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Abstract

Brownian motion is considered to be of fundamental importance for theoretical and applied scientific

research. This report describes an interactive computer graphics system for the three-dimensional visu-

alization of this phenomenon. The system’s simulations are based on the formulas provided in Einstein’s

seminal paper on this topic, which are carefully revisited to introduce the phenomenon’s underlying

physics. Its predictive capability, which is a key attribute for educational and scientific applications,

is demonstrated by the qualitative agreement between simulation results and actual Brownian motion

observations.

1 Introduction

Brownian motion, the barely observable but undiminishing movements exhibited by tiny particles suspended
in a fluid, is arguably one of the most important scientific phenomena investigated in the last century [21].
As simple as it may seem, the explanation of this motion had a strong impact on the scientific community
by supplying concrete physical evidence for the discontinuous nature of matter [21]. Today, Brownian
motion continues to trigger ground breaking research in numerous fields from biology to nanotechnology.
For example, recent developments involving Brownian motion are providing new insights into fundamental
diffusive processes [21].

Since this phenomenon is barely visible to the naked eye, visualizations are often used to assist in the
study of its underlying physics. Under most classroom settings, only a top down two-dimensional view of
this phenomenon can be seen, however. Furthermore, demonstrations using simple objects (props), such as
moving marbles in a tray, do not communicate an accurate physical scale, but only an abstract concept.
Therefore, we believe that educational applications aimed at the understanding of Brownian motion can
benefit from being able to use interactive three-dimensional systems for its visualization.

Scientific applications can also take advantage of employing such systems. For example, physically-based
visualizations can facilitate the observation of subtle geometric patterns which are usually disguised by their
complex mathematical representations. The investigation of new theories involving this phenomenon can
also be supported by such systems.
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This report presents different aspects involved in a three-dimensional physically based visualization of
Brownian motion. Initially, it presents an overview of the history and importance of the Brownian motion
theory, which is carefully examined. The report then addresses simulation issues and describes a novel
system, henceforth referred to as BSim, used to simulate and visualize Brownian motion. It closes with a
discussion of predictability issues and possible applications.

2 The Phenomenon

2.1 History

Brownian motion was first observed in particles of pollen suspended in water. It remained unexplained and
brushed aside as perhaps interesting but unimportant. It appeared to be just a biological phenomenon that
had no practical value. When it became apparent that this phenomenon is inorganic, electric and magnetic
causes were also suggested [25].

Despite being such an important physical phenomenon, it is actually named after Robert Brown, a well
known botanist. Brown is credited, not with discovering Brownian motion, but with realizing that Brownian
motion is inorganic. In 1827, he noted that the same “random walk”1 performed by pollen was also performed
by other inorganic particles [21]. A real example of this phenomenon is shown in Figure 1.

Figure 1: Sequence of microscope images of Brownian motion performed by 1.9 micrometer diameter
polystyrene particles suspended in water. The middle particle shows the most noticeable movement through-
out these frames. Courtesy of Eric R. Weeks [35].

During the later half of the 19th century, there was an animated rivalry between two parties in the
scientific community [21]. This rivalry was caused by paradoxes between the laws of thermodynamics and
the kinetic theory (or statistical mechanics). Kinetic theory builds upon the idea that a gas is made up of
particles that obey simple laws of Newtonian physics [1]. This states that the motion of the particles can
be reversed. However, the second law of thermodynamics states entropy2 is never decreasing [2]. Therefore,
if a gas is really a large collection of particles that obey simple reversible physics, then where does the
irreversibility state of entropy come into play?

Shortly after the turn of the century, five papers were published that sent ripples throughout the scientific
community [8]. They were neither difficult nor complex, but they approached problems in ways that others
neglected. These papers spanned three subject matters: relativity, the photoelectric effect and Brownian
motion. These were wondrous papers written by, a then unknown patent clerk, named Einstein.

