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Abstract

We consider the scenario where training and test data avendram different distribu-
tions, commonly referred to ammple selection biasMost algorithms for this setting try to
first recover sampling distributions and then make appab@rcorrections based on the dis-
tribution estimate. We present a nonparametric method wtliectly produces resampling
weights without distribution estimation. Our method wobysmatching distributions between
training and testing sets in feature space. Experimensailtsedemonstrate that our method
works well in practice.



1 Introduction

The default assumption in many learning scenarios is thatitrg and test data are independently
and identically (iid) drawn from theamedistribution. When the distributions on training and test
set do not match, we are facisgmple selection biasr covariate shift Specifically, given a do-
main of pattern& and labeld/, we obtain training samples = {(x1,41), ..., (Tm, ym)} €T X XY
from a Borel probability distributiofrr(x, y), and test sample8’ = {(«,v}),..., (., y..)} C

X x Y drawn from another such distributiéh’(z, ).

Although there exists previous work addressing this prodi2, 6, 8, 11, 14, 18, 23], sample
selection bias is typically ignored in standard estimaadgorithms. Nonetheless, in reality the
problem occurs rather frequently : While the available thatze been collected in a biased manner,
the test is usually performed over a more general targetlptipn. Below, we give two examples;
but similar situations occur in many other domains.

1. Suppose we wish to generate a model to diagnose breastrc&uppose, moreover, that
most women who participate in the breast screening test etdleraged and likely to have
attended the screening in the preceding 3 years. Conségoentsample includes mostly
older women and those who have low risk of breast cancer Bedhay have been tested be-
fore. The examples do not reflect the general populationr@gpect to age (which amounts
to a bias inPr(x)) and they only contain very few diseased cases (i.e. a bigs(ijjx)).

2. Consider performing data analysis using a Brain Compgaterface where the distribution
over incoming signals is known to change as experiments gsice the subjects get tired,
the sensor setup changes, etc. In this case it necessarppotae estimator to the new
distribution of patterns in order to improve performance.

3. Gene expression profile studies using DNA microarraysuaesl in tumor diagnosis. A
common problem is that the samples are obtained using icgntatocols, microarray plat-
forms and analysis techniques. In addition, they typich#lye small sample sizes. The test
cases are recorded under different conditions, resulting different distribution of gene
expression values.

In this paper, we utilize the availability of unlabeled dé&badirect a sample selection de-
biasing procedure for various learning methods. Unlikeviptes work we infer the resampling
weight directly by distribution matching between training and testing setfeature space in a
non-parametric manner. We do not require the estimatiomasiol densities or selection probabil-
ities [23, 2, 14], or the assumption that probabilities & thfferent classes are known [8]. Rather,
we account for the difference between(z,y) andPr'(x, y) by reweighting the training points
such that the means of the training and test points in a remg kernel Hilbert space (RKHS)
are close. We call this reweighting process kernel meanhimgdKMM). When the RKHS is
universal [16], the population solution to this miminisatiis exactly the rati®r’'(z, i)/ Pr(x, y);
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however, we also derive a cautionary result, which stataseaben granted this ideal population
reweighting, the convergence of the empirical means in thel&®depends on an upper bound on
the ratio of distributions (but not on the dimension of thaag), and will be extremely slow if this
ratio is large.

The required optimisation is a simple QP problem, and theeigiwted sample can be incor-
porated straightforwardly into several different regr@ssnd classification algorithms. We apply
our method to a variety of regression and classification tbercks from UCI and elsewhere, as
well as to classification of microarrays from prostate angbbt cancer patients. These experi-
ments demonstrate that KMM greatly improves learning perémce compared with training on
unweighted data, and that our reweighting scheme can in sages outperform reweighting using
the true sample bias distribution.

Key Assumption 1: In general, the estimation problem with two different disitionsPr(z, y)
andPr’(z, y) is unsolvable, as the two terms could be arbitrarily far aparparticular, for arbi-
trary Pr(y|z) andPr'(y|z), there is no way we could infer a good estimator based on #iririg
sample. Hence we make the simplifying assumption thdt, y) and Pr'(z, y) only differ via
Pr(z,y) = Pr(y|z) Pr(x) andPr(y|z) Pr'(z). In other words, the conditional probabilities gifr
remainunchangedthis particular case of sample selection bias has beeretecovariate shift
[14]). However, we will see experimentally that even in attans where our key assumption is not
valid, our method can nonetheless perform well (see SeBjion

2 Sample Reweighting

We begin by stating the problem of regularized risk minirtia In general a learning method
minimizes the expected risk

R[Pr,0,1(x,y,0)] = Egyp: [[(z,y,0)] Q)

of a loss functiori(z, y, 0) that depends on a parameter~or instance, the loss function could be
the negative log-likelihood- log Pr(y|z, 8), a misclassification loss, or some form of regression
loss. However, since typically we only observe examipleg/) drawn fromPr(z, y) rather than
Pr'(z,y), we resort to computing the empirical average

1 m
Rcmp[Z 0, l JJ y7 = EZ xluyla (2)

To avoid overfitting, instead of minimizing.,,, directly we often minimize a regularized variant
Rie[Z,0,1(x,y,0)] = RemplZ, 0, 1(z,y,0)] + AQ[6], whereQ[d] is a regularizer.



