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Abstract

We present a system that optimizes sequences of re-
lated client requests by combining small requests into larger
ones, thus reducing per-request overhead. The system pre-
dicts upcoming requests and their parameter values based
on past observations, and prefetches results that are ex-
pected to be needed. We describe how the system makes
its predictions and how it uses them to optimize the request
stream. We also characterize the benefits with several ex-
periments.

1. Introduction

Each request made by a database client application to a
database server incurs overhead associated with the inter-
connection network and the layers of interface software at
both ends of the client/server connection. When client re-
quests are expensive, the request overhead is dwarfed by
I/O costs. As the size of main memory grows, however, an
increasing portion of the working set of an application is
maintained in the buffer pool. In such situations, which are
quite common, the request handling cost is dominated by
overhead.

To illustrate, consider the case of a single-row selection
query that can be answered using an index. We measured
the costs of such queries using three commercial DBMSs in
1 Gbps LAN configurations with drivers using C++/ODBC
and Java/JDBC. In all of the cases we measured, overhead
accounts for 95% or more of the total request cost when
all of the needed pages are in memory at the server. Most
of the overhead is server-side processing time consumed by
the DBMS, which must interpret the OPEN request, initial-
ize execution structures, and format the returned rows. A
smaller amount of overhead is associated with the DBMS
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Figure 1. Costs for fetching from a cached
table.

client, which must format the OPEN request and interpret
the query results. Finally, the network introduces some la-
tency.

Figure 1(a) shows the cost of performing N index probes
of a ten million row table by using a single query with an
N -element IN predicate when all of the needed pages are
cached in the buffer pool. The slope gives the cost of a
single index probe, while the intercept represents fixed per-
request overhead. Notice that the fixed overhead dominates
the cost of these small queries. For example, we can per-
form 20 index probes without even doubling the cost of per-
forming one probe.

Figure 1(b) shows the breakdown of execution overhead
for three configurations (defined in Section 5). Most of
the overhead is server-side processing time consumed by
the DBMS, which must interpret the OPEN request, ini-
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tialize execution structures, and format the returned rows.
These costs are slightly higher in the Ethernet configura-
tions (LAN0.1 and LAN1) than in the local shared-memory
configuration (LCL) because of the more complex commu-
nication interface in the former. A smaller amount of over-
head is associated with the DBMS client, which must for-
mat the OPEN request and interpret the query results. Fi-
nally, in the Ethernet configurations, the network introduces
some latency: about 0.12ms in the gigabit (LAN1) configu-
ration and 0.37ms in the 100Mbps (LAN0.1) configuration.
For reference, the dashed horizontal line near the bottom of
Figure 1(b) shows the calibrated cost of performing a single
index probe (0.03ms), as determined by the slope of the line
in Figure 1(a). This represents the cost of the useful work
done by the query.

Although the single-row selection query is an extreme
example, we have found that many real applications do sub-
mit small, cheap requests. For example, in our SQL-Ledger
application case study (Section 6), we measured a median
execution time of 1.1ms over all of the query types issued
by the application. Less than 1% of all queries took longer
than 10ms. For such applications, fixed overhead is by far
the most significant factor in total query execution time.

Figure 2 shows pseudo-code for an application that is-
sues a series of small queries to a DBMS. It is a simpli-
fied, artificially constructed application; however, its fea-
tures are a composite of elements we observed in a set of
database applications that we studied (described in more de-
tail in Section 6). The GETCUSTOMER procedure takes a
partially-filled customer structure (cust) as input, and re-
trieves additional customer information from the database.
It first issues query Qa to retrieve the customer name and ac-
count number. If the application does not already have ship-
ping information for the customer, GetCustomer calls
the GetDefaultShipTo procedure to obtain the default
shipping address. Finally, the application checks the cus-
tomer’s outstanding balance (Qc) and uses that information
to determine the available credit. The GetVendor pro-
cedure operates similarly on a vendor structure (vend); it
retrieves the vendor name with Qd, the mailing address with
GetDefaultShipTo, and a list of parts to order with Qe.

If the data needed by the application is mostly buffered,
the execution time for queries Qa . . . Qe will be dominated
by overhead. One way to optimize the application’s perfor-
mance is to combine the small queries into larger ones. For
example, queries Qa and Qb could be combined into a sin-
gle query like the one shown in Figure 3. Since overhead ac-
counts for almost all of the execution time of small requests,
replacing n small requests with one large request can reduce
the total query execution time for those queries by almost a
factor of n. Some of this improvement would be achieved
by the elimination of communications latency. However, as
shown in Figure 1, much of the savings would be achieved

procedure GetCustomer(cust)1

fetch row r1 from Qa:2

SELECT name, accno FROM customer c3

WHERE c.id = :cust.id4

cust.name ← r1.name5

if not cust.shipto then6

cust.shipto ← GetDefaultShipTo(cust)7

fetch row r3 from Qc:8

SELECT SUM(amount-paid) as balance9

FROM ar a WHERE a.accno = :r1.accno10

cust.balance = r3.balance11

end12

function GetDefaultShipTo(info)13

fetch row r2 from Qb:14

SELECT addr FROM shipto s15

WHERE s.cid = :info.id AND s.default=‘Y’16

return r2.addr17

end18

procedure GetVendor(vend)19

fetch row r4 from Qd:20

SELECT name FROM vendor v21

WHERE v.id = :vend.id22

vend.name ← r4.name23

vend.mailto ← GetDefaultShipTo(vend)24

open c5 cursor for Qe:25

SELECT partname, invlevel-onhand AS qty26

FROM part p WHERE p.vid = :vend.id27

AND p.onhand < p.invlevel28

while r5 ← fetch c5 do AddOrder(vend,r5) end29

close c530

end31

Figure 2. An Example Application

through the elimination of per-request computational over-
head at the database server. This would improve not only
response time, but also system throughput.