At that time, there were two established theories about particles in liquids: the hydrodynamic theory3

and the osmotic theory4. Einstein united these two theories. He showed the distance travelled by a particle

1A mathematical concept characterized by a sequence of steps where the direction of each step is determined by a random
distribution [14].

2Entropy can be considered as “order,” i.e., the amount of order/chaos is in a system. As an example, an ice cube has
smaller entropy (more order) than a volume of water vapour of equal mass [2].

3This theory assumes a liquid is a continuous medium which sticks to a solid surface moving through it with not too high a
speed [6].

4This theory assumes the particle itself a molecule mixed in with a molecular liquid [6].
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was proportional to the square root of time. This would explain why scientists could not get satisfactory
results from measuring the speed of the particles, i.e., distances directly proportional to time.

The theoretical foundations were laid down. However, this paper still did not convince everyone. A
French physical chemist, Jean Perrin, took the next step and conducted rigorous experiments [26]. He
concluded with empirical results, illustrated in Figure 2, that demonstrated the theoretical predictions of
Einstein’s paper matched the natural phenomenon, and removed any doubts about Einstein’s theory of
Brownian motion.

Figure 2: Sketches by Perrin depicting three Brownian motion paths performed by granules of mastic recorded
at 30 second intervals. The circles represent the recorded positions of the particles. These figures are redrawn
from Nye [26].

2.2 Importance

During the later half of the 19th century, chemists, physicists, and scientists in general were divided into
two parties with respect to their belief of what matter really is [21]. One side believed that matter is
continuous. They believed the kinetic theory is a convenient tool that can model, but it is not a true physical
representation of matter. This was in direct opposition to those who believed matter to be discontinuous,
to be made up of many tiny particles.

The immediate result from Brownian motion demonstrated the statistical and discontinuous nature of
matter, and unified physicists and chemists under one banner: atoms are real. This little puzzle of a
phenomenon, which started out as an anomaly in the microscopes of botanists, revolutionized modern day
chemistry and physics and extended to uses in even the stock market [27], population genetics [15] and
decision making [30].

2.3 Theory of Brownian Motion

This theory was first presented by Einstein in 1905 [11, 13]. Brownian motion performed by a particle of
sand suspended in water occurs because of the tiny movements exhibited by neighbouring water molecules.
Consider a ball on a playing field pushed by a great number of people. If this ball is large enough, observing
this from a distance would be no different than watching the particle of sand. The people, like the water
molecules, cannot be seen because they are too small from this distance, but the motion of the ball is not
unlike Brownian motion [16]. The question lies in calculating the displacement: how far does the ball move
after a certain period of time?

Einstein combined two theories dealing with particles in liquids: the hydrodynamic theory and the osmotic
theory. Since the system is in equilibrium, the osmotic force that pushes particles from high-concentration
areas should always balance out with the viscous force that retards this movement.

In the remainder of this section, we revisit Einsetin’s original arguments and formulas to provide a clear
basis for our Brownian motion simulations. Table 1 summarizes the physical parameters used throughout
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Symbol Definition
D coefficient of diffusion
E enthalpy
f number of particles as a function of position and time
K osmotic force
k viscosity of the fluid
N Avogardo’s number
n total number of particles
n∗ number of particles in V ∗

p osmotic pressure
R universal gas constant
r radius of a particle
S entropy
T absolute temperature
t a moment in time
V total volume
V ∗ partition of total volume
v velocity of a particle
x a position
∆ position used for particles’ displacement
δp change in pressure
λ total root-mean-square displacement of a particle
λx root-mean-square displacement of a particle in x-axis
λy root-mean-square displacement of a particle in y-axis
λz root-mean-square displacement of a particle in z-axis
ν concentration
τ time interval passed for displacement to occur
φ weight function

Table 1: Table of symbols used throughout this document.

this document.

