
Skyline and Top-k Processing in Web Bargaining

Mohamed A. Soliman1 Ihab F. Ilyas1

Nick Koudas2

1School of Computer Science, University of Waterloo, Canada
{m2ali,ilyas}@uwaterloo.ca

2 Department of Computer Science, University of Toronto
koudas@cs.toronto.edu

University of Waterloo
Technical Report CS-2006-45

Abstract

Skyline and top-k queries are gaining increasing im-
portance in many emerging applications. Current skyline
and top-k query processing techniques work on determinis-
tic object attributes and known scores. However, in many
practical scenarios these settings are inapplicable. In this
paper we focus on web interaction scenarios where each
interaction is a data object with a set of possible outcomes
(scores). Obtaining exact interaction scores is expensive as
it involves complex arbitration between interacting parties.
Moreover, the outcome of each interaction might redefine
other interactions scores. We demonstrate that the search
space for solving such problems is very large. Based on this
we formulate and present skyline and top-k processing al-
gorithms that can efficiently reduce the search space. We
present the results of a thorough experimental evaluation
quantifying the relative performance of the algorithms we
propose herein with respect to costly exact solutions. Our
results indicate that our techniques can efficiently reduce
the space and identify precise solutions.

1 Introduction

Skyline (pareto-optimal) objects over d dimensions is
the set of data objects that are not dominated by any
other objects restricted to those dimensions. On the other
hand, top–k queries return the k objects with the highest
scores according to some scoring function. Skyline and
top–k queries are gaining increasing importance in rela-
tional databases [11, 15], multimedia search [4], preference

queries [10, 13], and data mining [23]. Current techniques
assume deterministic settings and functions that return exact
scores. However, applications in e-commerce, probabilis-
tic databases and sensor networks often deal with various
sources of uncertainty. Factoring data uncertainty in skyline
and top-k processing is lacking in the current approaches.

In this paper we initiate work in the direction of skyline
and top-k processing in bargaining and web interaction sce-
narios, where two parties interact in order to implement a
transaction that eventually yields mutually beneficial out-
come. In contrast to typical applications, the data objects
we consider in these settings are regions of possible scores.

Several negotiation systems, e.g. INSPIRE [1], Sim-
pleNS [2], SmartSettle [3], are currently available to facili-
tate negotiation and preference match-making using trusted
centralized servers. Such systems help web users find com-
petitive bargains. Automated agents that do negotiation on
behalf of users or business parties is an interesting line of
ongoing research. The identification of interesting bargains
to all interacting parties is challenging in these settings.

The ability of interacting parties to negotiate has to be
supported by an underlying platform to express and man-
age preferences. For example consider the case of the Plat-
form for Privacy Preferences (P3P) protocol [8]. It is an
XML based specification for users (consumers) and sites
(businesses) to declare their privacy preferences. A user can
declare, for example, that she is willing to reveal an email
address but not a telephone number. In a similar fashion a
business can declare types of contacts, payments, etc that
are acceptable. Custom pieces of software (such as Privacy
Bird [8]) can check such specifications and decide if the in-
teraction can proceed. Conflicting privacy settings might
stop the interaction. For example if a user is not willing to

1

1540−−slow delivery
1030−−fast delivery
−−1030coupon
−−520discount

bank
transfer

credit
card

emailphoneUser
Site

D
el

iv
er

y
Sc

he
du

le
B

on
us

Revealed
Contact

Payment
Method

1510−−slow delivery
4030−−fast delivery
−−105coupon
−−3020discount

bank
transfer

credit
card

emailphoneUser
Site

10,1030,5coupon

5,3020,20discount

emailphoneUser
Site

Revealed
Contact

B
on

us

15,1540,10slow delivery

10,4030,30fast delivery

bank
transfer

credit
card

User
Site

Payment
Method

D
el

iv
er

y
Sc

he
du

le

(a) Site Negotiation Profile (b) User Negotiation Profile (c) Possible Site-User Interactions

Figure 1. Two Negotiation Profiles and Possible Generated Interactions.

reveal her credit card, but the site requires it, the interaction
cannot proceed. Negotiation could resolve such issues.

What makes negotiation possible is the existence of an
underlying utility function that interacting parties aim to
increase. Mechanisms that specify negotiable entities and
utility functions are beyond the scope of this paper; however
we envision protocols, similar to P3P, that allow such decla-
rations. We assume each party declares a negotiation profile
with negotiable entities and perceived utilities. Figure 1(a)
is a possible negotiation profile of an e-shopping site show-
ing negotiable entities (Bonus and Delivery Schedule), and
perceived utilities against different user actions. Figure 1(b)
is a corresponding user negotiation profile. The indicated
numeric utility values could express monetary profit, gained
popularity, satisfaction level, etc. We use the symbol (’-’)
to declare that a pair of entities is not negotiable. When
interaction commences, profiles are matched forming the
bi-matrices in Figure 1(c) which represent two potential in-
teractions. The utility pair (5, 30), for example, means that
site gains a utility of 5 if it offered a discount in exchange of
user’s email, while user gains a utility of 30 if she revealed
her email as a result of obtaining a discount. An arbitration
procedure resolves each interaction in order to yield mutu-
ally beneficial outcomes. Such a procedure can be thought
of as an ’expensive predicate’ whose invocations need to be
reduced.