2.1 Sample Correction

The problem is more involved iPr(x,y) andPr'(z, y) are different. The training set is drawn
from Pr, however what we would really like is to minimiZ&[Pr’, 4, [] as we wish to generalize to
test examples drawn froir’. An observation from the field of importance sampling is that

R[Pl" /’ 07 l(l’, Y ‘9)] - E(l’vy)NPr' [l(l’, Y, 8)] = E(x,y)NPr llirrl((;f)) l(«Ta Y, 6)] (3)
— R[PI‘, 9, ﬁ(l’, y)l(x7 Y, 9)]7 =0(z,y) (4)

provided that the support dfr’ is contained in the support dfr. Given 3(z,y), we can thus
compute the risk with respect &’ usingPr. Similarly, we carestimatethe risk with respect to
Pr’ by computingRew,[Z, 6, 5(z, y)l(z, y, 0)].

The key problem is that the coefficient§x, y) are usually unknown, and we need to esti-
mate them from the data. Whéh andPr’ differ only in Pr(z) andPr'(x), we haves(z,y) =
Pr'(z)/Pr(x), whereg is a reweighting factor for the training examples. We thugeight every
observation(z, y) such that observations that are under-represent®d abtain a higher weight,
whereas over-represented cases are downweighted.

Now we could estimatér and P’ and subsequently computebased on those estimates.
This is closely related to the methods in [23, 8], as they haveither estimate the selection
probabilities or have prior knowledge of the class distiitms. Although intuitive, this approach
has two major problems: first, it only works whenever the dgrestimates foPr and Pr’(or
potentially, the selection probabilities or class digitibns) are good. In particular, small errors in
estimatingPr can lead to large coefficientsand consequently to a serious overweighting of the
corresponding observations. Second, estimating bothtaengist for the purpose of computing
reweighting coefficients may be overkill: we may be able teeclly estimate the coefficients
B; := B(x;, y;) without having to estimate the two distributions. Furtherey we can regularizg,
directly with more flexibility, taking prior knowledge intaccount similar to learning methods for
other problems.

2.2 Using the sample reweighting in learning algorithms

Before we describe how we will estimate the reweighting ficiehts3;, let us briefly discuss how
to minimize the reweighted regularized risk

Rreg[Zv ﬁv Z(IE, Y, 9)] = % Z ﬁll(l'“ Yi, 9) + )‘Q[QL (5)
i=1

in the classification and regression settings.



Support Vector Classification: Utilizing the setting of [19]we can have the following minim-
tion problem (the original SVMs can be formulated in the savag):

T
minjmize - 10| +C’;ﬁi§i (6a)

subject to(¢(z;, yi) — ¢(xi,9),0) > 1 — &/A(y;,y) forally € Y, andg; > 0. (6b)

Here,¢(x,y) is a feature map frorfiX x Y into a feature spacg, wheref € F andA(y, v/')
denotes a discrepancy function betwgeandy’. The dual of (6) is given by

1 m m
miniamize 3 Z Qi k(T y, i, y') — Zaiy (7a)
t,j=Ly,y'cY i=ly€eY
subject ton;, > 0 forall i,y and >~ ay,/A(yi,y) < BC. (7b)
yeY
Here k(z,y,2',y') = (¢(x,y),o(z’,y’)) denotes the inner product between the feature

maps. This generalizes the observation-dependent bihaceSsification described in [12].
Modifications of existing solvers, such as SVMStruct [19¢ straightforward.

Penalized LMS Regression:Assumel(z, y,0) = (y — (¢(z),0))” andQ[] = ||0||>. Here we
minimize

m

> Bily: — (d(x:),0))% + X 0] ®8)

1=1

Denote by3 the diagonal matrix with diagondl3, ..., 3,) and letK € R™ ™ be the
kernel matrixK;; = k(z;,z;). In this case minimizing (8) is equivalent to minimizing
(y — Ka) "By — Ka) + A" Ka with respect tav. Assuming that< and 3 have full rank,
the minimization yieldsy = (A\3~' + K)~'y.
The advantage of this formulation is that it can be solvedasgyeas solving the standard pe-
nalized regression problem. Essentially, we rescale tpdagzer depending on the pattern
weights: the higher the weight of an observation, the lessegelarize.