2.3.1 Osmotic Force

From the osmotic theory, the osmotic pressure, p, within a partition, V ∗, of the total volume, V , is obtained
from the ideal gas law [1]:

p =
RT

V ∗

n∗

N
=

RT

N
ν, (1)

where R is the universal gas constant, T is the absolute temperature, n∗ is number of particles in this
partition, N is Avogadro’s number and ν = n∗

V ∗
is concentration. Using the hydrostatic equation or the

second law of thermodynamics (see Appendix), a relationship between the osmotic force, K, and pressure
can be obtained:

Kν =
δp

δx
. (2)

The right side of Equation 2 is the definition of pressure gradient, i.e., the change in pressure, δp, over a
distance, δx. Using Equation 1 to replace p in Equation 2 results in:

Kν =
δ
(

RT
N

ν
)

δx
. (3)
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Since R, T , and N are constant within the system, ν is the only value that will change within partitions of
the fluid due to the movement of the particles. Therefore, Equation 3 can be rewritten as:

Kν =
RT

N

δν

δx

K =
RT

Nν

δν

δx
, (4)

which will be used in the next section.

2.3.2 Osmosis and Viscosity

Assuming the particles are spheres, Stokes’s formula5 can be used to find a relationship between the velocity,
v, of a particle and viscosity, k, of the fluid:

v =
K

6πkr
, (5)

where r is radius of the particle. The number of particles passing through unit area per unit of time due to
K is then given by:

vν =
Kν

6πkr
. (6)

Now, let D be the coefficient of diffusion6. The number of particles that will pass through the unit area due
to diffusion [4] is then given by D δν

δz
. Since the system is under a dynamic equilibrium, the movement due

to K must balance out with movement due to diffusion:

Kν

6πkr
= D

δν

δz
. (7)

Equation 4 can be used to replace K in Equation 7 to obtain an expression for D:

ν

6πkr

(

RT

Nν

δν

δz

)

= D
δν

δz

D =
RT

6πkNr
. (8)

2.3.3 Displacement

For simplicity, all motion is assumed to be in one dimension along the x-axis. To actually determine how
far a particle moves, let the total number of particles be n. The number of particles that are displaced a
distance between ∆ and ∆ + d∆ in time interval τ is given by:

dn = n φ(∆)d∆ (9)

where weight function φ(∆) is defined by:

∫ +∞

−∞

φ(∆)d∆ = 1. (10)

To clarify, φ(∆)d∆ can be viewed as the percentage of particles that experience a displacement between ∆
and ∆+d∆. As such, dn is a portion of the total number of particles. Also, since a particle has no preference
in moving left or right, φ(∆) has a the following property:

φ(∆) = φ(−∆). (11)

5An empirical formula describing the friction experienced by a sphere in a fluid [3].
6A proportionality constant that depends on the substance [3].
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Let the number of particles per unit volume at position x and time t be f(x, t). The number of particles at
time t + τ between x and x + dx is then given by:

f(x, t + τ)dx = dx

∫ +∞

−∞

f(x + ∆, t)φ(∆)d∆. (12)

The idea is the number of particles at position x at time t + τ is the number of particles at position x + ∆
that will displace a distance of ∆ after τ time. Taylor series7 can be used to expand f(x + ∆, t):

f(x + ∆, t) = f(x, t) + ∆
δf(x, t)

δx

+
∆2

2

δ2f(x, t)

δx2
+ . . . (13)

Since τ is small, the difference between f(x, t) and f(x, t + τ) is the rate of change of concentration, δf
δt

,
multiplied by the time interval τ . This is represented as:

f(x, t + τ) = f(x, t) + τ
δf

δt
. (14)

Combining Equations 12, 13 and 148 results in:

f(x, t) + τ
δf

δt
= f

∫ +∞

−∞

φ(∆)d∆

+
δf

δx

∫ +∞

−∞

∆φ(∆)d∆

+
δ2f

δx2

∫ +∞

−∞

∆2

2
φ(∆)d∆ + . . . (15)

