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Abstract

Transformation of business messages from one trading partner’s definition to an-
other, or from one business message type to another is a common requirement for
enterprise data integration applications. Transforming these business messages entails
resolving issues of structural and semantic heterogeneity between their schemas. In this
paper, we propose an automatic schema matching approach called MAXSM, designed
specifically for matching schemas in the context of enterprise data integration. MAXSM
is a multi-heuristic schema matcher which employs, amongst other heuristics, a novel
heuristic using WordNet for determining natural-language semantic similarity between
schemas. MAXSM also introduces “transitive mappings” that can be discovered from
known mappings and used to seed production of candidate mappings. We present a
cogent tree spanning approach to search two schemas more effectively for node-level
match candidates.

Keywords: XML Schema, Schema Matching, Schema Mapping, Semantic Matching, Tree
Matching, Maximum Matching Algorithms, Location Path

1 Introduction

The adoption of XML to represent and communicate business information has increased
significantly over the last decade and continues to see sustained growth. Thus, data inte-
gration scenarios in the context of electronic commerce, business-to-business integration,
and enterprise application integration commonly involve the transfer and transformation of
XML documents. Transformation of business messages from one trading partner’s defini-
tion to another, or from one business message type to another (within or across business
processes) is a common requirement of most any enterprise data integration application. In
order to transform between these business messages, corresponding schema mappings must
first be defined.
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Motivated by such scenarios, we propose an automatic schema matching approach called
MAXSM, designed specifically for matching schemas in the context of enterprise data inte-
gration. While our approach may be immediately useful for matching other schemas repre-
sentations/definitions, we have thus far only considered and applied MAXSM to matching
XML schemas. Specifically, we consider XML Schema Definition (XSD) schemas (as defined
by the W3C XML Schema 1.x specification). Furthermore, by focusing on enterprise data
integration scenarios, it becomes viable to maintain a repository of established schema map-
pings and somehow reuse that repository to enhance the accuracy of mapping candidates
produced by MAXSM. The intuition here is that a repository of known mappings between
schemas from the same business context/domain (e.g. schemas from the usual trading part-
ners, used for business processes and describing products from the usual industries, etc.)
will contain useful “hints” for discovering correct mappings between subsequent schemas
(also belonging to that business domain).

More formally stated, given two XSD schemas and a repository of established map-
pings (all existing in the same or related business contexts/domains), we wish to exploit
the repository as well as schema semantics to automatically produce “correct” mappings
between leaf/data elements or attributes defined in the two schemas. We propose MAXSM
as a solution to this problem.

1.1 Contributions

MAXSM is a multi-heuristic schema matching approach. We present, amongst other heuris-
tics, a novel heuristic which employs WordNet for determining natural-language semantic
similarity between node labels. We also propose a new scheme for representing and storing
known mappings in a growing repository, and describe how “transitive mappings” can be
discovered from the repository and used to seed production of candidate mappings. To
reduce the number of schema node comparisons made before proposing a final schema map-
ping, we present a cogent tree spanning approach which follows the intuition that when a
very similar pair of nodes between the schemas is found, other similar pairs are likely to
exist nearby (i.e. close proximity within the schema trees). We also propose a high-level
pipeline architecture for implementing MAXSM.

1.2 Example Scenario

The scenario is business-to-business (B2B) electronic procurement between two frequent
trading partners, whereby Company X purchases widgets from Company Y. The purchasing
process involves various message exchanges: a purchase order, an invoice, a payment, and
a payment acknowledgment. Let us focus on the first two messages. When Company X
wishes to purchase widgets, it generates and transmits a purchase order to Company Y.
Once the purchase order is received, Company Y must generate a corresponding invoice
and send it to Company X.

The invoice message is generated from data contained in the purchase order message.
Company X designs the XSD schema for the purchase order, while Company Y designs
the XSD schema for the invoice. Thus, a schema mapping between Company X’s purchase
order XSD (the source schema) and Company Y’s invoice XSD (the target schema) must
be created. Figure 1 shows the two schemas used in this example scenario.
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Figure 1: Example XSD schemas to be matched

Suppose that Company X and Company Y have many business processes between them
that they want to (eventually) automate. Thus, an automatic XSD schema matching tool

would expedite such automation development.

Furthermore, schema mappings that are

defined and accepted can be stored in a repository of known mappings and used to “seed”
subsequent schema mappings.

2 Related Work

Several solutions have been proposed to simplify and automate XML Schema Matching.
Most are not comprehensive enough to make use of the unique structure of XML Schema
and the high expressive power of the XML Schema Definition Language(XSD). The survey
by Rahm and Bernstein [15] gives an overview of some of these schema matching schemes.
Cilo [13] is a system that translates the source and target schemas into an internal
representation and runs a Correspondence Engine and Mapping Generator to generate the
mappings from source schema to target schema. Miller et al.[11] have defined an algo-
rithm which finds derived matchings between source and target schemas given a set of
substructure-level matches and match expressions using a constraint reasoning approach.
Bernstein et al.[7] propose a hybrid schema matcher, Cupid, based on both structural-
and element-level matching. They propose interesting heuristics using linguistic matching
along with a tree scanning approach. Their algorithm separates element-level and structural
similarity, then normalizes the similarity rating. In MAXSM, we embed the element-level
match process into the structural matching to produce the cumulative similarity between
elements.
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Figure 2: An overview of MAXSM

Erhard Rahm et al.[16] propose a fragment-oriented approach which focuses on matching
large XML schemas. They introduce the notion of decomposing the schema into smaller
fragments and reuse match results at the level of schema fragments. However, in the case
where there are very small fragments of source schema matching the target schema, run-
time performance of their algorithm becomes similar to brute-force comparison, making all
possible node comparisons.

