
Unaligned Binary Codes for Index Compression
in Schema-Independent Text Retrieval Systems

Stefan Büttcher Charles L. A. Clarke
School of Computer Science

University of Waterloo, Canada

{sbuettch,claclark}@plg.uwaterloo.ca

ABSTRACT
We examine index compression techniques for schema-
independent inverted files used in text retrieval systems.
Schema-independent inverted files contain full positional
information for all index terms and allow the structural
unit of retrieval to be specified dynamically at query time,
rather than statically during index construction. Schema-
independent indices have different characteristics than
document-oriented indices, and this difference can affect the
effectiveness of index compression algorithms greatly.

Our experimental results show that unaligned binary
codes that take into account the special properties of
schema-independent indices achieve better compression
rates than methods designed for compressing document
indices and that they can reduce the size of the index by
around 15% compared to byte-aligned index compression.
Moreover, we present a number of performance-enhancing
techniques that may be used to very efficiently decode
unaligned codes. Thus, their more compact index represen-
tation does not carry the cost of a substantially decreased
query processing performance. This contradicts most earlier
results on the decoding performance of unaligned codes.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing meth-
ods; E.4 [Coding and Information Theory]: Data com-
paction and compression

General Terms
Experimentation, Performance

Keywords
Schema-Independent, Index Compression

1. INTRODUCTION
Text retrieval systems are usually based on inverted files.
For every term that appears in a given text collection, an
inverted file for that collection contains a list of all occur-
rences of the term in the collection. These posting lists can
be thought of as sequences of integers, representing the posi-
tions of all such occurrences in the text. At query time, the
inverted lists of all query terms are loaded from the index
to produce the results to a given search query.

University of Waterloo technical report CS-2006-40.
Copyright is held by the authors.

For a large text collection, the size of the corresponding
inverted file can be quite substantial, and it seems appropri-
ate to apply index compression methods to decrease the size
of the index. As a by-product, this size reduction can also
lead to a faster search engine, as it decreases the amount of
data that has to be read from disk during query processing.

Various index compression algorithms exist that can be
used to cut down the size of the index and the search en-
gine’s disk activity during query processing. However, some
of these methods involve rather complicated computations
during decompression. Care has to be taken that the com-
putational overhead associated with decompressing posting
lists does not outweigh the savings achieved by reducing the
size of the index. This is especially important for codes that
are not byte- or word-aligned, as they can be very expensive
to decode, due to bit-by-bit decoding operations.

This paper makes two main contributions. First, we eval-
uate index compression methods for schema-independent in-
verted indices [5] — purely positional indices, recording the
position of each term from the beginning of the collection. In
schema-independent retrieval, no pre-determined definition
of “document” is required during indexing. Instead, the unit
of retrieval is defined at query time, on a query-by-query ba-
sis. We have found schema-independent retrieval to be an
essential part of extensible filesystem search. For example,
email might be retrieved by restricting the search to mail
folders and treating the individual messages as the units of
retrieval. Similarly, filesystem security restrictions can be
efficiently implemented by queries over the same schema-
independent index, with files as the units of retrieval [3].
A schema-independent index also supports general retrieval
from XML [4] where potential units of retrieval (paragraphs,
sections, subsections) may overlap. We show that a schema-
independent representation imposes a bimodal distribution
on the gaps in the posting lists of most terms in the index,
which is different from the d-gap distribution in document-
level indices. We propose a novel compression technique
that takes this bimodal distribution into account.

As our second contribution, we present performance-
enhancing techniques for unaligned binary codes and com-
pare their overall effect on the search engine’s query pro-
cessing performance. Our experimental results show that
unaligned codes can provide a performance level that is
equivalent to that of byte-aligned compression methods.
This finding contradicts previous research, which suggests
that aligned codes are preferable if high decoding perfor-
mance is important. The algorithmic techniques we used to
achieve this result have application to both schema indepen-

dent indices and traditional document-oriented frequency
indices.

2. INVERTED FILES
An inverted file realizes a mapping from terms to their post-
ing lists (or inverted lists). A posting list is a list of all oc-
currences of a given term within a text collection. Within
the limits of this general definition, two extremes exist:

• A frequency index is an inverted file that does not
contain exact word positions. Postings in a frequency
index are of the form (docID, freq), where docID is an
integer describing a document in the text collection,
and freq is the frequency (number of occurrences) of
a given term within that document. If postings are
stored in compressed forms, it is advisable to treat the
docID part and the freq part independently [15].

• A schema-independent positional index is an
inverted file containing exact positional information
(word positions) for all terms in the index. Each
posting in such an index is a simple integer describing
the distance of the term occurrence from the beginning
of the text collection.

Other index representations, combinations of positional
and frequency indices, that store positional information by
adding a list of occurrences to each (docID,freq) pair in a
frequency index, are described in the literature [11] [15].

In our framework, each posting list stored in an inverted
file is divided into list segments, containing approximately
215 postings each. If compression techniques are applied
to the index, every list segment is compressed separately,
making it easier to skip segments and also to react to local
changes in the distribution of a given term. In addition,
an inverted file contains some auxiliary data structures that
can be used to efficiently locate the posting list for a given
term within the file and to associate schema-independent
postings with their respective retrieval units during query
processing. We do not further discuss these data structures.

3. COMPRESSING INVERTED FILES
There is an abundance of different index compression meth-
ods in the literature. Here, we limit ourselves to a few key
algorithms that provide insight into the general problem.

Most index compression methods only deal with the com-
pression of posting lists, while leaving all other data in the
index, such as the index terms themselves, untouched. This
is because the vast majority (> 90%) of all data in an in-
verted file is postings data. Existing methods for compress-
ing posting lists usually work by transforming a given post-
ing list to a list of d-gaps – differences between consecutive
postings. For example, in a schema-independent represen-
tation the list of all occurrences of the word “the” in the
TREC GOV2 text collection is:

96, 112, 122, 410, 423, 426, 440, 447, 571, 1077, . . .

The corresponding list of d-gaps is:

96, 16, 10, 288, 13, 3, 14, 7, 124, 506, . . .

Since the postings in a given list are sorted in increasing or-
der, all d-gaps are positive, and the problem of compressing
an inverted file can be thought of as a special case of the
general problem of encoding sequences of positive integers.

Unary Encoding

If the probability distribution of the d-gaps in a posting list
is of the general form

p(d = k + 1) ≤
p(d = k)

2
∀ k ≥ 1, (1)

then it is very space-efficient to encode each gap as a unary
number. A gap d = k would then be encoded as k − 1
“1” bits, followed by a single “0” bit. Unfortunately, this is
almost never the case for text in a natural language.

Elias’ γ Code

In γ coding [7], the encoded representation of a positive
integer n consists of two parts:

• λ = blog2(n) + 1c, the number of bits required to en-
code n as a binary number, in unary representation;

• n itself, encoded as a λ-bit binary number.