Taking into account Equation 11, every second term on the right hand side of Equation 15 disappears. We
also remark that each remaining term on the right after the third term is very small compared with the
previous term. Hence, substituting Equation 10 into Equation 15 gives:

f + τ
δf

δt
= f +

δ2f

δx2

∫ +∞

−∞

∆2

2
φ(∆)d∆

δf

δt
=

(

1

τ

∫ +∞

−∞

∆2

2
φ(∆)d∆

)

δ2f

δx2
. (16)

Alternatively, Equation 16 can be written as Fick’s second law [4]:

δf

δt
= D

δ2f

δx2
, (17)

which is the well known differential equation for diffusion9 [13]. The solution of Equation 17 is given by [13]:

f(x, t) =
n

√
4πD

e−
x
2

4Dt

√
t

, (18)

7f(x)
.
=

n
∑

k=0

f(k)(x0)

k!
(x − x0)

k[7]

8There is a typo in [13] in the Taylor expansion of f(x, t) + τ
δf
δt

.
9Note that there are now two expressions for D: Equation 8 and D = 1

τ

∫ +∞

−∞

∆2

2
φ(∆)d∆.
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and n can be represented as [13]:

n =

∫ +∞

−∞

f(x, t)dx, (19)

which states the total number of particles is the sum of all concentrations over the entire volume. The
root-mean-square displacement10 of a particle in the x-axis, λx, can be calculated as [22]:

λx =

√

√

√

√

∫ +∞

−∞
f(x, t)x2dx

∫ +∞

−∞
f(x, t)dx

. (20)

Equations 18 and 19 can be used to replace the numerator and denominator in Equation 20 respectively to
obtain:

λx =

√

√

√

√

1

n

∫ +∞

−∞

(

n
√

4πD

e−
x2

4Dt

√
t

)

x2dx

=

√

1
√

4πDt

∫ +∞

−∞

e−
x2

4Dt x2dx

=

√

1
√

4πDt

4Dt
√

π
1√
Dt

=
√

2Dt. (21)

Finally, replacing D in Equation 21 using Equation 8 results in:

λx =
√

t

√

RT

N

1

3πkr
, (22)

which is arguably the most quoted outcome of Einstein’s first paper on Brownian motion [11, 13].
This one-dimensional result can be extended to three dimensions. The root-mean-square displacement in

the y-axis and z-axis, λy and λzrespectively, are the same as that of the x-axis. Thus, the total root-mean-
square displacement, λ, is given by:

λ =
√

λ2
x + λ2

y + λ2
z

=
√

3λ2
x

=
√

t

√

RT

N

1

πkr
. (23)

3 Previous Related Work

Visualizations play an important role in the current scientific community because of its ability to unveil the
“invisible.” For simple concepts, physical props can be used for illustrative purposes. For instance, stick
and ball models can provide a good image of the structure of a small chemical compound. However, when
complexity increases, computer graphics becomes an invaluable tool for fulfilling this roll. Furthermore,
because of the numerous programming options available, there are many avenues for creating computer
graphics visualizations. As an example, Physlets [9] uses Java Applets [18] for the education of physics
concepts including Brownian motion.

10The root-mean-square is useful when considering the magnitude of a set of oscillating numbers, where the arithmetic mean
is zero [22].
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Visualization of Brownian motion can be categorized into two types. The first type uses a Newtonian
physics model that has smaller fluid particles that bombard and move the larger particle. The second type
uses a stochastic method to directly move the solid particles. The Brownian motion simulator within Physlets
[9] has an example of the first approach. As an example for the second case, Lipman has created three-
dimensional random walk visualizations involving particles colliding with molecular aggregates [24], although
the implementation details are not readily disclosed. Han et al. [20] also used two dimensional numerical
simulations to aid in their investigation of Brownian motion of ellipsoids. This report will concentrate on
the latter type of simulations.

To the best of our knowledge, most of the publically available Brownian motion visualizations systems
perform only two-dimensional simulation of the phenomenon.

4 Simulation Issues

In this section, practical aspects of our Brownian motion simulator are discussed. The movement of the
particles (represented by spheres) and relevant physical parameters are all based upon Einstein’s formulation
presented in Section 2.3.

