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Abstract

It has been observed that in practice, typical request sequences for the list update problem
exhibit a certain degree of locality of reference. We first extend the locality of reference model
for the paging problem due to Albers et al [STOC 2002/JCSS 2005] to the domain of list
update; this addresses the open question of defining an appropriate model for capturing locality
of reference in the context of list update [Hester and Hirschberg ACM Comp. Surv. 1985]. We
then apply this model in conjunction with a recent technique for comparing online algorithms,
namely bijective analysis [SODA 2007] and analyze well known online algorithms for list update.

Using this framework, we prove that Move-to-Front (MTF) is the unique optimal algorithm
for list update. This holds for both the standard cost function of Sleator and Tarjan [C. ACM
1985] and the refined cost function proposed independently by Mart́ınez and Roura [TCS 2000]
and Munro [ESA 2000]. Our work resolves an open conjecture of Mart́ınez and Roura, namely
proposing a measure which can successfully separate MTF from all other algorithms.

1 Introduction

List update is a fundamental problem in the context of on-line computation. Consider an unsorted
list of l items. The input to the algorithm is a sequence of n requests that should be served in an
on-line manner. Let A be an arbitrary on-line list update algorithm. To serve a request to an item
x, A should linearly search the list until it finds x. If x is the ith item in the list, A incurs cost
i to access x. Immediately after accessing x, A can move x to any position closer to the front of
the list at no extra cost. This is called a free exchange. Also A can exchange any two consecutive
items at a cost of 1. These are called paid exchanges. An efficient algorithm should use free and
paid exchanges so as to minimize the overall cost of serving a sequence. This is called the standard
cost model [AW98].

The list update problem has been extensively studied due to its theoretical and practical im-
portance. In practice, unsorted linear lists can be used to implement small dictionaries [BM85].
In addition, list update algorithms have been used as subroutines in computational geometry
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[BCL93, Gol90] and data compression schemas [BSTW86, BW94, AM98, Sch98] among other ap-
plications. The problem was first studied by McCabe [McC65] in the context of maintaining a
sequential file. In the early stages, list update algorithms were analyzed using the distributional
or average-case model [Bit79, BK73, McC65, Riv76, GMS79]. In this model, it is assumed that
the request sequence is generated by a probability distribution and the efficiency of an algorithm
is related to the expected cost it incurs. A drawback of distributional analysis is that in practice
the distribution of request sequences is usually not known in advance and it also changes during
the execution of the algorithm.

Competitive analysis was a breakthrough in the analysis of on-line algorithms and made it
possible to analyze on-line algorithms without any assumption about the distribution of the request
sequences. The competitive ratio, first introduced formally by Sleator and Tarjan [ST85], has served
as a practical measure for the study and classification of on-line algorithms. An algorithm is said
to be α-competitive (assuming a cost-minimization problem) if the cost of serving any specific
request sequence never exceeds α times the optimal cost (up to some additive constant) of an off-
line algorithm which knows the entire request sequence. The competitive ratio, as a measure of
comparison for on-line algorithms, has been applied to a variety of problems and settings, mainly
due to its amenability to analysis: the measure is relatively simple to define yet powerful enough
to quantify, to a large extent, the performance of an on-line algorithm.

List update algorithms were among the first algorithms studied using competitive analysis.
Three well-known deterministic on-line algorithms are Move-To-Front (MTF), Transpose, and
Frequency-Count (FC). MTF moves the requested item to the front of the list whereas Trans-
pose exchanges the requested item with the item that immediately precedes it. FC maintains a
frequency count for each item, updates this count after each access, and makes necessary moves so
that the list always contains items in non-increasing order of frequency count. Sleator and Tarjan
showed that MTF is 2-competitive, while Transpose and FC do not have constant competitive
ratios [ST85]. Since then, several other deterministic and randomized on-line algorithms have been
studied using competitive analysis. (See [Ira91, Alb98, AvW95, EY96] for some representative
results.)

Notwithstanding its wide applicability, competitive analysis has some drawbacks. For certain
problems, it gives unrealistically pessimistic performance ratios and fails to distinguish between
algorithms that have vastly differing performance in practice. A well-known example is the paging
problem. All three paging strategies least-recently-used (LRU), first-in-first-out (FIFO), and flush-
when-full (FWF) have the same competitive ratio k, where k is the size of the cache in pages.
In contrast, the performance ratio of LRU in practice is much better than k. For example, Sites
and Agarwal provided experimental results showing that LRU achieves a performance ratio at most
three [SA88]. Furthermore, it has long been empirically established that LRU (and variants thereof)
are, in practice, preferable paging strategies to all other known paging algorithms [SGG02]. Such
anomalies have lead to the introduction of many alternatives to competitive analysis of on-line
algorithms (see [DLO05] for a comprehensive survey).