3 Overview of MAXSM

A high level view of the schema matching process defined by MAXSM is illustrated in
Figure 2. Our goal is to generate accurate results with reasonable efficiency. We take
an incremental approach to the schema matching problem. As in previous approaches
[16, 7, 9], we compute the similarity of schema components by calculating the similarity
function sim(nq,n2) between schema elements and deduce mappings using configurable
thresholds over the computed similarity values.

The first phase of our algorithm scans the repository of established mappings to find
potential matches between the source and the target schemas. In the second phase, the



algorithm traverses the schema trees starting from matches detected in phase one. This
algorithm then computes similarity values between the components of the schema using
the Multi-Heuristic Function on each element-pair (within proximity). Throughout this
phase, similarity ratings are recorded in a similarity matrix. In the third phase, we use
the computed similarity values to determine final mappings between elements of the two
schemas. The resulting schema matching is presented to a human user for verification, and
accepted mappings are added to the repository of known mappings.

4 MAXSM Schema Tree

XSD schemas are encoded and processed as simple tree structures within MAXSM. Our
tree encoding has a tree node for every element and attribute tag defined in the XSD.
All other XSD tags are excluded from the tree encoding as they have no bearing on the
matching process. Furthermore, there is no distinction between element-data and attribute-
data — any data nodes in the XSD are simply represented by leaf nodes in the tree encoding
(MAXSM is agnostic to the schema design decision of whether to represent data as XML
elements or attributes).

FEach node in the schema tree contains all properties of the corresponding element or
attribute tag defined in the XSD. These properties include the label (name), cardinality
(minOccurs, maxOccurs), and data type (type). MAXSM uses this tree representation
exclusively during the matching process. In fact, the final step in the matching process
(discussed in section 9) actually produces final mappings in terms of the schema trees, not
the XSDs. Similarly, the repository stores known mappings stated in terms of schema tree
nodes and paths. Translating these mappings into mappings in terms of the original XSD
schema tags is a trivial exercise; a post-processor can be written to do this translation and
produce an XSLT-based map.

Logically, mappings are produced between leaf nodes of the trees (since leaf nodes cor-
respond to data elements/attributes in the XSD). A leaf node can participate in at most
one mapping. That is, each leaf node can be mapped to at most one leaf node from the
opposing schema tree, and mappings are bi-directional. It is also possible for a leaf node to
not participate in any mapping as schema matches are not necessarily 1-1.

Figure 3 shows the tree representation of our two example XSD schemas (figure 1).
Leaf nodes are highlighted and dotted lines between these leaf nodes indicate the correct
mappings between the example schemas. Notice that some nodes do not participate in the
correct mappings. This is not uncommon (data for target nodes that are not mapped may
come from auxiliary data sources/functions, post-processing, human entry, etc., and not
from the source schema instance).

The example schemas are used throughout the following sections to show how mappings
between them are produced and proposed by MAXSM, and how the proposed mappings
compare to the correct ones.
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Figure 3: Tree representation of example XSD schemas

5 Repository and Transitive Mappings

An important feature of MAXSM is its ability to reuse established schema mappings to
help produce new schema mappings. The basis for this reuse is that subsequent schemas
to be mapped will come from the same business domain/context as the schemas already
mapped and stored in a repository, and therefore the mappings in the repository may
reveal “transitive mappings” that are otherwise not necessarily apparent. A repository
of known mappings essentially encodes expert knowledge about the domain. The initial
generation of such a repository is an orthogonal issue. Perhaps they are grown and shared
amongst trading partners, or provided by vertical standards bodies, or may simply grow
from schema mappings developed manually within an organization. In any case, we assume
that a repository can be readily populated by importing established schema maps, and
MAXSM can function (initially) with an empty repository, albeit less efficiently.

MAXSM defines a repository of known mappings as a collection of node-pairs. Each
node-pair consists of two schema nodes that are known to match (from a previously ac-
cepted schema map). Node-pairs consist only of leaf-level nodes since schema mappings (in
MAXSM) only map leaf nodes. The source of a node (i.e., which schema it came from) is
not retained in the repository. This is by design. The repository represents known schema
node mappings as discrete node-pairs, it is not concerned with overall schema maps. This
makes the individual known node mappings schema-agnostic and thus more versatile when
being compared to nodes in to-be-matched schemas.

To represent a node in our repository, we use a location path expression that is based
loosely on XPath 1.0 Location Paths [19]. A location path of a node is the nested path to
that node within the schema tree, starting from the root. Thus, our repository contains
pairs of schema-agnostic location paths representing pairs of schema nodes that are known
to be mapped from some established schema mapping.