1.1 Challenges and Motivation

The problems of multi-entities negotiation and optimal
agenda were addressed by multi-agent systems [21]. It was
shown that a large number of interactions could be initiated
among agents to resolve negotiation issues either sequen-
tially or simultaneously. However, proposed solutions do
not address scalability in large-scale web transactions where
a sheer amount of interactions could be initiated. Evaluating
all possible interactions is infeasible because of the possibly
complex negotiation mechanisms and additional constraints
that interacting parties might have, e.g., budget or time con-
straints. Moreover, the outcome of some interaction might
influence the outcomes of other interactions restructuring

the problem space at each step. Discovering skyline and
top-k arbitration solutions in these settings is challenging.
The following examples highlight these challenges.

Example 1 Consider a complex B2B transaction held be-
tween two companies, to trade products and services. Be-
cause of the wide varieties of products and services offered
by each company, and the large set of business rules, one
can think of a huge number of possible interactions that
could be initiated. A trusted mediator entity, similar to an
auctioneer in online auctions, could be selected by both
companies to coordinate the negotiation. The mediator’s
task is to efficiently discover beneficial interactions to both
companies. The outcome of each interaction influences the
strategies of both companies, e.g. by deeming other interac-
tions non-profitable or restricting their beneficial outcome
space. Efficient ordering of the interactions to be processed
is crucial to identify skyline in small number of steps.

Example 2 Consider a web user, U , surfing the web for
the best e-shopping sites matching his privacy profile. U ’s
agent could initiate interactions with many sites in order to
maximize U ’s utility, which can be some function of privacy
level and accessible services. An outcome of one interaction
could be used by U ’s agent to redefine the space of benefi-
cial outcomes from other interactions. Since in web-scale,
a large number of sites could offer similar services to U ,
efficient processing of interactions to identify the skyline or
top-k solutions is crucial in realizing this on-line scenario.

The problems in previous examples connect with data
management problems in uncertain data management [6, 9]
and query trading [20]. However, our problem involves ob-
jects with non-traditional data characteristics which makes
current skyline and bargaining methods not applicable. We
summarize the challenges tackled in this paper as follows:

• Non-traditional Characteristics: Traditional skyline
algorithms assume deterministic scores, while interac-
tion outcomes are indeterministic. Arbitration proce-
dures resolving interaction scores are considered ex-
pensive predicates whose usage needs to be reduced.

2

• Dynamic Configuration: Resolving an interaction of-
fers additional ’knowledge’ influencing the outcomes
of solved/unsolved interactions (Section 3).

Moreover, processing all interactions collectively as one
large interaction is hindered by the following challenges:

• Negotiation Complexity: Constructing and processing
such a large interaction do not scale for large-scale web
bargaining scenarios. Moreover, resolving an interac-
tion becomes more complex with large uncertainty ar-
eas (Section 2).

• Early Pruning: Constructing a large interaction incurs
unnecessary overhead to fully define all interactions,
although non-beneficial interactions could be avoided
without being completely defined (Section 3).

• Autonomy: Interactions should be treated as self-
contained units since they represent distinct negotia-
tion entities. Combining all interactions in one large
interaction does not conform to this requirement.

These challenges motivate the need for new representa-
tion and computation models.

1.2 Contributions

We address the following data management problems in
the context of large-scale web interaction and bargaining:

• Given an interaction framework, e.g. Figure 1, how to
assign “importance” scores to possible interactions?

• For a large set of possible interactions, how to effi-
ciently realize skyline or top-k bargaining solutions,
while evaluating the minimum number of interactions?

We summarize our contributions as follows:

• We define scored join results in the context of web bar-
gaining. We use game theory principles to model join
results as cooperative games.

• We address skyline and top-k computation in web bar-
gaining context, and show that interaction makes tra-
ditional algorithms prohibitively expensive.

• We conduct extensive experiments to evaluate our pro-
posed techniques and show their superiority over tra-
ditional algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 is necessary game theory background. Section 3 gives
problem definition. Sections 4 and 5 present our proposed
skyline and top-k techniques, respectively. Section 6 is our
experimental study. Section 7 discusses related work. We
conclude the paper in Section 8 with final remarks.

2 Background

In this section we provide necessary background mate-
rial for the developments in this paper. We briefly present
results from game theory. Interested reader is referred to the
vast bibliography for a comprehensive treatment [16, 18].

Let M be a m × n bi-matrix with entries (aij , bij), 1 ≤
i ≤ m, 1 ≤ j ≤ n. In our settings M can be derived by
merging the negotiation profiles of two parties. Let P1, P2

be two parties (players). Once M is determined, a game
is defined. P1 and P2 have m and n possible strategies,
respectively. Once P1 makes a choice, P1’s utilities for each
possible choice of P2 are known and they correspond to the
aij values in the chosen row of the matrix (similarly for P2).
Each player makes a choice at random. The probabilities
with which various strategies are chosen will probably be
known to the other player, but the particular strategy chosen
at a particular play of the game will not be known. The
problem for each player, is to set probabilities in an optimal
way. A mixed strategy for P1 is an m-tuple ~p of probabilities
such that pi ≥ 0, 1 ≤ i ≤ m and

∑m
i=1 pi = 1. Similarly

for P2 we have an n-tuple ~q of probabilities such that qj ≥
0, 1 ≤ j ≤ n and

∑n
j=1 qj = 1.

The expected utility (payoff) for P1 due to mixed strate-
gies ~p, ~q is π1(~p, ~q) =

∑m
i=1

∑n
j=1 piqjaij and the ex-

pected utility for P2 is π2(~p, ~q) =
∑m

i=1

∑n
j=1 piqjbij .