At first, it seems that competitive analysis of list update algorithms does not have these draw-
backs and gives promising results: list update algorithms with better competitive ratio tend to
have better performance in practice. For example, MTF behaves better than Transpose in prac-
tice [BEY98, BM85]. This is consistent with competitive analysis. However, the validity of the
standard cost model has been debated. Mart́ınez and Roura [MR00] and Munro [Mun00], indepen-
dently addressed the drawbacks of the standard cost model. Let (a1, a2, . . . , al) be the list currently
maintained by an algorithm A. Mart́ınez and Roura argued that in a realistic setting a complete
rearrangement of all items in the list which precede item ai to a given permutation would require
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time proportional to i, while A incurs a cost proportional to i2 in the standard cost model to do
this. Munro provided the example of accessing the last item of the list and then reversing the entire
list. He observed that the real cost of this operation in an array or a linear link list should be O(l),
while it costs about l2/2 in the standard cost model. As a consequence, their main objection to
the standard model is that it prevents the algorithms from using their true power. They instead
proposed a new cost model in which the cost of accessing the ith item of the list plus the cost
of reorganizing the first i items is linear in i. We will refer to this model as the modified cost
model. They showed that under this modified cost model, every on-line algorithm has amortized
cost of Θ(l) per access for some arbitrary long sequences, while there are some off-line algorithms
with amortized cost of Θ(log l) on every sequence. Therefore no on-line list update algorithm has
constant competitive ratio in the modified cost model; more importantly, we cannot separate the
behaviour of any on-line algorithms. Mart́ınez and Roura observed this and posed the question:
“an important open question is whether there exist alternative ways to define competitiveness such
that MTF and other good online algorithms for the list update problem would be competitive, even
for the [modified] cost model”.

This situation is reminiscent of the basic objection to competitive analysis: It uses the con-
cept of an optimal off-line algorithm, OPT, as a baseline in order to compare on-line algorithms.
While this may be convenient, it is rather indirect: one could argue that in comparing two online
algorithms A and B all the information we should need is the cost incurred by the algorithms on
each request sequence. In various problems OPT is too powerful compared to on-line algorithms,
causing all on-line algorithms to behave equally badly according to competitive analysis. Some
alternative measures overcome this problem by allowing direct comparison of on-line algorithms.
Max-Max Ratio [BDB94], Relative Worst Order Ratio [BF03], Bijective Analysis and Average Anal-
ysis [ADLO07] are examples of such measures which have been applied mostly to the paging problem
as well as some other on-line problems. We are not aware of any result in the literature that applies
the above measures to on-line list update algorithms.

Another issue in the analysis of on-line algorithms is that “real-life” sequences usually exhibit
locality of reference. Informally, this property suggests that the currently requested item is likely
to be requested again in the near future. For the paging problem, several models for capturing
locality of reference have been proposed [Tor98, AFG05, Bec04]. Likewise, many researchers have
pointed out that input sequences of list update algorithms in practice show locality of reference
[HH85, Sch98, BEY98] and actually on-line list update algorithms try to take advantage of this
property [HH85, RWS94]. Hester and Hirschberg [HH85] posed the question of providing a good
definition of locality of accesses for the list update problem as an open problem. However, to the
best of our knowledge, locality of reference for list update algorithms has not been formally studied.
In addition, it has been commonly assumed, based on intuition and experimental evidence, that
MTF is the best algorithm on sequences with high locality of reference, e.g., Hester and Hirschberg
[HH85] claim: “move-to-front performs best when the list has a high degree of locality”.