We define a location path expression as follows (this is similar to XPath Location Path



expressions, but customized in terms of verbosity and readability for our purposes):

[root node]/../[inner node] x /../[leaf node]
where each
root node, inner node, leaf node
contains
name =? minOccurs =7, max0Occurs =7, type =7

Using our repository to discover potential schema mappings is intuitive. Given two
schemas to be matched, we query the repository for node-pairs where one side of the pair is
similar to a node in the first schema tree, and the other or same side of the pair is similar
to a node in the second schema. When such a pair can be found in the repository, we can
conclude that there is some level of similarity or association between the said nodes in the
two to-be-matched schemas. For example, suppose we wanted to find a mapping for two
schemas, SCHEMA1 and SCHEMAZ2. Suppose SCHEMA1 contains a node A, and SCHEMA2
contains a node B. Now suppose that the repository contains a known mapping: node-pair
(X,Y) from some established schema mapping. If we compare the nodes in SCHEMA1 with
the nodes in the repository and find that A is similar to X, then subsequently compare the
nodes in SCHEMAZ2 with X and Y and find that either X or Y is similar to B, then it must be
that A is also similar to B. That is, if A is similar to X, X is known to be mapped to Y, and
X or Y is similar to B, then we can conclude that A is also similar to B. In essence, we are
using the repository to determine transitive similarities between nodes.

The fact that both already-mapped and to-be-mapped schemas come from the same
business domain/context is key. This means, for example, that schemas come from the
usual trading partners and are created by the usual schema designers, that they are used for
business processes and to describe products belonging to the usual industries, etc. As such,
the schemas may be more homogeneous in design (e.g., using common acronyms, jargon,
or structure) and this increases the likelihood that nodes in known mappings will have
similarities with nodes in to-be-mapped schemas. Section 7 discusses how the repository is
searched to find preliminary mappings.

6 Multi-Heuristic Similarity Function

To evaluate the similarity between leaf nodes, we use an aggregation of multiple heuristics.
The idea is to have a similarity function that takes two nodes (nl,n2) as input and outputs
a score (sim(ny,ng) € [0,1], with 1 being perfect similarity) based on the aggregation of
similarity heuristics. The three heuristics that are core to MAXSM consider all information
expressed in XSD schema: name of the nodes, their paths, type, and cardinality, and the
structure of the schema tree. The name and path of a leaf node are particularly important
and require both syntactic and semantic analysis during comparison.

Our similarity function represents a simple and efficient way of combining different
heuristics that each exploit key features of XSD schemas. Moreover, this approach allows
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for addition (or removal) of heuristics (see section 6.4). The following sections discuss each
core heuristic in detail.

6.1 Location Path Matching

Every node in a schema tree has a unique location path in the form described in section
5. A location path encodes information about the node that it is referencing, information
about each of the nodes from root to the node being referenced, and the relative position
of these nodes within the path. Thus, when comparing two schema nodes based on sim-
ilarities in their location paths, similarities in the ancestors of the nodes being compared
are implicitly considered as well. The location path matching heuristic defines a similarity
function simpp(ni,ng) € [0,1] which compares the location paths of node n; and n2 to
produce a similarity value. The location paths are compared in terms of string pattern
and natural-language semantic similarities of “tokens” in the location paths, as well as the
relative ordering of these tokens within the paths. A token represents the information en-
closed in square brackets in a location path (i.e., each term or entry seperated by “/”s).
To determine the string pattern similarity of two node names, the similarity sub-function
discussed in section 6.1.1 is called. To determine the natural-language semantic similarity,
the sub-function discussed in section 6.1.2 is called. In this section, let simords(wi, w2)
be the equally-weighted average of similarity ratings from these two sub-functions. Thus,
STMuyords (W1, w2) gives a similarity rating for words w; and wy based on their string pattern
and linguistic semantic similarities.

The location path matching heuristic simpp(ni,n2) produces a similarity value by com-
paring the location paths of ny and ne, ny.locationPath and no.locationPath respectively.
More specifically, this heuristic compares the name property of the tokens in the location
paths using $imords(wi, we). FEach token in a location path is assigned an ordinal posi-
tion value, beginning with the right-most tokens. Using our example schemas, consider
the location paths for the Province node in Company X’s purchase order schema, and for
the State node in Company Y’s invoice schema. Figure 4 illustrates how tokens in these
location paths are assigned ordinal position values. Tokens at position 0 are of greatest
importance since they represent the node that the location path references. Tokens with
increasingly higher position values have relatively less importance as they represent nodes
that are further away (ancestrally) from the node referenced by the location path.



The location path matching heuristic determines simorqs(w1,we) for pairs of tokens
that are in the same ordinal position. Intuitively, comparisons are not made between pairs
in different ordinal positions as that comparison is meaningless (in the context of location
path matching). For example, there is no reason to compare a token at position 0 that
represents a leaf node in one schema, with a token at position 3 that represents an inner
node in another schema. It is intuitive to only compare tokens in the same ordinal position.
Thus, $imuyergs(w1,ws) is calculated for each pair of like-position tokens, as shown for the
example location paths in figure 4. In the case where ni.locationPath and ns.locationPath
comprise different numbers of tokens, the location path with the greater number of tokens
will have the leftmost tokens ignored and not included in any comparison. This follows
the intuition that only like-position tokens should be compared. If one location path has
a greater number of tokens than another, it means that the node being referenced by the
longer location path is deeper in its schema tree than the node being referenced by the
shorter location path, in its schema tree. Thus, it is meaningful to compare only up to the
height of the shorter path (which includes up to the root of that schema tree).