Penalized Logistic Regression:This is also referred to aSaussian Process Classificatiome
minimize [22]

m

A
> —logp(yilxi 0) + S 116

=1
. Using (5) yields the following modified optimization preiph:
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i A
Z —B; log p(yi|x:, 0) + 5 ||(9||2 . 9)
i=1

Using an exponential families and kernel approachdgm(y|z, 0) = (¢(z,y), 0) — g(0|x)
whereg(0|z) = log ), yexp (((z,y),0)) we can invoke the representer theorem which
leads to

mlIllIIIlZG Zﬁz Oé|l'Z Z O‘zyﬁ] xlvyvxj7yj) + Z O‘iyajy’k(xiay>xjay/)

i=1 i,j=1;ycY 1,7=Ly,y’'€Y
m
whereg oz|x2 = logZexp( Zajy’k<xiuy7xj7y/>>'
yeY j=1;y'eyY

3 Distribution Matching

3.1 Kernel Mean Matching and its relation to importance samging

Let® : X — F be a map into a feature spa&eand denote by, : P — F the expectation operator

p(Pr) == Egopra) [P(2)] - (10)

Clearly i is alinear operator mapping the space of all probability distribusidninto feature
space. Denote by((®) := {u(Pr) wherePr € P} the image ofP undery. This set is also often
referred to as thenarginal polytope We have the following theorem:

Theorem 1 The operatory is bijective if F is an RKHS with a universal kernél(x,z’) =
(P(x), ®(2)) in the sense of Steinwart [17].

Proof LetJ be a universal RKHS, and I6tbe the unit ball ir. We need to prove thatr = Pr’
if and only if u(Pr) = u(Pr’), or equivalentlyl|u(Pr) — u(Pr')|| = 0. We may write

[ (Pr) — p(Pr')|| = Sup (f, n(Pr) — p(Pr))

= sup (Epr[f] - EPr' [.ﬂ)
fes

=: A[S, Pr,Pr].



It is clear thatA [G, Pr,Pr/] = 0 is zero if Pr = Pr’. To prove the converse, we begin with
the following result from [3, Lemma 9.3.2]: IPr, Pr’ are two Borel probability mesures de-
fined on a separable metric spdfethenPr = Pr’ if and only if Ep,[f] = Epy[f(2)] for all

f € C(X), whereC(X) is the space of continuous bounded functionsXonIf we can show
that A [C(X), Pr,Pr’] = D for someD > 0 implies A [G, Pr,Pr’] > 0: this is equivalent to
A G, Pr, Pr'] = 0 implying A [C(X), Pr,Pr'] = 0 (where this last result implieBr = Pr'). If

A [C(X), Pr, Pr'] = D, then there exists somee C/(X) for whichEp, m — Epy [f] > D/2.
By definition of universalityF is dense inC'(X) with respect to thd.,, horm: this means that
for all e € (0,D/8), we can find somg* € F satisfying‘ = fH < e. Thus, we obtain

Ep, [f*] — Ep; m ‘ < e and consequently

[Epy 1] = By [F')] > [Bpy ] = Bew []| - 2¢> 2 —22 =2 >0,
Finally, using|| f*|| < oo, we have

[Epr [f*] = Ep [f]] /1771 = D/ 7)) > 0,
and hence\ |G, Pr, Pr'] > 0. |

The use of feature space means to compare distributionghefiexplored in [4]. The practical
consequence of this (rather abstract) result is that if venkm(Pr’), we can infer a suitablg by
solving the following minimization problem:

miniﬁmize |1£(Pr") = Eqropria) [B(z)®(2)]|| subject tod(z) > 0 andE, p.() [B(z)] = 1. (11)
This is the kernel mean matching (KMM) procedure.

Lemma 2 The problem (11) is convex. Moreover, assume thais absolutely continuous with
respect toPr (soPr(A) = 0 impliesPr’(A) = 0). Finally assume that is universal. Then the
solutionf(z) of (11) isPr'(x) = B(x) Pr(z).

Proof The convexity of the objective function comes from the fabtst the norm is a convex
function and the integral is a linear functional#n The other constraints are convex, too.

By the virtue of the constraints, any feasible solutionsoforresponds to a distribution, as
[ B(z)dPr(z) = 1. Moreover, it is not hard to see thdtz) := Pr'(z)/ Pr(x) is feasible as it
minimizes the objective function with value and that such &(z) exists due to the absolute con-
tinuity of Pr'(x) with respect tdr(z). Theorem 1 implies that there can be only one distribution
B(x) Pr such thai(5(z) Pr) = u(Pr’). Hences(x) Pr = Pr'. [



3.2 Convergence of reweighted means in feature space

Lemma 2 shows that in principle, if we knév andp[Pr'], we could fully recoveiPr’ by solving
a simple quadratic program. In practice, however, neith@n’) nor Pr is known. Instead, we
only have sample& and X’ of sizem andm’, drawn iid fromPr andPr’ respectively.