4.1 Scale Selection

The selection of appropriate time and space scales is key to obtaining observable simulation results. If a true
physical representation is desired, then the core units to be used in the simulation should be small enough
to be observed. To illustrate, an object of five meter radius suspended in water at room temperature is not
going to exhibit any noticeable Brownian motion in real time. A suitable scale would be to use micrometers
in real time. Objects with radius smaller than five micrometers in diameter will demonstrate the phenomena
reasonably well.

As an example, assume a room temperature of 20◦C and a particle having 5 micrometer radius suspended
in water (viscosity of 1.002 cP). After 1 second,

λ =
√

t

√

RT

N

1

πkr

.
=

√
1

√

8.3144 · (273 + 20)

6.022 · 1023

1

π 1.002
1000

5

1000000

.
= 0.51 × 10−6. (24)

This is equivalent to 0.51 micrometers. Although tiny compared to the particle, it is still noticeable compared
to the scale of the simulator. This phenomenon will be even more prevalent if the radius of the particle is
reduced further.

4.2 Moving Spheres

4.2.1 Choosing a Direction

Since the system is in a pure equilibrium, each particle has equal opportunity to moving in every direction.
In three dimensions, there are two degrees of freedom: an azimuthal on the x-y plane and a polar angle with
respect to the plane. These angles are labeled as α and β respectively in Figure 3.

To generate these two angles, uniformly generate two variables, u and v, between 0 and 1. Then define
the angles as:

α = 2πu

β = arccos(1 − 2v).
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β

α

Figure 3: Angles α and β indicate the two degrees of freedom in three dimensions.

4.2.2 Calculating Collision Points

There are two approaches to detect collisions: continuous and discrete [29], which are briefly described
below11.

If objects have a predetermined path to travel on, the exact moment in time when the two objects collide
can be calculated. For example, if two spheres following gravity controlled parabolic trajectories are about
to collide, the point of intersection can be precisely determined. The trajectories can then be updated and
the process repeated. When drawing a frame, the trajectories can be used to calculate the position of the
spheres at that moment. This approach is known as continuous.

The discrete approach to detect collisions consists in moving the objects (spheres) at every frame, and
determine if the spheres collide at that frame. This is less accurate than the continuous approach. Using the
previous example, the spheres may not collide at frame i, but may actually clip at i + 1. This is a serious
violation of the laws of physics. Furthermore, if the speeds of the objects are high enough, the objects may
not be detected as colliding at all, and pass right through each other, i.e., the collision is supposed to occur
between frames i and i + 1 but the granularity of the frame rate is not fine enough to detect the collision.
However, this method is easier to implement in general.

In the described case of simulating Brownian motion, discrete approach can be used, since there is no
predetermined path of the particles, and the speeds are relatively slow, i.e., no advantage would be gained
by using the first method.

5 BSim

The proposed simulator is implemented in C++ [32] using gtkmm [10] and OpenGL [31]. It was originally
designed as a simple Newtonian physics simulator of spheres in an enclosed box. All the spheres were assumed
to have identical dimensions. It was a simple matter of modifying the physics engine from moving spheres
by Newtonian physics to moving the particles using Brownian motion.

5.1 Algorithms

All activity is enclosed by a box and all particles are spheres that share the same physical parameters.
A frame is drawn every 20 milliseconds, or 50 frames are drawn per second. At each frame, the state of
the system is updated, and a visual representation of the state is drawn to display. There are two main
algorithms involved: collision detection and particle movement.

11These two approaches are also referred to as a priori and a posteriori respectively.
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5.1.1 Collision Detection

Using the idea mentioned in Section 4.2.2, each particle has its position checked with every other particle at
each frame. Since every particle is a sphere, it is easy to test intersections by checking the distance between
their centers.