We will refer to λ as the selector and to n as the body of the
encoded d-gap. The γ-encoded representation of the d-gap
sequence shown above is:

1111110 1100000 11110 10000 1110 1010 . . . ,

where “1111110” is the unary representation of

blog2(96) + 1c = 7,

and the following 7 bits encode 96 as a 7-bit binary number.
This version of γ coding can be improved by using the im-

plicit information stored in the selector: If λ = k, then this
implies that n cannot be stored using k − 1 bits. Thus, the
most significant bit in the k-bit representation of n will al-
ways be 1 and therefore does not need to be stored explicitly,
saving us 1 bit per posting:

1111110 100000 11110 0000 1110 010 . . .

γ coding is based on the probability assumption that

p(|d| = k + 1) ≈
p(|d| = k)

2
, (2)

where |d| = blog2(d) + 1c, d’s length as a binary number.

Huffman Codes

By storing the selector value in unary, γ coding assumes that
most d-gaps can be represented in a relatively small number
of bits. Obviously, this is only true for high-frequency terms.
For less frequent terms, a substantial amount of space is
wasted by choosing unary representation for λ.

A solution to this problem is to not assume anything
about the d-gap distribution, but use a Huffman code in-
stead of unary to encode the selectors. Since the set of
possible λ values – the symbol set to be encoded by Huff-
man – is very small (< 64), compared to the total size of
the message (posting lists grow linearly with the size of the
collection), the overhead introduced by prepending the Huff-
man tree to the encoded postings is negligible, and Huffman
coding is a perfect candidate for compressing posting lists.
Since Huffman codes, like the unary code employed by the γ
method, are prefix-free, the resulting bit sequence can still
be decoded unambiguously.

In contrast to the parameterless γ code, Huffman codes
are parameterized and thus require the compressor to tra-
verse the inverted list twice – once to gather statistical data,
and a second time to perform the actual compression. This

makes the encoding process slightly less efficient, but has no
effect on the decoding performance.

Golomb-Rice Codes

Consider a document-level index, without any positional or
frequency information, for a document collection in which all
documents are independent of each other. If the collection
consists of N documents and a term T appears in nT of
them, then this implies the following d-gap distribution:

p(d = k + 1) =
“

1 −
nT

N

”

· p(d = k) (3)

=
“

1 −
nT

N

”k−1

·
nT

N
. (4)

In an exhilarating essay about a secret agent in a casino,
Golomb [8] proposes to encode integers sequences ai≥1 that
follow this distribution by choosing a parameter b, encoding
bai

b
c as a unary number and the remainder of the division

operation (ai mod b) as a |b|-bit binary number. The pa-
rameter b realizes a transformation to a different probability
distribution – one that is compatible with the assumption
behind unary encoding – and is usually chosen as

b ≈
nT

N
− 1. (5)

When b is a power of 2, Golomb codes are also referred to
as Golomb-Rice codes, or simply Rice codes.

Interpolative Coding

Moffat and Stuiver [11] [12] present a compression method
that is not based on d-gaps, but instead uses a recursive
descent to encode a given list of postings. Like d-gap-based
techniques, it exploits the fact the postings in an inverted list
are sorted in increasing order. For a sequence of n postings
(a1, a2, . . . , an), interpolative coding assumes that a1 and
an have already been encoded (possibly using some other
method, such as γ coding) and then encodes the integer
abn/2c−a1−1 as a k-bit binary number, where k is dlog2(an−
a1 − 1)e. That is, it uses the fact that

a1 < abn/2c < an

(postings are sorted in increasing order) to find an upper
bound for the number of bits needed to represent the inte-
ger abn/2c−a1 −1 (and thus the posting abn/2c) as a binary
number with that many bits. It then continues recursively
for the subsequences (a1, . . . , abn/2c) and (abn/2c, . . . , an).
Moffat and Stuiver report that interpolative coding in prac-
tice achieves excellent compression rates for document-level
indices, especially when the documents are not independent,
but term occurrences are clustered.

Byte-Aligned Coding

The coding techniques described above all have in common
that they produce unaligned codes. Code words may con-
sume an arbitrary number of bits and cross byte boundaries,
presumably necessitating a bit-by-bit encoding and decod-
ing process. On most computer architectures, bit operations
are costly, and it is far more efficient to operate on entire
bytes (or even words) instead of individual bits.

Williams, Scholer et al. [17] [15] describe a method that
encodes/decodes sequences of d-gaps by only accessing en-
tire bytes in memory. In each byte of a code word, 7 bits
are used to store actual d-gap data, while the 8th bit, as a
continuation flag, is used to indicate whether there are more
data to follow for the current code word. We refer to this

int compressVByte(long postings[], int cnt, byte out[]) {
int result = 0;
long previous = -1;

for (int i = 0; i < cnt; i++) {
long delta = postings[i] - previous - 1;

while (delta >= 128) {
out[result++] = 128 + (delta & 127);
delta = delta >> 7;

}
out[result++] = delta;

previous = postings[i];
}
return result;

}

Figure 1: A C++ implementation of the vByte
compression algorithm. The procedure reads post-
ings from the postings array and writes their vByte-
encoded representations to out, returning the num-
ber of bytes written.

byte-aligned method as vByte. A C++ implementation of
the encoding routine is given by Figure 1.

The compression rates achieved by byte-aligned coding
usually are not competitive with those achieved by unaligned
methods, such as interpolative coding or Huffman. On the
other hand, decompression is much faster, due to the absence
of bit-wise decoding operations. This is why vByte (or one
of its variations) is the default compression method in many
search engines (e.g., Lucene, Wumpus, Zettair).

Word-Aligned Coding

Recently, Anh and Moffat [1] [2] have proposed a family of
coding schemes that combine postings into groups and en-
code each such group in a 32-bit machine word, using the
same number of bits for every posting in the group, but
allowing to change the number of bits per posting between
groups. For document-level indices, their technique achieves
compression rates better than vByte, while offering similar
decoding performance — due to the simplicity of the decod-
ing routine and the fact that all memory accesses can be
carried out in a word-aligned fashion.

4. SCHEMA-INDEPENDENT INDICES AND
BIMODAL DISTRIBUTIONS

Existing work on compression techniques for inverted files
usually focuses on document-level frequency indices without
any positional information [14] [11]. Compression methods
have also been studied for other index representations, such
as impact-ordered indices [2], which, like ordinary frequency
indices, are document-oriented and position-unaware. Even
when compression techniques for positional indices are
discussed, the underlying index representation is usually
still document-oriented; document identifiers and within-
document positional information are encoded separately,
potentially using different techniques for each component
[13] [16]. All these approaches have in common that they
are based on documents, or some sort of retrieval unit that
has to be known during index construction. Thus, if a
user wants to build an index for a text collection, before
starting the process she has to decide what the retrieval
unit is that she will be targeting with her queries. These
retrieval units are then called “documents”, but in fact
may be email messages, web pages, or book chapters. This
approach becomes more problematic in the context of XML

Term Coll. Freq. Doc. Freq. Mean TF
landfilling 125 79 1.58
rattlesnake 250 181 1.38
corsica 500 299 1.67
ymca 1,000 571 1.75
semester 2,000 1,316 1.52
divorced 4,000 3,178 1.26
absent 8,003 6,552 1.22
certified 16,004 8,526 1.88
streets 32,000 23,019 1.39
church 64,290 24,808 2.59
agreed 128,159 96,053 1.33
director 256,585 156,358 1.64
high 510,958 273,802 1.87
there 1,024,255 435,736 2.35
which 2,026,126 731,173 2.77

Table 1: Term statistics for some terms more or
less randomly selected from TREC disks 1-5. For
many terms, a single occurrence of the term within
a document is a good indicator for another occur-
rence within the same document (the mean within-
document term frequency is greater than 1).

retrieval, where retrieval units may overlap [4], and it breaks
down completely in the context of file system search, where
retrieval units may be defined dynamically depending on
the application [3].