For the sake of simplicity, in this paper we only consider the static list update problem. This
means that we only have accesses to list items and do not have any insert or delete operations.
In particular, we have a set S = {a1, a2, . . . , al} of l items initially organized as a list L0 =
(a1, a2, . . . , al). The results in this paper can easily be extended to the dynamic version of the
problem. For an on-line algorithm A and a sequence σ, we denote by A(σ) the cost that A incurs
to serve σ. We also denote by In the set of all request sequences of length n, and by Ik+1(σ) where
σ is of length k, the set of the l sequences in Ik+1 which have σ as their prefix.
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Our results We begin by showing that all on-line list update algorithms are equivalent according
to Bijective Analysis under the modified cost model. We then extend a model for locality of
reference, proposed by Albers et al. [AFG05] in the context of the paging problem to the list
update problem. The validity of the extended model is supported by experimental results obtained
on the Calgary Corpus, which is frequently used as a standard benchmark for evaluating the
performance of compression algorithms (and by extension list update algorithms, e.g. [BEY97]).
Thus, we resolve the open problem posed by Hester and Hirschberg [HH85]. Our main result proves
that under both the standard and the modified cost function MTF is never outperformed in our
model, while it always outperforms any other on-line list update algorithm. As mentioned earlier,
Mart́ınez and Roura [MR00] posed the open problem of finding an alternative measure that shows
the superiority of MTF in the modified cost model and suggested that this can be done by adding
some restrictions over the sequences of requests. Our analysis technique allows us to resolve this
problem as well.

2 Bijective Analysis

In this section, we first provide the formal definitions of Bijective Analysis and Average Analysis and
then we show equivalence of all list update algorithms under the modified model according to these
measures. We choose to employ these measures since they reflect certain desired characteristics for
comparing online algorithms: they allow for direct comparison of two algorithms without appealing
to the concept of the “optimal” cost (see [ADLO07]for a more detailed discussion). In addition,
these measures do not evaluate the performance of the algorithm on a single “worst-case” request,
but instead use the cost that the algorithm incurs on each and all request sequences. These two
measures have already been successfully applied in the context of the paging problem [ADLO07]
and have led to separation results for various paging algorithms.

Informally, Bijective Analysis aims to pair input sequences for two algorithms A and B using a
bijection in such a way that the cost of A on input σ is no more than the cost of B on the image
of σ, for all request sequences σ of the same length. In this case, intuitively, A is no worse than
B. On the other hand, Average Analysis compares the average cost of the two algorithms over all
request sequences of the same length.

Definition 1 [ADLO07] We say that an on-line algorithm A is no worse than an on-line algorithm
B according to Bijective Analysis if there exists an integer n0 ≥ 1 so that for each n ≥ n0, there
is a bijection b : In ↔ In satisfying A(σ) ≤ B(b(σ)) for each σ ∈ In. We denote this by A �b B.
Otherwise we denote the situation by A 6�b B. Similarly, we say that A and B are the same
according to Bijective Analysis if A �b B and B �b A. This is denoted by A ≡b B. Lastly we say A
is better than B according to Bijective Analysis if A �b B and B 6�b A. We denote this by A ≺b B.

Definition 2 [ADLO07] We say that an on-line algorithm A is no worse than an on-line algo-
rithm B according to Average Analysis if there exists an integer n0 ≥ 1 so that for each n ≥ n0,∑

I∈In
A(I) ≤

∑
I∈In

B(I). We denote this by A �a B. Otherwise we denote the situation by
A 6�a B. A ≡a B, and A ≺a B are defined as for Bijective Analysis.

Observation 1 [ADLO07] If A 6�a B, then A 6�b B. In addition, if A �b B, then A �a B and
similar statements hold for A ≡b B and A ≺b B.

The following theorem proves that under the modified cost model all list update algorithms
are equivalent. This result parallels the equivalence of all lazy paging algorithms under Bijective
Analysis as shown in [ADLO07].
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Theorem 1 Let A and B be two arbitrary on-line list update algorithms. Under the modified cost
model, we have A ≡b B.

Proof: We prove that for every n ≥ 1 there is a bijection bn : In ↔ In so that A(σ) ≤ B(bn(σ))
for each σ ∈ In. We show this by induction on n, the length of sequences. Since A and B start
with the same initial list, they incur the same cost on each sequence of length 1. Therefore the
statement trivially holds for n = 1. Assume that it is true for n = k. Thus there is a bijection
bk : Ik ↔ Ik so that A(σ) ≤ B(bk(σ)) for each σ ∈ Ik. Let σ be an arbitrary sequence of length
k and σ′ = bk(σ). We map Ik+1(σ) to Ik+1(σ