SELECT c.name, c.accno, s.addr
FROM customer c LEFT JOIN shipto s

ON s.id = c.id AND s.default = ‘Y’
WHERE c.id = :cust.id

Figure 3. Manually joining queries Qa and Qb.

One way to implement this kind of optimization is to
manually tune the application code. Manual tuning of ap-
plication code is not uncommon, and it can certainly be
valuable. As a general approach to performance optimiza-
tion, however, it has some weaknesses. First, performance-
motivated optimizations may destroy other desirable appli-
cation properties. For example, in Figure 2, the applica-
tion logic that determines the default shipping address is en-
capsulated in a separate function, GetDefaultShipTo,
and that function is called from both GetCustomer and
GetVendor. Replacing Qa and Qb with the combined
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query in Figure 3 breaks this encapsulation. This, in turn,
leads to code duplication in the application and potential in-
creases in application development and maintenance costs.
A second problem is that tuning may depend on information
such as program parameter values, data distributions, and
properties of the execution environment, such as communi-
cations latencies and system loads. These kinds of run-time
information are unknown at application development time.
Furthermore, they may vary across different installations of
the application program. In the case of Figure 2, query Qb

follows Qa only when the condition at line 6 is true. If this
is rarely the case, combining Qa and Qb in the application
will not help performance, and may actually hurt perfor-
mance.

In previous work [3] we introduced a system called
Scalpel that can perform this kind of optimization auto-
matically, and transparently to both the client application
and the underlying database system. Scalpel is located be-
tween the client application and the server. It monitors
client/server communications and attempts to identify se-
quences of queries that can be replaced by a single com-
bined query, as was illustrated in Figure 3. We called this
technique semantic prefetching.

In our earlier work, we identified several common types
of application query sequences for which semantic prefetch-
ing can help and we focused on one type: query nesting. In
a nested query pattern, the application issues an inner query
for each row fetched from the result of an outer query. In
this paper, we focus instead on a second common applica-
tion pattern, which we call query batches. A query batch is
simply a sequence of non-nested related queries, such as
the sequence Qa,Qb,Qc from the application of Figure
2. Although semantic prefetching can be applied to both
query batches and nested queries, handling query batches is
quite different from handling nesting. Query nesting is rel-
atively simple for Scalpel to detect. Thus, the focus of the
earlier work was on how Scalpel should decide among the
many possible ways of optimizing the detected nesting pat-
terns. In contrast, the primary challenge with query batches
is identifying suitable batches. Thus, the primary contri-
bution of this paper is a technique for automatically iden-
tifying optimizable query batches in an application request
stream. In addition, we present the results of experiments
that quantify the performance benefits that can be expected
from these optimizations as well as the costs introduced by
the Scalpel system itself. Finally, we present an application
case study which serves to demonstrate both the presence
of optimizable query batches and Scalpel’s ability to detect
them.

The remainder of this paper is organized as follows. In
Section 2, we give an overview of the Scalpel system ar-
chitecture. This architecture was described in [3], but we
have included a summary here so that the current paper

is self-contained. Sections 3 and 4 describe how Scalpel
identifies and optimizes query batches. The LATERAL-
based query batch rewrites described in Section 3.2.5 are
a subset of those described in our previous work on nested
queries [3], but the detection and run-time mechanisms are
specific to query batches. In Sections 5 and 6 we evaluate
the performance of Scalpel’s query batch optimizations us-
ing synthetic workloads and a case study of SQL Ledger, a
database application. We used SQL Ledger as a case study
in our previous work [3]. However, the performance evalua-
tion presented in this paper focuses on query batches rather
than nesting.

2. Scalpel System Overview

The components of the Scalpel system are illustrated in
Figure 4. The system operates in two phases: training and
run-time. During the initial training phase, Scalpel’s Call
Monitor passes all client requests through to the server with-
out modifying them. In addition, the Call Monitor passes
these requests to the Pattern Detector component, which
monitors and records a representation of the request stream.
At the conclusion of the training period, Scalpel’s Pat-
tern Optimizer analyzes this recorded information to iden-
tify optimizable batch patterns and produce corresponding
rewrites, as described in Section 3. These are recorded in
Scalpel’s rewrite database for use during the subsequent
run-time phase.
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Figure 4. Components of the Scalpel system.

At run-time, Scalpel again monitors the application’s re-
quest stream. This time, the Call Monitor passes each appli-
cation request to the Prefetcher, which compares it against
the request patterns recorded in the rewrite database. When
the Prefetcher observes the start of a batch pattern for which
it has a prefetch optimization, the Prefetcher issues the
prefetch query to the database server. If the application be-
haves as expected, Scalpel uses the results of the prefetch
query to answer the application’s subsequent requests. If
the application behaves unexpectedly, Scalpel ignores the
results of the prefetch query and instead passes the applica-
tion’s actual requests through to the server.
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Scalpel models an application’s request stream as a se-
quence of queries. For each such query in the sequence,
Scalpel will observe an Open request from the application,
followed by zero or more Fetch requests, followed by
a Close request. In general, application request streams
may not always follow this sequential query pattern. For
example, a stream may contain nested Open requests. Al-
though Scalpel is capable of handling a more general class
of request streams [3], for the purposes of this paper we will
focus on request streams consisting of sequential queries.

Figure 5 shows a hypothetical application request trace
as seen by Scalpel. The trace illustrates a query sequence
that might be generated by an application that includes the
code from Figure 2, as well as other code that we have not
shown. Each row of the trace table in Figure 5 represents
a single query (Open, Fetch, and Close). The Query
column indicates the query that was opened, and the Input
column shows the query parameter values with which it was
opened. The query identifiers Qa, Qb, Qc, Qd and Qe refer
to the SQL queries shown in Figure 2, while queries Qx,
Qy, and Qz refer to other unspecified queries from else-
where in the application. The Output column shows the
query result tuple that was fetched by the application. If the
application fetches more than one tuple from a cursor (such
as Qe), a set of tuples is shown.