Schema-Independent Indexing

The schema-independent approach to text indexing, as de-
scribed by Clarke et al. [6], allows a more flexible data rep-
resentation. During index construction, the search engine
processes a sequence of

(token, position)

pairs, as returned by the input tokenizer, and builds an index
without making any assumptions about the structure of the
text being indexed. At query time, arbitrary retrieval units
may be chosen on a per-query basis, such as

“〈DOC〉” · · · “〈/DOC〉”

to search for TREC-style documents,

“〈sec〉” · · · “〈/sec〉”

to search for sections (instead of entire articles) in the INEX
XML collection, or

(“〈MedlineCitation〉” · · · “〈/MedlineCitation〉”)

� ((“〈PubDate〉” · · · “〈/PubDate〉”)

� “〈Year〉1995〈/Year〉”)

to restrict the search to PubMed Medline records that were
published in 1995. A description of available operators to
impose structural constraints on the retrieval unit that is
targeted by a search operation is given by Clarke et al. [5].

Schema-independent indexing gives the user greater flex-
ibility at query time, but makes it impossible to exploit the
inherent structure of the text collection at indexing time
and for index compression purposes. This results in posting
lists that have a different distribution than the ones found in
a document-based index, which greatly affects the effective-
ness of index compression techniques. The only discussion of
encoding integers under such an index representation we are

aware of is given by Williams and Zobel [17] who mainly dis-
cuss the savings over a schema-unaware approach that can
be achieved when additional information about the structure
of the collection is available. We extend their findings and
provide a more detailed discussion of the effect of a schema-
independent index representation and its differences from
the document-based approach.

d-Gap Distribution in Document-Level Indices

As mentioned in the previous section, when discussing
Golomb codes, the assumption that all documents are
independent of each other leads to the d-gap distribution

p(d = k) =
“

1 −
nT

N

”k−1

·
nT

N
(6)

in a document-level posting list (only containing document
IDs) for a term T occurring in nT documents. For the num-
ber of bits needed to encode a gap d as a binary number,
denoted by |d|, we obtain:

p(|d| = k) =
“

1 −
nT

N

”2
k−1−1

−
“

1 −
nT

N

”2
k−1

. (7)

This distribution has its analytical maximum at

kmax = log2

„

−2 · log(2)

log(1 − nT /N)

«

(8)

and then rapidly drops towards zero, as shown in Figure 2
for four terms arbitrarily selected from the text collections
known as TREC disks 1-5. For the term “rattlesnake” in
the TREC collection, for instance, with

nT

N
=

181

1544847
= 1.172 · 10−4,

we can predict a maximum around

kmax = log2

„

−2 · log(2)

log(0.9998828)

«

≈ 13.5, (9)

which is consistent with the peak at 13 bits in Figure
2(a). Minor deviations from the theoretical distribution
are because documents in the chosen collection are not
independent of each other, but are sorted according to
publisher and date of publication, resulting in some local
inter-dependencies.

The effectiveness of Golomb codes relies on the rapid drop
after the peak, because everything on the right-hand side of
the peak involves unary codewords. If the independence as-
sumption is wrong, Golomb codes will not yield good com-
pression rates.

d-Gap Distribution in Schema-Independent Indices

Although, in schema-independent indexing, nothing is as-
sumed about the structure of the text collection, there are
natural breaks in the collection, where the text on one side is
independent of the text on the other. In traditional text col-
lections, these breaks occur at document boundaries. Gener-
alizing, these boundaries also occur between email messages,
journal articles, and files.

Figure 3 shows the d-gap distribution for the same four
terms already analyzed in Figure 2, this time under a
schema-independent index representation. It can be seen
that at least three of the four terms clearly have two lo-
cal maxima in their d-gap distribution. This is because,
whenever a term appears in a document, chances are it will
appear a second time (or more), as indicated in Table 1 by

 50

 40

 30

 20

 10

 0
 20 15 10 5 1#

of
 g

ap
s

w
ith

 g
iv

en
 s

iz
e

Size of d-gap (in bits)

(a) d-gap distribution for "rattlesnake"

Blah

 250

 200

 150

 100

 50

 0
 20 15 10 5 1#

of
 g

ap
s

w
ith

 g
iv

en
 s

iz
e

Size of d-gap (in bits)

(b) d-gap distribution for "semester"

Blah

 2000

 1600

 1200

 800

 400

 0
 20 15 10 5 1#

of
 g

ap
s

w
ith

 g
iv

en
 s

iz
e

Size of d-gap (in bits)

(c) d-gap distribution for "certified"

Blah

 5000

 4000

 3000

 2000

 1000

 0
 20 15 10 5 1#

of
 g

ap
s

w
ith

 g
iv

en
 s

iz
e

Size of d-gap (in bits)

(c) d-gap distribution for "church"

Blah

Figure 2: Gap distribution of the posting lists for “rattlesnake”, “semester”, “certified”, and “church” in a
document-level index with each posting corresponding to a document ID, extracted from TREC disks 1-5.

 50

 40

 30

 20

 10

 0
 25 20 15 10 5 1#

of
 g

ap
s

w
ith

 g
iv

en
 s

iz
e

Size of d-gap (in bits)

(a) d-gap distribution for "rattlesnake"

Blah

 250

 200

 150

 100

 50

 0
 25 20 15 10 5 1#

of
 g

ap
s

w
ith

 g
iv

en
 s

iz
e

Size of d-gap (in bits)

(b) d-gap distribution for "semester"

Blah

 1500

 1200

 900

 600

 300

 0
 25 20 15 10 5 1#

of
 g

ap
s

w
ith

 g
iv

en
 s

iz
e

Size of d-gap (in bits)

(c) d-gap distribution for "certified"

Blah

 10000

 8000

 6000

 4000

 2000

 0
 25 20 15 10 5 1#

of
 g

ap
s

w
ith

 g
iv

en
 s

iz
e

Size of d-gap (in bits)

(d) d-gap distribution for "church"

Blah

Figure 3: Gap distribution of the posting lists for “rattlesnake”, “semester”, “certified”, and “church” under
a schema-independent positional index representation, extracted from TREC disks 1-5.

the column labelled “Mean TF”. Thus, the d-gap distribu-
tion is the sum of two distributions, an inter-document and
an intra-document distribution. As the average document
in the TREC collection contains 533 tokens, we can expect
to see the first maximum in the lower range, below 9 bits,
corresponding to multiple terms appearing in the same doc-
ument, and the second maximum around 9 + k bits, where
k is the position of the maximum in the corresponding dis-
tribution in a document-level index, as shown by Figure 2.
For the term “semester”, the maximum in a document-level
index is at 9 bits; in the schema-independent index for the
same text collection, it is at 18 bits.