′) as follows. Let L(A, σ) = (a1, a2, . . . , al) be the
list maintained by A after serving σ and L(B, σ′) = (b1, b2, . . . , bl) be the list maintained by B
after serving σ′. Consider an arbitrary sequence σ1 ∈ Ik+1(σ) and let its last request is to item
ai. We map σ1 to the sequence σ2 ∈ Ik+1(σ

′) that has bi as its last request. Since A(σ) ≤ B(σ′)
and A’s cost on the last request of σ1 is the same as B’s cost on the last request of σ2, we have
A(σ1) ≤ B(σ2). Therefore we get the desired mapping from Ik+1(σ) to Ik+1(σ

′). We obtain a
bijection bk+1 : Ik+1 ↔ Ik+1 by considering the above mapping for each sequence σ ∈ Ik. Thus our
induction statement is true and we have A �b B. Using a similar argument, we can show B �b A.
Therefore we have A ≡b B. 2

We will call a list update algorithm economical if it does not use paid exchanges. Since an economical
list update algorithm does not incur any cost for reorganizing the list we can prove the following
statement using an argument analogous to the proof of Theorem 1.

Corollary 1 All economical on-line list update algorithms are equivalent according to Bijective
Analysis under the standard cost model.

These results show that so long as we consider all possible request sequences, all on-line list
update algorithms are equivalent in a strong sense. However, as stated earlier, in practice request
sequences tend to exhibit locality of reference. Therefore, the algorithm can focus on input se-
quences with this property. In the next section we show that we can use such an assumption to
prove the superiority of MTF.

3 List Update with Locality of Reference

As stated in the Introduction, several models have been proposed for paging with locality of ref-
erence [Tor98, AFG05, Bec04]. In this paper, we consider the model of Albers et al. [AFG05], in
which a request sequence has high locality of reference if the number of distinct requests in a window
of size n is small. In Section 4 we will present experimental evidence which supports the validity of
this model for the list update problem. Consider a function that represents the maximum number
of distinct items in a window of size n, in a request sequence. For the paging problem, extensive
experiments with real data show that this function can be bounded by a concave function for most
practical request sequences [AFG05]. Let f be an increasing concave function. We say that a
request sequence is consistent with f if the number of distinct requests in any window of size n is
at most f(n), for any n ∈ N . We can model locality by considering only those request sequences
that are consistent with f . Albers et al. consider a slightly more restrictive class of functions called
concave* functions.

Definition 3 [AFG05] A function f : N → R+ is concave* if

1. f(1) = 1 and
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2. ∀n ∈ N : f(n + 1) − f(n) ≥ f(n + 2) − f(n + 1).

We additionally require that f be surjective on the integers between 1 and its maximum value.

In order to model locality, we restrict the request sequences to those consistent with a concave*
function f . Let If denote the set of such sequences. We can easily modify the definitions of
Bijective Analysis and Average Analysis (Definition 1 and Definition 2) by replacing I with If

throughout. We denote the corresponding relations by A �f
b B, A �f

a B, etc. Figure 1 shows
the partition of the input space induced by the choice of f . Observe that the performance of list
update algorithms are now evaluated within the subset of request sequences of a given length whose
locality of reference is consistent with f , i.e. If

n .

If1

2

If2

2

If1

4

If2

4

Σ∗

Σ4Σ1 Σ3Σ2

Figure 1: Partition of the input space induced by different choices of f [ADLO07].

Note that the inductive argument used to prove that all on-line list update algorithms are
equivalent according to Bijective Analysis (Theorem 1) does not necessarily carry through under
concave analysis because the bijection of the proof may map a sequence in If to one not in If .
Consider a fixed concave* function f . Let If

n denote sequences of length n in If .

Definition 4 Let A and B be list update algorithms, and f be a concave* function. A is said to
(m, f)-dominate B for some integer m, if we have

∑

σ∈I
f
m

A(σ) ≤
∑

σ∈I
f
m

B(σ).

A is said to dominate B if there exists an integer m0 ≥ 1 so that for each m ≥ m0 and every
concave* function f , A (m, f)-dominates B.

Observation 2 A �f
a B if and only if there exists an integer m0 ≥ 1 so that A (m, f)-dominates

B for each m ≥ m0.

Lemma 1 For every on-line list update algorithm A, MTF dominates A.