Naively we could just replace the expectations in (11) by ieilcgd averages and hope that
the resulting optimization problem provides us with a gostineate of 3. However, it is to be
expected that empirical averages will differ from each otihee to finite sample size effects. In
this section, we explore two such effects. First, we demratestthat in the finite sample case,
for a fixed 3, the empirical estimate of the expectationtois normally distributed: this provides
a natural limit on the precision with which we should enfotice constraint/ 3(z)d Pr(z) = 1
when using empirical expectations (we will return to thignpan the next section).

Lemma 3 If 5(z) € [0, B] is some fixed function af € X, then givenr; ~ Pr iid such that5(z;)
has finite mean and non-zero variance, the sample rdedn, 5(z;) converges in distribution to
a Gaussian with meayfi 3(x)d Pr(x) and standard deviation bounded b¥.-.

This lemmais a direct consequence of the central limit i, Theorem 5.5.15]. Alternatively,
it is straightforward to get a large deviation bound thag\kse converges ag'\/m [7].

Our second result demonstrates the deviation between thizieahmeans oPr’ and(z) Pr
in feature space, givefi(x) is chosen perfectly in the population sense. In particulds, re-
sult shows that convergence of these two means will be slaherie is a large difference in the
probability mass oPr’ andPr (and thus the boung on the ratio of probability masses is large).

Lemma 4 In addition to the Lemma 3 conditions, assume that we dkdw= {z/,..., 2/} iid
from X usingPr’ = 3(z) Pr, and||®(z)|| < R for all z € X. Then with probability at least — §

[ 2-steeteg - i

For the proof of Lemma 4 we need McDiarmid’s theorem.

< <1 + \/—210g5/2> R/ B2/m +1/m’

Theorem 5 Denote byf(z1, ..., z,) a function ofm independent random variables. Moreover
let

|f(.7}1, o -axm) - f(xla- B 7xi—17j>mi+17 .. >~Tm>| S &
forall z1,...,z, andz. Denote byC' := . ¢?. In this case

Pr{[f(z1,- - &m) = Euy o [f(21,- 2] > €} < 2exp(=Cé?).



Proof Let=(X, X') := H% S Ba)®(x) — L ST @(ah) ) The proof follows by firstly its
tail behavior using a concentration inequality and subsetiy by bounding the expectation.

To apply McDiarmid’s tail bound [9], we need to bound the apam=(X, X’) if we replace
any z; by somez; and likewise if we replace any, by some arbitraryt, from X. By the tri-
angle inequality a replacement of by some arbitrary: € X can changé& (X, X’) by at most
L118(z:)®(x;) — B(z)®(x)|| < 22E. Likewise, a replacement of by = change£(X, X’) by at
most2%. Sincem(2BR/m)? + m/(2R/m’) = 2R*(B*/m + 1/m’) we have

Pr{|Z(X,X") — Exx [E(X, X)]| > €} < 2exp (—€’/2R*(B*/m + 1/m'))..

Hence with probabilityy — § the deviation of the random variable from its expectatiadnasnded
by

o [ B2 1
|E(AXV7 X’) — EX,X’ [E()(7 X’)] | < R\/—2 log— (E + —)

2 m!

To bound the expected value 8f.X, X') we use

Ex v [2(X, X')] < /Ex.x [E(X, X')?)

Since all terms ifE(X, X’) have the same mean(Pr’), we obtain

B 20t — Y0t

=B pugo [[180)8() — (P + By [|90) — (P

< [B*/m+1/m/| Epopynk(z,2) < R* [B*/m+1/m'] .

Combining the bounds on the mean and the tail proves the claim [ |

Note that this lemma shows that fogaven(x), which is correct in the population sense, we
can bound the deviation between the feature space meRri ahd the reweighted feature space
mean ofPr. It is nota guarantee that we will find coefficientsthat are close tg(x;), but it gives
us a useful upper bound on the outcome of the optimization.

Lemma 4 implies that we hav@(B+/1/m + 1/m’B?) convergence inn,m’ and B. This
means that, for very different distributions we need a l&gevalent sample size to get reasonable
convergence. Our result also implies that it is unrealigii@ssume that the empirical means
(reweighted or not) should match exactly.