Each player can compute a pessimistic utility estimate,
called the maximin value, by assuming that the other player
will act so as to minimize players’s utility.

It is possible that P1 and P2 make binding agreements
about strategies to play. A joint strategy is a probability ma-
trix P = (pij). Thus, pij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n and∑m

i=1

∑n
j=1 pij = 1. A joint strategy assigns a probability

to each strategy pair. The expected utility (payoff) of P1

due to joint strategy P is π1(P) =
∑m

i=1

∑n
j=1 pijaij , and

similarly for P2 using bij . Since players cooperate, the re-
sulting game is cooperative. The cooperative payoff region
is the set {(π1(P), π2(P)): P is a joint strategy}. Coop-
erative payoff regions are closed bounded convex sets with
vertices among bi-matrix entries [16]. Cooperative game
players make an agreement about which joint strategy to
adopt based on: (1) the payoff pair of adopted strategy is
not dominated; and (2) each player gain is at least the same
as maximin value. These considerations lead to the follow-
ing definitions:

Definition 1 Bargaining Set. The bargaining set of a two
player cooperative game is the set of all payoff pairs (u, v)
such that u ≥ v1, v ≥ v2, where v1, v2 are the maximin
values.

Definition 2 Pareto-optimal Solutions. The pareto-
optimal solutions of a two player game is the set of all pay-

3

Pl
ay

er
 2

 U
til

ity

Player 1 Utility
The threat point

A valid game
solution

Arbitration
point

x

y

MaxUtility
point

Figure 2. Example game.

off pairs (u, v) such that there is no other payoff pair (ú, v́)
with ú > u and v́ > v.

Nash bargaining model [17, 16] established the basis for
an arbitration procedure to decide which payoff pair should
be agreed on. Based on a payoff region P and a status quo
point (u0, v0) ∈ P , an arbitration procedure returns a mutu-
ally beneficial payoff pair (u∗, v∗). The status quo point is
usually the pair of maximin values. Nash axioms state: (a)
[Individual Rationality] u∗ ≥ u0 and v∗ ≥ v0, (b) [Pareto
Optimality] (u∗, v∗) is pareto-optimal and (c) [Feasibility]
(u∗, v∗) ∈ P . The main result of Nash [17] is that there ex-
ists a unique arbitration procedure satisfying these axioms.

Given an m × n bi-matrix M, we can approximate its
payoff region while enclosing the arbitration pair. An
upper bound for the payoff region is derived by m1 =
maxi,jaij1 ≤ i ≤ m, 1 ≤ j ≤ n and m2 = maxi,jbij1 ≤
i ≤ m, 1 ≤ j ≤ n; notice that u∗ ≤ m1 and v∗ ≤ m2.
Also v1 ≤ u∗ and v2 ≤ v∗. Given any bi-matrix M , the
region enclosed by the rectangle ((v1, v2), (m1,m2)) con-
tains the arbitration pair. We refer to this rectangle as the
game bounding rectangle, and to (m1,m2) and (v1, v2) as
the MaxUtility point and threat point respectively (Fig-
ure 2). Whenever we obtain the arbitration point of a game
we say that we solved or (played) that game.

Identifying arbitration pair is an expensive computa-
tional task [16, 18]. We do not discuss the details here,
however we emphasize that the complexity of the arbitra-
tion procedure is proportional to the game uncertainty area
as it involves a linear program over all possible solutions.

Notice that cooperation guarantees more profitable out-
comes than competition. Consider Figure 1(c), the competi-
tive Nash equilibria [17] are (10,10) and (15,15) for the two
depicted games, while cooperative equilibria are (20,20)
and (30,30). Solving games cooperatively requires, how-
ever, complete utility information. There are several other
theoretical methodologies where incomplete utility infor-
mation is available, e.g., utilities are specified as probability
distributions. The discussion in this paper assumes cooper-
ative games with complete information. Our future work
involves studying other problem variants where games with

incomplete information might be adopted.

3 Problem Definition
We view the interaction between two negotiation pro-

files (one from each party) as a “join” process that produces
a set of “cooperative games”. Each game encapsulates a
set of corresponding policies from each party. The solu-
tions of cooperative games define the scores of join results.
Our main goal is to find the set of games with maximum or
non-dominated scores. More formally, given a collection of
N games let S be a set of rectangles obtained by deriving
the threat point and the MaxUtility point of each game
(each rectangle encloses an arbitration pair), the goal is to
find the pareto-optimal set of arbitration pairs in S. For each
arbitration pair, (u∗i , v

∗
i), in the pareto-optimal set, there ex-

ists no arbitration pair (u∗j , v
∗
j) with u∗j > u∗i and v∗j > v∗i .

Exact arbitration pair is only known when solving the
game. Since we approximate each game by a rectangle,
we aim to utilize such approximation to minimize the total
number of solved games to identify the pareto-optimal set.
There are two considerations affecting this approach:

• Game Dominance: Solving a game might make other
games uninteresting. Let (u∗i , v

∗
i) denote the arbi-

tration pair of game i. Let (mj
1,m

j
2) refer to the

MaxUtility point of game j. Game i dominates
game j if u∗i > mj

1 and v∗i > mj
2. When game i dom-

inates game j, game j immediately becomes uninter-
esting, since its arbitration point is not pareto-optimal.
Consider Figure 3. Games g1, g2, and g4 can be
pruned before processing any of the 10 games, since
the MaxUtility points of these games are dominated
by the threat point of other games. Games g6 and g7
can be safely pruned after solving game g9; since g9
solution dominates the MaxUtility point of g6 and
g7, making them uninteresting.