Proof: Let f be an arbitrary concave* function and m be a positive integer. For any 1 ≤ i ≤ m,
let Fi,m(A) be the total cost A incurs on the ith request of all sequences in If

m. We will first show
that Fi,m(MTF ) ≤ Fi,m(A) for any 1 ≤ i ≤ m. For i = 1, we have F1,m(MTF ) = F1,m(A),
as all algorithms start with the same list. Now suppose that i > 1. Let σ be an arbitrary
sequence of length i − 1, Tσ denote the set of all sequences in If

m that have σ as their prefix,
and Fi,m(A |σ) be the total cost A incurs on the ith request of all sequences in Tσ. Denote by
L(MTF, σ) = (a1, a2, . . . , al) and L(A, σ) = (b1, b2, . . . , bl) the lists maintained by MTF and A
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after serving σ, respectively. Suppose that cj (resp., dj) sequences in Tσ have aj (resp., bj) as
their ith request, for 1 ≤ j ≤ l. Note that

∑
1≤j≤l cj =

∑
1≤j≤l dj = |Tσ | and (d1, d2, . . . , dl) is a

permutation of (c1, c2, . . . , cl).
We first show that cj+1 ≤ cj for 1 ≤ j < l. Let Cj and Cj+1 denote the set of sequences in

Tσ that have aj and aj+1 as their ith request. We provide a one-to-one mapping from Cj+1 to
Cj which proves that |Cj+1| ≤ |Cj |. We map every sequence τ in Cj+1 to a sequence τ ′ in Cj by
replacing every aj with aj+1 and every aj+1 by aj , starting from position i. Since aj occurs before
aj+1 in MTF’s list after serving σ, we know that the last request to aj occurs after the last request
to aj+1 in σ. Therefore if τ is consistent with f , so is τ ′. Thus every sequence in Cj+1 is mapped
to a unique sequence in Cj and we have cj+1 = |Cj+1| ≤ |Cj | = cj .

Therefore we have

Fi,m(MTF |σ) =
∑

1≤j≤l

j × cj ≤
∑

1≤j≤l

j × dj = Fi,m(A |σ).

Now since

Fi,m(MTF ) =
∑

σ∈Ii−1

Fi,m(MTF |σ) and Fi,m(A) =
∑

σ∈Ii−1

Fi,m(A |σ),

we get Fi,m(MTF ) ≤ Fi,m(A). We have

∑

σ∈I
f
m

MTF (σ) =
∑

1≤i≤m

Fi,m(MTF ),

and ∑

σ∈I
f
m

A(σ) =
∑

1≤i≤m

Fi,m(A).

Therefore ∑

σ∈I
f
m

MTF (σ) ≤
∑

σ∈I
f
m

A(σ).

Thus MTF (m, f)-dominates A for every concave* function f , and every integer m ≥ 1. Hence
MTF dominates A. 2

Corollary 2 For any concave* function f and any on-line list update algorithm A,

MTF �f
a A.

Therefore MTF is an optimal algorithm according to Average Analysis, when we classify the
input sequences by locality of reference. A natural question is whether MTF is a unique optimum
or not, i.e., is there an on-line list update algorithm A that dominates MTF?

Lemma 2 No on-line list update algorithm (other than MTF itself) dominates MTF.

Proof: Assume by way of contradiction that an on-line list update algorithm A dominates MTF
and that A is different from MTF. According to the definition, there exists an integer m0 ≥ 1 so
that for each m ≥ m0 and every concave* function f , A (m, f)-dominates MTF, i.e.,

∑

σ∈I
f
m

A(σ) ≤
∑

σ∈I
f
m

MTF (σ).
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Following the proof of Lemma 1, this holds only if Fi,m(A |σ) = Fi,m(MTF |σ) for every m ≥ m0,

2 ≤ i ≤ m, and every sequence σ of length i − 1. Let σ ∈ If
i−1

be a sequence so that L(A, σ) is
different from L(MTF, σ), k be the largest index so that y = ak 6= bk = x (for ak and bk defined as
in Lemma 1, and p be the smallest index so that σ[p..i − 1] contains at most k − 1 distinct items.
Select the concave* function f so that f(i − p) = f(i − p + 1) = k − 1. Since y ∈ σ[p..i − 1] and
x 6∈ σ[p..i − 1] , we have ck = 0 < dk (the sequence of length m > i obtained by repeating y in any
position starting from ith position is consistent with f). Therefore

Fi,m(MTF |σ) =
∑

1≤j≤l

j × cj <
∑

1≤j≤l

j × dj = Fi,m(A |σ),

which is a contradiction. 2

Theorem 2 Let A be an on-line list update algorithm other than MTF. Then MTF �f
b A and

there exists at least one concave* function f so that

A 6�f
a MTF, which implies A 6�f

b MTF.