# Query Input Output
1 Qx (42) (501)
2 Qa (101) (‘Alice’, 501)
3 Qb (101) (‘1500 Robie St.’)
4 Qc (501) ($400.00)
5 Qd (201) (‘Mary’)
6 Qb (201) (‘1400 Barrington St.’)
7 Qe (201) { (‘Bell’,3), (‘Tire’,6) }
8 Qa (121) (‘Bob’, 537)
9 Qc (537) ($0.00)

10 Qx (43) (31337)
11 Qa (107) (‘Cindy’, 523)
12 Qb (107) (‘1100 Sackville St.’)
13 Qc (523) ($800.00)
14 Qy (189) (‘Elbereth’)
15 Qd (255) (‘Ned’)
16 Qb (255) (‘1200 Weber St.’)
17 Qe (255) { (‘Pedal’,7), (‘Seat’,3) }
18 Qz (42) (‘Xyzzy’)

Figure 5. An example trace.

3. Training Scalpel

Scalpel predicts upcoming queries based on the queries
that it has observed so far. Like many other prefetchers,
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Figure 6. Suffix Trie After
Qx, Qa, Qb, Qc, Qd, Qb from Figure 5

Scalpel bases its predictions on queries that have been ob-
served in the recent past. To define what we mean by “re-
cent past”, we define the notion of a k-context. The k-
context at position p in a trace is the ordered list of queries
at trace positions p− (k− 1), p− (k− 2), . . . , p− 1, p. For
example, the 5-context at position 7 in the trace of Figure 5
is the list [Qb, Qc, Qd, Qb, Qe].

Scalpel works by learning k-contexts from which it can
predict that a particular query1 will occur next. Scalpel
learns by examining a training request trace like the one il-
lustrated in Figure 5. For example, from the trace in Figure
5, Scalpel might learn that the 2-context [Qa, Qb] predicts
the query Qc. These predictions are recorded in a rewrite
database shown in Figure 4 and used to control prefetching
at run time.

The first training challenge faced by Scalpel is how to
choose the length k of the contexts on which it should base
its predictions. Unfortunately, there is no single value of k

that is always appropriate for prediction. If k is too small,
Scalpel may miss valuable special cases. For example, in
the trace of Figure 5, the 1-context [Qb] is sometimes fol-
lowed by Qc and sometimes by Qd. However, the 2-context
[Qa, Qb] is always followed by Qc. Thus, in this case,
k = 2 leads to a better prediction than k = 1. On the other
hand, unnecessarily large values of k can lead to overly spe-
cific predictions. Longer contexts also require much longer
training periods because each specific context will only be
observed infrequently.

For these reasons, the Pattern Detector tracks k-contexts
for all values of k during the training phase. Specifically,
the Pattern Detector records every k-context (0 ≤ k ≤ N ,
where N is the trace length) that occurs in at least one
position in the training trace. The Pattern Detector also
records the number of times that each k-context occurs in
the trace. These frequencies are used by the Pattern Opti-
mizer (Section 3.2) to estimate whether prefetching will be
cost-effective in a particular context.

1Scalpel is actually capable of predicting multiple queries from a par-
ticular k-context. For now, we will focus on the the prediction of a single
query. Multiple query predictions are discussed in Section 3.2.3.
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Our implementation of Scalpel uses a suffix trie to track
k-contexts. The suffix trie representation offers a non-
redundant encoding of overlapping contexts of different
lengths. Figure 6 shows the suffix trie as it would look after
the sixth query from Figure 5. Edges in the trie are labeled
with the subscripts of queries from the trace, e.g., edge la-
bel a refers to query Qa. Nodes represent the contexts that
have been observed in the trace. Each node is labeled with
a unique identifier, and represents the k-context consisting
of the queries labeled on the path from the root to that node.
For example, node 5 represents the 2-context [Qa, Qb]. The
root node, labeled Λ, represents the 0-context. Dashed
edges are suffix links. Suffix links are related to general-
ization of contexts, which we will describe in Section 3.2.
For example, the suffix link from node 2 ([Qx, Qa]) points
to node 3, which represents the more general context [Qa].

Construction of a suffix trie as illustrated in Figure 6
would require O(N2) space and time, where N is the length
of the training trace. However, Scalpel actually builds a
path compressed suffix trie in O(N) space and time using
an algorithm due to Ukkonen [10].

3.1. Query Parameter Correlations

Queries are often parameterized. If Scalpel is to prefetch
a query, it must predict not only that the query will occur,
but also the parameter values with which the query will be
invoked by the application. This is a significant distinc-
tion between prefetching queries and prefetching other non-
parameterized objects, such as data blocks from an I/O sys-
tem.

Often, the parameter values that are used for a
given query are related, through data dependencies in
the application code, to the input parameter values or
the results of previously-issued queries. For exam-
ple, consider the info.id parameter of query Qb

in the GetDefaultShipTo query in Figure 2. If
GetDefaultShipTo is called from GetVendor, then
info.id will have the same value as the vend.id pa-
rameter to GetVendor’s query Qd. Similarly, the input
parameter r1.accno to query Qc is determined by the re-
sult of the preceding query Qa.

Since Scalpel does not directly observe the application
code, it cannot infer such dependencies through data flow
analysis of that code. Instead, it tries to detect correlations
among the query input parameter values and the query re-
sults that it observes in its training trace. Specifically, for
each query in the training trace, Scalpel’s pattern detector
observes the correlations between that query’s input param-
eters and the the input and output parameters of the preced-
ing queries. To illustrate how this works, consider Scalpel’s
behavior when it observes query Qc on line 4 of Figure 5.
(The trace in Figure 5 shows the query input and output pa-

rameter values.) Scalpel will note that Qc’s input parameter
value (501) matches the value of the second result attribute
of the preceding query Qa as well as the value of the first re-
sult attribute of the preceding query Qx. Later, at line 13 of
the trace, Scalpel will again observe Qc. This time, it will
verify that Qc’s input parameter value (now 523) matches
the second result attribute of the preceding query Qa. How-
ever, it will be unable to verify the correlation between Qc

and the result of the preceding Qx, as their parameter values
do not match this time around. Scalpel considers a param-
eter correlation to hold only if it never fails to hold in the
training trace. Thus, Scalpel will dismiss the potential cor-
relation between Qc’s input and Qx’s output.