This bimodal distribution, the effect of combining the
intra-document with the inter-document distribution, means
bad news for γ coding, as most d-gaps, due to the sec-
ond maximum in the probability distribution, are no longer
small, but require a larger number of bits, and also for
Golomb coding, because it is no longer possible to find a
suitable split between binary and unary encoding.

5. INDEX COMPRESSION FOR SCHEMA-
INDEPENDENT TEXT RETRIEVAL

We now present an unaligned index compression scheme that
explicitly takes into account the bimodal nature of the post-
ing lists in a schema-independent index. We start by intro-
ducing generalized unaligned binary coding (GUBC), which
is not a novel technique, but a rather obvious generalization
of γ coding. We then explain generalized unaligned binary
coding with n components (GUBC-n), which is a novel tech-
nique that cannot be found in the existing literature.

Generalized Unaligned Binary Coding

GUBC is a generalization of Elias’ γ method. In a γ code,
the size of the selector for every code word is equal to the
size of the body; every bit in the body corresponds to one bit
in the selector (possibly without the most significant bit of
the body, which can be omitted, as discussed in section 3).
GBUC generalizes this approach by associating each bit in
the selector with σ bits in the body. If σ = 5, for instance, a
3-bit selector is followed by a 15-bit body, leading to a total
code word size of 18 bits (as opposed to 29 or 30 bits if γ
were used).

When a posting list needs to be compressed, the GUBC al-
gorithm performs a brute-force search for the optimal value
of σ, examining all values 1 ≤ σ ≤ 15. The optimal value is
selected and prepended to the compressed posting list (en-
coded as a 4-bit integer) to inform the decompressor of the
σ value that was chosen. The brute-force search during the
compression process seems expensive, but can in fact be re-
alized by using histogram information gathered in a single
traversal of the posting list, just like in the case of Huffman
codes. This way, the search process is largely independent
of the size of the list, and its cost is negligible, at least for
long lists (> 10,000 postings).

For σ > 1, the ability of the γ method to implicitly encode
the most-significant bit of the body inside the selector is lost.
However, it is not completely lost, as the information that
a d-gap is encoded using k · σ bits, for some integer k, still
implies that it cannot be encoded in (k − 1) · σ bits. This
information can be used in a recursive fashion to save at
least fractions of a bit, if not an entire bit, per posting.

Generalized Unaligned Binary Coding with n Com-
ponents

GUBC can be generalized to the GUBC-n method. In
GUBC-n, the compressor may choose a parameter tuple
(σ1, . . . , σn) instead of a single parameter σ. Under this
encoding scheme, a code word selector of length k indicates
a body containing s bits:

s =

 Pk
i=1

σi
Pn

i=1
σi +

Pk
i=n+1

σn

if k ≤ n
if k > n

The first bit in the selector corresponds to σ1 bits in the
body, the second bit in the selector to σ2 bits in the body,
and so forth. Of particular interest to us is the GUBC-
3 method. This is motivated by the fact that d-gaps in a
typical posting list follow a bimodal distribution, as shown
in the previous section. Allowing the compressor to use
3 different chunk sizes accommodates for this: The first
chunk can cover the local maximum that stems from the
within-document distribution, the second chunk can cover
the local maximum that stems from the inter-document dis-
tribution, and all further chunks can take care of the rest.
Like in the case of GUBC, the optimal parameter settings

are determined by performing a brute-force search on a his-
togram data structure created from the posting list to be
compressed, necessitating an additional pass over the list.

If we apply GUBC-3 to the example terms whose d-gaps
distributions are shown in Figure 3, the brute-force search
finds the following optimal parameter configurations:

• (8, 12, 1) for “rattlesnake”;

• (9, 8, 1) for “semester”;

• (8, 5, 1) for “certified”;

• (7, 5, 1) for “church”.

This corresponds to the positions of the local maxima of the
d-gap distributions shown in the figure.

Our experimental results show that, despite its simplicity,
GUBC-3 achieves very good compression rates in this type of
index, better than most other integer encoding techniques.

6. INCREASING THE PERFORMANCE OF
UNALIGNED CODES

Although unaligned compression techniques, like Huffman,
interpolative coding, and the GUBC schemes presented in
the previous section, that do not conform to byte boundaries
in most cases offer better compression effectiveness than
byte-aligned or word-aligned methods, both for document-
level and for schema-independent indices, they are usually
not used in search engines, mainly because their decompres-
sion performance is too low.

For example, Trotman [16] and Anh and Moffat [2] unan-
imously report that the decoding routine of their implemen-
tation of interpolative coding is up to 10 times slower than
that of the vByte method. In fact, the decoding overhead
reported by Anh and Moffat – 100-400 ns per posting – is
so immense that it seems more efficient to use an uncom-
pressed index than an index compressed using the interpola-
tive method. Reading an uncompressed 32-bit posting from
disk only takes around 100 ns on average, assuming a read
throughput of 40 MB per second.

As a rough guideline, index compression is always worth-
while if the disk I/O time saved by compressing a posting
is greater than the time it takes to decode it during query
processing. Suppose we can choose between two index com-
pression methods A and B, and A can encode postings using
1 bit less than B on average. Assume further that the in-
verted file is stored on a hard drive that achieves an average
read throughput of 40 MB/s. Then this means that the disk
I/O time saved by encoding postings with A instead of B is
3.1 ns per posting. Hence, choosing A over B is only sensible
if A’s decoding routine is at most 3 ns per posting slower
than B’s. On a typical CPU, this is between 5 and 10 clock
cycles — not a lot of time. A more thorough discussion of
this trade-off between disk I/O and decoding performance
is given by Trotman [16].

Since even the best compression techniques usually only
save a few bits per posting, compared to vByte or word-
aligned techniques, it is important that their decoding rou-
tines are highly optimized, as even a few extra clock cycles
per posting can outweigh the savings created by better com-
pression effectiveness and thus result in a lower overall query
processing performance.