3.3 Empirical KMM optimization

To find suitable values of € R™ we want to minimize the discrepancy between means subject
to constraintsy; € [0, B] and|L >~ 3 — 1| < e. The former limits the scope of discrepancy
betweerPr andPr’ whereas the latter ensures that the measurgPr () is close to a probability
distribution. The objective function is given by the digzaecy term between the two empirical
means. Using<;; := k(x;,z;) andk; := 2 52" k(x;, #,) one may check that

|- > A - - icb(a:;a
i=1 1=1

We now have all necessary ingredients to formulate a quagnatblem to find suitablg via

2 1 2
:—QﬁTKﬁ — —2/€Tﬁ + const.
m m

miniﬁmize %ﬁTKﬁ — k' 3 subject to3; € [0, B] and)z Gi — m) < me. (12)
i=1

In accordance with Lemma 3, we conclude that a good choieesbbuld beO(B//m). Note
that (12) is a quadratic program which can be solved effilyiarging interior point methods or
any other successive optimization procedure. We also paoihthat (12) resembles Single Class
SVM [13] using thev-trick. Besides the approximate equality constraint, tteenmndifference is
the linear correction term by meansaf Large values of; correspond to particularly important
observations;; and are likely to lead to largé..

4 Risk Estimates

In the paper, we are only concerned with distribution matghfior the purpose of finding a
reweighting scheme between the empirical means on trailirand test sefX’. We now show
that as long as the means on the test set are well enough apptes, we will be able to obtain
almost unbiasedisk estimatesegardlessof the actual values of; vs. their importance sampling
weightsj3(z;). The price is an increase in the variance of the estimai®. || 3|* will act as an
effective sample size.

For simplicity, we only consider th#gansductivecase. That is, we will make uniform con-
vergence statements with respectiio, x» andEyx only. The extension to unconditional ex-
pected risks is straightforward. We are interested in thebier of the loss induced function class
l(x,y,0) rather than¢(z, y), 8). Thus the difference betweenused in Section 2, which relates
to the parameterization of the model, ahdised in the current section, relating to the loss.

We proceeds in two steps: first we show that for the expectssl (0, 0) := E,,l(z,y,0),
the coefficientss; can be used to obtain a risk estimate with low bias. Secomaiyshow that the
random variable . 5;l(x;, v;, §) is concentrated around’, 5;/(z;, #), if we conditionY’| X..
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Key Assumption 2: We require that(z, ) can be expressed as inner product in feature space,
i.e.l(z,0) = (P(x),0), where||©] < C. Thatis,l(z, ) is a member in a Reproducing Kernel
Hilbert Space (RKHS) with bounded norm.

Lemma 6 We require that key assumptions 1 and 2 are satisfied and |&t’ be iid samples drawn
from Pr and Pr’ respectively. Moreover, |€§ be a class of loss-induced functiok{s, ¢) with
10| < C. Finally, assume that there exist someuch that’% S B () — L ST ()
e. In this case we can bound the empirical risk estimates devist

BRI
Zﬁz i, Yi, 0) | — Eyrx ﬁzl@;i?yi?e)]

i=1
Proof To see the claim, first note that by key assumption 1 the ciomdit distributionsPr(y|z)
are the same foPr andPr’. By linearity we can apply the epxectati® | x to each summand
individually. Finally, by key assumption 2 the expectedslés;, #) can be written ag®(z), 6).
Hence we may rewrite the LHS of (13) as

sup < Ce (13)

I(-,,0)eg

Ey|x

1 & 1 & 1 &
sup Bil(z:,0) — — > 1(z},0)| < sup [{ — > Bi®(z;)) — — > (z),0
Z m’ ; lef<c m; m ;
By the very definition of norms this is bounded 6y, which proves the claim. [ |

The final step in relating a reweighted empirical averagegiX, V) and the expected risk
with respect tdr’ requires us to bound deviations of the first term in (13). Weeha

Lemma 7 We require that key assumption 2 is satisfied and’leX’ be drawn iid fromPr(y|z).
Moreover, assume that alg¢r, y, ¢) can be expressed as an element of an RKHS®j{a, v), O)
with ||| < C'and||®(z, y)|| < R. LetM := m?/ || 3||>. Then with probability at least — § over
all Y|x

up Z@ (190 0) = =3 Bl 0)| < (14 Vloga220RNVAT (14)
=1

1(-,,0)€g

Proof The proof strategy is almost identical to the one of Lemmad}[&f]. Denote by

=Z(Y):= sup — Gi l(x;,y:,0) — U(x;, 0
)= s o3l s0) =l )

11



the maximum deviation between empirical mean and expectatkey is that the random vari-
ablesy,, ..., y,, are conditionally independent given.. Replacing oney; by an arbitraryy € Y
leads to a change B(Y") which is bounded bg%C 1P (zs,y:) — (24, 9)|| < 2CRS;/m. Using
McDiarmid’s theorem we can bound