Figure 4 illustrates the tokenization, position assignment, and comparison of Province.locationPath
and State.locationPath. The dotted lines indicate the value-pairs passed to simyorgs(wi, wa)
and the similarity rating returned. Recall that simeqs(w1,ws) is based on string pattern
similarities as well as natural-language semantic similarities. This explains why sim,orqs(“ShipToAddress”,
“ShippingInfo”) is relatively high, and why sim.erqs(“CustomerInfo”, “Buyer”) is relatively
low (in the first case, there is substantial string pattern and semantic similarity, while in
the second case, there is very little string pattern similarity). To derive a final value for
simpp(ni,ne2), a weighted average of the calculated simorgs(w1, w2) values is taken. Intu-
itively, we want the rightmost similarity values to carry the most weight, with decreasing
weights moving leftwards. The basis for this is that we care most about the similarity
rating of the tokens representing the nodes being referenced by the location paths, and
care increasingly less about the similarities of tokens representing nodes that are further
away (ancestrally) from the nodes referenced by the location path. Thus, we assign weights
defined as ﬁ where p is the ordinal position of the tokens being compared. In order
to have the weights sum to 1, we assign the leftmost weight as always being 2%, i.e., the
leftmost value will carry the same weight as the second-to-leftmost value. This is a mere
simplification. So for our example, simyp(Province, State) is calculated as:

$(0.7) 4+ 1(0.8) + £(0.6) + £(0.7) = 0.7125

This scheme ensures that the relative ordering of the tokens are considered in the over-
all similarity rating produced by this heuristic. That is, highly similar token pairs that
are relatively out-of-order are not considered and cannot cause the overall similarity value
produced to be invalidly high. The following sub-sections detail the sub-functions called by
the location path matching heuristic.

6.1.1 String Pattern Similarity Function

This function deals with string pattern similarity and matches nodes with respect to char-
acter use and formatting in their names. More specifically, this function maps a pair of



strings w; and wy to a similarity rating between 0 and 1: sim(wq,w2) € [0,1] — the larger
the value returned, the greater the similarity between w; and ws. In our context, wy and
wy are the names/labels of two schema nodes being compared.

The problem of assigning distance or similarity values to a pair of strings/words based
on pattern matching (versus natural-language semantic matching) is a well-studied one in
the database community, as well as in Al and statistics [3]. A common metric used for
quantifying string pattern similarity between two strings w; and ws is the edit distance
between them. In general, edit distance is defined as the total cost or number of operations
required to convert w; to ws. Typical edit operations are character insertion, deletion,
replacement. Depending on application and context, different costs may be assigned to
each operation. Edit distances are most often normalized to a value in [0,1].

Cohen et al. [3] carried out an empirical comparison of various string distance/similarity
functions. They ranked these functions in terms of “accuracy” for use in an automatic
string matching scheme, in which pairs of matching strings are proposed based on simi-
larity /distance ratings produced by each function. Similar to evaluating schema matching
schemes, “accuracy” describes how close a proposed set of pairs/matchings is to an intended
set (as intended by a human matcher). Since this experiment design closely models how a
string distance function is used in MAXSM, the findings reported are directly relevant for
our XML schema matching approach.

We adopt the Monge and Elkan [12] string pattern similarity function sim(wy,ws).
Monge and Elkan define a recursive matching scheme for comparing two strings wy, ws. In
their scheme, w; and wy are decomposed into substrings wy = s1...s; and wy = t1...1,
then substrings are recursively compared using some secondary distance function sim’(s,t)
[12]. The Monge and Elkan string pattern similarity function performed most accurately
among the several edit-distance-based similarity functions compared in [3].

6.1.2 Semantic Similarity Function using Wordnet

This function deals with semantic similarity and matches nodes with respect to the meanings
of their names. The motivation for using this comes mainly from the field of natural language
processing and some of their methods [2]. Successful methods such as the one from Jiang [6]
rely on WordNet, a lexical taxonomy http://wordnet.princeton.edu/. Furthermore, the
semantic understanding of node names seems like a necessary tool due to the complexity
of schema matching. To find similarities between two concepts (a particular definition
of a certain word), these methods usually use the hyponymy relations given in WordNet.
Hyponomy relations are “IS-A” relations. For example, a “car” is a “motor vehicle” which
in turn is a “self-propelled vehicle”. All the words in WordNet are therefore in a tree-like
hyponomy structure. Intuitively, given two leaf nodes from the XSD schemas, their position
relative to each other in this tree that will determine their degree of similarity. Unlike [7],
we only use hyponomy relations as the results of Budanistsky [2] find that this is sufficient.

Jiang’s method uses the following two ideas to evaluate semantic similarity. First, the
closer two words are in the hyponomy structure, the closer their meanings are. This is
referred to as the Edge-Based Approach and was first proposed by Rada [14]. The simple
ideas is to count the number of edges in the hyponomy tree and use this distance as the
measure of the similarity of two words. As explained in [6], higher density areas in the

10



tree make for closer semantic similarity. Also, the lower in the hierarchy a concept is, the
closer its meaning is to its neighbors (thus the higher the weights of the edges should be).
Each child of a parent could also have a different importance. This could be based on a
previously seen corpus, for example.