We formalize this with the following definition. Sup-
pose that C = [Q1, . . . , Qx, . . . , Qk] is a k-context. We say
that the ith input parameter of Qk is correlated to the jth
input (output2) parameter of query Qx in C iff the value of
Qk’s ith input parameter matches the value of Qx’s jth input
(output) parameter every time context C is observed in the
training trace. So that it can track parameter correlations,
the Pattern Detector records the input parameter values of
each query that it observes in the training trace, as well as
the most recent result tuple from each query.

As presented, Parameter correlation detection would re-
quire O(N3m2) time and space complexity, where m is the
number of parameters per query and N is the length of the
training trace. However, by adapting some of the same op-
timizations used by Ukkonen and by limiting the number of
previous queries that Scalpel will check for parameter corre-
lations, we can limit the overall time and space complexity
to O(NSm2), where S is a system configuration parameter
that limits the number of preceding queries that Scalpel will
check. As discussed in Section 6, we have found that the
training overhead is reasonable in practice.

3.2. The Pattern Optimizer

At the conclusion the training period, the Pattern Opti-
mizer analyzes the suffix trie recorded by the Pattern De-
tector to determine, for each k-context (suffix trie node),
whether semantic prefetching should take place. Suppose
that C = [Q1, . . . , Qk] is a k-context in the trie and that
C ′ = [Q1, . . . , Qk, Qk+1] is a successor context to C in the
trie. This indicates that, on at least one occasion, the Pat-
tern Detector observed that the query Qk+1 was executed
immediately after the sequence of queries in C. The task of
the Pattern Optimizer is to make a cost-based decision as to
whether Scalpel should prefetch Qk+1 from context C.

If Scalpel is to prefetch Qk+1 from C, the prefetch
should be both feasible and beneficial. We say that Qk+1

2The jth output parameter of Qy refers to the jth attribute of Qy’s
result. If Qy returns several tuples, the value of each output parameter is
determined by the most recently fetched tuple.
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is a feasible prefetch from context C if the Pattern Detector
observed at least one correlation for each input parameter of
Qk+1 in context C ′. Intuitively, this means that whenever
Qk+1 followed C in the training trace, its input parameters
were predictable. If query Qk+1 is not a feasible prefetch
from context C, then Scalpel will not attempt to prefetch it
from that context. If it is feasible, then Scalpel estimates
whether prefetching Qk+1 would be beneficial.

3.2.1 Estimating the Benefit of Prefetching

If Scalpel chooses not to prefetch Qk+1, then the total cost
of Qk and Qk+1 (in context C) can be estimated as

COST(Qk+1, C) = COST(Qk) + P [Qk+1|C]COST(Qk+1)

where COST(Qk) and COST(Qk+1) are the estimated costs
of executing queries Qk and Qk+1, respectively, and
P [Qk+1|C] is the probability that the application will re-
quest query Qk+1, given that it is in context C. Scalpel es-
timates COST(Qk) and COST(Qk+1) by monitoring, at the
client, the observed execution times of Qk and Qk+1 during
the training period. These observed times include the over-
head and latency associated with communication between
the client and the server, as well as the server-side cost of
query execution. To estimate P [Qk+1|C], Scalpel can use

an estimator p̂ = n(C′)
n(C) , where n(C) and n(C ′) are the ob-

served frequencies of contexts C and C ′, as recorded by the
Pattern Detector during the training period.3 For example,
if n(C) = 10 and n(C ′) = 4, Scalpel will estimate a 40%
probability that Qk+1 will occur next in context C.

If, on the other hand, Scalpel chooses to prefetch,
then Qk and Qk+1 will be replaced by a single, larger
query that combines the two. We denote the cost of this
combined query by COST(QkQk+1). Unlike COST(Qk)
and COST(Qk+1), COST(QkQk+1) cannot be directly es-
timated from observations, since Scalpel will not have ob-
served the combined query during the training period. In-
stead, Scalpel estimates this cost to be the sum of the costs
of the component queries minus a per-request overhead U0:

COST(QkQk+1) = COST(Qk) + COST(Qk+1) − U0 (1)

This reflects the fact that combining the two queries elim-
inates the per-request overhead associated with submitting
Qk+1 to the server as a separate query. The value of U0 is
configuration-specific, and Scalpel estimates its value dur-
ing a calibration period in the training phase. Equation 1
is conservative in that it assumes that the server and client
costs are independent in the combined query. In some cases,
the combined query may actually be cheaper than the sum
of the individual costs, for example if the DBMS is able

3Note that n(C) ≥ n(C′) since the application must always enter
context C prior to entering context C ′.

to exploit common sub-expressions within the two queries.
However, we do not expect the combined query to be more
expensive than this sum of individual costs as the naı̈ve
nested loops strategy will give this cost.

We define the benefit of prefetching Qk+1 from context
C as

BENEFIT(Qk+1, C) = COST(Qk+1, C)−COST(QkQk+1)

That is, prefetching is beneficial if the cost of doing so is
less than the cost of not prefetching. Substituting and rear-
ranging terms, we can rewrite this formula as

BENEFIT(Qk+1, C) = U0−(1−P [Qk+1|C])COST(Qk+1)
(2)

This formula provides a basis for deciding whether
prefetching Qk+1 is a cost-effective execution strategy. It
shows that the maximum benefit for a single prefetch oper-
ation is given by U0, and that prefetching is most beneficial
when Qk+1 is inexpensive and highly likely to occur.