We can prove the separation with respect to Bijective Analysis between MTF and specific
algorithms, e.g., Transpose, for a much larger family of concave* functions.

Theorem 3 For all concave* functions f such that f(l) < l (l is the size of list),

Transpose 6�f
b MTF.

Proof: Let L0 = (a1, a2, . . . , al) be the initial list. Assume by way of contradiction that

Transpose �f
b MTF . Therefore there is an integer n0 ≥ 1 so that for each n ≥ n0, there is

a bijection b : If
n ↔ If

n satisfying Transpose(σ) ≤ MTF (b(σ)) for each σ ∈ If
n . Now con-

sider a sequence σ of length m ≥ n0 obtained by considering the prefix of the infinite sequence
alal−1alal−1 . . . . Transpose incurs a cost of l on each request and we have Transpose(σ) = m × l.

Note that σ is consistent with f , because it has two distinct items.1 Thus σ ∈ If
m and from the

assumption there should exist some sequence σ′ ∈ If
m so that m × l = Transpose(σ) ≤ MTF (σ′).

Therefore MTF should incur a cost of l on each request of σ′. Hence σ′ should be a prefix of the
sequence alal−1al−2 . . . a1alal−1al−2 . . . a1 . . . . Now any window of size l in σ′ has l distinct items.
Since we started with f(l) < l, σ′ is not consistent with f and this contradicts the assumption that

σ′ ∈ If
m. 2

4 Experimental Results and Analysis

In this section we test the validity of the locality of reference assumption we described in Section 3
against experimental data. For our experiments, we considered the fourteen files of the Calgary
Compression Corpus [WB] which are frequently used as a standard benchmark for file compression.
Recall that list update algorithms can be used in a very direct way in file compression. For each
file, we computed the maximum number of characters in windows of all possible sizes, up to the

1We can assume that f(2) = 2 because otherwise we are restricted to sequences that contain only one item.
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Figure 2: Maximum number of distinct characters in windows of size up to 3500 for the files in
Calgary Compression Corpus.

size of the whole file. Figures 2 and 3 show the resulting graphs. Note that since we observed that
the maximum number of distinct items does not change much as we increase the size of window to
values more than 3500, we only show the results for windows of size up to 3500.

As can be seen from these graphs, the curves have an overall concave shape. We should note
that for some of the input files, the function we obtained is not concave for some intervals. However,
this is not a major concern, since we can bound said function by any concave function f which is
such that f(i) is an upper bound on the maximum number of distinct items in windows of size i.
For instance, we can take the upper convex hull of the data points. In fact, Albers et al. [AFG05]
observed that similar non-concavity (mostly localized within small intervals) was present in their
experimental results concerning locality of reference in typical request sequences for the paging
problem. Albers et al. put forth this argument to justify the fact that local small deviations from
concavity do not impose a serious problem.
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(a) Results for file obj2 (b) Results for file paper1
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(c) Results for file paper2 (d) Results for file pic
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(e) Results for file progc (f) Results for file progl
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(g) Results for file progp (h) Results for file trans

Figure 3: Calgary Compression Corpus (continued).
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5 Conclusions

In this paper we addressed certain open questions concerning the well-studied list update problem.
We first considered the issue of modeling locality of reference for typical request sequences for
this problem. We provided experimental evidence which suggests that the concave-function model
of Albers et al., originally devised for the context of paging algorithms, can satisfactorily model
locality of reference within the domain of list update. We then combined this model with two
recently proposed measures for comparing online algorithms, namely Bijective Analysis and Average
Analysis. Our choice was based on the fact that these measures allow direct comparison of two
online algorithms, by considering their relative performance on all requests sequences of the same
length, rather than on some specific pathological sequences. These measures have been previously
applied with success in separating several paging algorithms, a situation which has long been known
but cannot be resolved by resorting solely to competitive analysis.

Using the above framework, we showed that whereas all list update algorithms are equivalent
for the modified-cost model, when locality of reference is considered, MTF emerges as the sole
best-possible online algorithm for the problem. This resolves an open problem posed by Mart́ınez
and Roura. We believe that our techniques might well be applicable to other problems in which
competitive analysis has failed to yield satisfactory results such as the online bin packing problem,
but this remains the subject of future work.
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