In this section, we show how to efficiently decode un-
aligned binary codes. The main objective is to eliminate

int compress7Bits(long postings[], int cnt, byte out[]) {
int result = 0;
long previous = -1;

long bitBuffer = 0;
int bitsInBuffer = 0;

for (int i = 0; i < cnt; i++) {
long delta = postings[i] - previous - 1;
while (delta >= 64) {

bitBuffer += (64 + (delta & 63)) << bitsInBuffer;
bitsInBuffer += 7;

delta = delta >> 6;
}
bitBuffer += delta << bitsInBuffer;
bitsInBuffer += 7;
while (bitsInBuffer >= 8) {

out[result++] = (bitBuffer & 255);
bitBuffer >>= 8;

bitsInBuffer -= 8;
}
previous = postings[i];

}
if (bitsInBuffer > 0)

out[result++] = (bitBuffer & 255);
return result;

}

Figure 4: A C++ implementation of a compression
algorithm similar to vByte (Figure 1). d-gaps are en-
coded as sequences of 7-bit integers instead of 8-bit
integers. The difference to vByte is the introduction
of the bitBuffer that allows the program to perform
byte-aligned memory accesses.

all bit-by-bit data access patterns and replace them by op-
erations that work on a larger number of bits, preferably
entire bytes or even whole machine words. The two central
techniques used to achieve this are bit buffering and selector
look-ahead.

Bit Buffering

When decoding unaligned binary codes from an input byte
array to some output buffer, most code words will span
across multiple elements of the input array. To decode a
code word, all these array elements will need to be accessed
individually, their contents need to be combined, and bit
shift operations have to be performed in order to combine
the data stored in the array into a single variable repre-
senting the current code word. This can be very time-
consuming, as mentioned above. The solution to this prob-
lem is to use a single variable (probably a register if compiler
optimizations are turned on) the size of a machine word that
is used to buffer memory accesses and allows to access the
input array in a more efficient fashion.

In the decoding procedure of an unaligned coding method,
data are transferred from the input array into the bit buffer,
8 bits at a time, and the actual decoding operations are
exclusively performed on the lower-most bits of the buffer,
representing the current code word in the encoded stream of
d-gaps. Bits are added to and removed from the bit buffer
by using shift operations, which can be carried out very
efficiently. In the encoding procedure bits emitted by the
encode are transferred into the bit buffer and only copied
into the output array in chunks of 8 bits each, allowing for
efficient byte-aligned memory access.

Figure 4 shows how bit buffering can be employed to im-
prove the performance of a compression technique that is
similar to vByte, but encodes d-gaps in chunks of 7 bits
instead of 8. Without bit buffering, this would lead to a

int selector = 1;
do {
int posOfFirstZeroBit = firstZeroBit[bitBuffer & 255];

selector += posOfFirstZeroBit;
bitsInBuffer -= posOfFirstZeroBit;

bitBuffer >>= posOfFirstZeroBit;
} while (posOfFirstZeroBit >= 8);

Figure 5: Efficient selector look-ahead in the decod-
ing routines of Elias γ and GUBC-n, using a pre-
computed table firstZeroBit containing values in the
range 0..8.

complex unaligned memory access pattern where data from
adjacent bytes in memory need to be combined via a costly
sequence of bit shift and bit mask operations. The bit buffer
solves this problem. Depending on the characteristics of the
posting list to be processed, the 7-bit method is only be-
tween 40% and 90% slower than 8-bit method vByte, not 10
times slower, as indicated by Anh and Moffat [2].

The bit buffering technique can be used to speedup most
unaligned, variable-bit encoding schemes. Additional per-
formance improvements can be achieved by not transferring
individual bytes, but 16-bit or even 32-bit chunks between
the bit buffer and main memory. However, bit buffering re-
quires that all d-gaps can be encoded in w−7 bit (or w−15
bits when transferring 16-bit chunks between bit buffer and
main memory), where w is the size of a machine word on
the chosen architecture. For 32-bit CPUs, this will lead to
problems, as soon as the text collection for which an inverted
file is being created consists of more than 225 (33.6 million)
tokens. Fortunately, with modern 64-bit CPUs, this is not
an issue. We don’t expect to see text collections containing
more than 144 petabytes (257 bytes) in the near future.

Selector Look-Ahead

Elias’ γ, the Huffman method, and the GUBC-n codes pre-
sented in the previous section all have in common that their
encoded representation of a d-gap consists of two parts: a
selector, indicating the size of the code word, followed by
the body, containing the d-gap as a binary number. This
poses the problem of how to determine which part of the
code word is the selector and which part is the body. For γ
and GUBC-n, the selector is a sequence of “1” bits, followed
by a “0” bit indicating the end of the selector. A straight-
forward implementation could scan the lower part of the bit
buffer, one bit at a time, in order to find the first “0” bit in
the buffer. However, this would re-introduce the bit-by-bit
decoding operations that we were trying to eliminate.

The solution to this problem is to use a selector look-ahead
table that can be used to determine the size of the selector
by performing a small number of array lookups instead of
a large number of bit operations. For γ and GUBC-n, the
end of the selector is signalled by a “0” bit. We can use a
precomputed table with 256 elements to quickly find out the
position of the first “0” bit in any given sequence of 8 bits.
This process is shown in Figure 5.

If the selectors are guaranteed to be at most 8 bits long,
then this can be done even more efficiently. Moreover, the
same general technique can be used for any prefix code, in-
cluding Huffman codes, not only for “0” terminated selectors
as in the case of GUBC-n.

Speeding up GUBC-n

The decoding process for GUBC-n (including the special

case Elias γ) has two potential bottlenecks: Reading un-
aligned code words from memory and determining the length
of the current code word by finding out the value of the
zero-terminated selector component. Both bottlenecks can
be eliminated by applying the techniques discussed above.
Thus, an efficient implementation of a GUBC-n encoder is
straightforward.

Speeding up Huffman

The decoding process for Huffman codes has two potential
bottlenecks: Reading unaligned code words from memory
and determining the value of the selector. Unaligned mem-
ory accesses can be eliminated by integrating a bit buffer
into the decoding procedure. Quickly determining the value
of the current selector is a bit more complicated than in the
case GUBC-n. However, since Huffman codes are prefix-
free, it is possible to construct a lookup table containing 2k

elements which can then be used to determine, for every se-
quence of k bits, the Huffman code word that the sequence
starts with.

The lookup table needs to be constructed during the de-
coding process, since it depends on the Huffman tree, which
slightly reduces decoding performance. Moreover, limiting
the lookup table to 2k means limiting the length of all Huff-
man code words to k bits, which potentially decreases the
compression effectiveness of this method. However, for this
specific application, the degradation is negligible. Milidiú
et al. [9] provide an excellent discussion of the properties of
length-restricted Huffman codes.

In our implementation of Huffman coding, we employ the
BRCI [9] algorithm to impose a length limit of 10 bits on all
selectors and consequently use a lookup table containing 210

elements to quickly determine the value of the next selector,
given the current content of the bit buffer.