3.2.2 Estimation Confidence

To use Equation 2 to determine the benefit of prefetching
from context C, the Pattern Optimizer must rely on esti-
mates of the cost of Qk+1 and on its estimate p̂ of the prob-
ability P [Qk+1|C]. Of particular concern is p̂, which is
determined by the number of times Qk+1 was observed to
occur in context C. That estimate may be very uncertain
for contexts that were not observed frequently in the train-
ing trace. For example, n(C ′) = 1 and n(C) = 2 yields
p̂ = 0.5, as does n(C ′) = 100 and n(C) = 200. How-
ever, the former estimate is based on a single observation
of Qk+1 in context C, while the latter is based on a hun-
dred such observations. In general, very specific k-contexts
(those with large k values) will be observed much less often
than very general k-contexts (those with small values of k).
Thus, Scalpel’s estimates of the benefit of prefetching from
rarely-observed contexts will be less certain than its esti-
mates from frequently-observed contexts. We would like
Scalpel’s cost-based prefetching decisions to reflect this.

To achieve this, the Pattern Optimizer defines a confi-
dence interval around its each of its estimates p̂, using a con-
fidence level which is specified as a parameter to the Scalpel
system. If the Pattern Optimizer can determine with the
specified confidence that it is beneficial to prefetch Qk+1

from context C, then it will decide to prefetch from C. If it
can determine with confidence that prefetching is not bene-
ficial, then it will not prefetch. Otherwise, the Optimizer is
said to be uncertain.

When the Pattern Optimizer is uncertain about prefetch-
ing Qk+1 from C, it considers generalizations of the
context C to resolve the uncertainty. For example, if
the Optimizer is uncertain about prefetching Qx from

6



[Qb, Qc, Qd, Qb, Qe], then it considers prefetching from
[Qc, Qd, Qb, Qe], [Qd, Qb, Qe], and so on until it is able
to decide with certainty about Qx. These more general con-
texts will have been observed at least as frequently as C in
the training trace. Thus, as the Optimizer considers more
general contexts, it should become more certain about its
estimates, until eventually it can decide with confidence
that prefetching is or is not beneficial. If the Optimizer
can find no generalization for which it is confident, then the
prefetching is deemed not to be beneficial. Note from the
preceding example that the generalization of a 5-context is
a 4-context, the generalization of a 4-context is a 3-context,
and so on. Thus, this is the mechanism by which Scalpel
avoids basing prefetching decisions on overly-specific k-
contexts, i.e., those for which k is too large.

3.2.3 Choosing Queries to Prefetch

So far, we have described how Scalpel makes a cost-
based decision about whether it is feasible and beneficial
to prefetch a given query from a particular k-context. In
general, Scalpel can decide to use deep prefetching or wide
prefetching (or both) from any context C. There may be
several queries that have been observed to follow C, and
that are feasible and beneficial to prefetch from C. Wide
prefetching from C means prefetching one or more of these
alternative queries, in the hope that the application will ac-
tually request one of them. Scalpel may also be able to
predict that an entire sequence of queries will follow C,
and prefetch the entire sequence when the application enters
C. For example, from the training trace shown in Figure 5,
Scalpel might determine that it is feasible and beneficial to
prefetch the sequence QbQc from context [Qa]. We refer
to this as deep prefetching. We have only described how
Scalpel estimates the benefit of prefetching a single query
from a given context, but it is relatively straightforward to
generalize our cost-based approach to sequences of queries.

Our current Pattern Optimizer considers deep prefetch-
ing but not wide prefetching. It uses a greedy heuristic op-
timization procedure to choose a sequence of queries (pos-
sibly empty) to prefetch from a each context C. This pro-
cedure first determines the most beneficial, feasible single
query prefetch from C. If there is no feasible, beneficial
query then Scalpel does not prefetch from C. Otherwise,
suppose that Qk+1 is the most beneficial, feasible query to
prefetch. Scalpel then considers prefetching two-query se-
quences for which the first query is Qk+1. If there is no such
feasible sequence that is more beneficial than prefetching
Qk+1 alone, then it stops and elects to prefetch only Qk+1

from C. Otherwise, it considers three query sequences that
have the best two-query sequence as a prefix, and so on.

3.2.4 Removing Redundancy

The Pattern Optimizer applies its optimization procedure to
each k-context that was observed during the training trace.
As a result, each such context is annotated with a set of zero
or more queries that should be prefetched from that context.
These annotations are used to control Scalpel’s prefetching
behavior at run-time, as described in Section 4.

There may be a significant amount of redundancy in
these annotations. Redundancy arises from the fact that
the Pattern Optimizer may make the same prefetching de-
cisions for a context and its generalizations. To under-
stand this issue, consider the following contexts from Fig-
ure 6: C10 = [Qc], C9 = [Qb, Qc], C8 = [Qa, Qb, Qc],
C7 = [Qx, Qa, Qb, Qc]. This is a sequence of successively
less general contexts. Suppose that, after the optimization
procedure has been run, Scalpel has decided not to prefetch
from context C10, but to prefetch some query Qp from con-
text C9. This may happen because Scalpel observes that the
conditional probability P [Qp|C9] is higher than the condi-
tional probability P [Qp|C10]. (In this way, Scalpel avoids
basing prefetching decisions on contexts that are too short.)
The Pattern Optimizer may also decide that it is worthwhile
to prefetch Qp in context C8. Such a prefetching decision is
redundant, because whenever the system is in context C8, it
is also in the more general context C9, for which the same
prefetching decision has been made. In general, we define
a k-context to be redundant if it has the same prefetching
annotation as its most specific generalization. Although re-
dundant contexts will not affect the way that Scalpel be-
haves at run-time, they do introduce additional storage and
run-time execution overhead. To avoid this, the Pattern Op-
timizer prunes all redundant contexts.

