kt · o(lg σ) bits. Ea
h label-based operator is supported by a �nite numberof operations on binary relations, hen
e the time of O((lg lg lg σ)2k(f(n, σ) + lg lg σ)). ⊓⊔As four pages are su�
ient to represent planar graphs [19℄, the en
oding is within a 
onstantfa
tor of the optimal for labeled planar graphs:Corollary 1. Consider a planar labeled graph over n nodes, asso
iated with σ labels in t pairs(t > n), so that it 
an be a

essed in time f(n, σ, t). One 
an build in time O(ktf(n, σ, t)) a su

in
tindex using t ·o(lg σ) bits whi
h supports ea
h label-based operators in time O((lg lg lg σ)2k(f(n, σ)+
lg lg σ)).3 The unary en
oding of x is the string 
omposed of x zeroes followed by a one.6



4 Con
lusionBarbay et al. [1℄ showed how ordinal trees, 
ombined with binary relations, yields powerful labeledstru
tures su
h as multi-labeled trees, through an adequately 
hosen order on the nodes of the tree.Barbay et al. [2℄ showed that one 
an use more than one orders on the nodes of the tree, whi
hpermits to support even more operators on multi-labeled trees. We extend those results to some
lasses of graphes, by 
ombining the data-stru
tures en
oding various types of graphes with su

in
tindexes of a binary relation asso
iating nodes and labels.This demonstrates the importan
e of en
odings for binary relations. Basi
 su

in
t data-stru
tures su
h as binary strings or ordinal trees have been implemented and proved to be moree�
ient than pointer based representations [6, 8, 15℄: a pra
ti
al implementation of binary relationswill trigger the use of su

in
t en
odings in many pra
ti
al appli
ations were labeled stru
tures arerequired.

7



Bibliography[1℄ J. Barbay, A. Golynski, J. I. Munro, and S. S. Rao. Adaptive sear
hing in su

in
tly en
odedbinary relations and tree-stru
tured do
uments. In Pro
eedings of the 17th Annual Symposiumon Combinatorial Pattern Mat
hing, pages 24�35. Springer-Verlag LNCS 4009, 2006.[2℄ J. Barbay, M. He, J. I. Munro, and S. S. Rao. Su

in
t indexes for strings, binary relations andmulti-labeled trees. In Pro
eedings of the 18th ACM-SIAM Symposium On Dis
rete Algorithms(to appear), 2007.[3℄ D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representingtrees of higher degree. Algorithmi
a, 43(4):275�292, 2005.[4℄ F. Bernhart and P. Kainen. The book thi
kness of a graph. Journal of Combinatorial Theory,B(27):320�331, 1979.[5℄ D. R. Clark and J. I. Munro. E�
ient su�x trees on se
ondary storage. In Pro
eedings of the7th Annual ACM-SIAM Symposium on Dis
rete Algorithms, pages 383�391, 1996.[6℄ O. Delpratt, N. Rahman, and R. Raman. Engineering the louds su

in
t tree representation. InC. Àlvarez and M. J. Serna, editors, WEA, volume 4007 of Le
ture Notes in Computer S
ien
e,pages 134�145. Springer, 2006.[7℄ P. Ferragina, F. Lu

io, G. Manzini, and S. Muthukrishnan. Stru
turing labeled trees foroptimal su

in
tness, and beyond. In Pro
eedings of the 46th IEEE Symposium on Foundationsof Computer S
ien
e, pages 184�196, 2005.[8℄ R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation forbalan
ed parentheses. In S. C. Sahinalp, S. Muthukrishnan, and U. Dogrusöz, editors, CPM,volume 3109 of Le
ture Notes in Computer S
ien
e, pages 159�172. Springer, 2004.[9℄ R. F. Geary, R. Raman, and V. Raman. Su

in
t ordinal trees with level-an
estor queries. InPro
eedings of the 15th Annual ACM-SIAM Symposium on Dis
rete Algorithms, pages 1�10,2004.[10℄ A. Golynski. Optimal lower bounds for rank and sele
t indexes. In Pro
eedings of theInternational Colloquium on Automata, Languages and Programming, 2006.[11℄ A. Golynski, J. I. Munro, and S. S. Rao. Rank/sele
t operations on large alphabets: a toolfor text indexing. In Pro
eedings of the 17th Annual ACM-SIAM Symposium on Dis
reteAlgorithms, pages 368�373, 2006.[12℄ R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-
ompressed text indexes. InPro
eedings of the 14th Annual ACM-SIAM Symposium on Dis
rete Algorithms, pages 841�850, 2003.[13℄ G. Ja
obson. Spa
e-e�
ient stati
 trees and graphs. In Pro
eedings of the 30th AnnualSymposium on Foundations of Computer S
ien
e, pages 549�554, 1989.[14℄ J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-su

in
t representation of ordered trees. InPro
eedings of the 18th Annual ACM-SIAM Symposium on Dis
rete Algorithms, 2007.[15℄ G. Manzini and P. Ferragina. Engineering a lightweight su�x array 
onstru
tion algorithm.Algorithmi
a, 40(1):33�50, 2004.[16℄ J. I. Munro and V. Raman. Su

in
t representation of balan
ed parentheses and stati
 trees.SIAM Journal on Computing, 31(3):762�776, 2001.[17℄ M. Naor. Su

in
t representation of general unlabeled graphs. Dis
rete Appl. Math., 28(3):303�307, 1990.



[18℄ R. Raman, V. Raman, and S. S. Rao. Su

in
t indexable di
tionaries with appli
ations toen
oding k-ary trees and multisets. In Pro
eedings of the 13th Annual ACM-SIAM Symposiumon Dis
rete Algorithms, pages 233�242, 2002.[19℄ M. Yannakakis. Four pages are ne
essary and su�
ient for planar graphs. In Proeedings of the18th ACM Symposium on Theory of Computing, pages 104�108, 1986.

9