• Game Clipping: The knowledge gained by the solution
of some games may force us to reconsider previous so-
lutions. Consider Figure 3 again. After solving g8, we
know that we can gain a utility of u∗g8, and therefore
the threat point of g5 needs to be redefined. This es-
sentially redefines the entire game and may result in a
new arbitration point for g5. The solution of g8 has
a similar effect on g7. As a result, rectangles corre-
sponding to solved or yet unsolved games are clipped.

It is clear from Figure 3 that the order at which we solve
games significantly affects the total number of games need
to be played; solving g7 before g9 causes redundant play-
ing of one extra game (g7). We distinguish two problem
settings: (1) no-interaction, where only game dominance
relationships are considered; and (2) allowing interaction,
where both game dominance and clipping are considered.

4

g1

g2

g4

g3

g5

g6

g7

g8 g9

g10

Pl
ay

er
 2

 U
til

ity

Player 1 Utility

New threat points

Figure 3. Example game set.

S1

S2

S3

Sn

S1

S1

S2

S2

S1

S2

S1

S2

Player 1
Policies

Player 2
Policies

“JOIN”
Game

Formulation

S1

S2

S3

Sm

Dominance
And top-k

Processing

Pareto-optimal
or

Top-k Games

Possible game
Re-evaluation

Unsolved
Game

Solved
Game

.

Selected Game

Figure 4. Proposed problem formulation.

Solving a game in the latter case might change other games
by clipping their solution space necessitating “replay” of
these games. We are now ready to state the main prob-
lem addressed by this paper: Find a complete sequence
of game playing to minimize the number of need-to-solve
games while finding pareto-optimal solutions. A sequence
is “complete” if no games need to be played after playing
the last game in the sequence.

Figure 4 is a straw-man design of proposed prob-
lem formulation. The join process formulates coopera-
tive games based on input profiles. Formulating games
requires only partial information about players utilities,
namely threat point and MaxUtility point without ac-
tually considering the complete payoff matrix. To illustrate
consider Example 2: User’s agent need not have prior de-
tailed information about gained utilities from each site. In
fact the agent might never contact some sites for detailed
information if it is known that their best possible outcome
can never make it to the skyline or top–k results.

Formulated games are presented as input to our proposed
dominance and top-k processing algorithms to select the
next game to play. When a game is selected for playing, its
payoff matrix needs to be fully defined, by contacting nego-
tiating parties to obtain detailed utility information, in order
to evaluate that game. Evaluating a certain game might lead
to re-evaluation of other games. Note that our problem def-
inition assumes the existence of a mediator (a trusted server
in case of one-to-one interactions, or user’s agent in one-

to-many interactions) with knowledge about the utilities of
negotiating parties in each possible interaction. In this first
treatment of the problem, we decided to adopt such well-
defined settings. Our future work in this area will involve
more elaborate models where utilities are not fully exposed
for privacy reasons as indicated in Section 2.

4 Finding the Pareto-optimal Solutions

In this section, we address the problem introduced in
Section 3 in its simplest setting, where game solution does
not affect other games definitions. In the following sec-
tions, we show how to generalize to the much harder scenar-
ios, where game interaction is allowed. We show that no-
interaction assumption simplifies the problem significantly,
while allowing interaction causes exponential explosion in
the search space and makes the simple techniques of Sec-
tion 4.1 prohibitively expensive.

4.1 The Simple No-interaction Scenario

In the no-interaction scenario, solving any of the indi-
vidual games reduces a game g to a single point (u∗g, v

∗
g),

the arbitration point of g. A naı̈ve approach is to solve
all games, then apply a skyline algorithm [5, 19] to obtain
the pareto-optimal game solutions. Solving all games can
be prohibitively expensive when the number of games is
large and the individual games are arbitrarily complex. Sig-
nificant savings can be achieved by continuously pruning
(eliminating) games that cannot contribute to final answer.

Our goal is to devise techniques to decide the best pro-
cessing order of games to minimize the total number of
games solved. Unfortunately, the optimal order cannot be
devised before knowing the exact solution of each of the
games. We propose game ranking criteria that aim at mini-
mizing the number of games solved by ordering the games
with respect to their “pruning power”. Estimating the prun-
ing power of a game before solving that game requires ap-
proximating the game solution (u∗g, v

∗
g).

We introduce two approximations for (u∗g, v
∗
g): (1) Op-

timistic Approximation, where (u∗g, v
∗
g) is approximated by

the MaxUtility point; and (2) Conservative Approxima-
tion, where (u∗g, v

∗
g) is approximated by the middle point

on the diagonal line between the two corners of the game
bounding rectangle other than the threat point and the
MaxUtility point. The second approximation is more
conservative, since game solution will be on the frontier
of the cooperative payoff region (cf. Figure 2). Having
an approximate game solution, (û∗g, v̂∗g), we introduce two
heuristics to estimate game pruning power:

• Pruning area: Let o be the minimum utility point for
the two players across all games. The rectangular area

5

between o and (û∗g, v̂∗g) represents the Pruning Area of
g. Intuitively, the larger the pruning area, the higher
the probability that solving g prunes more games.