3.2.5 Query Rewrites

Suppose that C = [Q1, . . . , Qk] is a k-context and that the
Pattern Optimizer has decided to prefetch Qk+1 from C.
To accomplish the prefetch, Scalpel must generate a single,
combined query that will return the results of both Qk and
Qk+1, and that can be executed in place of Qk when con-
text C is entered. Figure 3 showed one way to accomplish
this for two specific queries, Qa and Qb. To combine arbi-
trary queries, Scalpel uses the LATERAL derived table con-
struct of SQL 99, as illustrated in Figure 7 [3].4 By doing
so, Scalpel is effectively leaving the task of “flattening” the
combined query to the more sophisticated query optimizer
at the server.

In Figure 7, the text of the second query (Q2.sql)
may contain parameter markers. Scalpel replaces these (not

4The SQL 99 standard does not support an outer-join variant of lat-
eral derived tables, although several commercial systems do support this
capability using vendor-specific syntax. We use the natural extension of
LATERAL to outer joins to combine queries for prefetching.
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SELECT <Q1.columns>, <Q2.columns>
FROM ( <Q1.sql> ) T1

LEFT OUTER LATERAL ( <Q2.sql> ) I
ORDER BY <Q1.orderby>, <Q2.orderby>

Figure 7. Combining Two Arbitrary Queries
(Q1 and Q2) Using LATERAL.

shown in Figure 7) with references to the result attributes
or input parameters of the first query with which they are
correlated.

Scalpel also implements a second type of rewrite based
on outer union [3], where each branch of the union is iden-
tified by a unique type field, and the rows are ordered
to match the expected sequence of queries. In principle,
Scalpel’s Pattern Optimizer should consider both rewrites
for each prefetch, and choose the one with the least cost.
At present, however, Scalpel uses a heuristic to choose one
of the two rewrites for each prefetch. Specifically, Scalpel
uses the outer join rewrite if it is able to infer that the first
query will return at most one row. Otherwise, it uses the
outer union rewrite. The outer join rewrite introduces re-
dundancy into the result of the combined query when the
second query returns multiple rows, because the values re-
turned by the first query will occur multiple times in the
combined query’s result. However, the at-most-one heuris-
tic ensures that no redundant rows are generated.

4. Running Scalpel

At run time, Scalpel’s Prefetcher loads the non-
redundant contexts that were saved by the Pattern Optimizer
after the training period, together with their prefetching an-
notations. We will denote the set of such contexts by C.
As the application program runs, Scalpel monitors the re-
quested queries and the Prefetcher tracks tracks a current
context within C. Suppose that the Prefetcher’s current con-
text is C = [Q1, . . . , Qk]. When the application requests
OPEN(Q), the Prefetcher chooses a new current context as
follows. If CQ = [Q1, . . . , Qk, Q] is in C, then CQ be-
comes the new current context. Otherwise, the new context
becomes CgQ, where Cg is the most specific generalization
of C for which CgQ ∈ C. If there is no such Cg , then the
empty context becomes the new current context. This pro-
cedure ensures that the Prefetcher bases its actions on the
most specific non-redundant context that matches the appli-
cation’s observed behavior.

After it has updated the current context, the Prefetcher
responds to the application’s request. There are several
cases that it must consider. The first case is that the re-
quested query Q has been prefetched from a previous con-

text. In this case, the Prefetcher checks the input parameter
values for Q to ensure that those values are correlated to
input and/or output parameters of previous queries as was
predicted during training. So that it can make this check,
the Prefetcher records the input and output parameter values
of all of the queries in the current context. If the actual pa-
rameter values are not correlated as predicated, then Scalpel
cannot use the prefetched results to answer Q. Instead, it is-
sues Q unmodified to the server to satisfy the application’s
request. This ensures that the application will receive cor-
rect query results, but work that was required to prefetch Q

has been wasted. If the actual parameter values are corre-
lated as predicted, then the Prefetcher can avoid sending any
request to the server. When the application subsequently
fetches the results of Q, Scalpel satisfies those requests by
extracting the required data from the result of the prefetch
query.

If query Q has not been prefetched, then the Prefetcher
checks the new current context to determine whether it has
a prefetching annotation. If there is not an annotation,
then the Prefetcher simply submits Q unmodified to the
server. However, if there is an annotation, that indicates
that the Pattern Optimizer decided that it was beneficial
to prefetch one or more queries from the current context.
In that case, the Prefetcher submits the rewritten prefetch
query (which returns results for Q as well as some predicted
future queries) to the server instead of Q. When the appli-
cation subsequently fetches results from Q, Scalpel satisfies
these requests by extracting the necessary values from the
results of the prefetch query.

When an application issues an update request, that
update may conflict with query results that have been
prefetched by Scalpel on the application’s behalf. Scalpel
handles this potential problem conservatively by simply in-
validating any prefetched query results when an update oc-
curs. Further discussion of updates can be found in [3].

5. Performance

We performed a variety of experiments that were de-
signed to answer two general questions. First, what are
the costs associated with executing a sequence of requests?
Second, how effective is semantic prefetching at reducing
the execution time of query batches when they occur? The
first question is addressed in Section 5.1. The second is ad-
dressed in Section 5.2.

We have built a prototype version of Scalpel, which has
been used to run a variety of experiments. The client-side
driver programs are implemented in Java using JDBC, and
all results are reported using Java 2 Standard Edition, ver-
sion 1.5.0. On the server side, we experimented with three
different commercial database systems behind Scalpel (li-
cense restrictions prevent us from identifying them). The
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results for the three database systems were consistent, al-
though with different constants, so we have presented the
results for only one system.

We studied three different system configurations with
varying network latency. These configurations are de-
scribed in Table 1 using the computers described in Table 2.