If two particles are clipping, then the two particles are moved away from each other for half of the
intersecting distance. For example, let’s assume two particles of radius 1.0. If the distance between two
particles’ centers is 1.0, then, without loss of generality, we move the left particle 0.5 to the left, and the
other, 0.5 to the right. This process is shown in Figure 4. A similar process is done with respect to collisions
with the walls. However, if a collision occurs, the particle is translated the full distance, and the wall does
not move. This inaccuracy is negligible since all movement is stochastic and not pre-determined in any way.

1.0

0.50.5

Figure 4: Sketch illustrating the adjustments of clipping spheres. The spheres have a radius of 1.0. The
dotted circles represent the unadjusted positions where the centers are 1.0 units apart. The spheres are each
moved 0.5 units away from the other sphere to the position of the solid circle, removing the clipping.

5.1.2 Particle Movement

To choose a direction for moving a particle, two random values between 0 and 2π are chosen, one for the
azimuthal angle and one for the polar angle, as stated in Section 4.2.

Equation 23 is employed to determine the distance a particle moves. Three physical parameters control
the distance a particle moves: the temperature of the system, the viscosity of the fluid, and the radius of
the particle. A fourth parameter, the time interval, is set by the frame rate of the graphics system. In
this case, the time interval is 20 milliseconds. However, strictly using Equation 23 as displacement is not
explicitly accurate since a particle will not always move the distance determined by that expression. As
such, the root-mean-square is used as the mean and standard deviation of the Gaussian distribution of the
displacement. Gaussian random numbers are generated using the Box-Muller transformation [28].

Since the movement of one particle does not affect the movement of another, the process described above
is applied to each particle at every frame.

5.2 User Interface

Figures 5(a) and 5(b) show screenshots of the running program. The current mouse interaction mode is
shown at the top and the physical properties shown at the bottom of each screen. The white edges of
the bounding volume can be seen behind the spheres, and the jagged path near each sphere is the paths
traced by each particle in the last three seconds. These paths are much more obvious in Figure 5(a) than in
Figure 5(b). This contrasts the different magnitude of displacement due to the difference in particle radius,
illustrating the point mentioned in Section 4.1.

Mouse interaction has two main modes: bounding volume (box) adjustments and camera movements.
For the box, this includes scaling the edges, rotating, and translating. For the camera, there are only rotation
and translation.

When Set Properties is clicked at the bottom right, the input window shown in Figure 6 is displayed.
After the properties are set, the simulation continues with these new parameters without resetting.
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(a)

(b)

Figure 5: Screenshots of the running program. (a) Particles with 0.5 micrometer radius. (b) Particles with
5.0 micrometer radius. Jagged lines near each sphere are the paths of the Brownian motion traversed by
particles represented by the spheres. Due to the massive size of the particles in Figure 5(b) the jagged lines
are reduced to tiny blobs.
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Figure 6: Input dialogue.

Figure 7 shows a sequence of screenshots from BSim depicting the development of Brownian motion
paths traced by particles in real-time.

(a) (b)

(c) (d)

Figure 7: This sequence of screenshots from BSim show the development of Brownian motion paths (from
7(a) to 7(d)).

5.3 Stereo Capability

The system has the ability to generate simple stereo visualizations using red-blue anaglyphs [33]. It uses the
accumulation buffer to overlap two slightly different images. Each image presents a slightly different view
of the scene for each eye and red-blue anaglyph glasses are required to filter the scene so each eye only sees
one image. A screenshot of BSim with the anaglyph option on is shown in Figure 8.
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Figure 8: Screenshot of BSim with anaglyph enabled.

5.4 Further Improvements

Collision detection can be made more efficient. Currently, every sphere is checked against every other sphere
using a naive algorithm, resulting in O(n2) cost. Collision detection for n objects remains an active area
for research [34]. For example, Kim et al. [23] have outlined a faster method of detecting collisions. This
was not implemented since the initial purpose of the system did not anticipate the need for more than 50
objects.