The second idea is to look at how much information in common the two concepts give.
This is called Information Content (IC). It is based on information theory and was first
proposed by Resnik [17, 18]. Technically, you can calculate this value by looking at the
frequency of some concept which subsumes both concepts. In information theory, a term
which is more frequent is considered to give less information (IC = log™*(P(c)) where P(c)
is the probability of a term). In our case, higher terms subsume lower ones (so that the
IC of the root of the tree is 0). Of course, when we talk about frequencies of words, we
need to learn those frequencies from some corpus. In addition, the corpus could be tagged
with WordNet to get the correct concept for each word. As Jiang did, we use the SemCor
corpus [10] - this will also make us use a Good-Turing estimation with linear interpolation
for the probability estimations. In their paper, Jiang proposes two formulas, one being
a simplified version of the other (floating parameters have been set). Furthermore, Jiang
shows that fixing the tuning parameters does not result in significant changes. Thus, we
use the simplified equation, as follows:

Dist(wy,we) = IC(¢1) + IC(c2)
—2 x IC(LSuper(c1,c2))

Where w1, wsy are the words we are trying to match, ¢; the concepts related to these word
and LSuper is the lowest common parent that ¢; and ¢y have. Of course, for inclusion into
our aggregation function we need to normalize the Dist value. One way is to set a minimum
threshold on the probability value (if the probability is under that value we raise it to the
threshold). For example, if this threshold is 0.001 than the Dist will have a maximum value
of 6.0 (Dist =3+ 3 —2 x0). After we have normalized it, we simply take its complement
(1 — Dist) to get a similarity value. Finally, to get the sense of a word (¢; = sem(w;)), we
use its most common sense as given by WordNet.

6.2 Data Type and Cardinality Matching

Matching schema nodes based on data type and cardinality is a common and reliable sim-
ilarity measure. Both data type comparison and cardinality comparison are considerably
more deterministic than, say, linguistic semantic matching. For our purposes, we define a
similarity function using data type and cardinality comparison as:

Given a node pair (n1,n2) where n; € S; and ng € Sy and 57 and Sy are two schemas being
matched we define,

SimDT—&-C’m‘(nla n2) =0 Simdatatype (nla n2)

+AtypeSim * (1 - 5) * Simcardinality (??,1, 722)

Note that simpricaer(ni,n2) € [0,1]. § and 1 — § are the proportional weights given to
the similarity of the data type and the cardinality of the element. We only give a weight
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to the cardinality of elements if their data types match. This is captured by the Azypesim
parameter which corresponds to a binary value in {0,1} based upon data type similarity.

XML schema specification [20] allows for many different data types and regular ex-
pressions which makes this heuristic more significant compared to data type matching in
relational databases. For example, on top of the usual integer, float, double, string etc.
data types, XML Schema accepts extensions to data types (e.g. year field can be declared
as an value in [1900-2050]). Also, many string data types can be represented as regular
expressions. For example, a field representing telephone numbers is usually an integer,
but is represented as strings allowing for special characters such as ‘-’ and ‘x’ etc. Since
XML Schema allows for the definition of very specific data types, data types matches are
reasonable indicators of candidate mappings.

This heuristic also has to deal with “equivalences” between data types. For example, a
float and an integer can in some cases be used interchangeably, while a float and a string
typically cannot. We base this idea and use the actual sets of related types from [5].

The other part of the equation is matching the cardinality of an element in the schema
(simcqr or equivalently simcqrdinality). Elements in a schema may occur with a varying
degree of cardinality. The cardinality of an element expresses the ability of that element
to be repeated in an instance of that schema. Matching the cardinality of an element
gives an idea of the semantic ‘closeness’ of elements of the two schemas which we use
in this heuristic. In XML, the cardinality of elements can be found through minOccurs,
maxOccurs attributes. The weighted cardinality between two nodes is represented in the
similarity function as (1 — &) * Simcardinatity(1,n2). Here is a simple function to calculate
this similarity (in which we can flip the denominator so that it is always € [0, 1]):

b (maa:Occursnl - ma:cOccursn2>
abs

minOccursy,, — minOccursy,

The example scenario in Figure 5 illustrates how MAXSM’s multi-heuristic module will
compute similarity based upon data type and cardinality values. If we compute similarity
value siMmgqratype(Price, ng) for Price in S and ng in So respectively, then we would get
the maximum similarity value for simdamtype(Price, Amount) where the closest data type
to double is float. They would give an exact match for cardinality. An interesting scenario
for cardinality matching would be for the complex-type Item. In the case of Item, it
would give a max value for simeardinatity(1tem, Product) where it is not possible to actually
compare the complex types and we assign Ayypesim a 1 so that the similarity function can
be computed for the cardinality of the element.

6.3 Node Characteristics Matching

This heuristic compares the elements of two schemas based upon their position in the schema
tree and the structure that extends from them. It tries to detect similar subtrees between
two XML schemas by comparing node characteristics: number of children, height from the
leaf node, number of siblings, and depth.

To define the similarity function for this heuristic, we compute the structural similarity
between two given nodes n; and ng in schema S; and schema Ss, respectively, by the
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Figure 6: An illustration of Node Characteristics matching

equation

simyc(ni,n2) = X * $iMpodeSimilarity (N1, N2)

—|—(1 — )\) * Z SimsubTreeNodes(nl,iv nQJ)

where simpyc(ni,n2) € [0,1]. The first part of the equation uses the actual similarity
between the two nodes ny and no.That is, for each characteristic it calculates the difference
between the two nodes. The second part of the formula does the same for every child of
the current nodes (n1,; or ng; respectively) and averages them out. The idea is to find
matching structures. In any case, the parameter A can be tuned according to scenario and
context.

The interesting point to note here is that subtree structure matching still has value even
though the two nodes may differ drastically in their characteristics.

Figure 6 illustrates this heuristic. If we compute the similarity function presented in this
section on Item, we would get a maximum similarity value for simyc(Item,ng) with ng
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being Product. This is because Item has not only the same number of children but also the
same number of siblings. In addition, the height from the bottom of the tree for the nodes
Item and Product is the same. The second component of the structural similarity function
would also yield a high value for simgyprreesim(Item, Product) because of the previous
matchings which would have found the subtrees very similar. This similarity value would
eventually help determine the similarity of the parent nodes Purchaselnfo and Order.