Config. Client Server Connection
LCL A A Shared memory
LAN1 B A 1Gbps LAN
LAN0.1 B A 100Mbps LAN

Table 1. Tested Configurations

Name Processor O/S
A 2 × 2.2GHz XEON Win2003 Server
B 3GHz Pentium IV WinXP

Table 2. Available Computers

5.1. Alternative Prefetch Strategies

Our first experiment is intended to evaluate whether
Scalpel’s query rewriting approach is an effective way to re-
duce the total cost of executing a sequence of small queries.
We consider a sequence of length L of simple queries of the
form ‘SELECT pk FROM T WHERE pk=:i’, where i
is the position within the sequence, and we consider four
different ways of executing such a sequence:

Sequential (S) Each of the L requests is submitted individ-
ually, in sequence.

Stored Procedure (P) A single stored procedure is used,
returning a separate result set for each of the L queries.

Join (J) A single request is used, combining all L queries
using lateral derived tables as is done by Scalpel.

IN-List (I) The L queries are collapsed into a single query
that uses an IN-list to identify the L rows of the table
to be fetched.

The IN-list approach is not a general query rewriting
technique. It is only possible because of the special struc-
ture of this benchmark workload. However, we have con-
sidered it here because it provides a useful lower bound.

Figure 8 shows the measured cost for each of these four
strategies. Each data point was obtained as follows. First,
all queries used by the strategy were prepared. Then, the
queries were executed 1000 times, fetching all rows. This
experiment does not include the cost of running Scalpel at
all, merely the costs of executing the prefetch queries.
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Figure 8. Cost of executing L queries.

As we would expect, the sequential strategy (S) grows
quite quickly with increasing L as per-request overheads
are incurred for each request. The stored procedure ap-
proach (P) improves on this by amortizing the costs asso-
ciated with calling the procedure over all L queries. How-
ever, the stored procedure approach still has costs associated
with crossing the relational/procedural boundary for each
encoded result. These costs lead the stored procedure ap-
proach to be rather far from the IN-list lower bound.

In contrast, the join-based approach (J) is much closer to
the IN-list lower bound (I). The join strategy uses a separate
quantifier for each of the L original queries, while the IN-
list exploits the structure of our workload to use a single
quantifier. Despite this, the join approach is relatively close
in cost to this lower bound. For this reason, Scalpel chooses
not to use stored procedure based rewrites. Although these
rewrites are simpler to express, the performance is not as
good.

5.2. Effectiveness of Semantic Prefetching

To study the effectiveness of Scalpel’s prefetching, we
consider a scenario in which Scalpel, during its training
phase, predicts that a query Q0 will be followed by a batch
of queries Q1,Q2,. . .,QL. Each query is a simple single-
row selection from a table T, and each predicted query Qi

is correlated with Qi−1, its immediately predecessor in the
query batch.

The program generates the initial query, Q0, followed
by a prefix of the remainder of the batch, and then re-
peats this N times. The length of the prefix is PL, where
0 < P ≤ 1. When P = 1, each run-time batch exactly
matches Scalpel’s prediction. When P < 1, some of the
queries predicted by Scalpel are not generated at run-time.
This models the situation in which Scalpel’s prefetching
predictions are not completely accurate.

We wrote a simple driver application that generates such
a query batch repeatedly, with the batch length (L) as an
application parameter. For each experiment, we choose a
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¤ N is the number of batches to generate.32

¤ L is the batch length.33

¤ P controls predicate selectivity.34

procedure GenQueryBatches( N, L, P )35

for iteration ← 1 to N do36

generate query Q037

for i ← 1 to PL do38

generate query Qi39

end40

Figure 9. Code for Generating Query Stream

value for L and we execute the resulting application twice,
once without Scalpel and once with it. In the former case,
which we call unoptimized, each query is passed directly
to the database server for execution. In the latter optimized
case, queries are passed through Scalpel, which applies its
rewrite to prefetch Q1,Q2,. . .,QL when the application re-
quests Q0. This experiment measures the benefit that can
be obtained through semantic prefetching for the ideal case
in which Scalpel has accurately predicted the occurrence of
a query batch. Figure 10 shows the results.

5.2.1 Batch Length

The benefit of prefetching depends on the number of queries
that are successfully prefetched and on the latency of the
communication. In this experiment, we fixed P = 1, varied
the batch length L, and measured execution time for the
original and optimized strategies.
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Figure 10. Time for unoptimized (U) and opti-
mized (O) strategies with varying batch length
L, P = 1.

As the number of successful prefetches increases, the rel-
ative benefit increases. It is interesting to note that client
processing costs are reduced in the optimized case despite
the presence of Scalpel on the client side. The overhead
that Scalpel adds to track the current context is more than
offset by overhead reductions achieved by prefetching. On
the server side, costs are reduced substantially because of

reduced overhead.

5.2.2 Useful Prefetches

For the next experiment, we fixed L = 8 and varied P in the
range 0 ≤ P ≤ 0.5. When P is small, only a small portion
of the query batch prefetched by Scalpel is actually used
by the application. Such overly aggressive prefetching can
occur for several reasons. First, Scalpel may be unaware
that some of the batch queries are conditional; that is, there
may be prediction error. Second, Scalpel may be aware that
part of the batch is conditional and yet decide, on a cost
basis, that prefetching is still worthwhile.
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Figure 11. Time for unoptimized (U) and opti-
mized (O) strategies with L = 8 and varying
P .

Figure 11 shows the results of our measurements for the
LAN1 configuration. As expected, the unoptimized strat-
egy has a strong dependence on the proportion P of queries
that are actually submitted, while the optimized strategy has
only a weak dependence on P resulting from the costs as-
sociated with tracking the context as queries are opened,
detecting if prefetched results are valid, and interpreting the
prefetched results.

In general, as P increases, there is a threshold above
which the optimized (prefetching) strategy becomes worth-
while. This threshold depends on system parameters, in par-
ticular network latency and the cost of individual queries
relative to per-request overhead. This illustrates one of
the advantages of Scalpel’s run-time optimization strategy,
since these costs may not be well understood at develop-
ment time, or they may vary among instances of the appli-
cation program.