Using the same underlying physics, the framework can be reworked to a more intensive simulation in-
volving more particles but at the expense of interactivity. Instead of using OpenGL, the framework can be
adjusted to use ray casting to create movies of Brownian motion. Currently, depending on the hardware, this
simulator can support a few hundred spheres at a time. However, if interactivity is sacrificed, this can turn
into a ray casting simulation of thousands or millions of particles that may be applied to other phenomena,
e.g., diffusion of dye within a fluid, smoke simulations and even the visualization of plasma manifestations
[5].

6 Predictability

For a visual simulation of a physical phenomenon to be considered predictable, it needs to be controlled by
physically meaningful parameters, take into account the underlying physical processes and be able to provide
scientifically sound results [19]. The last aspect should be verified through quantitative and qualitative
comparisons with actual observations of the phenomenon. In the case of BSim, the stochastic nature of
Brownian does not favor quantitative comparisons between simulated results and actual observations of
the phenomenon. Nevertheless, it is possible to perform qualitative comparisons with experimental data
provided in the literature. Figure 9 shows three plots of data generated by BSim. These results show a good
qualitative agreement with Perrin’s original sketches of Brownian motion paths performed by granules of
mastic shown in Figure 2.
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Figure 9: Plot of x and y coordinates of three Brownian motion paths generated by BSim. The circles
represent the positions of the modeled particles.

7 Concluding Remarks

This report has revisited Einstein’s theory of Brownian motion, and presented a simulator that uses the
physics derived from this seminal work. The physics described here can be used as a basis for other visual-
ization platforms that share this common physical core. The proposed simulator, BSim, gives an accurate
scale of the actual phenomenon, and it allows the observation of how different parameters affect the mag-
nitude of Brownian motion. As such, we believe that BSim can be a useful too in educational applications
and investigations of particle based processes such as visual manifestations of plasma phenomena.

Future developments for BSim can include parallelism and rotation of particles. The independence of
each particle allows each step of the random walk to be simultaneously calculated using multiple processing
units. This increase in computing power will allow us to employ a larger number of particles, as well as
introduce other details of the phenomenon. Currently, the system only simulates the displacement of the
particles. Einstein’s second paper on this topic [12] introduces particle rotation which would be a natural
extension of this project in the future.
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Appendix

Osmotic Pressure and Force

There are two ways to derive the relationship between osmotic pressure and force. Einstein used the second
law of thermal dynamics [11], while Fürth suggested to directly use the equation that relates force to pressure
[13]. The two different approaches are outlined below.

1. Using the second law of thermal dynamics, the change of free energy of an isothermal system can be
written as:

δF = δE − TδS = 0, (25)

where δE is the change in enthalpy, T is the temperature and δS is the change in entropy. This
equation is also known as Gibbs Free Energy.

Now,

δE = −

∫ 1

0

Kνδxdx (26)

and

δS =

∫ 1

0

R
ν

N

∂δx

∂x
dx

= −

∫ 1

0

R

N

∂ν

∂x
δxdx. (27)

Then, substituting Equations 26 and 27 into Equation 25 yields:

−

∫ 1

0

Kνδxdx − T

(

−

∫ 1

0

R

N

∂ν

∂x
δxdx

)

= 0

∫ 1

0

(

−Kν +
RT

N

∂ν

∂x

)

δxdx = 0. (28)

Thus,

Kν =
RT

N

∂ν

∂x
=

∂p

∂x
. (29)
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2. The second approach is to use the hydrostatic equation [17]:

∂p = −gρ∂h, (30)

where ∂p is the change in pressure, −g is the acceleration due to gravity, ρ is the density in kg
m3 and

∂h is the change in height. This equation is frequently used in meteorology to explain the pressure
differences in the atmosphere. This equation can be modified so that gravity times density, −gρ, is
replaced by force times concentration, Kν, and instead of change in height, ∂h, change in distance,
∂x, is used:

∂p = Kν∂x

∂p

∂x
= Kν. (31)

For more details about these two approaches, the reader is directed to Brush [6], Einstein’s paper [11] and
the notes in the translation of Einstein’s paper [13].
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