6.4 Combining Heuristics

In this section, we discuss how to combine our heuristics to give a final similarity value to
a pair of nodes. The idea is to do a weighted average of the heuristics. The weights are
given a default value but are tunable according to specific context/scenario. The equation
for this summation is given by

SIM M ulti— Heuristic(M1, N2) = a1 * simpp(ni, ng)

+ag * Simpricar(ni, n2) + as * simyc(ni, na)

where simpp is the similarity calculated by Location Path matching, simpricqe, is the
similarity computed by the Data type and Cardinality matching, simy¢ is the similarity
from Node Characteristics matching. To make sure that the range of the function is correct
(€ [0,1]), we require that the following condition is met ), o; =1

Concerning the default values, we will give a higher score to the first heuristic. This
is because it contains two different functions which are both very meaningful. By default,
we set a; to be ay + ag. For simplicity, we refer to the above function as sim(ni,ng)
throughout this paper.

7 Matching Step I: Preliminary Mappings

The first step of MAXSM is to produce preliminary mappings by searching for “transitive
mappings” in the repository. Preliminary mappings are based solely on similarities between
nodes in the repository and nodes in the schemas being matched. Similarities between nodes
in the schemas themselves are not considered at this stage. Preliminary mappings are used
in the second step of MAXSM (section 8) as “seeds” or hints of good mapping candidates
and also serve as starting points for a tree-spanning search for additional candidates.

We are given two schema trees S1 and So to be matched, a repository R of node-pairs
(each pair representing an individual known mapping), and the multi-heuristic similar-
ity function simauiti— Heuristic(n1,n2) (let us henceforth use sim(nq,ng) for short). Let
71 € [0, 1] be a user-configurable threshold for “acceptable” similarity ratings. To find pre-
liminary mappings between S; and Ss, the following three sub-procedures are performed:

SEARCH 1: For each leaf node nj in Sp, find all node-pairs p = (z,y) in R where
mazx(sim(ny,x), sim(ny,y)) > 1. Store all such n, p, and simggarcu 1, where simggarcs 1
= maz(sim(ny,x), sim(ny,y)). Thus, SEARCH 1 finds all repository node-pairs that con-
tain nodes that are sufficiently similar to leaf nodes in the first schema.
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SEARCH 2: For each (n1, p = (2,v), simggarcn 1) 3-tuple stored during SEARCH 1,
find all leaf nodes ng in Sy where maz(sim(na,x), sim(ng,y)) > 7. Store all such nq, p,
SIMSEarcH 1, N2, and SiMgparcn 2, Where simgparcn 2 = maz(sim(na, x), sim(ng,y)). Thus,
SEARCH 2 finds all leaf nodes in the second schema that are sufficiently similar to nodes in
node-pairs found by SEARCH 1.

We now have a collection of (n1, p, Simsgarcn 1, N2, SiMSparcn 2) D-tuples returned by
SEARCH 2 (the results of SEARCH 1 can now be discarded). Each tuple represents a tran-
sitive mapping: leaf node n; in S is similar to node z and/or y in node-pair p, node-pair p
comes from the repository of known mappings and therefore 2 maps to y, and x and/or y
is similar to leaf node ns in S;. Therefore, n; can be transitively mapped to ns. However,
the collection may contain “collisions”. That is, a leaf node in S7 or S may be included
in more than transitive mapping. This cannot remain as leaf nodes can participate in at
most one mapping. Thus, we must resolve the collisions by discarding transitive mappings
that include leaf nodes already included by another transitive mapping. To decide which
transitive mapping to keep when faced with collisions, we consider which mapping has the
greatest transitive similarity.

RESOLVE COLLISIONS: For each (ny, p, $imsgarcu 1, 72, SiMsparch 2) D-tuple returned by
SEARCH 2, calculate the transitive similarity simrgans = (8imSgarc 1+ SiMSparcn 2)/2 and
store the 3-tuple (n1, no, simrrans). The corresponding 5-tuple can be discarded. This gives
us a collection of simplified transitive mappings between leaf nodes in the two schemas, with
a (transitive) similarity rating for each. Now sort the 3-tuples in the collection by decreasing
stmTrans- Let P be a set of node-pairs, each node-pair representing a preliminary mapping
derived from the repository of known mappings. P begins as an empty set. Then, for
each (n1, na, simrgans) in the sorted collection (beginning with the tuple with the greatest
simTrans), add node-pair (nq,ng) to P if-and-only-if (ny ¢ P Ang ¢ P).

What we achieve is a set of preliminary mappings (a leaf node in S; mapped to a
leaf node in S3) such that each mapping/node-pair (n;,n2) has the greatest (transitive)
similarity rating of all possible leaf node-pairs containing n; or no. By definition, node
n1 and no cannot appear in any other node-pair in the set. Said another way, the set of
preliminary mappings consists of the most transitively similar pairs of leaf nodes (one from
each schema), with each node participating in exactly one pair.

8 Matching Step II: The Similarity Matrix

In this step, the schema trees are traversed and a similarity matrix is populated with
calculated similarity ratings. The problem is two fold: first, find a matching in the trees
which corresponds to our constraints, second, maximize (span) that matching. The first
step is to calculate the similarity functions (sim(ni,n2)) between the nodes of the two trees.
If possible, we can simply do a (brute-force) pairwise comparison of leaf nodes in one tree to
each leaf node in the other tree. Values returned by this procedure which are above the user
defined threshold are added to a similarity matrix. Since we believe that this brute-force
approach might not be feasible for larger schema, we propose an approximation which takes
advantage of specific characteristics of our problem.