• Number of pruned games: The pruning power of g is
represented by the number of games fully dominated
by (û∗g, v̂∗g) in the game set.

Ranking games by the pruning area is context indepen-
dent and assumes the games are distributed uniformly in
the game space. The heuristic is easy to compute since
game rank depends only on the game bounding rectangle. In
contrast, ranking games by the number of pruned games is
context-aware; computing game rank requires information
about all other games in the space. We obtain this informa-
tion by indexing games rectangles using an R-Tree index in
our implementation. In the experimental evaluation in Sec-
tion 6, we compare the performance of the two approaches.

The general procedure to find pareto-optimal solutions
of a set of non-interacting games is as follows: (1) esti-
mate the solution of each game according to one of the
two approximations, and use it to estimate game pruning
power; (2) sort games in a descending pruning power order;
(3) solve games in that order, and for each solved game,
prune all uninteresting solved/unsolved games.

4.2 Search Space with Interaction

The search space to identify optimal game sequence is a
space of all valid complete sequences. We view this space
as a search tree, where each node represents a game, and the
first level consists of all games. The children of a node g are
all possible games to be played after solving g. A leaf tree
node l represents a terminal game; no further games need
to be played. After solving each game, the game set may
change by pruning or redefining other games according to
the interaction model in Section 3. Each root-to-leaf tree
path is a valid complete sequence, and our goal is to find
the minimum length path.

For example, consider the games and the corresponding
search tree in Figure 5. We concentrate on the two shaded
paths. The first path starts by g1. Since g1 solution dom-
inates g3 and g4, both are eliminated from the game set.
The only possible game to play after g1 is a clipped version
of g2, since the arbitration point of g1 dominates part of
g2. Solving g2 redefines g1, and hence g1 needs to be re-
solved. The sequence is complete after solving g1 for the
second time. In fact, the sequence (g1, g2, g1) is one of the
shortest sequences in this game setting. Now consider the
other shaded path that starts by g3. The solution of g3 does
not fully dominate any other game, hence g1, g2 and g4
are all possible children of g3. Solving g4 next, redefines
g3, making it a possible child of g4. The path continues

g4
g2

g3

g1

g2

g1

Pl
ay

er
 2

 U
til

ity

Player 1 Utility

Pl
ay

er
 2

 U
til

ity

Player 1 Utility

(a)

g2

g1 g4

g1

g2 g1

g3

g2 g4

g2 g1 g1

g2

g1

g4

All

g2

g2

g1

g1

g3

g2 g1

g2g1

g2

g1

g4

g1

g2 g4

(b)

Figure 5. Game interaction and the search space.

by solving g2, then g1. The path is not complete since g1
affects back g2 necessitating solving g2 again.

4.3 Identifying the Shortest Path

We introduce a branch-and-bound exhaustive search al-
gorithm to explore the search tree and to find the shortest
path from the root to a leaf node. The algorithm adopts a
depth-first traversal pruning all search paths of length larger
than the current shortest complete sequence.

Algorithm 1 describes the branch-and-bound algorithm.
The algorithm starts by generating a search tree node with
initial game configuration, and then moves down the tree,
in a depth-first traversal, expanding each node by generating
children for each game. When a node is reached such that its
solution does not modify the game set and no other games
need to be played, a complete sequence is obtained. Each
node saves game configuration that was produced by play-
ing the node’s game. Note that the algorithm does not gen-
erate the complete search space; this is achieved by pruning
paths that will not contribute to the shortest sequence.

As illustrated by Figure 5, node traversal order greatly
affects pruning power. Picking a child that can prune most
of the remaining games leads to a short complete sequence
early in the search process, allowing more aggressive prun-
ing of the search space. Algorithm 1 adopts one of our
heuristics (discussed in more details later) to choose the

6

Algorithm 1 Guided Depth-First Search (DFS)
1: create root node with all the games in the node’s game set and

mark it visited.
2: node← root
3: ShortestPath← null
4: while node 6= null do
5: if ShortestPath 6= null and length of the path to node

≥ length of ShortestPath then
6: node← parent of node
7: continue {path pruned}
8: end if
9: if node is not visited then

10: solve the node’s game and mark node as visited
11: redefine affected games in the node’s game set
12: create a child node for each unsolved game
13: end if
14: node← an unvisited child of node based on heuristics
15: if node = null then {complete sequence found}
16: if path length to node < length of ShortestPath then

{new shortest path found}
17: ShortestPath← path from root to node
18: end if
19: node← parent of node
20: continue
21: end if
22: end while
23: return ShortestPath

most promising child. For example, consider the search
tree in Figure 5(b) that corresponds to the game set in Fig-
ure 5(a). Search starts at the root by creating a child node
with each game in the root game set {g1, g2, g3, g4}. The
algorithm chooses g2 to solve first, leading to a complete
sequence (g2, g1, g2). The algorithm uses the length of the
shortest complete sequence (3 in this case) to prune paths of
length 3 and longer. Had the algorithm started with g3 first,
longer complete sequence will be reached first, and hence
less pruning is achieved.

Branch-and-bound algorithm is guaranteed to find a (or
all) shortest complete sequences. However, the total num-
ber of solved games is much larger than the path length.
Note that we cannot use the solution of some node’s game
when the same game is encountered at a different node be-
cause of different game configurations of the two nodes. In
practice, we would like to minimize the overall number of
played games until pareto-optimal solutions are obtained.
That is, we aim to identify the first complete sequence in the
search tree as a final answer (not for pruning). Hence, order-
ing the traversal of children, based on heuristics, is crucial
in making the first complete sequence as short as possible.