6. Case Study

We have examined a number of real applications to un-
derstand the opportunities that are available and the benefits
that are possible with the types of optimizations we have de-
scribed. In this section, we present the results for the SQL-
Ledger system. SQL-Ledger is a web-based double-entry
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accounting system implemented in Perl [9]. Business logic
executes in a web server, communicating with a DBMS via
TCP/IP.

We tested the system with a synthetic instance represent-
ing the data needed by a medium-sized company. This syn-
thetic instance easily fits completely in memory. We gen-
erated an artificial workload based on a mix of 5 of SQL-
Ledger’s accounts receivable activities, a subset of the sys-
tem functionality. These user activities contain between 2
and 20 steps, with each step involving an HTML form being
submitted to the web server where it is parsed, interpreted,
and used to generate a reply. For each step, the business
logic in the web server may initiate one or more DBMS
transactions. These transactions submit between 1 and 68
OPEN query requests, with median 2 and mean 5.5.

We generated two traces using the workload mix. One
(39,909 requests) was used for training; the other (38,525
requests) was used for evaluation both with and without the
selected optimizations. Approximately 60% of the queries
in our traces were nested within open cursors, with the re-
maining 40% being top-level queries. Since nested queries
are not considered for the batch optimizations described in
this paper, we focused on the top-level queries and ignored
the nested ones.

We first trained Scalpel using the training trace, and mea-
sured the training overhead for the systems that we consid-
ered. Training overhead ranged as high as 2ms per query,
with an average increase of 35% per query. Most of this in-
crease comes from client processing costs related to track-
ing correlations, maintaining the suffix trie, and optimizing
the resulting trie. Server costs did increase slightly, but it
appears that training does not greatly affect other connected
clients. This allows us to train Scalpel while other users are
using a production server.

Because of limitations of the underlying DBMS used by
SQL-Ledger, we restricted Scalpel to consider prefetching
only single-row queries.5 From the training trace, Scalpel
constructed a trie with approximately 23,000 nodes (con-
texts). Pruning of redundant nodes reduced this to 27
contexts, 7 of which had associated single-row prefetches.
After training, we ran Scalpel using the evaluation trace.
Of the 15,981 top-level requests in that trace, Scalpel
prefetched the results for 1,416 queries; of these, 124 were
not needed, representing wasted work. The other 1,292 rep-
resent 8% of the top-level requests. Top level queries ac-
counted for 63.8s of execution time without optimization.
Scalpel’s prefetching reduced this by 11.3s, a reduction of
18% of the cost available for optimization in this setup.

If we allow Scalpel to consider prefetching multi-
row queries, it identifies 21 contexts with recommended

5Scalpel itself is capable of prefetching multi-row queries, but this spe-
cific DBMS requires casts for the NULL values used in the outer union
(unlike the other 2 DBMSs we tested).

prefetch lists, in addition to the 7 contexts reported above.
We would expect a commensurate reduction in cost had
Scalpel been able to exploit these additional opportunities.

In addition to SQL-Ledger, we surveyed a small set of
other systems: dbunload, a database schema extractor;
TM, a Java-based time management GUI; and, Compière,
a Java-based ERP system. We also examined a number
of traces generated by proprietary applications. We found
batches of sequential queries are submitted by each of these
systems. Further, many of the requests issued by these ap-
plications are very cheap (relative to the per-request over-
head). For these sequences, Scalpel can improve total exe-
cution time by combining requests.

7. Related Work

The idea of prefetching the results of anticipated future
requests has been well studied in a number of areas. Many
operating systems and DBMSs use predictions of simple
patterns such as sequential access to prefetch results that
may be needed in the future.

While simple patterns such as sequential access are use-
ful, there are many workloads that have predictable access
patterns that can not be simply characterized using heuris-
tics such as sequential access. Palmer and Zdonik [7] de-
scribed Fido, a predictive cache that uses an associative
memory to learn to recognize patterns and predicts accesses.
Krishnan, Vitter and Curewitz extended this idea using tech-
niques from data compression [5, 6]. By using a variant
of the Lempel-Ziv compression algorithm, they were able
to provide a prefetcher that converges in the limit to the
best possible prefetcher; they also used a prefetcher based
on PPM; in practice, that algorithm provided faster conver-
gence. PPM compression is based on suffix tries. Ukko-
nen described a method for building path-compressed suffix
tries on-line in linear space and time [10]. Bunton demon-
strated how path compressed suffix tries can be used to pre-
dict the probability of future characters in the PPM* algo-
rithm [4].

The above techniques treat each request as an opaque
block. Bernstein, Pal and Shutt suggested that the context of
a fetch be considered to make prefetching decisions [1]. For
example, if a list of objects is fetched to the client and then
attributes of the first list elements are accessed, it may make
sense to prefetch the same attributes for further elements of
the list. In previous work, we used similar semantic ob-
servations to prefetch results for queries submitted within a
loop over query results [3].

Once a sequence of predicted requests has been found,
they can be combined by a DBMS optimizer to exploit com-
mon expressions [8]. Further, Yao and An [11] and Bilgin,
Chirkova, Salo, and Singh [2] considered ways to combine
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queries for the purposes of reducing latency if the probabil-
ity of future sequences of requests is known.

In contrast to other work, our work considers prefetching
parameterized requests. We learn the correlations between
values observed earlier in the request trace, and use these to
form combined queries for prefetching.

8. Conclusions

We have presented Scalpel, a system for optimiz-
ing streams of requests from database client applications.
Scalpel learns to predict occurrences of optimizable se-
quences of correlated requests by monitoring a request
stream during a training period. It optimizes a predicted re-
quest sequence by combining the individual requests in the
sequence into a single larger query which it can issue when
it predicts that the sequence will occur. The ideal way to
execute a particular sequence of requests depends on run-
time factors, such as the communication latency between
the client and the server. Furthermore, optimizations may
depend on the selectivities of application predicates, which
may depend on input parameter values and on the database
itself. Our experiments illustrate some of the advantages
of optimizing the client request stream at run-time, as per-
formed by Scalpel.
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