Speeding up Interpolative Coding

The decoding procedure for interpolative coding has three
potential bottlenecks: Reading unaligned code words from
memory, recursive function calls, and determining dlog2(ak−
a1 − 1)e, the number of bits used to encode the posting
abk/2c. Unaligned memory accesses can be eliminated us-
ing a bit buffer. Recursive function calls, as suggested by
the recursive definition of the method, can be replaced by
an explicitly-maintained stack. The third problem, deter-
mining the number of bits used to encode a posting, can
be realized efficiently by performing a local search, start-
ing from the number of bits used to encode the posting ak,
abk/2c’s parent in the recursive call stack. In most cases, the
number of bits used for abk/2c is one or two less than the
number of bits used for ak, so a local search will be very
efficient.

7. EXPERIMENTAL EVALUATION
The experimental evaluation of the techniques we have pre-
sented consists of three parts: Compression effectiveness,
decoding performance, and impact on overall search engine
response time. All methods are evaluated against vByte, the
de-facto standard for index compression in search engines.

Experimental Setup

All performance experiments were conducted on a PC based
on a 64-bit AMD Athlon64 3500+ CPU (2.2 GHz) with 2
GB of RAM, running a 64-bit Linux operating system. The
inverted files were stored on a 7,200-rpm SATA hard drive.

 22

 18

 14

 10

 6

 2
21421221028262422

B
its

 p
er

 p
os

tin
g

Mean size of d-gaps in posting list

(a) Document-level posting lists

Carryover-12
vByte
Rice

Interpolative
GUBC-3
Huffman

 30

 26

 22

 18

 14

 10
222220218216214212210

B
its

 p
er

 p
os

tin
g

Mean size of d-gaps in posting list

(b) Schema-independent posting lists

Carryover-12
vByte
Rice

Interpolative
GUBC-3
Huffman

Figure 6: Compression effectiveness for document-level and schema-independent posting lists for the terms
shown in Table 1. For document-level postings, all methods (except for vByte and Carryover-12) produce
similar results. For schema-independent postings, this is not the case.

vByte Gamma Rice Interpol Huffman GUBC-3 RBUC-B Carryover-12
landfilling 22.7 bits 32.1 (+9.4) 24.4 (+1.7) 22.1 (-0.5) 21.5 (-1.2) 21.4 (-1.2) 23.6 (+0.9) 27.7 (+5.0)
rattlesnake 23.3 bits 32.6 (+9.2) 23.4 (+0.1) 22.1 (-1.2) 20.9 (-2.4) 21.1 (-2.3) 23.0 (-0.3) 28.0 (+4.7)
corsica 19.5 bits 27.0 (+7.6) 22.4 (+2.9) 20.4 (+0.9) 17.9 (-1.6) 18.3 (-1.2) 20.5 (+1.0) 25.2 (+5.8)
ymca 17.8 bits 24.3 (+6.6) 21.4 (+3.6) 18.2 (+0.4) 16.4 (-1.4) 16.7 (-1.1) 18.5 (+0.7) 23.7 (+5.9)
semester 19.4 bits 26.5 (+7.0) 20.3 (+0.9) 18.7 (-0.7) 17.4 (-2.0) 18.0 (-1.4) 19.6 (+0.1) 25.6 (+6.1)
divorced 20.6 bits 27.7 (+7.1) 19.3 (-1.3) 18.4 (-2.1) 17.7 (-2.9) 18.3 (-2.3) 19.1 (-1.5) 25.9 (+5.3)
absent 21.0 bits 28.0 (+7.0) 18.2 (-2.8) 18.2 (-2.8) 17.6 (-3.4) 18.3 (-2.7) 18.7 (-2.3) 25.8 (+4.8)
certified 16.9 bits 21.6 (+4.8) 17.3 (+0.5) 15.4 (-1.5) 14.9 (-1.9) 15.4 (-1.4) 16.0 (-0.8) 19.1 (+2.2)
streets 17.6 bits 22.7 (+5.1) 16.3 (-1.3) 15.8 (-1.8) 15.1 (-2.4) 15.5 (-2.1) 16.5 (-1.1) 18.3 (+0.7)
church 13.1 bits 16.1 (+2.9) 15.4 (+2.2) 12.9 (-0.2) 11.8 (-1.3) 12.2 (-0.9) 13.3 (+0.1) 14.8 (+1.6)
agreed 15.6 bits 20.4 (+4.7) 14.2 (-1.4) 14.2 (-1.4) 13.7 (-2.0) 13.9 (-1.7) 14.7 (-0.9) 15.9 (+0.2)
director 14.3 bits 17.7 (+3.4) 13.3 (-1.0) 12.9 (-1.4) 12.4 (-1.8) 12.7 (-1.6) 13.2 (-1.0) 14.5 (+0.2)
high 13.9 bits 16.5 (+2.6) 12.3 (-1.6) 12.2 (-1.6) 11.7 (-2.1) 11.9 (-1.9) 12.6 (-1.3) 14.0 (+0.2)
there 13.7 bits 15.3 (+1.6) 11.2 (-2.5) 11.5 (-2.2) 11.0 (-2.7) 11.1 (-2.6) 11.8 (-1.9) 13.0 (-0.7)
which 13.1 bits 14.1 (+1.1) 10.2 (-2.9) 10.7 (-2.4) 10.1 (-2.9) 10.3 (-2.8) 10.8 (-2.2) 11.5 (-1.5)

Table 2: Compression effectiveness (in bits per posting) for schema-independent posting lists extracted from
TREC disks 1-5. All numbers are relative to vByte.

All executables were compiled using gcc 3.4.2 (x86-64, -O1).
As test data, we chose the following three text collections:

• The INEX-1.4 XML collection, containing 88 million
tokens in 12,107 text articles;

• TREC disks 1-5, containing 823 million tokens in 1.5
million documents;

• TREC GOV2, containing 42 billion tokens in 25.2 mil-
lion documents.

Most of our analysis is based on a certain set of terms and
their posting lists in the TREC disks 1-5 collection. A list
of these terms, covering most of the whole range of frequent
and infrequent terms, is given by Table 1.

Compression Effectiveness

For TREC disks 1-5, we constructed two indices: a
document-level inverted file, in which every posting cor-
responds to a document identifier, without any frequency
information or positional information, and a schema-
independent inverted file with full positional information.
We extracted the posting lists of the 15 terms listed in Table
1 and compressed them using various encoding methods.

The methods tested were vByte [15], Elias γ [7], Golomb-
Rice codes [8], the interpolative method [11], Huffman,
GUBC-3, the RBUC-B compression scheme recently pro-
posed by Moffat and Anh [10] and the word-aligned
Carryover-12 method presented by Anh and Moffat [2].
Numbers for RBUC-B and Carryover-12 were obtained by

using the implementations made available on the authors’
website12. The effectiveness results for all methods on
TREC disks 1-5 are shown in Figure 6.

For the document-level index, it can be seen that, with the
exception of vByte and Carryover-12, all methods perform
reasonably well. When comparing Interpolative, Golomb-
Rice, Huffman, GUBC-3, and RBUC-B coding, the differ-
ences in per-posting compression effectiveness are less than
1 bit for every term.