Algorithm 2 Finding a Good Sequence
1: initialize Q a priority queue of all unsolved games
2: initialize S ← {} a set of all solved games
3: for each game g do
4: compute (û∗g, v̂∗g)
5: compute scoreg according to one the two estimates of the

pruning power of g
6: insert g in Q with scoreg

7: end for
8: while Q is not empty do
9: g ← Q.top and remove g from Q

10: solve g to get (u∗g, v∗g)
11: add g to S
12: remove all fully dominated games from S
13: remove all fully dominated games from Q
14: for each game l affected by (u∗g, v∗g) do
15: redefine l
16: if l ∈ S then
17: remove l from S
18: compute (û∗l , v̂∗l) and scorel

19: insert l in Q with scorel

20: end if
21: end for
22: end while

4.4 Finding a “good” Sequence

Since many games are redefined when a game is solved,
counting the number of pruned games by current game so-
lution does not fully reflect the pruning power of that game.
We need to factor in the number of games that get “affected”
or redefined. Hence, we modify the second estimate of the
pruning power of a game g described in Section 4.1 as fol-
lows: Number of affected games; the pruning power of g
is represented by the number of games that are either fully
or “partially” dominated by (û∗g, v̂∗g). The Pruning Area es-
timate remains unchanged since it is context-independent
(referred to here as Clipping Area). Our heuristics evaluate
pruning power after solving each game, and use it to score
games. Next game to play is the game with the current high-
est score. We modify the general procedure in Section 4.1
to consider continuously changing game set.

Algorithm 2 maintains a priority queue, Q, of all un-
solved games, and a set S of solved games. Initially
all games are inserted in Q in descending pruning power,
which is estimated according to one of two approximations:
number of affected games, or clipping area. After solving
game g, retrieved from Q top, fully dominated games are
eliminated and affected games are redefined. Then, g is in-
serted in S, and all affected games in S are removed and
reinserted in Q again. The algorithm terminates when Q is
empty, where S contains the pareto-optimal solutions.

7

g1 g2

g3

g4

g6
g5

Ux

Figure 6. On-to-many game interaction.

4.5 One-to-Many Interactions

In this setting, two parties P1, P2 are involved, one defin-
ing a single negotiation profile and the other defining multi-
ple profiles (refer back to Example 2). Our interest is to find
the game (or top-k games) that maximize the utility/payoff
of P1 among all games that can be formed with the profiles
of P2. We would like to find the best game(s) while eval-
uating the minimum number of games in the game space.
In this section, we address the problem of finding the best
game. We address retrieving the top-k games in Section 5.

The problem can be viewed as a projection of all games
on the P1 utility axis. Each unplayed game is represented
as an interval from (min

(x)
g ,max

(x)
g). The game solution

lies in the interval and can be obtained by playing the game
cooperatively with the corresponding partner. We show that
simpler versions of the techniques described earlier can be
applied to solve this one-to-many problem.
The No-interaction Scenario As described in Section 4.1,
in this scenario only full-dominance is allowed, i.e., a game
is pruned without playing iff the solution of another game
dominates its MaxUtility point. A naı̈ve approach is to
solve all games and sort them by P1 utility in the arbitration
point. Pruning can be also conducted on-line; pruning all
fully dominated games after solving each game. Straight-
forward modifications to heuristics in Section 4.1 can be
applied for more aggressive pruning.
Allowing Interaction In this scenario, a game solution can
dominate part of another game solution space. Figure 6
shows game configuration projected on P1’s utility axis.

In Figure 6, game g1 was pruned before playing any
game since the minimum utility of g2 dominates g1’s max-
imum profit. After solving g2 further pruning can be
achieved by eliminating g5. Solving g2 also affects the def-
inition of g4 and g6 by clipping part of their solution space.

5 Identifying Top-k Games

In previous sections, the output of our algorithms is a set
of non-dominated (pareto-optimal) solutions. Choosing one
of these solutions is probably application dependent. A re-
lated query is to get the top-k game solutions that maximize

Algorithm 3 Get Next Top-k Game
1: while Q is not empty do
2: g ← Q.top and remove g from Q
3: T ←Fg of Q.top
4: if g is solved OR Fg ≥ T then
5: return g and break;
6: else
7: solve g to get (u∗g, v∗g)
8: Fg ← F(u∗, v∗)
9: insert g in Q with Fg

10: end if
11: end while

an application-defined function, F on players payoffs, e.g.,
the sum of the payoffs. Although related, pareto-optimal
solutions are not guaranteed to contain the top-k solutions
(only the top-1). In this section, we are interested in retriev-
ing k games with the highest scores, where score is calcu-
lated by applying a function F on game solution. Top-k as
defined is not applicable when game interaction is allowed,
since pruning games is part of the problem definition. The
semantics of top-k in this context is not clear; the game set
changes by pruning and redefining games.

Note that F does not affect how games are solved, rather
imposes a ranking on solutions. Retrieving top-k games in-
crementally is of interest in many cases. For example, in
a space with one game g dominating the whole space, the
two players might want to keep “alternative” games to be
played in case of failure to implement g. A top-k mecha-
nism allows to incrementally retrieve the next-best game.