First, let us define the similarity matrix. This matrix is simply a N; x N storage (where

15



Buyer
( Name ] (Shlppmglnfo]

Cutomerinfo

FirstName

LastName

ShipTo

[ Given J( Surname] ( State ]( City ] City

Figure 7: This shows the Tree Spanning procedure on a subset of the XSD schemas previ-
ously discussed

N; and Ny are respectively the number of leafs in trees ny and ny) containing, for each cell,
the value of the similarity of the two nodes (or zero if this value is unknown). We refer to
the similarity matrix as being “full” when it is fully populated.

We now propose a more efficient node-comparison scheme which relies on matches given
by Step L. The idea is to use these matches, as seeds or starting points, to make an educated
spanning search into our two trees. Intuitively, we want to start at the seeds and compare
surrounding nodes. We then span-out like this until a maximum number of nodes have
been matched. The idea is that if two nodes match, their neighbors have a higher chance
of matching as well.

The heuristic goes as follows (algorithm 1). For each match given by Step I, we check
the two nodes in the trees with the similarity function. If the value of the function is higher
than the threshold (71), we consider this seed to be a definitive match. Let us also note
that since such a match comes from the repository, we add a bonus value to the similarity
function (this value is configurable). We then “grow” from these seeds to find other matches.
That is, we try to match the siblings and parents of these matched nodes. Of course, if
the similarity function did not return a score above the threshold, we discard the seed. For
each “acceptable” seed, we try to match parents, then grandparents, and then recurse on
their children in this way until we cannot find matches in two subsequent layers. If matches
have not been found within two levels from a seed, then the seed has reached its “helping
capacity”. Intuitively, two levels away is a good trade-off between efficiency and accuracy.
We also have a second threshold 7o which is used when we are not comparing leafs. Notice
that, since we only want to match leaf nodes with leaf nodes, we do not cross-compare
internal nodes and leafs. In Procedure 1, ¢(n) refers to the set children of a node n, s(n) to
the set of all siblings of a certain node, and p(n) to the parent of a node (which is unique).
This is an approximation technique which may significantly reduce the time to match the
nodes (it’s lower bounded by V).

To illustrate an example of this procedure, we take a subset of the original XSD schema
shown in figure 8. We start with the seed “City” which was given by Step I. The procedure
then compares the seed-pair again to make sure they are actually matched. It then calls the
GoUpfunction which would in turn call the similarity function on all the pairs of siblings of
“City”. If there is a match, e.g. between State and Province, then we call GoDownwith the
parents (“ShippingInfo” and “ShipTo” respectively). We then compare the siblings of these
parents. The obvious fact is that the siblings of “ShipTo” are leafs. So we would actually
go down and compare these leafs with the children of the siblings of “Name” (in this case
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“ShppingInfo”). Once these comparisons are done, we go up (at least one more level) and
compare “Buyer” with “CustomerInfo”. Whether or not we go up again is based on the
results of these matches and the ones of the siblings of “ShippingInfo” and “ShipTo” (this
refers to the rule about visiting a maximum of 2 levels higher from a seed-match).

Procedure 1 Tree matching
: for all seeds, s;,, do

1

2 N1 = 8i1,N2 = S;2

3 if sim(ni,n2) + bonus > 71 then

4 Store this value in the full similarity matrix
5.  end if

6:  GoUp(ni,ng)

7: end for

8
9

: Func GoDown(ny,ng)
10: for all pairs of siblings, s(n1) X s(nz) do
11 if sim(ni4,ng,;) > 71 then {or 7 if the nodes are not leafs}

12: Update the values in the full similarity matrix

13: GoDown(c(n ), c(ng,;)) {unless they are leaf nodes}
14:  end if

15: end for

16:

17: Func GoUp(ny,n2)
18: for all pairs of siblings, s(n1) x s(ng) do
19: if sim(nis,ng;) > ™ then

20: Update the values in the full similarity matrix
21: GoDown(p(ni,i), p(n2,i))

22:  end if

23: end for

24: if none have matched then
25:  GoUp(p(n1),p(n2)) {unless they are root nodes}
26: end if

9 Matching Step III: Final Mappings

In this step, we generate a final set of proposed mappings based on results captured in the
similarity matrix, while attempting to maximize the total number of proposed mappings
(i.e., the map coverage). We start with the similarity matrix built in the previous step
and now need to find the maximum edges. Note that this is not necessarily the maximum
number of matchings. Furthermore, each node can only participate in one match. Thus,
this process is not straightforward as the same leaf node may have the same match value
for different leafs in the other tree. Formally, for each leaf node in one tree, ny we could
express our objective function as f(ng) = arg max,, sim(ni, ng)

An intuitive way to solve the problem is to always take the match that has the maximum
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Figure 8: Given the similarity matrix this shows the process which leads to finding the
maximal matchings

value in the matrix. Once this has been taken, we cross out (or zero-out) the column and
row of the two chosen nodes. We do this until all the nodes have been matched or the
maximum value left is under the threshold. The complication comes when the maximum is
not unique on its row or column. To deal with these, we simply check the next largest value.
The one that gives us this second maximum value is the one we accept. Formally, this has
a complexity of O(N?log N + (N?)). The first term is to sort the matrix and the second to
find maximum matchings. The second term is somewhat loose but it is still upper-bounded
by the first.