)J/?")r( {\ —Eyx2(Y)| > 6} < exp (—ezmz/ (2C2R2 ||ﬁ||§)) )

In other words, M := m?/ ||3|| acts as an effective sample size when it comes to determining

large deviations. Next we use symmetrization to obtain aadan the expectation &(Y"), that
is

- 1 . .
Eyx[E(Y)] < EEY|XE)7\X 1(81(195) Zﬁil(xu?ﬁ,e) — Bil(wi,Yi, 0) (15)
2
< —EyxE, | su o Gil(x;, v, whereo; € {£1}. 16
o YIX ‘o epeg Z Billwi, s )] {£1} (16)

The first inequality follows from convexity. The second onkdws from the fact that alj;, y; pairs
are independently and identically distributed, hence weswveap these pairs. This is reflected in
the binary Rademacher random variaktesvhich are{+1} with equal probability.

For constanp; the RHS in (16) is commonly referred to as the Rademacheageeifo make
actual progress in computing this, we use the condition oflemmma, namely thak(x,y,0) =
(P(z,y),©) for someO with ||©] < C. This allows us to bound the supremum. This, and the
convexity ofz? yields the following bounds on the RHS in (16)

Zmﬂz@(%,yi)

i=1

2 N ) 2CR
ch;@Eym @i y)lI* < -CRIBN, =

Combining the bound on the expectation and solving the taihll fore proves the claim. R

2

Z%ﬁi‘p(%,yi)

i=1

2 2
RHS < —EY‘XEUC < CJ Ey|XE0
m m

Now we can combine the bounds from both lemmas to obtain the result of this section:

Corollary 8 Under the assumptions of Lemma 6 and 7 we have that with piid@a least1 — ¢

- il@;,yg,e)] EVEZENEEER s c

m

1
sup |— Z Bil(ws, i, 0) — By x/

l('7'76)€9 m i=1
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This means that if we minimize the reweighted empirical sk will, with high probability, be
minimizing an upper bound on the expected risk on the tesf$es is exactly what we will study
in the following section.

5 Experiments

5.1 Toy regression example

Our first experiment is on toy data, and is intended mainly ravide a comparison with the
approach of [14]. This method uses an information critetmoptimise the weights, under certain
restrictions onPr and Pr’ (namely,Pr’ must be known, whilePr can be either known exactly,
Gaussian with unknown parameters, or approximated viagkelensity estimation).

Our data is generated according to the polynomial regregsiample from [14, Section 2], for
which Pr ~ N(0.5,0.5?) andPr’ ~ N(0, 0.3%) are two normal distributions. The observations are
generated according o= —x + 23, and are observed in Gaussian noise with standard deviation
0.3 (see Figure 1(a); the blue curve is the noise-free signal).

We sampled 100 training (blue circles) and testing (redesijgoints fromPr andPr’ respec-
tively. We attempted to model the observations with a defjneelynomial. The black dashed line
is a best-case scenario, which is shown for reference pespasrepresents the model fit using
ordinary least squared (OLS) on the labeled test points.rétidine is a second reference result,
derived only from the training data via OLS, and predictstdst data very poorly. The other three
dashed lines are fit with weighted ordinary least square (\®Qusing one of three weighting
schemes: the ratio of the underlying training and test diessiKMM, and the information crite-
rion of [14]. A summary of the performance over 100 trialshewn in Figure 1(b). Our method
outperforms the two other reweighting methods.

5.2 Real world datasets

We next test our approach on real world data sets, from whielsalect training examples using
a deliberately biased procedure (as in [23, 11]). To desailr biased selection scheme, we need
to define an additional random variabigfor each point in the pool of possible training samples,
wheres; = 1 means theth sample is included, ang = 0 indicates an excluded sample. Two
situations are considered: the selection bias corresponuisr assumption regarding the relation
between the training and test distributions, &id; = 1|z;, y;) = P(s;|x;); or s; is dependent only
ony;, i.e. P(s;|x;, y;) = P(s;|y;), which potentially creates a greater challenge since iatés our
key assumption 1. In the following, we compare our methobiglledKMM) against two others: a
baseline unweighted methodniweightegl in which no modification is made, and a weighting by
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Figure 1: (a) Polynomial models of degree 1 fit with OLS and V&b) Average performances of
three WOLS methods and OLS on the test data in (a). LabeRatiefor ratio of test to training
density; KMM for our approachmin IC for the approach of [14]; an@LSfor the model trained
on the labeled test points.

the inverse of the true sampling distributiomportance samplingas in [23, 11]. We emphasise,
however, that our method doeetrequire any prior knowledge of the true sampling probabait
In our experiments, we used a Gaussian ketre(—o||z; — x;||?) in our kernel classification and
regression algorithms, and parametets (/m — 1)//m and B = 1000 in the optimization (12).