Consider a function F(ux, uy) on players utility and a
set of unsolved games. Let score of game g, scoreg , be
the result of evaluating F on (u∗g, v

∗
g). Hence, scoreg =

F(u∗g, v
∗
g). For a game g, let Fg and Fg be an upper-bound

and a lower-bound of scoreg , respectively. Algorithm 3 in-
crementally retrieves the top-k games with respect to F .
The algorithm assumes a priority queue, Q, of all games
ranked on their upper-bound score F . When a game is
solved, its score can be accurately calculated. Algorithm 3
reports (on each invocation) the next top-k game according
to F . Note that no pruning of games is performed, instead
all games are kept ranked on their score.

It can be shown that if F is monotone, then applying
F on MaxUtility point, gives a tight upper-bound and
makes the aforementioned algorithms optimal in the num-
ber of solved games. Since Fg is the tightest upper-bound
that can obtained without solving a game or making a ran-
dom guess; the optimality follows from the A∗ search algo-
rithm. We omit the proof details due to space constraints.

Algorithm 3 introduces further optimization, by allow-
ing the top-k game to be reported without solving if it is
guaranteed to score higher than all other games. The idea
is to keep a lower bound on the game score (computed on

8

the threat point) and report a game when the lower-bound
score is higher than the upper-bound score of all games.

6 Experiments

We experimentally evaluated our techniques and com-
pared heuristics in different game settings. All experiments
were run on a 3GHz Pentium IV PC with 1 GB of main
memory and 40 GB of disk space, running Windows XP.
We built a Java tool to manipulate games in a 2D space,
track solution paths of different heuristics, and generate on-
line statistics. We used two synthesized datasets: (1) DSU1:
Uniformly distributed game sets in 2D space; and (2) DSU2:
Games are clustered around the line between the two points
(0,Maxu) and (Maxv, 0), where Maxu and Maxv are the
maximum players utility, respectively. DSU2 corresponds
to the case where games are competitive with no clear win-
ners. We evaluate four heuristics in different settings:

• Max (Avg) Clipping : Game pruning power is based
on the area between the origin and the game’s
MaxUtility (center) point.

• Loosely (Tightly) Affected Games : Game pruning
power is the number of games partially or fully in-
side the area between the origin and the game’s
MaxUtility (center) point.

Our performance metrics are: (1) the length of complete
sequence; (2) the total running time; and (3) the number of
unnecessary game solvings.

6.1 No-Interaction Scenario

This experiment measures complete sequence length for
each heuristic in a No Interaction scenario. Figure 7 com-
pares heuristics to optimal path length (obtained from Algo-
rithm 1). Because of huge search space, we conducted the
experiment only for small number of games from DSU1.
Figure 8 compares heuristics to a no order strategy for a
large number of games in DSU2. Significant saving in se-
quence length is achieved by ordering games by their prun-
ing power. Among different heuristics, the Tightly Affected
Games performed the best, achieving up to 50% reduction
in sequence length compared to solving games randomly.

6.2 Interaction Scenario

This experiment measures the complete sequence length
of each heuristic in the Interaction scenario. Figures 9 and
10 show the sequence length for each heuristic in differ-
ent game sets drawn from DSU1. Note that the DFS algo-
rithm could not be used for comparison in large data sets
because of the explosive growth in interactions as games

are solved; this makes it very costly to explore the whole
search space and get the global optimal solution. There-
fore, we compare the heuristics among each other for large
sets. Our experiments show similar results for DSU2. The
Tightly Affected Games heuristic generates the shortest se-
quences compared to other ordering heuristics. This saving
in sequence length is due to the context-awareness of the
Affected Games heuristic as discussed in Section 4.1. The
Loosely Affected Games heuristic shows a relatively worse
behavior compared to the Tightly Affected Games in large
data sets. This is explained by the large variation in game
size which leads the Loosely Affected Games heuristic to
false estimates whenever the solution point of a game lies
far from its MaxUtility point.

Figures 11 and 12 show the running times of different
heuristics for DSU1 and DSU2 respectively. Notice that
starting from 20,000 games, the time consumed by the two
Affected Games heuristics largely exceeds the time con-
sumed by the Clipping Area heuristics. This is attributed
primarily to the extra processing required by the Affected
Games heuristic to count the number of potential game in-
teractions after each step. This processing is not needed for
the Clipping Area heuristics since they evaluate each game
based on the game’s own (local) properties only.

6.3 Heuristics Effectiveness

This experiment evaluates the effectiveness of sequences
generated by different heuristics. The effectiveness of a
complete sequence S is the ratio of the number of effective
solved games to |S|. A game g is effective if the solution of
g modifies game set, or it is in the pareto-optimal solutions.
The intuition behind this definition is that playing an inef-
fective game is primarily due to wrong estimates of game
pruning power. Figures 13 shows heuristics effectiveness
for DSU2 (results for DSU1 are omitted for space limita-
tions). In DSU1, the average effectiveness of all heuristics
is around 0.7, while it is lower for DSU2 (0.65 for Tightly
Affected Games and below 0.5 for others). This is attributed
to DSU1 nature, where games appear arbitrarily in the space
which involves many effective games. In contrast, in DSU2,
it is harder to frequently find a game that affects other games
after the first few steps. The Tightly Affected Games heuris-
tic did not suffer because it takes into account the possible
number of affected games in each step.