An example of this algorithm is given in figure 8. We are given a similarity matrix
(shown at the left in the figure). Then (middle matrix), we find the maximum value (0.9)
and call ng 1 and m11 a match. We also cross their respective rows to indicate that these
nodes have been matched. In the next step, we find a conflict: there are two maxima (0.8)
in the same column. The algorithm tries both. Since it is better to have a third match of
0.5 than 0, we end up matching no 3 and n1 2 which leaves the match of ng o with nq 3.

Interestingly this problem has the same feel as the bipartite weighted matching problem.
The main difference is in the objective function. In one we are trying to maximize the total
number of matchings, in the other, as in our problem, we want the maximum matching
for each node. In any case, the best technique [1] to solve the assignment problem runs in
O(v/Nimlog(NC)) (this is using the Cost Scaling algorithm). In our case, the number of
arcs m < N1Ns.

10 Experiments Design

Intuitively, for matching XML schemas, our tree spanning algorithm should be faster than
the brute force approach (which makes all possible node comparisons). Our intuition is that
given an appropriately sized repository, it should also perform better in terms of accuracy
(F-measure) than the brute force approach. We need to compare these two approaches
using differently sized schemas. We expect that matching larger the schemas will benefit
most from using the tree spanning approach. The experimentation here is typical of any
schema matching approach. There are also various aspects unique to MAXSM that we must
verify.

Firstly, we need to quantify the efficacy of the repository of known mappings. We would
like to see how the size of the repository might affect the accuracy of our matchings. So,
we’d like to run experiments with different repository sizes. Of course, another considera-
tion is the homogeneity between established schema mappings that are imported into the
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repository, and subsequent to-be-matched schemas. To control the second variable during
experimentation, we select a single business domain (and schema sources) from which to
match schemas. For example, we could take schemas from the financial services vertical,
and ones that belong to the same electronic banking standards body. This ensures that all
test schemas exist in the same business context. We would then run MAXSM against, say
20 pairs of schemas to be matched (with an empty repository), then run MAXSM against
another 20 pairs of schemas to be matched (this time with the repository populated by the
previous 20 schema maps), then run it again with another 20 pairs of schemas (this time
with known mappings from the cumulated 40 schema maps), etc.

Secondly, we need to gain better understanding of the effects of the user-configurable
thresholds in MAXSM when faced with real-world schemas to be matched. We have left the
burden of setting the various thresholds and similarity weights to the user. Although this is
a reasonable approach since only users have domain-specific knowledge of the characteristics
of the schemas in their domain/context, we would still like to give reasonable default values
to all of these configurable parameters — we must first learn what “reasonable default val-
ues” are based on experimental results. We would also like to understand empirically how
sensitive match accuracy in MAXSM is to changes to the various threshold values. To learn
these things, we must conduct experiments using various value ranges for the configurable
thresholds. Such testing may also reveal the need for additional heuristics that we have not
yet considered, or the depreciation of heuristics that we have.

Finally, we need to compare MAXSM against other available XML schema matchers. A
good measurement will then be to compare MAXSM’s match accuracy with that of other
approaches, when matching the same pairs of schemas. Since we have built on the ideas
of some existing approaches and ideas (as referenced throughout the paper), we expect
MAXSM to outperform, but of course must verify this experimentally.

11 Conclusions

We have proposed a comprehensive approach called MAXSM for matching XML schemas.
MAXSM is a multiple-heuristics based matcher that incorporates some novel features such
as the repository of known mappings, a natural-language matching function that uses Word-
Net, and a tree spanning technique for discovering clusters of similar nodes. We also present
a location path structure to reference nodes in a schema tree, and corresponding matching
heuristic that determines node similarities based on their location paths. Furthermore, we
present matching heuristics which consider data type, cardinality, and node-tree character-
istics similarities. MAXSM has been designed from the ground-up as a matching scheme
exclusively for XML schemas in the enterprise data integration space. While MAXSM has
not yet been implemented, we expect positive results due to the deliberateness of its design
to address XML schema matching in a focused context.

12 Future Work

An idea from [7] was to use true machine learning for the schema matching problem. Some
groups [8] have already done so. We could also benefit from these in at least two different
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aspects. First, like [8] instead of leaving the choice of the similarity weights to the user we
could learn them. An algorithm such as the Winnow could be used to do so.

An alternative idea to our tree spanning would be to pre-order the leaf nodes of one
tree according to each heuristic. We would basically have ranked lists and could then use a
combine rank algorithm (such as the Threshold Algorithm [4]) to find the top node given
another a leaf from the other tree. Thus, the leaf nodes in one tree would be ranked and the
nodes in the other would act as queries. The problem of course is to pre-order the leafs in
one tree without knowing about the leafs in the other. One solution would be to sort them
using basic metrics needed in the heuristics. The problem of course then becomes finding
those metrics for each heuristic.

Finally, in addition to actually implementing and testing MAXSM as presented, we also
want to consider making MAXSM a more general solution, testing it both conceptually
and experimentally for use with other schema representations, beyond XSD. The ideas and
approaches used in MAXSM are not fundamentally coupled to XSD and the general feeling
is that it can be applied to any schema representation that can be encoded in our schema
tree structure. Even the efficacy of the repository and reuse of mappings is independent of
schema representation — it is more dependent on the schema matching context or domain,
and the homogeneity of schemas in that domain.
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