For the schema-independent index, the situation is com-
pletely different. Figure 6(b) shows that vByte, Carryover-
12, and Golomb-Rice are much worse than the other codes.
For the former two, this is not unexpected, as their being
aligned codes somewhat restricts their flexibility and their
ability to adjust to changes in the d-gap distribution. The
reason why Rice code is outperformed by the other methods
is that its underlying assumption – geometric d-gap distri-
bution – is wrong for a schema-independent index. The Rice
coder exhibits particularly poor performance for terms that
have a high tendency to form clusters, such as “church”,
“corsica”, and “ymca”, as shown in Table 2. All three terms
have an expected within-document term frequency of more
than 1.5 — if they occur in a document, they usually occur
more than once (cf. Table 1).

With the exception of Carryover-12, which only yields

91http://www.cs.mu.oz.au/∼alistair/carry/
92http://www.cs.mu.oz.au/∼alistair/rbuc/

vByte Gamma Rice Interpol Huffman GUBC-3 Gamma* Interpol*
landfilling 9.6 ns 23.1 (+13.5) 11.3 (+1.7) 33.5 (+23.9) 79.3 (+69.7) 13.5 (+3.9) 89.4 (+79.8) 124.8 (+115.2)
rattlesnake 9.9 ns 23.4 (+13.5) 9.1 (-0.7) 32.6 (+22.8) 43.6 (+33.7) 12.3 (+2.4) 90.2 (+80.3) 126.2 (+116.3)
corsica 9.5 ns 20.6 (+11.1) 8.0 (-1.5) 33.8 (+24.3) 28.8 (+19.3) 12.1 (+2.6) 78.0 (+68.5) 118.7 (+109.2)
ymca 8.0 ns 19.8 (+11.8) 8.2 (+0.2) 33.4 (+25.4) 19.9 (+11.9) 11.4 (+3.4) 72.7 (+64.7) 109.5 (+101.5)
semester 7.9 ns 20.4 (+12.5) 8.9 (+1.0) 31.7 (+23.9) 15.1 (+7.3) 11.0 (+3.1) 77.3 (+69.4) 112.4 (+104.5)
divorced 7.3 ns 19.6 (+12.4) 8.2 (+0.9) 30.1 (+22.9) 12.5 (+5.3) 9.2 (+1.9) 79.6 (+72.4) 111.0 (+103.7)
absent 7.6 ns 19.3 (+11.7) 7.8 (+0.2) 29.5 (+22.0) 10.1 (+2.5) 9.0 (+1.4) 80.8 (+73.2) 110.5 (+102.9)
certified 7.9 ns 18.3 (+10.5) 7.8 (-0.1) 29.8 (+21.9) 11.0 (+3.2) 9.0 (+1.2) 67.1 (+59.3) 98.4 (+90.6)
streets 8.2 ns 18.0 (+9.8) 7.5 (-0.8) 28.1 (+19.8) 10.1 (+1.9) 8.8 (+0.5) 70.0 (+61.7) 100.0 (+91.8)
church 8.0 ns 16.6 (+8.5) 8.5 (+0.4) 34.2 (+26.1) 10.0 (+1.9) 9.2 (+1.1) 55.6 (+47.6) 91.1 (+83.0)
agreed 7.5 ns 17.8 (+10.3) 8.7 (+1.2) 33.4 (+25.9) 10.6 (+3.2) 9.2 (+1.7) 66.0 (+58.5) 100.1 (+92.6)
director 7.5 ns 17.2 (+9.7) 8.8 (+1.3) 34.1 (+26.6) 10.9 (+3.4) 9.2 (+1.7) 60.1 (+52.5) 94.2 (+86.7)
high 7.7 ns 17.1 (+9.4) 8.4 (+0.7) 35.2 (+27.5) 9.4 (+1.7) 9.0 (+1.4) 57.4 (+49.7) 91.7 (+84.0)
there 7.8 ns 16.4 (+8.6) 8.1 (+0.3) 34.7 (+26.9) 9.0 (+1.2) 8.6 (+0.8) 53.2 (+45.4) 88.5 (+80.7)
which 7.9 ns 14.5 (+6.7) 8.0 (+0.2) 33.3 (+25.4) 9.0 (+1.1) 8.5 (+0.5) 49.6 (+41.7) 85.0 (+77.2)

Table 3: Decoding performance (in nanoseconds per posting) for schema-independent posting lists extracted
from TREC disks 1-5. All numbers are relative to vByte. Columns marked with a star represent our initial
implementation of the respective method, without applying the techniques described in section 6.

 210

 180

 150

 120

 90

 60

 30

 0
222220218216214212210

N
an

os
ec

on
ds

 p
er

 p
os

tin
g

Mean size of d-gaps in posting list

Decoding performance for schema-independent posting lists

Interpolative (old)
Gamma (old)

Interpolative (new)
Gamma (new)

GUBC-3
vByte

Figure 7: Decoding performance of several compres-
sion methods for schema-independent posting lists
from TREC disks 1-5. With bit buffering and selec-
tor look-ahead, the decoding process for Elias γ is
3-4 times faster than without these techniques.

good compression rates for high-frequency terms (or for
document-level indices), and Gamma, which is simply not
competitive with the other methods, the other algorithms
all produce decent results, usually better than vByte. How-
ever, the only methods that consistently achieve a better
compression rate than vByte are Huffman and GUBC-3.
Huffman saves between 2 and 3 bits per posting for most
terms, GUBC-3 a little less.

Decoding Performance

To test the decoding efficiency of the various coding schemes,
we took the posting list for each term, encoded it in each
format, and repeatedly ran the decoding routine for the re-
spective method. In total, for each posting list and each
coding scheme, several billion postings were decompressed
in order to obtain reliable performance figures.

We compared the decoding performance of vByte to that
of γ and interpolative coding. For each of the latter two, we
ran experiments with our original implementation, which
performs bitwise decoding operations and does not make
any use of the techniques described in section 6, and with
our new implementation based on bit buffering. vByte’s
decoding routine needs between 7 and 10 nanoseconds per
posting; the unoptimized versions of γ and interpolative cod-
ing between 50 and 120 nanoseconds – a factor-10 difference,

which is in line with performance figures reported elsewhere
[2] [16]. Our new implementations of these two methods,
however, are much faster. The new γ decoder only needs
between 14 and 24 nanoseconds per posting, the interpola-
tive decoder between 28 and 36 nanoseconds – a slowdown
between 100% and 300%, compared to vByte.

The decoders for Huffman and GUBC-3 are even more ef-
ficient and only require around 10 nanoseconds per posting.
Compared to vByte, this is a per-posting slowdown between
1 and 3 nanoseconds. The optimized Rice decoder even out-
performs vByte on some lists. The Huffman decoder, how-
ever, is only efficient for long posting lists, containing at least
a few thousand postings. For shorter lists, the overhead as-
sociated with constructing the selector look-ahead table by
far outweighs the cost of the actual decoding process.