6.4 Limited Game Interaction Scenario

We study a limited interaction scenario where a limit,
MaxInfleunce, is imposed on the number of times a game
is redefined. This represents the case where solution space
of some games is fixed after lengthy bargaining process.
Increasing MaxInfluence results in two contradicting phe-

9

nomena. Figure 14 shows the trade-off for a configura-
tion of 1000 games: By increasing MaxInfleuence, the se-
quence length starts to decrease as more clipping and prun-
ing is allowed. Further increase of MaxInfleuence does not
achieve shorter paths as no more games are pruned. Se-
quence length increases again as competitive games cause
multiple game replays through mutual interaction. Tightly
Affected Games heuristic is less prone to this trade-off by
taking into account game configuration in each step.

6.5 Top-k Bargaining Games

This experiment evaluates the efficiency of Algorithm 3
by measuring how many games are solved to report the top-
k games. Figure 15 shows that the number of solved games
is almost linear with respect to k. The Processing time of
Algorithm 3 also increases linearly with k.

7 Related Work

Game theory is very rich [16, 18]. Several game mod-
els have been studied in the literature including cooperative
and non-cooperative games. Numerous game theory appli-
cations exist in diverse computer science fields.

A large body of work addresses skyline computation,
first studied in [14]. Recent skyline algorithms include a
Block-nested-loop algorithm [5], a Sort-filter-skyline algo-
rithm [7], and several index-based algorithms [5, 22, 19,
12]. The algorithm in [19] is a branch-and-bound algorithm
to progressively output skyline points based on R-tree in-
dex, and guarantees the minimum I/O cost. The nature of
our problem (as explained in Section 3), makes it substan-
tially different from traditional skyline computation.

8 Conclusions

We presented a novel problem of identifying pareto-
optimal and top-k bargaining solutions in large-scale web
interaction. We introduced a basic problem setting in this
context, and several of its variants. We showed that brute-
force techniques are prohibitively expensive and proposed
algorithms and heuristics to efficiently solve different prob-
lem variants. Our work raises several interesting questions
for further study; identifying and analyzing problems com-
plexity, providing hardness results or polynomial time al-
gorithms, and studying the applicability of more elaborate
models are important future directions. We believe that our
basic methodology and algorithms can be of use to other
settings as well (e.g., uncertain data management in which
uncertainty reduction is expensive). We plan to further ex-
plore such connections as part of our future work.

References

[1] Inspire: http://interneg.org/inspire.
[2] Simplens: http://mis.concordia.ca/simplens.
[3] Smartsettle: http://www.oneaccordinc.com.
[4] G. Amato, F. Rabitti, P. Savino, and P. Zezula. Region prox-

imity in metric spaces and its use for approximate similarity
search. TOIS, 21(2), 2003.

[5] S. Borzsonyi, D. Kossmann, , and K. Stocker. The skyline
operator. In ICDE, 2001.

[6] N. Chaudhry, J. Moyne, and E. Rundensteiner. An extended
database design methodology for uncertain data manage-
ment. Inf. Sci. Inf. Comput. Sci., 121(1-2):83–112, 1999.

[7] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. In ICDE, 2003.

[8] L. F. Cranor. Web Privacy with P3P. O’Reily, 2001.
[9] V. de Almeida and R. Hartmut. Supporting uncertainty in

moving objects in network databases. In GIS, pages 31–40,
2005.

[10] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: a
system for the efficient execution of multi-parametric ranked
queries. In SIGMOD, 2001.

[11] I. F. Ilyas, R. Shah, W. G. Aref, J. S. Vitter, and A. K. El-
magarmid. Rank-aware query optimization. In SIGMOD,
2004.

[12] D. Kossmann, F. Ramsak, and S. Rost. Shooting starts in
the sky: An online algorithm for skyline queries. In VLDB,
2002.

[13] G. Koutrika and Y. Ioannidis. Personalized queries under a
generalized preference model.

[14] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors. JACM, 22(4):469–476, 1975.

[15] C. Li, K. Chang, I. Ilyas, and S. Song. Ranksql: Query al-
gebra and optimization for relational top-k queries. In SIG-
MOD, 2005.

[16] P. Morris. Introduction to Game Theory. Spinger, 1991.
[17] J. F. Nash. The Bargaining Problem. Econometrica, 1950.
[18] G. Owen. Game Theory. Academic Press, 1984.
[19] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal

and progressive algorithm for skyline queries. In SIGMOD,
2003.

[20] F. Pentaris and Y. E. Ioannidis. Distributed query optimiza-
tion by query trading. In EDBT, pages 532–550, 2004.

[21] M. W. S. S. Fatima and N. R. Jenning. Optimal agendas for
multi-issue negotiation. In AAMAS, 2003.

[22] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. In VLDB, 2001.

[23] J. H. W. Jin and M. Ester. Mining thick skylines over large
databases. In PKDD, 2004.

10

Figure 7. No Interaction (DSU1) Figure 8. No Interaction (DSU2)

0

5

10

15

20

25

30

10 20 30 40 50
No. of Games

N
o

. o
f

S
o

lv
e

d
 G

a
m

e
s

Max Clipping
Aff. Games T
Avg Clipping
Aff. Games L
DFS Shortest

Figure 9. Interaction (DSU1 small
sets)

Figure 10. Interaction (DSU1
large sets)

Figure 11. Running Times (DSU1) Figure 12. Running Times
(DSU2)

Figure 13. Effectiveness (DSU2) Figure 14. MaxInfluence (1000
Games)

Figure 15. Solved Games in Top-
k Selection Algorithm

11