5.2.1 Breast Cancer Dataset

This dataset is from the UCI Archive, and is a binary classifon task. It includes 699 examples
from 2 classes: benign (positive label) and malignant (tiegéabel). The data are randomly split
into training and test sets, where the proportion of exampsed for training varies from 10% to
50%. Test results are averaged over 30 trials, and werenglotaising a support vector classifier
with kernel sizes = 0.1. First, we consider a biased sampling scheme based on thief@gtures,
of which there are nine, with integer values from 0 to 9. Sisiwaller feature values predominate
in the unbiased data, we sample according’te = 1|z < 5) = 0.2 andP(s = 1|z > 5) = 0.8,
repeating the experiment for each of the features in turrsuReare an average over 30 random
training/test splits, with 1/4 of the data used for trainargl 3/4 for testing. Performance is shown
in Figure 2(a): we consistently outperform the unweightegthnd, and match or exceed the
performance obtained using the known distribution ratiextNwe consider a sampling bias that
operates jointly across multiple features. We select sasipks often when they are further from
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Figure 2: Classification performance analysis on breasteradataset from UCI.
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the sample meam over the training data, i.eP(s;|z;) < exp(—ol|z; — 7||?) wheres = 1/20.
Performance of our method in 2(b) is again better than thesigivted case, and as good as or better
than reweighting using the sampling model. Finally, we ads1sa simple biased sampling scheme
which depends only on the labgl P(s = 1|y = 1) = 0.1 andP(s = 1|y = —1) = 0.9 (the data
has on average twice as many positive as negative exampkss wiiformly sampled). Average
performance for different training/testing split proports is in Figure 2(c); remarkably, despite
our assumption regarding the difference between the trgiand test distributions being violated,
our method still improves the test performance, and outpers$ the reweighting by density ratio
for large training set sizes. Figure 2(d) shows the weightge proportional to the inverse of
true sampling probabilities: positive examples have higheights and negative ones have lower



5.2.2 Further Benchmark Datasets

Table 1: Test results for three methods on 18 datasets wigreht sampling schemes. Datasets
marked with * are for regression problems. The results axaterages over 10 trials for regression
problems and 30 trials for classification problems.

NMSE / Test err.
DataSet Ty selected ns | unweighted import. sampling KMM
1. Abalone* 2000 853 2177 1.00 & 0.08 1.14+0.2 0.6 +0.1
2. CA Housing* 16512 3470 4128 2.29 + 0.01 1.72 £0.04 1.24 +£0.09
3. Delta Ailerons(1)* | 4000 1678 3129 0.51 £0.01 0.51 +£0.01 0.401 £ 0.007
4. Ailerons* 7154 925 6596 1.50 £+ 0.06 0.7+0.1 1.2+0.2
5. haberman(1) 150 52 156 | 0.50 +0.09 0.37 +£0.03 0.30 +0.05
6. USPS(6vs8)(1) 500 260 1042 0.13 £0.18 0.1+0.2 0.1+0.1
7. USPS(3vs9)(1) 500 252 1145 0.016 =0.006 0.012+0.005 0.013 £ 0.005
8. Bank8FM* 4500 654 3692 0.54+0.1 0.45 +0.06 0.47 £0.05
9. Bank32nh* 4500 740 3692 23 +£4.0 19+ 2 19+ 2
10. cpu-act* 4000 1462 4192 10+ 1 4.0+0.2 1.9+0.2
11. cpu-small* 4000 1488 4192 9+ 2 4.0+£0.2 20+0.5
12. Delta Ailerons(2)*| 4000 634 3129 2+ 2 1.5+15 1.7+ 0.9
13. Boston house* 300 108 206 | 0.8 £0.2 0.74 +0.09 0.76 = 0.07
14. kin8Bnm* 5000 428 3192 0.85 +0.2 0.81 £0.1 0.81 0.2
15. puma8nh* 4499 823 3693 1.1+0.1 0.77 £ 0.05 0.83 £0.03
16. haberman(2) 150 90 156 | 0.27 £0.01 0.39 £0.04 0.25 £0.2
17. USPS(6vs8) (2) | 500 156 1042 0.23 £0.2 0.23 +0.2 0.16 +0.08
18. USPS(6vs8) (3) | 500 104 1042 0.54 +£0.0002 0.5 4+0.2 0.16 + 0.04
19. USPS(3vs9)(2) 500 252 1145 0.46 £ 0.09 0.54+0.2 0.2+0.1
20. Breast Cancer 280 96 419 | 0.05+0.01 0.036 £ 0.005 0.033 +0.004
21. Indias diabets 200 97 568 | 0.32 4+ 0.02 0.30 £0.02 0.30 £0.02
22. ionosphere 150 64 201 | 0.32+£0.06 0.31 +£0.07 0.28 + 0.06
23. German credit 400 214 600 | 0.283 +=0.004 0.282 4 0.004 0.280 + 0.004