Overall Impact on Search Engine Performance

The effect that the different compression algorithms have
on the total size on the index for each text corpus is shown
in Table 4. For comparison, the table includes the size of
an uncompressed index, where each posting is stored as a
simple 32-bit integer. Huffman and GUBC-3 achieve the
best compression among all methods, around 85% the size
of a vByte-compressed index (35% of an uncompressed in-
dex), with Huffman producing slightly better results than
GUBC-3. The Golomb-Rice coder shrinks the index by 7%
for TREC disks 1-5, but only achieves 2% for the INEX col-
lection and increases the size of the index for GOV2. This
is because the average document length for INEX (7,000
tokens) and GOV2 (1,700 tokens) is larger than for the
TREC disks (550 tokens), leading to greater clustering due
to within-document repetitions, a gross violation of the in-
dependence assumption that Golomb-Rice is based on.

We tested query processing performance using title-only
queries extracted from TREC topics 1-500 (for TREC disks
1-5) and the first 1000 topics of the TREC 2005 Terabyte ef-
ficiency query stream (for GOV2). For each search query, we
had our search engine report the 20 top-ranking documents
according to their Okapi BM25 score. Each experiment was
repeated multiple times in order to obtain reliable results.
Average query times are shown in Table 5.

For TREC disks 1-5, vByte, Rice, Huffman, and GUBC-3
all achieve equivalent query processing performance. Only
the interpolative method, due to the complex decoding op-
erationgs, and the uncompressed index, due to the substan-

INEX-1.4 TREC 1-5 GOV2
vByte 145.4 MB 1361.6 MB 61.3 GB
Golomb-Rice 141.9 MB 1261.1 MB 61.7 GB
Interpolative 132.2 MB 1216.2 MB 54.2 GB
Huffman 124.2 MB 1144.4 MB 50.6 GB
GUBC-3 126.8 MB 1170.7 MB 50.8 GB
None (32-bit) 360.4 MB 3218.5 MB n/a

Table 4: Total size of compressed inverted file.

TREC disks 1-5 GOV2
vByte 96.2 ms/query 1792.6 ms/query
Golomb-Rice 96.4 ms/query 1866.2 ms/query
Interpolative 110.7 ms/query 2445.0 ms/query
Huffman 96.1 ms/query 1783.6 ms/query
GUBC-3 96.0 ms/query 1781.6 ms/query
None (32-bit) 115.6 ms/query n/a

Table 5: Impact on query processing performance.

tially increased disk I/O, are significantly slower than the
other methods (15% and 20%, respectively). For the GOV2
text collection, the situation is roughly the same. However,
the Rice coder, because it increases the size of the index com-
pared to vByte, is about 4% slower than vByte. Huffman
and GUBC-3, on the other hand, are able to generate a tiny
improvement over vByte: Query processing is 0.5% (Huff-
man) and 0.6% (GUBC-3) faster than with vByte. For both
text collections, the TREC disks and GOV2, the GUBC-3
compression method provides the highest query processing
performance among all methods tested.

8. CONCLUSION
We have discussed the effectiveness of index compression
techniques for schema-independent inverted files and pro-
posed an unaligned encoding method, GUBC-3, that takes
the special characteristics of such inverted files into account.
In addition, we have presented performance-enhancing tech-
niques for unaligned index compression schemes. As a result,
we have obtained an unaligned compression algorithm that
produces indices about 15% smaller than the well-known
vByte method, while offering an equivalent, or even slightly
increased, level of query processing performance. Our re-
sults contradict most earlier work on index compression al-
gorithms for inverted files, which usually indicated that the
query processing performance of aligned codes is much bet-
ter than that of unaligned codes.

The evaluation presented in this paper is limited to
schema-independent inverted files, but our methods can
easily be applied to document-level indices. The techniques
we use to obtain high-performance decoding routines for
unaligned binary codes rely on the machine word size on
the computer they are run on. While they produce very
good results on a 64-bit architecture, they will be less ef-
ficient on 32-bit CPUs. However, we do not deem this a
real limitation, as 32-bit CPUs are already beginning to
disappear.

9. REFERENCES
[1] V. N. Anh and A. Moffat. Index Compression Using

Fixed Binary Codewords. In Proceedings of the
Fifteenth Conference on Australasian Database, pages
61–67, Dunedin, New Zealand, January 2004.

[2] V. N. Anh and A. Moffat. Inverted Index Compression
using Word-Aligned Binary Codes. Information
Retrieval, 8(1):151–166, January 2005.

[3] S. Büttcher and C. L. A. Clarke. A Security Model for
Full-Text File System Search in Multi-User
Environments. In Proceedings of the 4th USENIX
Conference on File and Storage Technologies (FAST
2005), San Francisco, USA, December 2005.

[4] C. L. A. Clarke. Controlling Overlap in
Content-Oriented XML Retrieval. In Proceedings of
the 28th ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 314–321,
Salvador, Brazil, August 2005.

[5] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski.
An Algebra for Structured Text Search and a
Framework for Its Implementation. Technical report,
University of Waterloo, August 1994.

[6] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski.
Schema-Independent Retrieval from Heterogeneous
Structured Text. Technical report, University of
Waterloo, November 1994.

[7] P. Elias. Universal Codeword Sets and
Representations of the Integers. IEEE Transactions on
Information Theory, IT-21(2):194–203, 1975.

[8] S. Golomb. Run-Length Encodings. IEEE Trans. on
Information Theory, IT-12:399–401, July 1966.

[9] R. L. Milidiú and E. S. Laber. Improved Bounds on
the Inefficiency of Length Restricted Codes. Technical
report, Departamento de Informática, PUC-RJ, Rio
de Janeiro, Brazil, January 1997.

[10] A. Moffat and V. N. Anh. Binary Codes for
Non-Uniform Sources. In Proceedings of the 15th Data
Compression Conference (DCC 2005), pages 133–142,
Snowbird, USA, March 2005.

[11] A. Moffat and L. Stuiver. Exploiting Clustering in
Inverted File Compression. In Storer and Cohn,
editors, Proceedings of the 1996 Data Compression
Conference, pages 82–91, 1996.

[12] A. Moffat and L. Stuiver. Binary Interpolative Coding
for Effective Index Compression. Information
Retrieval, 3(1):25–47, 2000.

[13] A. Moffat and J. Zobel. Compression and Fast
Indexing for Multi-Gigabyte Text Databases.
Australian Computer Journal, 26(1):1–9, 1994.

[14] A. Moffat and J. Zobel. Self-Indexing Inverted Files
for Fast Text Retrieval. ACM Transactions on
Information Systems, 14(4):349–379, October 1996.

[15] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel.
Compression of Inverted Indexes for Fast Query
Evaluation. In Proceedings of the 25th ACM SIGIR
Conference on Research and Development in
Information Retrieval, Tampere, Finland, August
2002.

[16] A. Trotman. Compressing Inverted Files. Information
Retrieval, 6(1):5–19, January 2003.

[17] H. E. Williams and J. Zobel. Compressing Integers for
Fast File Access. The Computer Journal,
42(3):193–201, 1999.