We next compare the performance on further benchmark dstdseselecting training data
via various biased sampling schemes. Specifically, for #mepding distribution bias on labels,
we useP(s = 1|y) = exp(a + by)/(1 + exp(a + by)) (datasets 1 to 5), or the simple step dis-
tribution P(s = 1|y = 1) = a, P(s = 1|y = —1) = b (datasets 6 and 7). For the remaining

lRegression datasets &t t p: / / www. | i acc. up. pt/ ~I t or go/ Regr essi on/ Dat aSet s. ht ni ; clas-
sification sets are from UCI. Sets with numbers in bracketeaamined by different sampling schemes.
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datasets, we generate biased sampling schemes over ttanefe We first do PCA, selecting the
first principal component of training data and the corresiog projection values. Denoting the
minimum value of the projection ag and the mean as:, we apply a normal distribution with
meanm + (m — m)/a and variancém — m)/b as the biased sampling scheme. Please refer to
Appendix for detailed parameter settings. We use penaliM8 for regression problems and
SVM for classification problems. To evaluate generalizaperformance, we utilize the@ormal-
ized mean square error (NMSHEiven by% S % for regression problems, and the average
test error for classification problems. In 16 out of 23 experts, our reweighting approach is the
most accurate (see Table 1), despite having no prior infoomabout the bias of the test sample
(and, in some cases, despite the additional fact that tlzerdateighting does not conform to our
key assumption 1). In addition, the KMslwaysimproves test performance compared with the
unweighted case.

5.2.3 Tumor Diagnosis using Microarrays

Our next benchmark is a dataset of 102 microarrays from gi@stancer patients [15]. Each of
these microarrays measures the expression levels of 1g§6%. The dataset comprises 50 sam-
ples from normal tissues (positive label) and 52 from tungsues (negative label). We simulate
the realisitc scenario that two sets of microarrays A andeBgaren with dissimilar proportions of
tumor samples, and we want to perform cancer diagnosis assiication, training on A and pre-
dicting on B. We select training examples via the biasedctiele schemé’(s = 1|y = 1) = 0.85
andP(s = 1|y = —1) = 0.15. The remaining data points form the test set. We then per&viv
classification for the unweighted, KMM, and importance shingpapproaches. The experiment
was repeated over 500 independent draws from the datasetaggto our biased scheme; the 500
resulting test errors are plotted in Figure 3(a). The KMMiagbes much higher accuracy levels
than the unweighted approach, and is very close to the impogtsampling approach.

We study a very similar scenario on two breast cancer micagatatasets from [5] and [21],
measuring the expression levels of 2,166 common genes forat@nd cancer patients [20]. We
train an SVM on one of them and test on the other. Our reweightiethod achieves significant
improvement in classification accuracy over the unweigl8e1 (see Figure 3(b)). Hence our
method promises to be a valuable tool for cross-platfornrmaicay classification.

6 Discussion

We present a new kernel method of dealing with sampling biaarious of learning problems. We
directly estimate the resampling weights by matching tngjrand testing distributions in feature
space. In addition, we develop general theory in boundiegntlatching error in terms of the
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Figure 3: (a) test errors in 500 trials for cancer diagnasikek sorted by error values. (b) Clas-
sification results when training and testing are from défeérsources of Microarray examples for
breast cancer

support of the distribution and the sample sizes. Our expais demonstrated the advantage of
correcting sampling bias using unlabeled data in varioablpms.
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A Experiments

Statistics of datasets used in the experiments in Sectibi.5.

1* 2* 3* 4* 5 6 7 8* 9* 10* 11~ 12*
ol lel 1le-1 1e3 1e-5 1le-2 1/128 1/128 1le-1 1le-2 1le-12 1e-12 1e3
al|l5 10 le3 1le4 0.2 0.1 0.1 20 4 4 4 le3
b|-05 -5 -1 -5 0.8 0.9 0.9 8 8 8 8 -1

13* 14 15 16 17 18 19 20 21 22 23
o|le4 1le-1 le-1 1e-2 1/128 1/128 1/128 1le-1 1le-4 1le-1 le-4
a|?2 4 4 02 4 4 4 2 2 2 4

b|2 6 4 08 4 8 4 2 2 2 4
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